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Abstract

This paper addresses the following inspection problem:
given a known workspace and a robot with vision capabili-
ties compute a short path path for the robot such that each
point on boundary of the workspace is visible from some
point on the path. Autonomous inspection, such as by a fly-
ing camera, or a virtual reality architectural walkthrough,
could be guided by a solution to the above inspection prob-
lem. Visibility constraints on both maximum viewing dis-
tance and maximum angle of incidence are considered to
better model real sensors. An algorithm is presented for
planar workspaces which operates in two steps: selecting
art gallery-style guards and connecting them to form an in-
spection path. Experimental results for this algorithm are
discussed. Next, the algorithm is extended to three dimen-
sions and inspection paths are shown.

1 Introduction

The Problem and Motivation Consider the problem
of exploring a workspace, sometimes called the watchman
route problem [15]. The watchman route problem is defined
as follows: given a workspace � , compute a path � in �
such that every point on ��� , the boundary of � , is visible
from some point on � . In the traditional art gallery prob-
lem, of which the watchman route problem is a direct de-
scendant, “visible” is defined to mean that the line of sight
from the guard to the point in question lies entirely in � .
Figure 1 shows an example of an inspection path.

There is an established need for autonomous inspection.
A primary motivator of this work has been the idea of a fly-
ing camera that could inspect a space station for leaks, me-
teorite damage, parts that have fallen off, or other problems.
Papers like [4] and [3] describe the development of such a
camera, called AERCam, which stands for “Autonomous
Extra-vehicular Robotic Camera”.

Even on earth there are many places where inspection by
humans is impractical, either because it is time-consuming
or because it is dangerous. For example, the paint in sewage
stations and automated factories must be checked periodi-
cally. González-Baños et al describe a number of other ap-

Figure 1: A path computed by our algorithm

plications for autonomous observers, and discuss a number
of problems related to inspection, including model building,
target finding, and target tracking [10]. The problem of in-
spection also finds use outside of robotics applications. For
instance, architectural walkthroughs could be computed au-
tomatically, an excellent companion to a virtual reality ex-
ploration system such as the University of North Carolina’s
Walkthrough [1].

However, simple straight-line visibility is not a very re-
alistic model of real sensors. For our purposes, we add
two constraints on that definition, taken from [11]. First,
the length of the line of sight must not exceed a maximum
viewing distance. This corresponds to the limited range of
real sensors, which often cannot register far away objects.
Further, even if some object is near enough to be sensed, it
might still be too far away for its details to be inspected.

Second, we constrain the line of sight’s angle of inci-
dence with the edge being observed. That is, the angle be-
tween the line of sight and the normal to the edge must not
exceed a given maximum—60 degrees is a typical value.
Figure 2 illustrates the incidence constraint. Again, the con-
straint addresses two concerns: one, that the sensors will
not pick up the surface at too grazing an angle, and two,
that the sensing data will provide too little detail for proper
inspection. By providing tunable visibility constraints, the
algorithm can be easily adapted to different sensor charac-
teristics and detail needs.
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Figure 2: The incidence constraint:
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Related Work Finding the shortest watchman route,
even without constraints on visibility, is not easy. Chin and
Ntafos, who defined the problem, gave an 
������� algorithm
for solving it in simple polygons [2], but showed in the same
paper that it becomes NP-hard in polygons with holes, even
if those holes are restricted to be convex or orthogonal. For
a practical algorithm to inspect general polygonal regions,
an approximating or randomized algorithm is needed.

Excellent work has been done in the area of exploring
unknown polygons. By definition, a route which com-
pletely explores an unknown polygon is a watchman route.
A competitive approximation algorithm for this problem
was presented by Hoffmann et al in [12]. The competitive
factor is ������� . This is impressive because the path this al-
gorithm computes online is within a constant factor of the
length of the best possible route. However, this only works
in simple polygons and with unconstrained visibility.

González-Baños and Latombe described the model of
constrained visibility we use [11]. Their work is in ex-
ploring an unknown workspace with discrete sensing events
rather than continuous sensing over the entire path. They
present an algorithm for determining the “next best view”,
which is where the robot should go next to best expand the
known portion of the border. We expand on this work by
optimizing the paths found for length rather than earliest
learning, and by extending it to three dimensions.

For the case of unconstrained visibility and discrete sens-
ing, Ghosh and Burdick give an algorithm for exploring an
unknown polygon with a bounded number of sensing oper-
ations [9].

Organization of this paper This paper is organized as
follows. Section 2 describes our algorithm for inspecting a
2D workspace. Subsection 2.3 covers the experimental re-
sults obtained with that algorithm. The extension to three
dimensions is introduced in Section 3, and preliminary re-
sults with that method are covered in Subsection 3.3. Fi-
nally, Section 4 ends the paper with a short discussion of
possible future directions.

2 Two-Dimensional Inspection
For many types of mobile robots, an inspection path

computed with a two-dimensional model of the workspace

is sufficient. Such a path would allow the robot to see all of
the walls as shown on the floor plan, but not necessarily all
of the shelves, ceiling features, etc. For other purposes, it
will be necessary to consider the third dimension as well—
this will be covered later.

The implementation supports computation of inspection
paths in polygons with holes, which makes it easy to inspect
either the interior or exterior of the workspace. By default,
the interior is inspected. If an exterior inspection is desired,
wrap the workspace in an enclosing rectangle and mark that
rectangle as already guarded so that it will not influence
guard selection.

In real-world systems, sensing is a time-consuming op-
eration. For inspection purposes, it may also be necessary to
perform a detailed analysis on the data acquired by the sen-
sors. Therefore, it makes sense to identify at which points
on the inspection path it is actually necessary to perform
the sensing operation. In light of this, our algorithm divides
the path computation into two parts: solving an art gallery
problem to choose a set of sensing locations (guards), and
connecting those locations with a short path.

2.1 Selecting the Guards

Selecting a true minimal set of art gallery guards has
been shown to be an NP-hard problem, even in simple poly-
gons [15]. To model real environments, it is necessary to
handle holes, but this makes the problem even harder. To
deal with these issues, we opt for a randomized approach.
González-Baños and Latombe provide a suitable random-
ized, incremental algorithm in [11], on which this work is
built.

The algorithm proceeds as a loop. At each iteration, a
point � on the border � � of the workspace � which is not
yet guarded is selected at random. A balanced tree is used
to keep track of which sections of the border are guarded
by points already selected, and this data structure is kept
as compact as possible by merging adjacent segments with
the same status. The region which can see � is constructed
(this is equivalent to the region � can see), clipped to the
range constraint, then clipped again to the incidence con-
straint. � potential guard points are chosen at random from
this region, and each of these samples is evaluated as a po-
tential new guard. The sample which can guard the most
new length of border is retained as a guard and the border
representation is updated to reflect the new guarded portion.
The loop repeats until all of the border is guarded.

The unguarded portion of the workspace border de-
creases monotonically at each iteration of the loop, be-
cause the randomly selected point � is unguarded as a pre-
condition of the loop, and is guarded as a post-condition.
This ensures termination. However, under incidence con-
straints, environments with sharp interior angles may re-
quire a disproportionately large number of guards, which
may be very hard to place. Small corners may be very hard



to completely inspect because only a very small area can
see the necessary parts. This algorithm performs poorly in
such cases, but since the algorithm is incremental, it can
be stopped early—for example, when 98% of the space has
been inspected.

2.2 Connecting the Guards

Once the guards have been selected, it is necessary to
find an order to visit them. Since a set of  points can
be visited in  � orders, the naı̈ve algorithm will definitely
not work. By connecting the guards in a graph, graph algo-
rithms can be brought to bear on the problem. When viewed
this way, the problem of finding an order for the guards can
be recast as a Traveling Salesman Problem, which is known
to be NP-complete in general graphs [8].

Approximation to TSP Fortunately, for graphs with edge
weights that obey the triangle inequality,

� ������� � ���
	�� � ���
	�

there is a simple approximation to the traveling salesman
problem which produces solutions no longer than twice the
true optimal length. The triangle inequality holds for graphs
arising from ��� or ��� , which a graph of the guards would,
and this approximation can be made to work.

In a graph whose edge weights obey the triangle inequal-
ity, a pre-order walk of a minimum spanning tree has total
length less than or equal to twice the weight of a shortest
Traveling Salesman tour [5]. However, the traveling sales-
man problem is defined for complete graphs (which Fig-
ure 3 is not), and the bound on this approximation only
holds for complete graphs.

The shortest paths graph The graph we have chosen to
use, which we call the shortest paths graph, consists of one
node for each guard and one edge for each pair of guards.
To each edge ��� �� � , a weight is assigned which is equal to
the length of the shortest collision-free path from � to

�
.

This may be a straight-line, or it may be more complex to
avoid obstacles.

If the workspace is connected (that is, all parts are reach-
able from all other parts), the shortest paths graph will be
complete. Since an inspection path cannot exist in a dis-
connected workspace, the assumption that the shortest paths
graph will be complete is a reasonable one.

The triangle inequality property of the edge weights fol-
lows immediately from the fact that the shortest paths graph
is composed of shortest paths: if

� ����� � �����
	
is less than� ����	

, then the edge from � to � must not actually be a short-
est path. Therefore, the shortest paths graph is suitable for
the minimum spanning tree-based approximation to TSP.

Computing a shortest path between two points in two
dimensions is straightforward [14]. For our purposes, it

Figure 3: A workspace-guard roadmap (2 guards). It is not
complete and it is not suitable for the approximation to TSP.

will be done with a simple search in another graph, the
workspace-guard roadmap, which is illustrated in Figure 3.
The workspace-guard roadmap has one node for each vertex
in the border of the workspace, � � , and one node for each
guard. Hence it includes the workspace visibility graph as
defined in [14]. It has an edge between a pair of nodes �
and

�
if and only if the straight-line path from � to

�
does

not intersect any obstacles. The weight of an edge ��� �� � , if
collision-free, is just the distance from � to

�
.

Optimizing graph building Because generating a com-
plete graph of  nodes would yield �� edges, a shortcut
for building the workspace-guard roadmap, and hence the
shortest paths graph, is desirable. To keep the graph con-
nection step sub-quadratic, when the sum of the number
of guards and the number of vertices in � � is large, only
nearby points are connected. This is accomplished by divid-
ing the workspace into a regular rectangular grid such that
the average number of points per cell is some small number,
on the order of 10. Then connection is performed in a mov-
ing 3-by-3 window. For example, if the grid is 5-by-5, there
will be 9 connection steps, one centered on each cell except
the border cells. Since a minimum spanning tree only uses
short edges, the effect of this approximation on the final
path should be minimal, even though it reduces the number
of calls to shortest-path from 
����� � to 
����� .
2.3 Experimental Results

We implemented the algorithm described above in C++
with the LEDA toolkit version 4.0.

Three examples here show paths generated by the code
in polygons of various complexity. Figures 4 and 5 are actu-
ally instances of the Hilbert polygon as generated by LEDA.
All times were taken on a PC with an AMD Athlon CPU at
600MHz and 128MB of system memory. The software is
compiled with gcc 2.95, and linked against LEDA 4.0. In
Figure 4, the incidence constraint is 60 degrees, and the dis-
tance constraint was not set. The 23 guards were selected in
1.6 seconds and connected in 0.5 seconds. In Figure 5, nei-
ther constraint was set (this makes the problem somewhat
simpler). The 165 guards were selected in 278.9 seconds,
and connected in 190.3 seconds. Finally, in Figure 6, the



Figure 4: A simple workspace with a 60 degree maximum
incidence

incidence constraint was 50 degrees, and the distance con-
straint was set to about half of the length of one of the side
corridors. It took 1.97 seconds to choose the 56 guards and
0.41 to connect them.

Profiling revealed that most of the computation time,
especially in complex workspaces such as in Figure 5 is
spent computing visibility polygons, because the sweep ray
visibility algorithm is 
��  ����� �� in the complexity of the
workspace [6], and it must be called to evaluate each po-
tential guard. Speeding this process significantly would
improve the execution time. By taking advantage of the
maximum range constraint and not considering workspace
features which are far away, this should be possible in the
future.

There was some debate as to whether the randomized
guard selection procedure should be replaced by one based
on a regular grid of points. In that approach, a grid would be
imposed on the workspace, and greedy set coverage would
be used to choose a subset of those points which could
guard the whole space. This is similar to the first algorithm
described in [11].

While there are advantages to deterministic algorithms
with very predictable performance, this grid-based ap-
proach performs quite poorly. Irregular spaces or restrictive
sensor limitations typically require the grid to be refined
many times, until thousands of grid points are created to
find the 20 or 30 that can cover the border of the space. To
solve the problem in Figure 6, our implementation of this
grid algorithm needed over 200 seconds.

3 Three-Dimensional Inspection

While an inspection path for a collection of rooms com-
puted using a two-dimensional approximation of a real en-
vironment will do for a gross scan of the real workspace,
a proper inspection path must be computed based on the

Figure 5: A large, complicated example (1026 edges)

Figure 6: An environment with narrow corridors

true three-dimensional workspace. For more fully three-
dimensional tasks, such as inspection of a space station, a
two dimensional approximation is essentially useless. The
two constraints on visibility, maximum distance and maxi-
mum incidence, remain the same in three dimensions. The
general algorithm explained above will work largely un-
changed in three dimensions. The primary difficultly is that
the sweep ray visibility algorithm used in two dimensions
does not extend easily to three.

3.1 Selecting the Guards

To use the guard selection algorithm as is in three di-
mensions, visibility volume computation would be needed
for two purposes: to determine what portion of the surfaces
of the environment a given point can see, and to determine
the region to sample for potential guards for a point on the



Figure 7: A circular dependence; the shown triangles have
no front-to-back order

border. In the two dimensional case, these two purposes
were served by the same visibility polygon algorithm. In
three dimensions, they can be treated separately, and do-
ing so will allow us to avoid explicitly computing visibility
volumes.

In the first case, what is really needed is a simple enu-
meration of the visible surfaces, similar to what is used in
graphics. This process is detailed later in this section.

In the second case, it is only necessary to select random
points in the intersection of the visibility polyhedron, the
sphere with radius

� ���	�
that results from the distance con-

straint, and the infinite cone with angle � � � � � �
which re-

sults from the incidence constraint. The intersection of the
sphere and the cone is easy to compute and sample. Each
of these sample points needs to be tested to see if they lie in
the visibility polyhedron by checking the line segment from
the border sample point � to the sample for intersection with
the various obstacles. Since the two functions of the visibil-
ity polyhedron in this algorithm can be fulfilled without an
explicit representation, the problem of computing one can
be avoided.

Visible Surface Determination To determine the effec-
tiveness of a potential art gallery guard, it is necessary to de-
termine what obstacle surfaces are visible from the guard’s
position, subtract from those surfaces the portion that is vis-
ible from already-selected guards, and compute the total
area remaining.

Clearly the face closest to the observer is completely vis-
ible, and the next closest face is also completely visible,
except for any part which might be occluded by the first
polygon. This suggests an algorithm which iterates over the
faces in front to back order, with each face clipping those
behind it. Such an algorithm faces three hurdles: deter-
mining the front to back order, resolving circular conflicts
such as in Figure 7, and employing a data structure to rep-
resent what part of each face is still visible. In a polyhedral
environment, the visible portion of any given face can be
represented as a set of one or more disjoint polygons, pos-
sibly with holes. This data structure will need to support
subtracting polygons from it and computing the remaining
area. Alternatively, a conservative approximation could be
made by breaking each face into small pieces and consider-

Figure 8: An inspection path for two cubes

ing each piece either completely visible or not visible.
The problems relating to the front to back order are well-

addressed by the binary space partitioning (BSP) tree [7].
In building a BSP tree, circular occlusion conflicts are re-
solved by splitting polygons as necessary. Once built, the
BSP tree can be used to generate provide front to back or-
derings from any point in linear-time. For our implementa-
tion, we chose to use the BSP tree to solve these problems.

3.2 Connecting the Guards

The procedure for connecting the guards in two dimen-
sions will work largely unchanged. In the plane, obstacle
vertices can be used to compute optimal shortest paths, but
there is no easy analog to this procedure in three dimen-
sions [14]. Instead of augmenting the guard roadmap with
workspace vertices to obtain the workspace-guard roadmap,
random points in the free space are chosen, in a manner sim-
ilar to probabilistic roadmaps [13].

3.3 Preliminary Results

There is an early implementation of this algorithm, us-
ing the conservative approximation to visibility described
above. The paths shown in Figures 8 and 9 were gener-
ated with that implementation. The black lines represent
the computed paths, and the gray dots represent the loca-
tions where a sensing operation must take place.

Figure 8 is a path to inspect a pair of simple unit cubes in
a workspace which extended ten units beyond the bounding
box of the cubes in each direction. The incidence maxi-
mum was �

���
, and the distance constraint was 3. The path

was computed in 8.7 seconds. All times for the 3D imple-
mentation were taken on the same PC (Athlon 600) as in
Section 2.3.

Figure 9 is a path to inspect 4 cubes and 3 tetrahedra. The
incidence and distance constraints were the same as in the
single cube case, and the path was computed in 72 seconds.



Figure 9: An inspection path for four cubes and three tetra-
hedra

4 Discussion

This paper considered the inspection problem under visi-
bility constraints and described an algorithm for computing
inspection paths in two dimensions. Experimental results
with this algorithm were discussed. Next, the inspection
path algorithm was extended to operate in three dimensions
using a binary space partitioning tree to compute the neces-
sary visibility information.

Much work remains to be done in this area. Other cri-
teria of path goodness should be considered, such as dy-
namics. For a flying camera in space, the length of a path
is much less important than the amount of propellant ex-
pended in following it. Instead of having specific sites that
must be visited to inspect the entire workspace, a set of
small regions could be selected, such that one sensing oper-
ation in each region would be sufficient to inspect the whole
workspace. This kind of flexibility—to visit an area rather
than a specific point—would probably be useful in optimiz-
ing a path for measures other than simple length.

Connecting sensing locations using the visibility graph
method produces paths which are locally optimal, but are
very unfriendly to robots because they hug the walls. To
adapt this planner to real world robots, it will need to be
modified to obey constraints on how close the robot may
come to an obstacle.

The work so far has used a model of camera which is
omnidirectional. While some range sensor implementations
have this useful property, most visual cameras do not. It
would be straightforward to modify this algorithm to deal
with directional cameras, both in two and three dimensions.
However, in optimizing the fuel usage of the path, it be-
comes important whether the camera is fixed relative to the
direction of motion of the robot, or whether it is mounted
on a turret and free to point in some other direction.
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[10] H. González-Baños, L. Guibas, J.-C. Latombe, S. LaValle,
D. Lin, R. Motwani, and C. Tomasi. Motion planning with
visibility constraints: Building autonomous observers. In
Y. Shirai and S. Hirose, editors, In Robotics Research - The
Eighth International Symposium, pages 95–101, 1998.
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