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Abstract. The development of new and effective drugs is strongly affected by the need to identify drug
targets and to reduce side effects. Resolving these issues depends partially on a broad and thorough
understanding of the biological function of many proteins, but the experimental determination of protein
function is expensive and time consuming. In response, algorithms for computational function prediction
have been designed to expand experimental impact by finding proteins with predictably similar function,
mapping experimental knowledge onto very similar, unstudied proteins. One approach is to identify
matches of geometric and chemical similarity between motifs, representing known functional sites,
and substructures of functionally uncharacterized proteins (targets). Matches of statistically significant
geometric and chemical similarity can identify targets with active sites cognate to the matching motif.

This paper first summarizes the MASH (Match Augmentation with Statistical Hypothesis Test-
ing) pipeline for protein function prediction. MASH combines the Match Augmentation algorithm for
efficiently identifying matches with a statistical model for assessing the significance of matches found.
MASH has been shown capable of identifying statistically significant matches in functional homologs.
However, MASH also makes some incorrect predictions when it identifies statistically significant matches
in functionally unrelated proteins. Reducing incorrect predictions is critical, because incorrect predic-
tions can lead to costly mistakes when experimentation is used to verify computational predictions.

An effective function predictor requires effective motifs - motifs whose geometric and chemical
characteristics are detected by comparison algorithms within functionally homologous targets (sensitive
motifs), which also are not detected within functionally unrelated targets (specific motifs). Designing
effective motifs is a difficult open problem. Current approaches select and combine structural, physical,
and evolutionary properties to design motifs that mirror functional characteristics of active sites. We
present a new approach, Geometric Sieving (GS), which refines candidate motifs into optimized motifs
with maximal geometric and chemical dissimilarity from all known protein structures. We refer to this
property as Geometric Uniqueness. The paper discusses both the usefulness and the efficiency of GS.
We show that candidate motifs from 10 well studied proteins, including α-Chymotrypsin, Dihydrofolate
Reductase, and Lysozyme, can be optimized with GS to motifs that are among the most sensitive and
specific motifs possible for the candidate motifs. For the same proteins, we also report results that relate
evolutionarily important motifs with motifs that exhibit maximal geometric and chemical dissimilarity
from all known protein structures. Our current observations show that GS is a powerful tool that can
complement existing work on motif design and protein function prediction.

1 Introduction

Broad and extensive knowledge of the biological function of proteins would have immense practical
impact on the identification of novel drug targets, the reduction of potential side effects, and on
finding the molecular causes of disease. Unfortunately, the experimental determination of protein
function is an expensive and time consuming process. In an effort to accelerate and guide the exper-
imental process, computational techniques have been developed to annotate functional information
about well-studied proteins onto predictably similar but less-studied proteins. One approach is to
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search for similar active sites. Algorithms like Geometric Hashing [1], JESS [2], pvSOAR [3] and
Match Augmentation (MA) [4], search functionally uncharacterized protein structures (targets), for
substructures with geometric and chemical similarity (matches), to known active sites (motifs).

All structures share some degree of geometric and chemical similarity, so it is essential to un-
derstand the degree of similarity necessary to imply functional similarity. This can be accomplished
with statistical models, such as those used with JESS [2], PINTS [5], pvSOAR [3], and MA [4],
which assess the statistical significance of matches found. Measuring geometric similarity by least
root mean squared distance (LRMSD1), these models determine how unusual the LRMSD of a
match is, relative to a baseline degree of similarity common among all protein substructures. The
identification of a match with statistically significant LRMSD can suggest that the target and motif
have a similar active site, implying potentially similar function [2–5].

This paper first summarizes the MASH pipeline (Match Augmentation with Statistical Hy-
pothesis Testing), which combines a geometric and chemical comparison algorithm with a nonpara-
metric statistical model for assessing the significance of matches. In earlier work [4, 6], MASH has
been shown to identify statistically significant matches to cognate active sites in functionally related
proteins. Unfortunately, MASH also identifies some statistically significant matches to functionally
unrelated proteins. These matches represent incorrect predictions should be reduced as much as
possible, since expensive experimental resources could be expended to verify computational predic-
tions.

One way to reduce incorrect predictions is to optimize motifs for geometric comparison. This
is because the set of matches identified by a geometric and chemical comparison algorithm is
contingent on the geometric and chemical design of the motif being searched for. Currently, many
motifs are designed by experts [4, 2], derived directly from biological literature [7] or from databases
of condensed active site information [8, 9]. Other methods select motifs based on analysis of structure
or sequence data, such as the largest cavity [10], or using evolutionarily significant amino acids close
to known ligand binding sites [4, 6]. While biologically derived data is clearly essential for effective
motifs, few existing techniques refine motifs based on geometric properties to make them more
effective for geometric comparison. In the context of geometric and chemical comparison, ideally
effective motifs have geometric and chemical characteristics which have statistically significant
matches to functionally homologous targets (sensitive motifs). In addition, ideally effective motifs
must also have statistically insignificant matches to functionally unrelated targets (specific motifs).

This dually constrained problem is an indicator of two initial approaches for designing effective
motifs: designing motifs for similarity to functional homologs, and designing motifs for dissimilarity
to functionally unrelated proteins. While this geometric approach to motif design has not been
extensively studied, one approach to this problem is the seminal algorithm MULTIBIND [11, 12],
which identifies binding patterns common to functionally homologous proteins, thereby producing
motifs that will retain geometric and chemical similarity to all known functional homologs. In
this paper, we seek, alternatively, to refine motifs to have increased geometric dissimilarity to
functionally unrelated proteins.

The second half of the paper describes the design and implementation of Geometric Sieving

(GS), an algorithm for refining candidate motifs into optimized motifs before they are used in
MASH. As input, GS accepts a selection of candidate motif points, chosen perhaps by another
motif design algorithm, called the input set, and the number k of motif points desired in the opti-
mized motif. GS outputs an optimized motif: a motif of k candidate motif points with the greatest
geometric and chemical dissimilarity to all known protein structures. We refer this property as
Geometric Uniqueness. As a geometric criteria for motif design, Geometric Uniqueness comple-

1 LRMSD is the smallest possible root mean square distance (RMSD) between two sets of aligned points in 3D



ments existing methods for motif design with a novel geometric criteria that can be used to further
improve existing motifs.

The motivation and inspiration for defining Geometric Uniqueness stems from several observa-
tions in our earlier work [4, 13] and the work of other researchers [2, 5], where it has been observed
that motifs which are highly representative of protein function do not occur in a large fraction
of the known proteins. We used GS to identify 10 Geometrically Unique motifs, and tested them
in the MASH pipeline. Optimized motifs produced by GS had among the highest sensitivity and
specificity among all possible refinements of the input sets.

Measuring and optimizing Geometric Uniqueness is a nontrivial computational problem because
numerous structural comparisons must be made between many motifs and many protein structures.
Our implementation of GS efficiently distributes this work across clusters of computers, achieving
linear speedup with the number of processors. In addition, we have designed an online statisti-
cal analysis which refines the data as it is generated. These optimizations make GS a practical
preprocessing tool that refines motifs before they are passed to MASH.

In addition to improving systems for function prediction, geometric refinement of motifs can
also yield additional insight about active sites. For example, evolutionarily significant amino acids,
defined in [14–18], as those most associated with important evolutionary divergences, have been
shown to form statistically significant clusters [19] that are often related to active sites [13]. On
our limited dataset, we observed that clusters of evolutionarily significant amino acids are more
Geometrically Unique than evolutionarily insignificant amino acids.

This paper does not advocate that Geometric Uniqueness should be the sole criterion for defining
effective motifs. It argues, rather, that Geometric Uniqueness is an interesting property that seems
to be useful for refining existing motifs. It also argues that GS is a novel methodology which can
be used to optimize motifs designed by human intuition, or by other motif design methods, such as
MULTIBIND [11]. It finally argues that Geometric Uniqueness can be compared with other known
criteria for selecting motifs in an effort to better understand and finally attack the difficult problem
of protein function prediction.

2 Related Work

Many techniques have been developed that are related to the identification of functional sites and the
prediction of protein function. These include methods which analyze individual protein structures
and networks of proteins. These methods also include algorithms that compare sequence motifs,
whole protein sequences and whole protein structures. While these topics border on the subject of
this paper, the comparison of protein substructures for function prediction, in this section, we will
focus on describing topics most related to this area.

The most basic problem, in the study of substructural comparison techniques for function
prediction, is the need to identify geometric and chemical markers which can unambiguously indicate
functional similarity. This problem is manifested in the study of effective motif types. In addition,
function prediction tools also require geometric comparison algorithms which efficiently identify
matches of geometric and chemical similarity to given motifs. Finally, it is essential to develop
statistical models to determine what degree of similarity is necessary to imply functional similarity.
This section describes related work on these major subproblems.

2.1 Motif Types and Design

The search for geometric markers of functional similarity has considered many types of motifs. This
study could be loosely organized into point-based motifs and volumetric motifs.



Point Based Motifs Point-based motifs are composed of geometric points in three dimensions.
One prominent use of point-based motifs has been to represent atom coordinates taken from protein
structures and active sites. Point-based motifs have been used to represent amino acid C-alpha
atoms [20, 4], sidechain atoms [21, 5], atoms in hinge-bending flexible active sites [20], atoms in
catalytic sites [2, 22], catalytic triads [23], and conserved binding patterns [11, 12]. In each of these
cases, point-based motifs are used to represent specific atoms or groups of atoms, as a direct
representation of atomic structure.

Point-based motifs have also been used to represent more abstract structural data, such as lattice
points [24–26] and electrostatic potentials [27] on Connolly surfaces [28]. Here, point-based motifs
represent critical topological information, such as the deepest part of a “hole” or the highest part of
a “knob”, on the protein surface. Another example is the use of pairs of points to represent vectors
of sidechain orientation [29]. This abstraction of sidechain orientation permits a higher resolution
description of sidechain orientation while preserving the ability to compare different amino acids.

Many data structures have been developed for representing point based motifs. While vectors
are the most common representation [23, 26, 20, 2, 27, 4], other representations of points in space
include distance matrices [30, 31] and graphs [32–34].

Point-based motifs are easily labeled with biological information. When representing atoms,
this natural extension has been used widely to label points with atom and residue information.
Points have also been labeled with evolutionary significance and mutation data [4] from the Evolu-
tionary Trace [14, 35], hydrogen donor/acceptor and hydrophobic/hydrophilic properties [12], and
electrostatic potential [27].

There are many ways to represent the same active site with motifs of a specific type. For point-
based motifs, the choice of atoms and how to label them is critical to successfully finding matches
to functionally related portiones. In current work, point-based motifs have been designed using the
Evolutionary Trace [14, 35] and proximity to binding sites [13, 4]. Motifs have also been designed
using literature search and PSI-BLAST alignments of literature-defined motifs from the Catalytic
Site Atlas [8, 9], and manually, by experts [2]. Still other motifs are designed using surface exposure,
and algorithms for detecting conserved binding patterns [11]. These methods seek to identify sub-
structures which are involved in biological function. Recent techniques also use geometric analysis
to refine point-based motifs. GS [36], presented later in this paper, is one such method. Another ex-
cellent example is MULTIBIND [11, 12], which identifies conserved binding patterns by identifying
the least common point set among a set of existing motifs.

Volumetric Motifs Another way to represent active sites and function regions is to model the
shape of the active cleft or cavity. Volumetric motifs have been represented with spheres [37–40,
7], alpha-shapes [41, 42, 3, 10], and grid-based techniques [43, 38]. The design of volumetric motifs
involves the questions of which regions the motif should occupy and what amino acids should border
the motif. One example of volumetric motif design is SURFNET-Consurf [44], which modifies the
boundaries of computationally identified active clefts, to avoid regions distant from highly conserved
amino acids.

2.2 Geometric Comparison Algorithms

A broad range of geometric comparison algorithms have been developed for individual motif types.
These algorithms are highly specialized, making performance comparisons difficult.

Algorithms for comparing point-based motifs identify geometric similarity by finding point-to-
point correlations between motif points, and the points in the target, or target points. Point-based
motifs have been supported strongly by the seminal Geometric Hashing framework [1, 45], which
hashes rotationally and translationally invariant geometric representations for efficiency. Geometric



Hashing has been applied in many different ways: it can search for many point-based motif types
[24, 20–22, 11], refine point-based motifs by identifying the largest common point set among a
set of similar motifs [12], and simultaneously align multiple [46, 47], even hinge-bent [48], protein
structures. Other point-based comparison algorithms test possible point-to-point correlations in a
depth-first-search manner, such as the database search algorithm used in PINTS [49], and JESS [2].
Still other point-based comparison algorithms use techniques which find subgraph isomorphisms
[34].

pvSOAR [3, 10] compares volumes in protein structure using motifs based on alpha-shapes. Ear-
lier work on volumetric representations found active sites through geometric analysis of a single
protein structure. Using varying representations of protein surfaces, studies using grid-based algo-
rithms SURFNET [43] and SURFNET-ConSURF [44], and alpha-shapes technique CASTp [50],
observed that ligand binding sites are often the largest “pocket” on the protein surface.

2.3 Statistical Models

One governing assumption is that geometric and chemical identity implies functional similarity.
However, protein structures are never perfectly identical. For this reason, understanding the degree
of geometric and chemical similarity necessary to imply functional similarity is a critical aspect
of function prediction. If a given match indicates similarity that is significantly greater than a
baseline degree similarity between functionally unrelated proteins, then we expect that the given
match indicates functional similarity. Therefore, a baseline degree of geometric similarity is essential
to evaluate the significance of geometric matches.

For some approaches, geometric and chemical similarity is measured differently. Geometric
Hashing [1], JESS [2], PINTS [5], and MA [36] measure geometric similarity using LRMSD. pvSOAR
[10] uses both LRMSD and oRMSD, which is computed by first projecting all points onto the unit
sphere at the center of mass, and then computing LRMSD.

Reference Sets To establish a baseline degree of similarity between functionally unrelated
proteins, we first require a reference set of functionally unrelated proteins. Any reference set must
remain unbiased, so that truly significant matches are identifiable relative to this background. This
is a very difficult problem because the space of protein structures is largely unknown, and because
the space of known protein structures contains over- and under-represented protein structures.

Fig. 1. A typical frequency distribution of matches between a motif and the PDB [51].

Current reference sets are generated from databases and classifications of protein structures,
including the Protein Data Bank (PDB) [51], SCOP [52], a classification of protein folds, and
CATH [53], a multi-level nested categorization of increasingly specific protein sequence and struc-
ture classifications. In an effort to gather an unbiased reference set, recent statistical models have



computed matches to all structures in the PDB [4], and to structurally nonredundant subsets of
the PDB [7]. Other statistical models compute matches to fold representatives [5] from SCOP, and
non-redundant multi-domain representatives [2] from CATH. The distribution of matches between
a motif and proteins in a reference set, such as the PDB, in Figure 1 can be visualized as a frequency
distribution, which is essentially a histogram that plots frequency (the number of matches with a
particular LRMSD) versus LRMSD.

Measuring Statistical Significance Given a basline degree of similarity, it is then necessary
to determine if a specific match LRMSD is statistically significant. This can be determined with
several different methods, summarized below.

The PINTS [5] database computes matches between a motif and every protein in a nonredundant
subset of SCOP [52]. The tails of the frequency distribution follow the extreme value distribution,
with parameters that can be estimated from motif data. Careful calibration of these parameters
allow PINTS to generate the extreme value distribution for a wide range of motifs a priori. Using
this distribution with a given motif and match LRMSD, PINTS can explicity evaluate a p-value,
which measures the degree of statistical significance.

JESS [2] uses a set of nonredundant multi-domain representatives from CATH as the basis
for generating their reference set. The distributions of matches generated between a motif and
this reference set is modeled using a parameteric model of mixtures of normal distributions. JESS
applies this approach to comparatively evaluate the significance of matches between a library of
motifs and a given target structure. The most significant match in the library provides evidence of
functional similarity between the given target and the matching motif.

pvSOAR [3, 54], a method for comparing volumetric motifs, can assess the statistical signifi-
cance of volume matches between two surface pockets. Given an input match, pvSOAR gathers
approximately 38 million other pairs of pockets at random. Ordering these pairs based on geomet-
ric similarity, pvSOAR finds the number of pairs with greater geometric similarity. The fraction of
pairs with greater similarity, relative to the total number of pairs, provides the measure of statistical
significance.

2.4 Systems for protein function prediction

Recent approaches to the problem of function prediction have led to the design of many powerful
computational resources, including databases of functional annotations generated by function pre-
diction algorithms, and web servers providing geometric and chemical comparison services. These
systems integrate motif types, geometric comparison algorithms, and statistical models to provide
the best possible predictions. pvSOAR [3] is provided as part of a web service for identifying similar
protein surface regions in protein structures, and CASTp [50] provides an atlas of protein pock-
ets and voids for all structures in the PDB [51]. Finally, the PINTS server [5] provides a rapid
database search algorithm coupled with a statistical model of structural similarity. PROFUNC
[55], provides numerous sequence and structure analyses in a single package, which include BLAST
[56], InterProScan [57], SSM [58], and JESS [2], among many others.

3 MASH: A Pipeline for Protein Function Prediction

In earlier work [4], we presented a prototype pipeline for protein function prediction. In this section
we summarize this pipeline and provide critical details needed for the rest of the paper, not found
in earlier work. MASH is composed of two major components: MA and a statistical model for
analyzing geometric and chemical similarity. As input, MASH accepts a snapshot of the PDB and
motifs of a specific type described below. A set of matches to targets in the PDB are computed and



passed to the statistical model, which assigns to each match a p-value that assesses the statistical
significance of the match. Using a standard of acceptable statistical significance, α, statistically
significant matches with p < α are returned as output.

3.1 Motifs

MASH uses point-based motifs which encode evolutionary data into the labels. A MASH motif S,
contains a set of |S| points {s1, . . . , s|S|} in three dimensions, whose coordinates are taken from
backbone and side-chain atoms. Each motif point si in the motif has an associated rank, which
is a measure of the functional significance of the motif point. Each si also has a set of alternate
amino acid labels l(si) ⊂ {GLY,ALA, ...}, which represents residues to which this amino acid has
mutated during evolution. Labels permit our motifs to simultaneously represent many homologous
active sites with slight mutations, not just a single active site. In this paper, we obtain labels and
ranks using the Evolutionary Trace [14, 15].

3.2 Matching Criteria

MA compares a motif S to a target T , a protein structure encoded as |T | target points: T =
{t1, . . . t|T |}, where each ti is taken from atom coordinates, and labeled l(ti) for the amino acid to
which ti belongs. A match M is a bijection correlating all motif points in S to a subset of T of the
form M = {(sa1

, tb1), (sa2
, tb2) . . . (sa|S|

, t|S|)}. Referring to the Euclidean distance between points
a and b as ||a − b||, an acceptable match requires:

Criterion 1 ∀i, sai
and tbi

are biologically compatible: l(tbi
)∈ l(sai

).
Criterion 2 LRMSD alignment, via rigid transformation A of S, causes ∀i, ||A(sai

) −
tbi

|| < ε, our threshold for geometric similarity.

MA takes as input a motif S and a target T . MA outputs the match with smallest LRMSD among
all matches that fulfill the criteria. Partial matches correlating subsets of S to T are rejected.
By establishing a threshold for acceptable geometric similarity, the second criterion causes MA
to return match LRMSDs bounded above by ε. We find that ε = 7 Å permits the identification
of structurally distant matches when no matches with lower LRMSD exist, while still efficiently
identifying matches with high structural similarity.

3.3 Match Augmentation

MA searches for the set of point-to-point correlations which satisfy our criteria, and have the
smallest LRMSD among all matches considered. MA takes an algorithmic approach which is distinct
from other structural comparison algorithms because it proceeds in a prioritized manner in finding
these correlations. Matches are found in two primary phases: Seed Matching, and Augmentation.
Seed Matching first identifies correlations for the three highest ranking motif points, and passes
this list of seed matches to Augmentation. Augmentation expands each seed match into a set
of correlations for all motif points, in order of rank. During this expansion process, Augmentation
tracks the match with lowest LRMSD, returning it when all seed matches have been fully expanded.

Seed Matching Given a motif S and target T , seed matching begins by identifying the seed,
the three highest ranking motif points S′ = {s1, s2, s3}. After identifying the seed, we interpret
T ′ = {t1, t2, . . . t|T |} as a graph [59], where each vertex is a target point ti. We then eliminate all
ti which are not compatible with one of {s1, s2, s3}. Since S′ has exactly three points, there are
exactly three interpoint distances between points in S′: the distance ||s1 − s2||, ||s2 − s3||, and
||s1 − s3||. We will refer to these distances as red, blue, and green, respectively. Suppose ti,tj are
compatible with s1,s2, respectively. Then, if −2ε ≤ ||ti − tj||− ||s1 −s2|| ≤ 2ε, target points ti,tj are



at a similar distance and also compatible with s1,s2, making them a two point geometric match.
We visualize two point geometric matches with s1,s2 on the target by inserting red edge between
ti,tj . An identical process defines blue and green edges between target points compatible with s1,s3

and s2,s3 respectively, where again inter-point distances are within 2ε. Once we complete the search
for all colored edges, we search the graph for all three colored triangles. Each triangle identifies
three target points which are label compatible with S′, and positioned at similar distances. For
each triangle, LRMSD with S′ is calculated, and if all points are aligned within ε, the new seed
match is stored. The k lowest LRMSD seed matches are passed to Augmentation, in a stack data
structure ordered in ascending LRMSD.

Implementing Seed Matching efficiently requires a range-search data structure like a kd-tree
[60, 61], which can be used to identify points in a range of distances without checking all points. A
target T has at most

(

|T |
3

)

= O(|T |3) matching triangles, but this worst case requires target points
to be very close together. Van der Waals interaction forces make this impossible on biological data,
where typical performance has been observed to be close to O(n2).

Augmentation Augmentation expands a seed match to find correlations between all motif points
and a subset of the target. The input seed matches begin on a stack of incomplete matches. Popping
off the first seed, augmentation plots the LRMSD alignment of the seed onto the three correlated
target points. Relative to this alignment, we calculate the position of the highest ranked unmatched
motif point si as if it were rigidly aligned with the rest of the seed. We now seek target points which
correlate with si that do not misalign the match. In the spherical vicinity V of si, we identify all ti
within V which are compatible with si. We explore only in V because distant points will violate our
second match criteria, mentioned earlier. Then, for each compatible ti, we compute the LRMSD
alignment A of the seed match with the addition correlation of si to ti. If ||A(si) − ti|| ≥ ε, the
second criteria is violated and the match is discarded. If ||A(si) − ti|| < ε, the second criteria is
not violated, and the seed match with the additional correlation (si, ti), becomes a partial match,
and is pushed onto the stack of incomplete matches. The use of a stack causes Augmentation
to behave like a stack-based depth first search (DFS ), exhaustively expanding one partial match
before continuing on to other seed matches. Once all ti in V have been considered, we then pop off
the first match from the stack of incomplete matches, and repeat this process. Since motifs have a
finite number of points, at some point, no unmatched motif points remain. Rather than push these
completed matches back onto the stack, the match is stored, and the LRMSD is recorded, tracking
always the completed match with lowest LRMSD. Eventually, the stack is emptied, completing
the Augmentation phase. The final output from Augmentation is the completed match of all si to
distinct ti, with lowest LRMSD.

Performance is dependent on the number of motif points |S|, and cr, the number of compatible

ti found in V , giving runtime O(|S|2(c
|S|−3

r )). cr is bounded because repulsive Van der Waals forces
limit the number of atoms found in V . The quadratic factor is the aggregate cost of LRMSD
calculations, and the exponential is the cost of DFS with cr possibilities per iteration. With |S|
usually 4-13 points, Augmentation is extremely efficient.

3.4 A Nonparametric Statistical Model for Matches

Our statistical model uses a hypothesis testing framework, which detects matches with statistically
significant geometric and chemical similarity. Match significance is assessed by comparing the match
LRMSD to a baseline degree of geometric and chemical similarity, which is established with a
reference set of protein structures. In this section we will first describe the reference set of proteins
that we use and then explain the structure of our hypothesis testing framework.



A Reference set of Proteins We refer to our reference set of protein structures as Ω, and
for each motif S that we use, our baseline is dependent on the set of matches between S and Ω,
which we refer to as the motif profile SΩ. As mentioned earlier, motif profiles are best visualized
as frequency distributions (see Figure 1).

(a) (b) (c)

Fig. 2. (a) Comparison of PDB, sequentially nonredundant PDB, and CATH representatives. (b) Confidence band
demonstrating the accuracy of samples of the PDB. (c) Volumes measured while computing the p-value. This data
computed using the motif C42, H57, C58, D102, D194, S195, S214 from α-Chymotrypsin (1acb).

The purpose of the reference set Ω is to represent the set of all known protein structures.
However, we have found that different representations of Ω tend not to have significant effect
on the actual shape of motif profiles generated. For the ten motifs optimized for this work, we
observed strong similarity between motif profiles calculated with the PDB (Ω0), and Ωnr25 and
Ωnr90, which are two sets of sequentially nonredundant PDB structures having no more than
25% (resp. 90%) sequence identity. A similar comparison was true when using the CATH [53]
database. We selected a representative of every category at the three most specific levels: Topologies
(ΩT ), Homologous Superfamiles (ΩH), and Sequence Families ΩS . In our experience, motif profiles
on these representatives also resemble Ω0, in increasing degrees of similarity corresponding to
increasingly specific levels of CATH. The similarity between the Ω0 (black), Ωnr25 (light grey) and
ΩS (dark grey) is plotted in Figure 2a. Ωnr90, ΩT , and ΩH were excluded for clarity, but are closely
related. The similarities between the different reference sets considered here is testament to the
high fidelity of structural and sequential classification in CATH [53].

We have also observed that motif profiles on Ω0 are exceptionally robust to random sampling.
Ω5 is the random 5% sample of PDB structures in Ω0, and motif profiles with this set are called
SΩ5

. In our experience, for any S, SΩ5
resembles SΩ0

with high accuracy. This can be seen in Figure
2b, where we overlayed 5000 distinct SΩ5

samples with a single SΩ0
, the center line in Figure 2b.

95% of the 5000 SΩ5
fell within the upper and lower lines, demonstrating that motif profiles based

on Ω5 retain high similarity to motif profiles based on Ω0.

Because our observations suggest that motif profiles based on many logical reference sets, in-
cluding ΩS , ΩH , ΩT , Ωnr25, Ωnr90, differ little from motif profiles based on Ω5, this paper proceeds
by using Ω5. 5% sampling greatly reduces the number of matches necessary to compute a motif
profile, while its simple definition promotes the reproducibility of this work.

Statistical Hypothesis Testing Finding a match with MA indicates only that substructural
geometric and chemical similarity exists between the motif and a substructure of the target, not
that the motif and the target have functionally similar active sites. In order to use matches to imply
functional similarity, it is essential to understand the degree of similarity, in LRMSD, sufficient to



imply functional similarity. However, a simple LRMSD threshold is insufficient to indicate functional
similarity between any motif and a matching target. Some motifs match functional homologs at
lower values of LRMSD than other motif-target pairs, and LRMSD itself is affected by the number
of matching points[4].

Geometric comparison algorithms operate on the assumption that substructural and chemical
similarity implies functional similarity. Our statistical model can be used to identify the degree of
similarity sufficient to follow this implication. Given a match m with LRMSD r between motif S

and target T , exactly one of two hypotheses must hold:

H0: S and T are structurally dissimilar
HA: S and T are structurally similar

Our statistical model tests these hypotheses by comparing the given match LRMSD r to the
motif profile SΩ5

, which is essentially a large set of functionally unrelated proteins. Motif profiles
provide very complete information about matches typical of H0. If we suspect that a match m has
LRMSD r indicative of functional similarity, we can use the motif profile to determine the proba-
bility p of observing another match m′ with smaller LRMSD. This is accomplished by computing
the volume under the curve to the left of r, relative to the entire volume (see Figure 2c). The
probability p, referred to as the p-value, is the measure of statistical significance. Note that when
computing p for multiple matches of the same motif to different targets, the motif profile does not
need to be recomputed, since it is dependent only on the motif and the reference set.

If p is very low, then we say that m identifies unusually high geometric and chemical similarity,
allowing us to follow the implication that this match is significantly similar and thus indicative of
functional similarity. Technically speaking, we use a standard of statistical significance α, so that
if p < α, we say that the probability of observing a match m′ with LRMSD r′ < r is so low that we
reject the null hypothesis (H0) in favor of the alternative hypothesis (HA). Under these conditions,
we call m statistically significant.

Measuring volumes under motif profile curves, as demonstrated in Figure 2c requires careful
numerical treatment. We apply kernel density estimation procedures [62] to estimate population
density from the motif profile. Since data is not always evenly spaced, we use Gaussian Kernel
smoothing to interpolate between data points, as in previous work [4]. In addition, we avoid under-
and over-smoothing by using optimal bin-widths determined by Sheather-Jones method [63, 64].

3.5 Performance of MASH

In earlier work, we successfully demonstrated that MASH can identify cognate active sites in func-
tional homologs [4, 6, 7]. Much like many nontrivial prediction techniques, some incorrect predic-
tions, which identify geometric similarity between functionally unrelated proteins, do occur. In
other work, we have shown that integrating volumetric and point-based motifs [36] and eliminating
matches to evolutionarily insignificant target residues [6] can reduce incorrect predictions.

In the next section, we describe GS, a geometric analysis for analyzing and refining the selection
of atom coordinates used in motif designs. Used in tandem with existing motif design strategies,
we will show that our technique can further refine existing motifs.

4 Geometric Sieving

GS accepts an input set, a collection of candidate motif points which could be selected by another
motif design method, such as those mentioned in Section 2.1, or provided by a user seeking to



improve a motif. GS also requires k, the number of candidate motif points expected in the output,
and, as discussed in the previous section, a geometric comparison algorithm compatible with the
motif type used. The output of GS is the subset motif with k points that has highest Geometric
Uniqueness.

GS is a refinement process, not a motif discovery algorithm. If no subset motif of size k has
geometric and chemical similarity to functionally homologous active sites, then GS cannot select one
which does. For this reason, the input set is assumed to contain a subset motif of size k, which has
basic geometric and chemical similarity to functional homologs of the input set. By this assumption,
matches to functional homologs remain in the low-LRMSD tail at the lower left of the motif profile
for many subset motifs, while functionally unrelated proteins, the vast majority of matches in a
motif profile, gravitate around the large mode near the median LRMSD. The difference in LRMSD
between this low-LRMSD tail and the major mode of the distribution causes matches to functional
homologs to be statistically significant relative to the distribution overall [4]. With many different
combinations of motif points to choose from, in the form of varying subset motifs, we can select the
motif profile which maximizes the LRMSD difference between the low-LRMSD tail and the major
mode. As a result, matches to functional homologs will be maximally statistically significant for
the input set considered. GS implements this task by analyzing motif profiles.

In this work, between two motif profiles, the motif profile with higher median LRMSD has higher
Geometric Uniqueness. Medians are computed on kernel density smoothed motif profiles. While
other statistics for quantitative comparison exist, such as the mode, our experimentation shows
that comparing the medians of motif profiles is an elegant and effective approach for determining
which motif is more Geometrically Unique. In addition, medians are not affected by extreme values
at the tails of the distribution. Estimating the true median of the population from a sample is less
prone to sampling errors and errors due to incorrect choice of smoothing parameters than mode
estimation [65]. In our results, we show the connection between medians and the actual distribution,
demonstrating that motif profiles with higher medians are motif profiles with more and/or higher
match LRMSDs.

The motif size, the number of motif points in a motif, is partially related to Geometric Unique-
ness. Larger motifs specify more geometric constraints, and so tend to have higher LRMSD matches
than smaller motifs [4]. Thus, we avoid comparing motif profiles from subset motifs of different sizes,
ensuring that only the true geometric and chemical differences drive the motif profile comparison.
This is why k, the size of the optimized motif, is an input. The operation and success of GS is not
affected by k, and our results hold over varying k, as we will demonstrate later. Selecting an ideal
k a priori remains an open problem, and the subject of continuing research.

4.1 The Geometric Sieving Algorithm

GS has two phases: GATHERING and ANALYSIS, which are described in Algorithms 1 and 2.
Ignoring the optimization step in Algorithm 1 for now, the GATHERING phase uses MA to iter-
atively compute motif profiles (outer loop of Algorithm 1) for every subset motif of size k (inner
loop of Algorithm 1). These motif profiles are passed to the ANALYSIS phase, which calculates
the medians of each motif profile, and identifies the subset motif with the highest median LRMSD.
This subset motif is returned as the optimized motif.

The GATHERING phase is embarrassingly parallel. Given a set of c processors, we can obtain
a (c− 1)-times linear speedup by offloading the task of calculating each match between the current
subset motif S′, target Ti pair to another processor. This produces a client/server architecture
where the server implements GATHERING, and offloads MA problems to the clients.

Further modifications to GS can increase performance. In particular, let us now consider the op-
timization procedure ELIMINATION (Algorithm 3) which is called from GATHERING. Note that



Algorithm 1. GATHERING Algorithm 2. ANALYSIS Algorithm 3. ELIMINATION

Input: Input Motif S
Input: Optimized motif size k
for each Ti in Ω5 do

for all subset motifs S′ of size k do

Run MA with S′ and Ti

MA returns match M
Store M in the motif profile S′

Ω

end for

ELIMINATION (optimization step)
end for

Input: all motif profiles S′
Ω

from GATHERING phase

Calculate m(S′
Ω) for all S′

Ω

Find the motif profile S′
Ω

with highest m(S′
Ω)

Output: S′, the optimized motif

Input: all motif profiles SΩ

from GATHERING phase

Calculate r(SΩ) for all S′
Ω

Among all r(SΩ), find l

eliminate all r(S′
Ω) with u < l

return to GATHERING

when we call ELIMINATION during GATHERING, all motif profiles are only partially computed.
Eventually ANALYSIS will identify the optimized motif by selecting the motif profile that has the
highest median. A closer look at the computations happening during GATHERING revealed that
some motif profiles have medians significantly lower than others. Since we are only interested in
the motif profile with the highest median, we can stop computing matches for motif profiles that
have significantly lower medians, saving computation time. For this reason, in Algorithm 1, we
apply ELIMINATION (see outer loop of Algorithm 1), which determines for which motif profiles
we can stop computing matches. These motif profiles will be eliminated in the next loop through
GATHERING. ELIMINATION need not be applied at every iteration of the outer loop of GATH-
ERING, as it will have a limited effect. Instead, we define a parameter called the step size and we
call ELIMINATION after step size iterations of the outer loop of GATHERING.

As we pointed out above, when we call ELIMINATION during GATHERING (see Algorithm 3),
all motif profiles are only partially computed. At this point in the algorithm, comparing the medians
of these partial motif profiles can be affected by sampling error. For this reason, ELIMINATION
computes a 95% Confidence Interval r(S′′

Ω) (see method of Efron and Tibshirani [66–68]), which has
95% probability of containing the median m(S′

Ω) of S′
Ω. Therefore, for two partially computed motif

profiles S′
Ω, S′′

Ω, if r(S′
Ω) > r(S′′

Ω) do not overlap, there is low probability that m(S′
Ω) < m(S′′

Ω).
Since we are interested only in the motif profile with highest median LRMSD, it is thus unnecessary
to finish computing S′′

Ω because S′′ is not the optimized motif with high probability.

We apply this fact during ELIMINATION by finding l, the highest lower bound of all confidence
intervals, and eliminate all subset motifs having confidence intervals with upper bound u < l. In
the next loop through GATHERING, we do not calculate matches for eliminated subset motifs. If
only one subset motif remains, or if GATHERING completes, we proceed to the ANALYSIS phase,
which identifies the motif profile that has not been eliminated with that highest median. This is
returned as the output of GS.

Occasionally, unusual random samplings of Ω can occur, creating motif profiles with medians
that differ dramatically from the true median we intend to estimate. While this occurs very rarely,
sampling more and more subset motifs exacerbates a multiple testing situation, which eventually
leads to an unusual random sampling. Since we use statistical analyses like ELIMINATION to
guide program logic, this can lead to accidental elimination of a subset motif. In order to reduce
this possibility, ELIMINATION could be applied in a more adaptive manner, such as by running
ELIMINATION less often when motif profiles have few samples. We are investigating this for future
work.



5 Experimental Results with Geometric Sieving

In previous work, we demonstrated that MASH can be a useful tool for function prediction, show-
ing that MASH identifies cognate active sites in functional homologs [4, 6, 7]. The experimentation
detailed in this paper first demonstrates that GS is a practical and efficient tool for motif optimiza-
tion. Using input sets derived from 10 well-studied proteins, we show that different subset motifs
derived from the same input set produce motif profiles which measurably vary in the median. We
also demonstrate that estimating medians with a 95% confidence bound and eliminating subset mo-
tifs via ELIMINATE strongly reduces the number of calculations necessary to correctly determine
the motif profile with highest median. On our small data set, we made two key observations: First,
motifs refined by Geometric Sieving, tested in the MASH pipeline, were highly specific and among
the most sensitive of all possible refinements. Second, evolutionary significant subset motifs tend
to be more Geometrically Unique than motifs containing evolutionarily insignificant amino acids.

5.1 Primary Data

Input Sets The input sets chosen for this work were taken from ten well-studied proteins, listed
in Figure 3. Each input set included between 10 and 13 motif points, and the spatial coordinates
used for each were derived from the α-carbons of these amino acids. The precise amino acids used
are specified and diagrammed in Figure 4, where the “tag” column identifies the amino acid in the
diagram, the “AA” column lists the amino acid type, and “#” specifies the residue number. The
ET rank (“Rank”) is the degree of evolutionary significance, as reported by ET, where lower values
are more evolutionarily significant. Diagrams were generated using Pymol [69].

PDB Code Protein Name Organism

1acb α-Chymotrypsin Bos Taurus

1rx7 Dihydropholate Reductase Escherichia coli

3lzt Lysozyme Gallus gallus

1czf Endo-polygalacturonase Aspergillus Niger

1ep0 Dtdp-4-keto-6-deoxy-d-hexulose 3,5-epimerase Methanobacterium Thermoautotrophicum

1gwz Tyrosine Phosphatase SHP-1 Homo Sapiens

1juk Indole-3-Glycerolphosphate Synthase Sulfolobus Solfataricus

1kpg Mycolic Acid Cyclopropane Synthase CMAA1 Mycobacterium Tuberculosis

1nsk Nucleoside Diphosphate Kinase Homo Sapiens

1ukr Endo-1,4-Beta-Xylanase C Aspergillus Niger

Fig. 3. Proteins used in Experimentation.

Selection Criteria Earlier work has produced examples of motifs designed with evolutionarily
significant amino acids [4] and amino acids with documented function [8], which were sensitive and
specific. Inspired by these approaches, we selected evolutionarily significant (E , in Figure 4) and
functionally documented (D, in Figure 4) amino acids for each of our ten input sets, except Lysozyme
(3lzt). Functionally documented amino acids are listed in Figure 5. We also included evolutionarily
insignificant amino acids (I , in Figure 4), chosen from the same region of the protein. We chose
evolutionarily insignificant amino acids by first generating a sphere centered at the centroid of
the evolutionarily significant and functionally documented amino acids. The sphere was sized just
large enough to contain these amino acids. From the set of all amino acids having at least one atom
within this sphere, the most evolutionarily insignificant amino acids were selected. Occasionally this
sphere had to be expanded slightly (no more than 10% increase in radius) when no evolutionarily
insignificant amino acids intersected it.



Diagram tag AA # Rank

A1 FI 41 47.91
A2 CE 42 3.97
A3 HD 57 7.22
A4 CE 58 3.97
A5 GI 59 38.39

A6 SI 96 73.41
A7 DD 102 1.90
A8 MI 192 29.96
A9 DE 194 3.10
A10 SD 195 1.93

A11 SE 214 2.03

B1 LI 4 66.00
B2 AE 7 16.00
B3 VI 13 63.00

B4 IE 14 1.00
B5 GD 15 1.00
B6 PE 21 27.00
B7 WD 22 1.00
B8 AI 29 63.00
B9 FD 31 34.00

B10 TE 46 34.00
B11 RE 57 1.00
B12 YE 100 36.00
B13 DE 122 3.00

C1 CE 6 42.00
C2 EE 35 23.00
C3 SE 36 1.00
C4 FE 38 55.00
C5 NE 39 55.00

C6 AE 42 31.00
C7 DE 52 10.00
C8 YE 53 15.00
C9 NE 59 44.00
C10 WE 123 42.00

D1 NE 178 1.64
D2 DD 180 1.00
D3 DE 201 1.85
D4 DD 202 2.09
D5 LI 204 17.69

D6 HD 223 5.54
D7 NI 253 17.78
D8 RD 256 1.61
D9 KD 258 1.00
D10 YE 291 1.00

E1 SD 53 5.32
E2 RD 61 3.71
E3 LI 63 14.53
E4 HD 64 3.08

E5 FI 65 17.47
E6 KE 73 1.00
E7 RE 90 1.00
E8 II 114 14.60
E9 GI 146 19.85
E10 DE 172 2.56

Diagram tag AA # Rank

F1 QE 327 1.50

F2 LI 330 15.10
F3 SI 326 11.20
F4 WE 367 1.71
F5 II 452 24.69
F6 HD 454 2.09

F7 CDE 455 1.19
F8 GE 458 1.00
F9 ID 459 11.06
F10 VI 453 12.22

G1 YI 52 17.29
G2 KD 53 2.43
G3 KI 55 11.93
G4 SI 58 9.20

G5 YI 88 17.16
G6 FE 89 1.04
G7 GE 91 1.06
G8 KD 110 1.94
G9 RD 182 1.91
G10 GDE 233 1.10

H1 TI 30 15.39
H2 QI 31 14.92

H3 TI 32 13.66
H4 YD 33 2.20
H5 GDE 72 1.00
H6 GDE 74 1.00
H7 GE 76 1.00

H8 AI 77 16.72
H9 QD 99 2.70
H10 FE 200 1.00

I1 II 9 21.28

I2 AI 10 21.64
I3 KDE 12 2.51
I4 PE 13 4.16
I5 YD 52 6.57
I6 RD 105 3.94
I7 NDE 115 3.39

I8 II 116 22.74
I9 II 117 19.26
I10 WD 118 4.80

J1 YDE 70 1.00
J2 WDE 72 1.00
J3 VI 73 10.12
J4 AI 78 10.05
J5 EDE 79 1.00
J6 YDE 81 2.21

J7 TI 112 16.69
J8 DI 113 11.96
J9 QDE 129 1.00
J10 GDE 170 1.79

Fig. 4. Input sets used. “AA”: amino acid type; “#”: PDB residue number; “Rank”: ET rank.



PDB Code Amino Acids and Citations EC class Subset Size (k)

1acb Ser195 His57 Asp102 [70] 3.4.21.1 7

1rx7 Trp22 [71], and Gly15, Asp27, Phe31, His45, Ile50, Gly96 [72] 1.5.1.3 10

3lzt Control: Amino acids selected only for Evolutionary Significance. 3.2.1.17 8

1czf Asp180, Asp202, His223, Arg256, Lys258 [73] 3.2.1.15 6

1ep0 Ser53, Arg61 and His64 [74] 5.1.3.13 6

1gwz His454, Cys455, Ile459, [75] 3.1.3.48 6

1juk Lys53, Lys110, Arg182, Gly233 [76] 4.1.1.48 6

1kpg Gly72, Gly74, GLN99, Tyr33 [77] 2.1.1.79 6

1nsk Lys12, Tyr52, Arg105, Asn115, His118 [78] 2.7.4.6 6

1ukr Tyr70, Trp72, Glu79, Tyr81, Gln129, Glu170 [79] 3.2.1.8 6

Fig. 5. Amino acids with documented function (with citations) from each input set. We also provide the EC class
this set is derived from, and the size of the subset motifs (k) used when running GS.

Having chosen evolutionarily significant and functionally documented amino acids as part of
each input set, we postulated that these “motif-worthy” amino acids, and not the evolutionarily
insignificant amino acids, would ultimately result in the most sensitive and specific motifs. For
this reason, k, the size of the subset motifs being considered for the optimized motif, was chosen
in each case as the total number of evolutionarily significant and functionally documented amino
acids in each input set. This guarantees that one subset motif from each input set would contain
only evolutionarily significant and functionally documented amino acids. It also guarantees that
the other subset motifs will contain all or some of the evolutionarily insignificant amino acids.

As a control, the Lysozyme input set (3lzt) was composed entirely of evolutionarily significant
amino acids, to study the effect of having no evolutionarily insignificant amino acids. Conversely,
in Endo-polygalacturonase (1czf), there are 8 motif-worthy amino acids, but we chose k = 6 to
get a broader understanding of the relationship between k and the number of motif-worthy amino
acids. For 1gwz, 1juk, 1kpg, 1nsk, and 1ukr, several evolutionarily significant amino acids were also
functionally documented (see amino acids labeled DE in Figure 4).

We will refer to the set of input sets as {S1, S2, . . . , S10}, and refer to the subset motifs of each
Si as Si1, Si2 , . . . , Sil , where l is the total number of subset motifs for Si.

Functional Homologs In order to measure sensitivity and specificity, it is essential to fix a set
of functional homologs for benchmarking. For this work, we use the functional classification of the
Enzyme Commission [80] (EC), which identifies families of functional homologs for each input set
used (see Figure 5). Input sets were chosen from distinct EC families. Proteins with PDB structures
in each family form the set of functional homologs we search for. Structure fragments, mutants,
and structures with artificially induced long distance conformational changes, were removed. We
will refer to the set of functional homologs for any input set Si as H(Si).

The Protein Data Bank In this paper, we use Ω5, as mentioned in Section 3.4, which is sampled
from the set of crystallographic protein structures in the PDB on Sept 1, 2005. PDB entries with
multiple chains were divided into separate structures, producing 79322 structures. While this could
prevent the identification of matches to active sites that span multiple chains, it is not clear from
the PDB file format how to determine which chains are intended to be in complex. Incorrectly
combining chains can lead to searches within physically impossible colliding molecules. Since none
of the active sites used in this study span multiple chains, separation was the most reproducible
and well defined policy.



Implementation Specifics GS was implemented in C/C++ using the Message Passing Interface
[81] (MPI) protocol for interprocess communication, and prototyped on a 16-node dual Athlon
1900MP cluster. Final data was run on the Rice TeraCluster (http://www.rtc.rice.edu/), a
cluster of 272 800Mhz Intel Itanium2 processors, and on Ada, an experimental 28 chassis Cray
XD1 with 672 2.2Ghz AMD Opteron cores. The parameter ε, described in Section 2.2 was set to
7Å.

5.2 Median LRMSD Differentiates Motif Profiles

As mentioned in Section 5.1, our input sets were defined on both evolutionarily significant and
insignificant amino acids, as well amino acids with documented function. Since GS calculates motif
profiles for every possible subset motif, we hypothesized that the diversity of these input sets would
present a spectrum of motif profile medians, and that medians within this spectrum would vary
sufficiently to justify motif profile comparison by measuring median LRMSD.

Experiment Each of our ten input sets has between 10 and 13 motif points, and a specific k

for each input set. GS computed motif profiles for every combination of k motif points in each
input set. For example, α-Chymotrypsin and DHFR each contained, respectively, 7 and 10 amino
acids which were either evolutionarily significant or functionally documented, out of the 11 and
13 amino acids total. Running GS with k = 7 and k = 10, respectively, GS exhaustively analyzed
all combinations of 7 and 10 (resp.) amino acids as the subset motifs considered. We expected the
differences between subset motifs to create a spectrum of median LRMSDs from the motif profiles
calculated. The Lysozyme input set, a control composed entirely of evolutionarily significant amino
acids, lacked evolutionarily insignificant amino acids. Running with k = 8 out of 10 amino acids in
the input set, we expected Lysozyme’s input set to also lack a broad spectrum of median LRMSDs.

Observations The medians of the motif profiles generated (vertical hashes on the x-axes in Figure
6) from α-Chymotrypsin, DHFR, and Lysozyme, occurred in ranges of .9 LRMSD, .7 LRMSD and
.4 LRMSD, respectively. This behavior was typical of the 7 remaining input sets. Motif profiles
corresponding to the highest medians clearly had more matches at higher LRMSDs than motif
profiles at the lowest medians, and thus higher Geometric Uniqueness. This is demonstrated by
darkened hashes and darkened curves in Figure 6, where the biggest differences in medians (dark-
ened hashes) correlated to obvious differences in motif profiles (darkened curves). Differences in
medians in α-Chymotrypsin and DHFR were greater than in Lysozyme, which did not contain a
spectrum of evolutionarily insignificant and significant amino acids. Higher median LRMSD in this
application is clearly directly associated with more and higher match LRMSDs, showing on these
examples that medians can be used to measure Geometric Uniqueness.

5.3 Median Estimation Accelerates Performance With Minor Loss of Accuracy

Our implementation of GS uses online estimation of motif profile medians, reducing the number of
matches which need to be calculated before the optimized motif is identified. Using input sets from
Section 5.2, we first generated matches without using the ELIMINATION optimization, mentioned
in Section 4. Next, we repeated this calculation with the ELIMINATION optimization, with step
sizes of 100 and 500, to stop sampling on motif profiles which clearly did not have the highest
median LRMSD, thereby reducing the number of matches necessary.

Observations Median estimation substantially reduces running time necessary to determine the
optimized motif. Using exhaustive sampling, the seven input sets run in Ada took an average of
1556:57:46 (hrs:mins:secs) of distributed computing time to complete, taking 2-3 hours to complete
on 600 Opteron cores. Using a step size of 500 matches, these seven sets took an average of 113:31:54,
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Fig. 6. Motif profile examples from (a) 1acb, (b) 1rx7, (c) 3lzt, (d) 1czf, (e) 1ep0, (f) 1gwz, (g) 1juk, (h) 1kpg, (i)
1nsk, (j) 1ukr. In each picture, the motif profile with highest and lowest median are darkened. These correspond to
the rugplot on the horizontal axis, where the darkened hashes plot the highest and lowest median LRMSD.

and at a step size of 100 matches, took an average of only 30:14:31, or about 3 minutes on 600
cores. Similar performance increases occurred for input sets run on the Rice TeraCluster, but relative
runtime was longer because of differences in processor speed. GS operating on step sizes of 100 can
identify the optimized motif an average of 10 times faster than GS without median estimation.

The reason for this speedup follows directly from the early elimination of motifs which, with high
probability, do not have the highest median. This is apparent in the number of matches necessary:



Input Set Time-Full Matches-Full Time-500 Matches-500 Time-100 Matches-100

1acb? 12545:33:20 1,322,230 2683:07:40 186,883 1424:13:20 97,836
1rx7? 10826:50:00 1,211,266 915:20:40 203,356 554:56:40 107,657
3lz7? 1204:52:00 184,395 227:56:00 97,593 942:00:00 92,099
1czf 2678:24:24 1,068,902 156:46:40 179,020 39:43:20 91,107
1ep0 1239:13:20 1,107,251 76:06:40 181,800 25:16:40 76,864
1gwz 1167:40:00 1,109,775 103:26:40 187,627 25:23:20 80,708
1juk 1059:06:40 1,100,452 100:33:20 183,086 22:13:20 87,098
1kpg 1224:53:20 1,092,748 80:26:40 179,721 22:46:40 78,014
1nsk 1499:00:00 1,126,496 127:10:00 177,201 41:00:00 69,145
1ukr 2030:26:40 1,063,797 150:13:20 110,043 35:40:00 74,613

Fig. 7. Computational Speedups from Median Estimation. Here we show the differences, in execution time and
number of matches computed, between step sizes of 100, 500, and full sampling. ? = These runs were done on the
Rice TeraCluster. Remaining runs were done on Ada.

For exhaustive sampling, the ten input sets computed an average of 1,095,631 matches. But at a
step size of 500, only 171,214 matches were computed, on average, before determining the motif
with the highest median LRMSD. At a step size of 100, an average of 79,649 were computed before
finding the optimized motif. GS operating on step sizes of 100 can identify the optimized motif
with an average of 10 times less matches than GS without median estimation. Figure 7 describes
the precise number of matches and time consumed.

Median estimation is very accurate. In every case described in Figure 7, median estimation
identified the same optimized motif as GS using full sampling. However, at step size 100, GS also
identifies an alternative subset motif for 3lzt and 1gwz. GS was unable to eliminate the alternative
subset motif because overlapping confidence intervals (see Section 4.1) did not separate by the time
sampling was complete. The same was true at a step size of 500 for 3lzt, 1gwz, and 1ukr. This
suggests that for some motifs, achieving certainty of the optimized motif beyond 95% confidence
can require sampling more than 5% of the PDB. Given the large computational advantages of this
approach, additional sampling on alternative optimized motifs is only a minor computational cost.
Furthermore, the presence of alternative optimized motifs provides additional information to the
user, who may consider both of them, in practice. It was particularly interesting that GS identified
alternative optimized motifs on the input sets which had either no sensitive and specific subset
motifs (1gwz and 1ukr), or were entirely composed of sensitive and specific motifs (3lzt, see Section
5.4). Ultimately, the ability to identify alternative optimized motifs is an advantage in the search for
effective motifs, but more careful study is required to understand the circumstances under which
alternative optimized motifs occur. Median estimation strongly accelerates the determination of
the optimized motif with minor sacrifices in accuracy.

5.4 Optimizing Geometric Uniqueness Improves Motif Effectiveness

GS was designed for the purpose of improving the sensitivity and specificity of motifs by identi-
fying the subset motif with highest median LRMSD, our measure of Geometric Uniqueness. We
demonstrate that optimized motifs on our ten input sets are among the most sensitive and specific
of all possible motifs definable from the input sets.

Experiment Beginning with each Si of our input sets S1, S2, . . . , S10, we generate all possible
subset motifs Si1 , Si2 , . . . , Sil . We then apply MASH to compute matches and p-values between
every subset motif Sij and every protein structure in Ω5 ∪ H(Si).

For any motif Si, a true positive match is a match to a member of H(Si) with a p-value below
α, our standard for statistical significance. A false positive match is a match with a protein outside



H(Si), but with p-value less than α. True negative matches are matches to a protein outside H(Si)
with a p-value above α, and false negative matches are matches to a member of H(Si) with a
p-value below α. For every subset motif generated, these values allow us to calculate sensitivity and
specificity. Holding α at .02, specificity was always slightly above 98%.

Observations In exhaustive comparison to all possible motifs definable from the input sets at
their respective subset sizes, GS identified optimized motifs which, used with the MASH pipeline,
were quite sensitive at a high level of specificity (see Figure 8). From each of the 10 input motifs
we tested, GS produced 8 optimized motifs with greater sensitivity than the average subset motif
from the same input set. 5 of these optimized motifs had perfect sensitivity. Figure 8 demonstrates
the spectrum of sensitivity among the subset motifs observed.

We provide maximum and average sensitivity of every subset motif derived from our input
sets, as well as the sensitivity of the optimized motif identified by GS, in Figure 8. The two input
sets which did not perform well, 1gwz and 1ukr, displayed no subset motifs with high sensitivity.
While these input sets were created with the same criteria as the other input sets, it is clear that
highly sensitive motifs are not within these two input sets. Overall, GS performed well, identifying
optimized motifs among the most sensitive of 8 out of 10 input sets, except where no effective motif
could be found.

5.5 Geometric Uniqueness Correlates with Evolutionary Significance

In this section, we investigate if evolutionarily significant amino acids are also structurally dissimilar
from all known protein structures, or Geometrically Unique.

Experiment Using the motif profiles calculated over Ω5, we have a representation of the median
LRMSD of every subset motif in our input sets. Since we also have the evolutionary significance of
every amino acid in our input sets, we can evaluate the evolutionary significance of every subset
motif relative to its Geometric Uniqueness. We represent the total evolutionary significance of a
subset motif as the sum of the ET ranks of its elements. Increasing sums relate to decreasing
evolutionary significance, displayed on the vertical axis in Figure 9. Median LRMSD was plotted
on the horizontal axis.

Observations Motif profiles with the highest median corresponded to the subset motif with the
most evolutionarily significant amino acids (grey circles in Figure 9). In all cases but Lysozyme
(3lzt), the input sets used demonstrate how evolutionary significance increases proportionately to
decreasing median LRMSD. In Lysozyme, a control set where every candidate motif point was
evolutionarily significant, no apparent trend is visible. Banding and grouping, apparent in some
input sets, seems to be related to the amino acid composition of subset motifs involved. For example,
subset motifs with one evolutionarily insignificant amino acid tend to group together, at higher
median LRMSDs than subset motifs with two evolutionarily insignificant amino acids. While this
is only a small experiment with 10 examples, the existence of this apparent trend suggests that
Geometric Uniqueness may be tied to evolutionary conservation.

6 Conclusions

We have presented MASH, an efficient pipeline for identifying statistically significant matches.
MASH combines Match Augmentation, an efficient hierarchical geometric and chemical comparison
algorithm, with a nonparametric statistical model. As input, MASH accepts 3D motifs labeled with
evolutionary information, and, using a snapshot of the PDB, MASH finds geometric matches and
measures their statistical significance. Inspired by the success of MASH in preliminary tests for



(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j)

1acb 1rx7 3lzt 1czf 1ep0 1gwz 1juk 1kpg 1nsk 1ukr

Max Sensitivity 100.0% 98.7% 96.7% 100.0% 100.0% 67.4% 100.0% 100.0% 100.0% 58.4%

Avg Sensitivity 94.2% 90.4% 93.4% 93.8% 75.5% 51.2% 93.9% 93.4% 81.7% 29.2%

GS Sensitivity 100.0% 93.3% 96.3% 100.0% 100.0% 46.6% 100.0% 100.0% 86.3% 27.0%

Fig. 8. Sensitivity of (a) 1acb, (b) 1rx7, (c) 3lzt, (d) 1czf, (e) 1ep0, (f) 1gwz, (g) 1juk, (h) 1kpg, (i) 1nsk, (j) 1ukr, vs
median LRMSD. The table below specifies the sensitivity of the most sensitive subset motif, the average sensitivity
of all subset motifs, and the sensitivity of the optimized motif identified by GS. All data represents sensitivity while
specificity is held at 98%.

protein function prediction and the efficiency of the overall pipeline, we developed GS, a novel
distributed algorithm for exhaustively refining input sets of candidate motif points into optimized
motifs that can be used in MASH. We have implemented GS with techniques and optimizations



(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j)

Fig. 9. Relationship of Geometric Uniqueness to evolutionary significance in (a) 1acb, (b) 1rx7, (c) 3lzt, (d) 1czf, (e)
1ep0, (f) 1gwz, (g) 1juk, (h) 1kpg, (i) 1nsk, (j) 1ukr.

suitable for large scale distributed systems, testing it successfully on a cluster with more than
600 CPUs. We demonstrated the refinement of ten well studied input sets using GS. Using the
MASH pipeline, these optimized motifs functioned at a very high level of specificity and were
among the most sensitive of all motifs definable from these input sets. In addition, using GS in
conjunction with the Evolutionary Trace permitted us to demonstrate examples where amino acids
that are evolutionarily significant are also Geometrically Unique. Our current observations show
that GS is a powerful motif refinement algorithm which can be used in conjunction with other
motif design techniques in an effort to create sensitive and specific motifs. GS can thus be used



as an improvement for MASH and other pipelines in the form of a preprocessing step. In the
future, we hope to accomplish larger-scale investigations to help clarify the problem of selecting
the appropriate motif size, which remains an open problem, and also to understand how Geometric
Uniqueness can be combined with other motif design principles to produce more effective motifs.
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