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ABSTRACT
Kinases are a class of proteins very important to drug design;
they play a pivotal role in many of the cell signaling pathways
in the human body. Thus, many drug design studies involve
finding inhibitors for kinases in the human kinome. However,
identifying inhibitors of high selectivity is a difficult task.
As a result, computational prediction methods have been
developed to aid in this drug design problem.

The recently published CCORPS method [3] is a semi-
supervised learning method that identifies structural features
in protein kinases that correlate with kinase binding affinity
to inhibitors. However, CCORPS is dependent on the amount
of available structural data. The amount of known structural
data for proteins is extremely small compared to the amount
of known protein sequences. To paint a clearer picture of
how kinase structure relates to binding affinity, we propose
extending the CCORPS method by integrating homology
models for predicting kinase binding affinity. Our results
show that using homology models significantly improves the
prediction performance for some drugs while maintaining
comparable performance for other drugs.

Categories and Subject Descriptors
J.3 [Life and Medical Sciences]: Biology and genetics;
I.2.6 [Artificial Intelligence]: Learning; I.5.1 [Pattern
Recognition]: Models—Statistical

General Terms
Algorithms, Performance, Experimentation
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1. INTRODUCTION
The protein kinase family is one of the largest protein

families. Approximately 1.7% of the human genome consists
of protein kinases [19]. Protein kinases are an important
part of the human body, affecting a wide variety of cell
signaling pathways. Some of the bodily functions affected
by kinases include cell growth, immune responses, brain
function, and blood pressure regulation [5]. As a result,
developing inhibitors for protein kinases is a popular issue
in drug design [4].

Our goal is to predict the binding affinity between in-
hibitors and kinases. Accurate prediction of kinase binding
affinity for potential drugs could significantly decrease the
amount of time and money needed for drug discovery. There
are two challenges to predicting binding affinity of inhibitors
for kinases: the highly conserved binding site of kinases and
the lack of experimental structural data. We will elaborate
on both below. Despite the many different processes kinases
are involved in, their binding site is extremely conserved.
Binding affinity predictions are thus necessarily based on
very subtle variations among all kinases. Inhibitors can
be classified by the two main binding modes: type I and
type II [17]. Type I kinase inhibitors generally have low
selectivity. The more recently developed type II inhibitors
achieve higher selectivity by binding to both the ATP site as
well as an adjacent, hydrophobic site. The subtle changes in
the binding site make it difficult for sequence-based analysis
to predict the binding affinity [3]. Thus, we turn to structural
analysis of kinases to reveal more differences between them
that could attribute to different binding affinities. This leads
us to the next challenge: the lack of experimental structural
data. Relative to protein sequential data, there is much less
protein structural data. According to the PFAM:Pkinase
family in release 25 of the Pfam database [24], there are
56691 sequences and only 172 (0.3%) of those sequences have
one or more referenced PDB structures. As a result, struc-
tures may not fully cover the range of naturally occurring
variation. In addition, with relative little structural data,
spurious patterns can emerge that are unrelated to binding
affinity.

We propose a method that extends the Combinatorial Clus-
tering Of Residue Position Subsets (CCORPS) method [3]
by integrating homology models. The structure-based, semi-
supervised CCORPS method addresses the first challenge in
our problem to some degree. We integrate homology models
to address both challenges, providing more structural data
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to paint an accurate picture of kinase structures to enhance
prediction of binding affinities for inhibitors. The homology
models are generated based on known template structures
through comparative modeling [9]. In our work we use Mod-
eller [7], which is one such method that generates homology
models. More specifically, our method uses homology models
from the ModBase database [23], which contains homology
models calculated by the ModPipe pipeline [6] that uses
Modeller [7].

Our results demonstrate significant improvement in kinase
binding affinity prediction using our extended CCORPS
method. We observed the prediction performance on several
drugs improve with the addition of just a few homology
models relative to the number of experimental structures
used. We cover specific examples in our results section
and highlight the different effects of homology models on
prediction performance.

2. RELATED WORK
Interest in structural analysis of proteins has grown as more

structural data has become available. Recent work shows
that similar, specific structural features can be found across
the kinase family, and the structural similarities can be used
to analyze kinase selectivity [15, 21, 11, 14, 20]. The Pocket-
FEATURE method [16] finds similar “micro-environments”
between two binding sites. Using this method, 9 kinase bind-
ing site pairs that have the same inhibitor and similar micro-
environments have been found. Recently, another method
called CCORPS [3] has been introduced to predict functional
classifications and annotations from available structural data.
Existing methods have several problems that CCORPS ad-
dresses. CCORPS does not rely on a single, representative
structure for individual kinases as other methods do [3]. By
allowing multiple structures for individual kinases, CCORPS
is able to use information from different conformations. Also,
while existing methods only use information on kinase bind-
ing sites known to bind to inhibitors, CCORPS also uses
data on binding sites known not to bind to inhibitors [3].

The use of predicted protein structures has also been the
subject of recent work. All the methods discussed above are
reliant on available experimental structural data for input.
By contrast, the I-TASSR method is an automated method
that computationally predicts protein structure and then
uses this information to predict protein function [26]. This
method defines protein function as Enzyme Commission num-
bers [27], Gene Ontology terms [1], or binding site. However,
I-TASSR does not predict binding selectivity with inhibitors,
or more specifically, kinase binding affinity. I-TASSR per-
forms prediction by matching predicted models to known
proteins. Unlike our method, it does not identify specific
structural features among known structures and homology
models to predict kinase binding affinity.

Homology models, generated from comparative model-
ing [9], are predicted structures that have great potential to
impact computational methods. In [25] it was shown that
docking ligands with kinase homology models performs just
as well or better than crystal structures. In recent work [10]
it was shown that homology models can be used to more effec-
tively compare binding sites supporting the use of homology
models in prediction methods. These works established that
homology modeling methods have matured to the point that
homology models can be useful in structure-based modeling
and prediction of function. Building on this line of work, we

show in this paper that homology models are useful in kinase
binding affinity prediction.

3. METHOD OVERVIEW
The method in this paper extends the previously published

CCORPS method. It is essential to understand CCORPS
before discussing how we integrate homology models. We
will first cover an overview of CCORPS in the following
section followed by a detailed description of homology model
integration in the subsequent section.

3.1 CCORPS Summary
The CCORPS method is a semi-supervised learning method

that finds correlations between protein structural features
and annotation labels to predict labels for a set of proteins.
The method takes as input a set of protein structures and
a set of labels for some of the proteins. Corresponding
substructures are extracted from each protein structure. A
substructure is defined as a set of residues in the 3-D pro-
tein structure. The correspondence between substructures
can be determined by a variety of methods such as multiple
sequence alignment and substructure matching [22]. The
output of CCORPS consists of the predicted labels for pro-
teins with no known label. We break CCORPS down into
four steps: substructure extraction, clustering, prediction,
and validation.

The first step in CCORPS is to obtain substructures from
a set of protein structures. We determine the substructures
with an input representative structure from the input set
of proteins and a set of residue positions of interest. With
the residue positions, the corresponding residues from each
protein structure are selected using a multiple sequence align-
ment to get substructures. After getting the substructures,
CCORPS generates all possible subsets of size k residues
from the r residue positions. Previous work in CCORPS
showed that subsets of size 3 are ideal [3]. Each subset rep-
resents a specific k-tuple of residue positions. At this point,
we have

(
r
k

)
subsets where each subset contains the k-tuple

substructure of each substructure we have extracted from
protein structures. In the case of kinases for our experiments,
we have

(
27
3

)
= 2925 subsets. See [3] for details on how the

27 binding site residues were selected.
After obtaining substructures and generating subsets, the

next step of CCORPS is to perform clustering. For each
subset an isolated clustering is performed to compare sub-
structures on only the specific k residue positions of the
subset. In each clustering, a pairwise distance matrix of
the substructures is generated. Each row of the matrix is a
so-called feature vector of a substructure representing how
a substructure compares to other substructures structurally.
Each component in the feature vector for a substructure
is the distance from another substructure. CCORPS uses
a distance measure that takes into account geometric and
chemical differences. The side-chain centroid LRMSD be-
tween two substructures is used as the geometric difference.
The chemical difference takes into account various chemi-
cal properties of the amino acids [3]. Principal Component
Analysis (PCA) is used to reduce the dimensionality of the
feature vectors. Once each substructure is represented by a
reduced feature vector, Gaussian Mixture Model clustering is
performed on the reduced feature vectors using the MCLUST
package [8].

The next step in CCORPS is the prediction of labels for



the set of proteins that have unknown labels. CCORPS then
selects highly predictive clusters (HPCs) from the clusterings.
A cluster is considered highly predictive if all labeled sub-
structures in the cluster have the same label. HPCs suggest
that some structural feature common to all substructures in
the cluster is correlated with the majority label of the HPC.
For each protein substructure that we are predicting for,
CCORPS goes through each subset clustering to identify the
cluster that the protein substructure lies in and to tally votes
for labels based on the majority label of the clusters that are
HPCs. The maximum number of votes a substructure can
have is equal to the number of subsets, since a substructure
can only fall in one cluster per clustering. However, the
clusters the substructure falls in are not necessarily HPCs,
so the number of votes is typically less than the number of
subsets. Once we have the votes for labels, we need a decision
boundary to determine what prediction to make based on
the votes. CCORPS uses a support vector machine that is
trained on the training set of substructures that have known
labels to determine the decision boundary.

The final step is to perform cross-fold validation to assess
the ability of CCORPS to predict labels. The protein sub-
structures are divided into test sets based on 70% sequence
identity clusters. Each of these sequence identity clusters rep-
resents one fold, where the structures in the sequence identity
cluster constitute the test set, and the remaining structures
are the training set. The number of structures in each test
set varies. For each fold, the structures in the test set are
labeled as “unknown.” The test set structures are ignored
when calculating purity for finding HPCs and predictions
are made for the test set structures. The SVM is trained
on the training set to determine the decision boundary for
prediction.

3.2 Homology Model Integration
The CCORPS method was built to use known PDB struc-

tures. Our method extends CCORPS to use homology mod-
els and known structures in order to reveal structural fea-
tures that may not be detected from known structures alone.
To each of the four steps in CCORPS mentioned in our
overview—substructure extraction, clustering, prediction,
and validation—we make modifications to integrate homol-
ogy models. We will discuss the changes made in each step
of CCORPS below.

In substructure extraction, previous work in CCORPS
selects PDB structures based on referenced PDB IDs in a
Pfam alignment file [24] for sequences. A majority of the
sequences in the alignment file have no references for PDB
structures. The original CCORPS pipeline ignores sequences
with no referenced PDB structures. We want to obtain
homology models for sequences with no known PDB struc-
ture. Thus, we now consider all sequences in the alignment
file. Each sequence is mapped to PDB structures if there
are known PDB structures. For sequences without a PDB
structure, we search a set of homology models for structural
data for the sequence. The set of homology models is a
set of structural data in addition to PDB structures. We
have selected homology models from the ModBase database
[23]. More details on the specific dataset of homology models
used is provided in the dataset section. For each sequence
in the alignment file we obtain the UniProtKB ID [18] for
the sequence, which is mapped to the UniProtKB accession
numbers [18]. Afterwards, we obtain the unique sequence

ID used for homology models from the UniProtKB accession
numbers. The homology models refer to protein sequences by
a unique sequence ID determined in ModBase. We obtained
a file from ModBase containing a mapping of accession num-
bers to the unique sequence IDs. The process of selecting
homology models for a sequence was difficult, as each step
in the mappings of sequence IDs could have aliasing. Once
all sequences are mapped to structures, substructures are
extracted from each protein structure, whether it is a PDB
structure or a homology model. Homology model files are in
PDB format so parsing and extracting substructures works
in the same way as with known PDB structures. Filters
are applied such that we consider only valid, high quality
homology models. These filters are discussed in the dataset
section. After filters, a certain number of homology models
are selected dependent on the experiment. The setup for the
experiments are discussed in the results section.

In the clustering step of CCORPS, PCA is used to reduce
the dimensionality of feature vectors for each substructure.
We have to consider how to integrate homology models in
the dimensionality reduction. Since homology models are
structural data predicted based on templates, experimental
structures from PDB are considered more reliable. Thus, we
decided to perform PCA on PDB structures only to capture
information based on reliable, known structures. We do
not want to capture information that might represent the
modeling method instead of actual structural information
from nature in our principal components. After getting the
principal components, the transformation is applied to all
structural data: PDB structures and homology models. This
allows for consistent principal components as we vary the
number of homology models in our experiments so that we
can isolate the effect of homology models on the clusterings
and subsequent predictions.

In prediction, CCORPS applies labels to all substructures
in each subset clustering. With the addition of homology
models, we now have to consider how to apply labels to
homology models. The default process in CCORPS is to
label the substructures with a label of “unknown” if there is
no known binding affinity data. However, labeling the ho-
mology models as “unknown” restricts the potential impact
of homology models on prediction. With unknown labels,
homology models can only indirectly impact prediction by
changing the clusterings. Initial experiments using unknown
labels for homology models confirmed this issue by showing
little change in prediction performance. We remedy the prob-
lem of homology model labels by having homology models
inherit the binding affinity label of the template structure
the homology model is based on. While this may introduce
some error in binding affinity labels, the additional infor-
mation from homology models outweighs the possible error
as shown later in the results. Labeling homology models in
this manner assumes that the model is similar enough to
the template structure that they are likely to have similar
binding affinity to drugs. By inheriting the label of template
structures, homology models could then directly affect HPC
voting and predictions.

The final step in CCORPS is validation. Our homol-
ogy model integration was validated by comparing the per-
formance of the modified CCORPS pipeline with previous
CCORPS experiments. In order to compare prediction per-
formance across experiments with different homology models,
we selected test sets just for PDB structures in cross-fold



validation. We do not make predictions for homology models
in validation. This means that homology models are in the
training set for every fold. We have to account for the fact
that some homology models may be derived from structures
in the test set. If the template PDB structure for a homol-
ogy model is in the test set for a fold, the homology model
does not inherit the template’s binding affinity label and,
instead, is labeled as “unknown.” Experiments showed that
it is important to account for this issue, as the prediction
performance is deceivingly high when we do not adjust for
this issue.

4. DATASET
For our experiments in predicting kinase binding affinity,

we use sequences in PFAM:Pkinase and PFAM:Pkinase Tyr
multiple sequence alignments from release 25 of Pfam [24].
The PFAM:Pkinase and PFAM:Pkinase Tyr families contain
all eukaryotic protein kinase domains covering the full kinase
family tree. These are the same alignment files used in
previous CCORPS experiments [3]. PDB structures are used
that are referenced in the alignment files to obtain 1957 PDB
substructures. We select the same 27 binding site residues as
previous CCORPS experiments to define the substructures
[3]. The binding affinity labels used are the same dataset
from Karaman et al. [12] used in previous experiments as
well. This dataset from Karaman et al. contains binding
affinities for 317 kinases and 38 inhibitors [12].

In addition to PDB structures, we need to obtain homol-
ogy models. We use homology models from the ModBase
database [23] that contains models generated by the Mod-
Pipe pipeline [6] using Modeller [7]. Available homology
models are collected for sequences indicated in the Pfam
alignment files. The dataset of homology models contains
over 200,000 homology models. However, to ensure accu-
rate predictions, we need to select high quality models to
be used in CCORPS. The dataset requires much filtering
and cleaning to be used for our purposes. The first step is
to ensure the model data is accurate with regards to the
sequence alignment data. There are possible inconsistencies
due to the versions of sequences and/or structural templates
used. We check the residue numbering to ensure that all the
data is consistent. Some models require adjustment of the
residue numbering by an offset to match the Pfam sequence
alignment. After ensuring consistency amongst our protein
data, we have a series of filters for the homology models.
The first filter is to make sure we select homology models
that contain the 27 binding site residues. Some models may
contain only a portion of the sequence data. In the next filter,
we select high quality models based on various quality scores
reported by ModBase. The ModBase database suggests par-
ticular thresholds for “reliable” models stating that at least
one of five criteria should be satisfied [23]. We have decided
to use the strictest selection by requiring models to satisfy
all five criteria at suggested thresholds. For the final filter,
we remove models that have a side chain centroid LRMSD
distance from PDB:3HEC or PDB:2PL0 greater than 5 Å
for the 27 residue binding site substructure. The two PDB
structures selected are the same structures used as represen-
tative structures for binding site selection for the Pkinase
and Pkinase Tyr families. Previous work in CCORPS selects
these two structures because they contain a bound Imatinib
ligand, which was chosen as a reference inhibitor [3]. After
cleaning and filtering the homology models for our needs, we

Figure 1: The baseline experiment is at 0% homol-
ogy models. We ran 5 experiments for each percent-
age interval, 5%, 10%, and 15%, selecting different
random homology models. The average ROC AUC
is calculated over 5 runs.

get 5442 substructures from homology models. Even after
all the filters, the number of homology model substructures
is still more than twice the 1957 PDB structures.

5. RESULTS
We have many homology model substructures available for

experiments. However, because the focus of our method is
to use homology models to boost experimental data we do
not want to use all homology model substructures. If we use
more homology models than experimental structures, then
we risk detecting biases in the homology models rather than
actual structural patterns in kinases. Thus, we gradually
add homology models in our experiments as a percentage
of the number of PDB substructures. We ran experiments
at 5% intervals from 0% to 20%. The experiment with 0%
homology models serves as a baseline for comparison. We
also ran experiments at 10% intervals from 30% to 100%, but
no significant change in prediction performance was observed
in this range relative to the experiments in the range of
0% to 20%. For that reason, we focus our attention on
experiments in the range of 0% to 20%. Homology model
substructures in each experiment are selected randomly from
all filtered homology substructures. To ensure our results
are consistent and not by chance, we perform five different
runs per percent homology models to statistically confirm
the trends that appear. It is important to note that random
selection of homology models is likely not an optimal selection
for prediction performance. Further work is needed to find
possible heuristics for deterministic selection of homology
models.

As with experiments in previous work in CCORPS, we
evaluate the prediction performance of our experiments by
finding the Receiver Operator Characteristic (ROC) curve
for predictions [3]. The predictions are made using cross-fold
validation, where each fold correspond to a non-redundant
sequence cluster. The ROC curve measures the sensitivity
at different specificities. The Area Under Curve (AUC) is
calculated for each ROC curve to quantify the prediction



Figure 2: The binding site of CDK9/cyclinT1 in
complex with Flavopiridol (PDB:3BLR) is shown.
Flavopiridol inhibitor is highlighted in green. The
three residues for subset 1805 (Phe-103, Phe-105,
Leu-156) are highlighted in red and the residues for
subset 1825 (Phe-103, Cys-106, Phe-168) are high-
lighted in blue. The subsets share residue Phe-103
which is colored purple.

performance for each label.
Some drugs have a baseline AUC value that is above 0.90

at 0% homology models, which is already quite high. For
these drugs, prediction is already accurate and would thus be
hard to improve on. In our experiments, we do not see any
significant increase or decrease in prediction performance for
these drugs as homology models are added. Thus, we focus
our attention on drugs that have low prediction performance
in the baseline, where there is room for improvement. We
identified seven drugs with an AUC of less than 0.75 in the
baseline experiment. These drugs are ABT-869, CI-1033,
Flavopiridol, Gefitinib, Imatinib, SU-14813, and Sunitinib.
As shown in Figure 1, the prediction performance for CI-1033,
Flavopiridol, SU-14813, and Sunitinib improves significantly,
and the prediction performance for ABT-869, Gefitinib, and
Imatinib remains about the same. From the observed AUC
values, we see that prediction performance either improves
or remains about the same when we add just a few homology
models. Experiments with additional homology models show
little change in prediction performance indicating that using
more than approximately 400 homology models does not
provide any additional useful information for prediction.

Predictions are affected by homology models in two ways.
First, the addition of homology models changes the cluster-
ings which can indirectly affect HPCs if cluster memberships
change for structures. Second, inheriting binding affinity
labels from template structures has a more direct impact on
HPCs. Due to our definition of HPCs, it only takes a single
differently labeled structure to remove an HPC. While this
can introduce error, indistinct HPCs that could be contribut-
ing poor votes can be removed. When tallying votes for a
structure, all HPCs the structure falls in count as exactly
one vote regardless of the size of the HPC. Spurious patterns

that can occur in sparse experimental data may be removed
when homology models are added.

In order to better understand the effects of the addition
of homology models in prediction, we look more closely at a
specific example. Each experiment we run contains 2925 dif-
ferent subset clusterings, where 38 inhibitor binding affinity
labels can be applied. We focus on the Flavopiridol inhibitor
and subsets 1805 and 1825 for this example. Figure 2 shows
the binding site for PDB:3BLR which contains the Flavopiri-
dol inhibitor. The three residues for subset 1805 (Phe-103,
Phe-105, Leu-156) and subset 1825 (Phe-103, Cys-106, Phe-
168), as well as the Flavopiridol inhibitor, are highlighted in
Figure 2 with different colors. If we look at the clusterings
shown in Figure 3 for 0% and 5% homology models we can see
how HPCs are affected in this example. Figure 3(a) and 3(b)
shows an example of small, indistinct HPCs being removed in
a clustering for subset 1805, as we add 5% homology models.
We see two sparse HPC clusters in Figure 3(a) combine to
become one non-HPC cluster in Figure 3(b). In addition to
removal of weak HPCs, addition of homology models can
also affect clusterings to reveal new HPCs. Figure 3(c) and
3(d) shows an example where the addition of 5% homology
models results in the emergence of distinct true HPCs. We
see clusters get broken up into smaller, more distinct clusters
in subset 1825 when we add homology models, as Figure 3(d)
has many more HPCs than Figure 3(c). In these ways, the
addition of homology models affects the clustering landscape
which, in turn, affects overall prediction performance.

6. CONCLUSION
We have shown that our method for integrating homology

models with CCORPS improves prediction of kinase binding
affinity. Tapping into the abundance of structural data in
homology models, we are able to better identify structural
features and make more accurate predictions from correla-
tions with kinase binding affinity. We observed that the
additional information from homology models outweighs any
error that may have been introduced. Experiments showed no
significant decrease in prediction performance for any drugs
as we add homology models, while several drugs increased
in prediction performance significantly.

There are several potential modifications that can be made
to further analyze the use of homology models to predict
binding affinity. One such modification is the selection of ho-
mology model substructures. In our experiments homology
models are selected randomly. A heuristic can be imple-
mented to select homology model substructures in a more in-
telligent way. For example, we can identify the non-redundant
sequence clusters each homology model belongs to and then
select homology models such that we cover all non-redundant
sequence clusters.

Another possible modification is to apply labels to homol-
ogy models in a more complex manner instead of inheriting
template labels. It is clear from our experiments that using
unknown labels for homology models does not have much
impact on prediction performance, indicating that the labels
applied are an important factor. Future work could involve
labeling homology models based on docking experiments and
simulations. Another modification in the prediction step
is to use different purity thresholds in determining HPCs.
Here, purity of a cluster is defined as the ratio of points
with the majority label to the total number of labeled points.
We currently use a strict threshold requiring 100% purity.



Figure 3: In each experiment there are a total of 2925 subsets clustering triplets of residues. Each plot
above shows the structural and chemical variation for one such subset of 3 residues among all substructures.
On the left the clusterings are shown for two subsets with only experimental structures, while on the right
clusterings for the same subsets are shown with 5% homology models added. The three residues for subset
1805 are Phe-103, Phe-105, and Leu-156. The three residues for subset 1825 are Phe-103, Cys-106, and
Phe-168. In each clustering plot, each point represents a single substructure. The points are colored based
on cluster membership. The HPCs in each clustering plot are circled based on binding affinity labels for
Flavopiridol. True HPCs (clusters predictive of binding Flavopiridol) are the red circles, and false HPCs
(clusters predictive of not binding Flavopiridol) are the black circles. Changes in cluster memberships and
HPCs can be seen for both subsets as 5% homology models are added.



Perhaps loosening the purity threshold could result in better
predictions.

While we are specifically analyzing kinase binding affinity
in this paper, the method has general input parameters. Any
set of computationally predicted protein structures can be
used. Homology models can be used from other databases
such as the SWISS-MODEL Repository [13]. Other methods
of predicting protein structure, such as ab initio modeling
[2], can also be used to obtain protein structural data.

There are many avenues available for future work to im-
prove on the predictive power of the method. Furthermore,
the method can be expanded to other applications with other
proteins and annotations beyond kinase binding affinity due
to the generality of the method. There is great potential
for the use of homology models for functional annotation of
proteins.
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