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Abstract. Determining the function of all proteins is a recurring theme
in modern biology and medicine, but the sheer number of proteins makes
experimental approaches impractical. For this reason, current efforts
have considered in silico function prediction in order to guide and ac-
celerate the function determination process. One approach to predicting
protein function is to search functionally uncharacterized protein struc-
tures (targets), for substructures with geometric and chemical similarity
(matches), to known active sites (motifs). Finding a match can imply
that the target has an active site similar to the motif, suggesting func-
tional homology.

An effective function predictor requires effective motifs - motifs whose
geometric and chemical characteristics are detected by comparison algo-
rithms within functionally homologous targets (sensitive motifs), which
also are not detected within functionally unrelated targets (specific mo-
tifs). Designing effective motifs is a difficult open problem. Current
approaches select and combine structural, physical, and evolutionary prop-
erties to design motifs that mirror functional characteristics of active sites.

We present a new approach, Geometric Sieving (GS), which refines
candidate motifs into optimized motifs with maximal geometric and chem-
ical dissimilarity from all known protein structures. The paper discusses
both the usefulness and the efficiency of GS. We show that candidate
motifs from six well-studied proteins, including α-Chymotrypsin, Dihy-
drofolate Reductase, and Lysozyme, can be optimized with GS to motifs
that are among the most sensitive and specific motifs possible for the
candidate motifs. For the same proteins, we also report results that re-
late evolutionarily important motifs with motifs that exhibit maximal
geometric and chemical dissimilarity from all known protein structures.
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Our current observations show that GS is a powerful tool that can com-
plement existing work on motif design and protein function prediction.

1 Introduction

The determination of protein function is an important goal in biology, but ex-
perimental techniques for determining function are expensive and time con-
suming. One way to accelerate this process is to use computational techniques
to search the structure of functionally uncharacterized proteins (targets), for
matches of geometric and chemical similarity to known functional sites (motifs).
To achieve this, algorithms like Geometric Hashing [1], JESS [2], and Match
Augmentation [3] identify a subset of a target with the greatest geometric and
chemical similarity to the motif. Typically, geometric similarity is measured by
least root mean squared distance (LRMSD1) and chemical similarity is ensured
by examining the chemical compatibility of corresponding matches. The iden-
tification of a match with statistically significant LRMSD can suggest that the
target and motif have similar function [2, 3, 4].

Designing effective motifs is a two-sided open problem: The geometric config-
uration and chemical makeup of effective motifs must be similar to functionally
related proteins (sensitive), as well as dissimilar to functionally unrelated pro-
teins (specific). For this reason, it is difficult to select motif points, the points
in space with chemical labels which comprise motifs, so that sensitivity and
specificity are simultaneously maximized. Many methods for designing motifs
exist, and we are only able to include a partial list here. Motifs have been de-
signed using evolutionary significance and proximity to binding sites [5]. Motifs
have also been designed using literature search and PSI-BLAST alignments of
literature-defined motifs from the Catalytic Site Atlas [6, 7]. Still other motifs are
designed using surface exposure, and algorithms for detecting conserved binding
patterns [8]. The work presented in this paper complements these methods with
a novel criteria for motif design and an algorithm that can be used to further
improve existing motifs.

Contributions and Outline. We begin by describing the design and imple-
mentation of Geometric Sieving (GS), an algorithm for refining candidate motifs
into optimized motifs. As input, GS accepts a selection of candidate motif points,
chosen perhaps by another motif design algorithm, called the input set, and the
number k of motif points desired in the optimized motif. GS outputs an opti-
mized motif: a motif of k candidate motif points with the greatest geometric and
chemical dissimilarity to all known protein structures. We refer this property as
Geometric Uniqueness.

The motivation and inspiration for defining Geometric Uniqueness stems from
several observations in our earlier work [3, 5] and the work of other researchers
[2, 4], where it has been observed that motifs which are highly representative

1 LRMSD is the root mean square distance (RMSD) between two sets of points in 3D,
aligned with smallest RMSD.
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of protein function do not occur in a large fraction of the known proteins. One
question that we posed is whether geometric and chemical dissimilarity of a mo-
tif to all other known proteins (a.k.a. Geometric Uniqueness) can be computed
in a reasonable amount of time and whether Geometric Uniqueness can be used
to identify sensitive and specific motifs. After we obtained a positive answer to
the above question for a limited but well-designed set of experiments, we pro-
ceeded to investigate a second question which is whether Geometric Uniqueness
correlates with other characteristics of active sites. For example, evolutionarily
significant amino acids, those most associated with important evolutionary di-
vergences, as defined in [9, 10], are often related to active sites [5]. We observed,
on our limited set of examples, a correlation between Geometric Uniqueness and
evolutionary significance.

Measuring and optimizing Geometric Uniqueness is a nontrivial computa-
tional problem because numerous structural comparisons must be made between
many motifs and many protein structures. In Section 2, we present recent ad-
vances in the field of motif comparison algorithms that enabled the development
of GS. In Section 3, we detail the GS algorithm, a distributed algorithm coupled
with on-line statistical optimization, which measures Geometric Uniqueness to
optimize motifs. Our experimental results are shown in Section 4. Targeting our
first question, we optimized input sets derived from six well-studied proteins. On
these examples, optimized motifs computed by GS had among the highest sensi-
tivity and specificity of every subset motif definable from the input sets. Using in-
formation from the Evolutionary Trace (ET) [5, 9] we observed, on our examples,
that evolutionarily significant motifs exhibited higher Geometric Uniqueness.

This paper does not advocate that Geometric Uniqueness should be the sole
criterion for defining effective motifs. It argues, rather, that Geometric Unique-
ness is an interesting property that seems to be useful for refining existing motifs.
It also argues that GS is a novel methodology which can be used to optimize
motifs designed by human intuition, or by other motif design methods, such as
the milestone algorithm MultiBind [8]. It finally argues that Geometric Unique-
ness can be compared with other known criteria for selecting motifs in an effort
to better understand and finally attack the difficult problem of protein function
prediction.

2 Related Work

Motif Types. The many approaches to designing effective motifs have created
different types of motifs: motifs have been composed of points on the Connolly
surface [11] representing electrostatic potentials [12], of hinge-bending sets of
points in space [13], of sets of “pseudo-centers” representing protein-ligand in-
teractions [8], or of points taken from atom coordinates with evolutionary data
[3, 9], to name a few. Depending on how motif points are defined, they have dif-
ferent labels associated with them and these labels need to be taken into account
when comparing motifs. GS is orthogonal to the choice of motif type and could
be applied with any of the motif types above.
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In this work, a motif S is a set of m points {s1, . . . , sm} in three dimensions,
whose coordinates are taken from backbone and side-chain atoms. Each motif
point si in the motif has an associated rank p(si), a measure of the functional
significance of the motif point. Each si also has a set of alternate amino acid labels
l(si) ⊂ {GLY, ALA, ...}, which represent residues this amino acid has mutated
to during evolution. Labels permit our motifs to simultaneously represent many
homologous active sites with slight mutations, not just a single active site. In
this paper, we obtain labels and ranks using ET [9, 10].

Motif Comparison Algorithms. GS requires a geometric and chemical com-
parison algorithm to compare motifs to targets. Many such algorithms exist, but
differ fundamentally in that they are optimized for comparing different types of
motifs. There are algorithms for comparing graph-based motifs [14], algorithms
for finding catalytic sites [2], and the seminal Geometric Hashing framework [1]
which can search for many types of motifs, including motifs based on atom posi-
tion [15], points on Connolly face centers [16], catalytic triads [17], and flexible
protein models [13]. The comparison algorithm we use in this work is Match
Augmentation (MA) [3], because of its availability and compatibility with our
selected motif type. GS is independent of MA, and adapting another comparison
algorithm to use our motifs could be equally successful.

MA compares a motif S to a target T , a protein structure encoded as n target
points : T = {t1, . . . tn}, where each ti is taken from atom coordinates, and labeled
l(ti) for the amino acid ti belongs to. A match M , is a bijection correlating all mo-
tif points in S to a subset of T of the form M = {(sa1 , tb1), (sa2 , tb2) . . . (sam , tbm)}.
Referring to Euclidean distance between points a and b as ||a−b||, an acceptable
match requires:

Criterion 1. ∀i, sai and tbi are biologically compatible: l(tbi) ∈ l(sai).
Criterion 2. LRMSD alignment, via rigid transformation A of S, causes

∀i, ||A(sai) − tbi || < ε, our threshold for geometric similarity.

MA takes as input a motif S and a target T . MA outputs the match with smallest
LRMSD among all matches that fulfill the criteria. Partial matches correlating
subsets of S to T are rejected. By establishing a threshold for acceptable geomet-
ric similarity, the second criterion causes MA to return match LRMSDs bounded
by ε, even if the smallest LRMSD is not very low. This allows us to generate a
spectrum of matches ranging from high to low geometric and chemical similarity,
which we refer to as a motif profile.

Obtaining Motif Profiles. The basic object of comparison used by GS is the
motif profile, a set of matches SΩ between a single motif S and a very large set of
targets, Ω. We compute these matches with MA. Motif profiles are best visual-
ized as frequency distributions (see Figure 1(a)), which are essentially histograms
that plot frequency (the number of matches with a particular LRMSD) versus
LRMSD. We apply kernel density estimation procedures [18] to estimate popula-
tion density from the motif profile, using Gaussian Kernel smoothing to interpo-
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(a) (b) (c)

Fig. 1. (a) Typical frequency distribution of matches between a motif and the
PDB [21]. (b) Comparison of PDB, sequentially nonredundant PDB, and CATH
representatives. (c) Confidence band demonstrating the accuracy of samples of the
PDB. This data computed using the motif C42, H57, C58, D102, D194, S195, S214
from α-Chymotrypsin (1acb).

late between data points, as in previous work [3]. Optimal bin-widths determined
by Sheather-Jones method [19, 20] were used to avoid under- and over-smoothing.

The purpose of Ω is to represent the set of all known protein structures. We
have found, however, that different representations of Ω tend not to have sig-
nificant effect on the actual shape of motif profiles generated. For the 6 motifs
optimized for this work, as well as 12 motifs used in previous work [3], we ob-
served strong similarity between motif profiles calculated with the PDB (Ω0),
and Ωnr25 and Ωnr90, two sets of sequentially nonredundant PDB structures
having no more than 25% (resp. 90%) sequence identity. A similar comparison
was true when using the CATH [22] database, a multi-level nested categorization
of increasingly specific protein sequence and structure classifications. We selected
a representative of every category at the three most specific levels: Topologies
(ΩT ), Homologous Superfamiles (ΩH), and Sequence Families ΩS . In our ex-
perience, motif profiles on these representatives also resemble Ω0, in increasing
degrees of similarity corresponding to increasingly specific levels of CATH. The
similarity between the Ω0 (black), Ωnr25 (light grey) and ΩS (dark grey) is plot-
ted in Figure 1(b). Ωnr90, ΩT , and ΩH were excluded for clarity, but are closely
related.

We have also observed that motif profiles on Ω0 are exceptionally robust to
random sampling. Ω5 is the random 5% sample of PDB structures in Ω0, and
motif profiles with this set are called SΩ5 . In our experience, for any S, SΩ5

resembles SΩ0 with high accuracy. This can be seen in Figure 1(c), where we
overlayed 5000 distinct SΩ5 samples with a single SΩ0 , the center line in Figure
1(c). 95% of the 5000 SΩ5 fell within the upper and lower lines, demonstrating
that motif profiles based on Ω5 retain high similarity to motif profiles based on
Ω0. This is a result of sampling a largely unimodal distribution.

GS is not dependent on the selection of Ω, but because our observations sug-
gest that motif profiles based on many logical representations of Ω, including
ΩS , ΩH , ΩT , Ωnr25, and Ωnr90, differ little from motif profiles based on Ω5, this
paper proceeds by using Ω5. 5% sampling greatly reduces the number of matches
necessary to compute a motif profile, while its simple definition promotes the
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reproducibility of this work. Other investigations could use alternate selections
of Ω.

Motif profiles are especially useful for determining the statistical significance
of matches with a given motif S. In previous work, we showed that nonparamet-
ric density estimation of motif profiles generated with S can be used to calcu-
late p-values, which measure the statistical significance of any match of S [3].
Matches with low p-values, which correspond to high statistical significance,
seem to correlate with functional similarity [3]. This result corroborates earlier
work which applied parametric approaches [2, 4] to generate other measures of
statistical significance which also correlate with functional homology.

3 Geometric Sieving

GS accepts an input set, a collection of candidate motif points which could be
selected by another motif design method, or provided by a user seeking to im-
prove a motif. GS also requires k, the number of candidate motif points expected
in the output, and, as discussed in the previous section, a geometric comparison
algorithm compatible with the motif type used. The output of GS is the subset
motif with k points that has highest Geometric Uniqueness.

GS is a refinement process, not a motif discovery algorithm. If no subset
motif of size k has geometric and chemical similarity to functionally homologous
active sites, then GS cannot select one which does. For this reason, the input set
is assumed to contain a subset motif of size k, which has basic geometric and
chemical similarity to functional homologs of the input set. By this assumption,
matches to functional homologs remain in the low-LRMSD tail of the motif
profile for many subset motifs, while functionally unrelated proteins, the vast
majority of matches in a motif profile, gravitate around the large mode near
the median LRMSD. The difference in LRMSD between this low-LRMSD tail
and the major mode of the distribution causes matches to functional homologs
to be statistically significant relative to the distribution overall [3]. With many
different combinations of motif points to choose from, in the form of varying
subset motifs, we can select the motif profile which maximizes the LRMSD
difference between the low-LRMSD tail and the major mode. As a result, matches
to functional homologs will be maximally statistically significant for the input set
considered. Geometric Sieving implements this task by analyzing motif profiles.

In this work, between two motif profiles, the motif profile with higher median
LRMSD has higher Geometric Uniqueness. Medians are computed on kernel den-
sity smoothed motif profiles. While other statistics for quantitative comparison
exist, such as the mode, our experimentation shows that comparing the medi-
ans of motif profiles is an elegant and effective approach for determining which
motif is more Geometrically Unique. In addition, medians are not affected by
extreme values at the tails of the distribution. Estimating the true median of the
population from a sample is less prone to sampling errors and errors due to incor-
rect choice of smoothing parameters than mode estimation. Confidence bounds
about the median, an integral part of our approach, are better studied than con-
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fidence bounds about the mode. Finally, in our results, we show the connection
between medians and the actual distribution, demonstrating that motif profiles
with higher medians are motif profiles with more and/or higher match LRMSDs.

The motif size, the number of motif points in a motif, is partially related to
Geometric Uniqueness. Larger motifs specify more geometric constraints, and so
tend to have higher LRMSD matches than smaller motifs [3]. Thus, we avoid
comparing motif profiles from subset motifs of different sizes, ensuring that only
the true geometric and chemical differences drive the motif profile comparison.
This is why k, the size of the optimized motif, is an input. The operation and
success of GS is not affected by k, and our results hold over varying k, as we will
demonstrate later. Selecting an ideal k a priori remains an open problem, and
the subject of continuing research.

3.1 The Geometric Sieving Algorithm

GS has two phases: GATHERING and ANALYSIS, which are described in
Algorithms A1 and A2. Ignoring the ELIMINATION step (� in Algorithm A1)
for now, the GATHERING phase uses MA to iteratively compute motif profiles
(outer loop of Algorithm A1) for every subset motif of size k (inner loop of Algo-
rithm A1). These motif profiles are passed to the ANALYSIS phase, which cal-
culates the medians of each motif profile, and identifies the subset motif with the
highest median LRMSD. This subset motif is returned as the optimized motif.

A1 GATHERING A2 ANALYSIS A3 ELIMINATION

Input: Input Motif S
Input: Desired size k
for each Ti in Ω5 do

for all subset motifs S′ of
size k do

Run MA with S′ and Ti

MA returns match M
Store M in profile S′

Ω

end for
ELIMINATION�

end for

Input: all motif profiles S′
Ω

from GATHERING phase

Calculate m(S′
Ω) for all S′

Ω

Find the motif profile S′
Ω

with highest m(S′
Ω)

Output: S′, the optimized
motif.

Input: all motif
profiles SΩ from
GATHERING phase

∀ S′
Ω, compute r(SΩ)

∀ r(SΩ), find l

eliminate all r(S′
Ω)

with u < l

The GATHERING phase is embarrassingly parallel. Given a set of c pro-
cessors, we can obtain a (c − 1)-times linear speedup by offloading the task of
calculating each match between the current subset motif S′, target Ti pair to
another processor. This produces a client/server architecture where the server
implements GATHERING, and offloads MA problems to the clients.

Further modifications to GS can increase performance. In particular, let us
now consider the optimization procedure ELIMINATION (Algorithm A3) which
is called from GATHERING. Note that when we call ELIMINATION during
GATHERING, all motif profiles are only partially computed. Eventually ANAL-
YSIS will identify the optimized motif by selecting the motif profile that has the
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highest median. A closer look at the computations happening during GATH-
ERING revealed that some motif profiles have medians significantly lower than
others. Since we are only interested in the motif profile with the highest me-
dian, we can stop computing matches for motif profiles that have significantly
lower medians, saving computation time. For this reason, in Algorithm A1, we
apply ELIMINATION (see outer loop of Algorithm A1), which determines for
which motif profiles we can stop computing matches. These motif profiles will
be eliminated in the next loop through GATHERING. ELIMINATION need not
be applied at every iteration of the outer loop of GATHERING, as it will have
a limited effect. Instead, we define a parameter called the step size and we call
ELIMINATION after step size iterations of the outer loop of GATHERING.

As we pointed out above, when we call ELIMINATION during GATHER-
ING (see Algorithm A3), all motif profiles are only partially computed. At this
point in the algorithm, comparing the medians of these partial motif profiles
can be affected by sampling error. For this reason, ELIMINATION computes a
95% Confidence Interval r(S′′Ω) (see method of Efron and Tibshirani [23, 24, 25]),
which has 95% probability of containing the median m(S′Ω) of S′Ω. Therefore,
for two partially computed motif profiles S′Ω, S′′Ω, if r(S′Ω) > r(S′′Ω) do not
overlap, there is low probability that m(S′Ω) < m(S′′Ω). Since we are inter-
ested only in the motif profile with highest median LRMSD, it is thus unnec-
essary to finish computing S′′Ω because S′′ is not the optimized motif with high
probability.

We apply this fact during ELIMINATION by finding l, the highest lower
bound of all confidence intervals, and eliminate all subset motifs having confi-
dence intervals with upper bound u < l. In the next loop through GATHERING,
we do not calculate matches for eliminated subset motifs. If only one subset mo-
tif remains, or if GATHERING completes, we proceed to the ANALYSIS phase,
which identifies the motif profile, that has not been eliminated, with the highest
median. This is returned as the output of GS.

4 Experimental Results

We begin our experimentation by demonstrating that GS is a practical and ef-
ficient tool for motif optimization. Using input sets derived from 6 well-studied
proteins, we show that different subset motifs derived from the same input set
produce motif profiles which measurably vary in the median. We also demon-
strate that estimating medians with a 95% confidence bound and eliminating
subset motifs via ELIMINATE reduces the number of calculations necessary to
correctly determine the motif profile with highest median. On our small data set,
we made two key observations: First, sensitive and specific optimized motifs can
be identified by Geometric Uniqueness. Second, evolutionary significant subset
motifs tend to be more Geometrically Unique than evolutionarily insignificant
amino acids. Full details can be found at:

http://www.cs.rice.edu/~brianyc/papers/RECOMB2006/.
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Diagram tag AA # Rank

A1 FI 41 47.9
A2 CE 42 3.97

A3 HD 57 7.22
A4 CE 58 3.97
A5 GI 59 38.3
A6 SI 96 73.4
A7 DD 102 1.90
A8 MI 192 29.9

A9 DE 194 3.10
A10 SD 195 1.93
A11 SE 214 2.03

B1 LI 4 66.0

B2 AE 7 16.0
B3 VI 13 63.0
B4 IE 14 1.00
B5 GD 15 1.00
B6 PE 21 27.0

B7 WD 22 1.00
B8 AI 29 63.0
B9 FD 31 34.0
B10 TE 46 34.0
B11 RE 57 1.00
B12 YE 100 36.0

B13 DE 122 3.00

C1 CE 6 42.0
C2 EE 35 23.0
C3 SE 36 1.00

C4 FE 38 55.0
C5 NE 39 55.0
C6 AE 42 31.0
C7 DE 52 10.0
C8 YE 53 15.0

C9 NE 59 44.0
C10 WE 123 42.0

Diagram tag AA # Rank

D1 YI 52 17.2
D2 KD 53 2.4
D3 KI 55 11.9
D4 SI 58 9.2

D5 YI 88 17.1
D6 FE 89 1.0
D7 GE 91 1.0
D8 KD 110 1.9
D9 RD 182 1.9

D10 GD 233 1.1

E1 TI 30 15.3

E2 QI 31 14.9
E3 TI 32 13.6
E4 YD 33 2.20
E5 GD 72 1.00
E6 GD 74 1.00
E7 GE 76 1.00

E8 AI 77 16.7
E9 QD 99 2.70
E10 FE 200 1.00

F1 YD 70 1.00

F2 WD 72 1.00
F3 VI 73 10.1
F4 AI 78 10.0
F5 EE 79 1.00
F6 YD 81 2.21
F7 TI 112 16.6

F8 DI 113 11.9
F9 QD 129 1.00
F10 GD 170 1.79

Fig. 2. Input sets used. “AA”: amino acid type; “#”: PDB residue number; “Rank”:
ET rank.

4.1 Primary Data

Input Sets. Earlier work has produced examples of motifs designed with evolu-
tionarily significant amino acids [3] and amino acids with documented
function [6], which were sensitive and specific. Inspired by these approaches,
we selected evolutionarily significant (E , Figure 3) and functionally documented
(D, Figure 3) amino acids for each of our six input sets, except Lysozyme (3lzt).
We also included evolutionarily insignificant amino acids (I , Figure 3), chosen
from the same region of the protein.
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PDB Code Amino Acids and Citations EC class size k

1acb S195 H57 D102 [26] 3.4.21.1 11 7

1rx7 W22 [27], G15, D27, F31, H45, I50, G96 [28] 1.5.1.3 13 10

3lzt Control 3.2.1.17 10 8

1juk Lys53, Lys110, Arg182, Gly233 [29] 4.1.1.48 10 6

1kpg G72, G74, Q99, Y33 [30] 2.1.1.79 10 6

1ukr Y70, W72, E79, Y81, Q129, E170 [31] 3.2.1.8 10 6

Fig. 3. Functionally documented amino acids used in our input sets (cited), with
protein EC class, input set size (“size”), and subset motif size (k)

Having chosen evolutionarily significant and functionally documented amino
acids as part of each input set, we postulated that these “motif-worthy” amino
acids, and not the evolutionarily insignificant amino acids, would create the most
sensitive and specific motifs. For this reason, k was chosen in each case as the
total number of evolutionarily significant and functionally documented amino
acids in each input set. This guarantees that one subset motif from each input set
would contain only evolutionarily significant and functionally documented amino
acids, while the other subset motifs must contain evolutionarily insignificant
amino acids. As a control, the Lysozyme input set (3lzt) was composed entirely
of evolutionarily significant amino acids.

Functional Homologs. Measuring sensitivity and specificity requires a bench-
mark set of functional homologs. We use the functional classification of the En-
zyme Commission [32] (EC), which identifies families of functional homologs for
each input set (see Figure 3). Structure fragments and mutants were removed.

The Protein Data Bank. In this paper, we use Ω5, as mentioned in Section 2,
which is sampled from the set of crystallographic protein structures in the Pro-
tein Data Bank on Sept 1, 2005. PDB entries with multiple chains were divided
into separate structures, producing 79322 structures. While this could prevent the
identification of matches to active sites that span multiple chains, it is not clear
from the PDB file format how to determine which chains are intended to be in
complex. Incorrectly combining chains can lead to searches within physically im-
possible colliding molecules. Since none of the active sites used in this study span
multiple chains, separation was the most reproducible and well defined policy.

Implementation Specifics. GS uses the Message Passing Interface [33] (MPI)
protocol for interprocess communication, and was tested on a 16-node Athlon
1900MP cluster. The Rice TeraCluster, a cluster of 272 800Mhz Intel Itanium2s,
and Ada, a Cray XD1 with 672 2.2Ghz AMD Opteron cores, computed final
data. ε (see Section 2) was set to 7Å.

4.2 Median LRMSD Differentiates Motif Profiles

As mentioned in Section 4.1, our input sets were defined on both evolutionarily
significant and insignificant amino acids, as well amino acids with documented
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1acb 1rx7 3lzt

Fig. 4. Motif profiles generated using GS

function. Since GS calculates motif profiles for every possible subset motif, we
hypothesized that the diversity of these input sets would present a spectrum
of motif profile medians, and that medians within this spectrum would vary
sufficiently to justify motif profile comparison by measuring median LRMSD.

Experiment. Each of our six input sets has between 10 and 13 motif points,
and a specific k for each input set. GS computed motif profiles for every com-
bination of k motif points in each input set. For example, α-Chymotrypsin and
DHFR each contained, respectively, 7 and 10 amino acids which were either evo-
lutionarily significant or functionally documented, out of the 11 and 13 amino
acids total. Running GS with k = 7 and k = 10, respectively, GS exhaustively
analyzed all combinations of 7 and 10 amino acids as the subset motifs con-
sidered. We expected the Lysozyme input set, a control composed entirely of
evolutionarily significant amino acids, to have a narrower spectrum of median
LRMSDs, relative to the other sets of motif profiles.

Observations. The medians of the motif profiles generated (vertical hashes on
the x-axes in Figure 4), occurred in ranges of approximately 1 Å LRMSD. Motif
profiles corresponding to the highest medians clearly had more matches at higher
LRMSDs than motif profiles at the lowest medians, and thus higher Geometric
Uniqueness. This is demonstrated by darkened hashes and darkened curves in
Figure 4, where the biggest differences in medians (darkened hashes) correlated
to obvious differences in motif profiles (darkened curves). Lysozyme, which did
not contain a spectrum of evolutionarily insignificant and significant amino acids,
had a smaller range of medians. Higher median LRMSD in this application is
clearly directly associated with more and higher match LRMSDs, showing on
these examples that medians can be used to measure Geometric Uniqueness.

4.3 Median Estimation Cuts Runtime, Minor Accuracy Loss

Our implementation of GS uses online estimation of motif profile medians, re-
ducing the number of matches which need to be calculated before the opti-
mized motif is identified. Using input sets from Section 4.2, we first generated
matches without using the ELIMINATION optimization, mentioned in Section 3.
Next, we repeated this calculation with the ELIMINATION optimization, with
step sizes of 100 and 500, to stop sampling on motif profiles which clearly did
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Input Set Time-Full Matches-Full Time-500 Matches-500 Time-100 Matches-100

1acb� 12545:33:20 1,322,230 2683:07:40 186,883 1424:13:20 97,836
1rx7� 10826:50:00 1,211,266 915:20:40 203,356 554:56:40 107,657
3lzt� 1204:52:00 184,395 227:56:00 97,593 942:00:00 92,099
1juk 1059:06:40 1,100,452 100:33:20 183,086 22:13:20 87,098
1kpg 1224:53:20 1,092,748 80:26:40 179,721 22:46:40 78,014
1ukr 2030:26:40 1,063,797 150:13:20 110,043 35:40:00 74,613

Fig. 5. Speedups from Median Estimation: Execution time and number of matches
computed, using step sizes of 100, 500, and exhaustive sampling. � = Run on the Rice
TeraCluster. Remaining runs were done on Ada.

not have the highest median LRMSD, thereby reducing the number of matches
necessary.

Observations. Median estimation substantially reduces running time necessary
to determine the optimized motif. Operating at step sizes of 100, GS can identify
the optimized motif an average of 10 times faster than GS without median
estimation. This speedup follows directly from the early elimination of motifs
which, with high probability, do not have the highest median. At step sizes of
100, GS can identify the optimized motif with an average of 10 times less matches
than GS without median estimation. Figure 5 describes the precise number of
matches and time consumed.

Median estimation is very accurate. In every case described in Figure 5, me-
dian estimation identified the same optimized motif as GS using full sampling.
However, at step size 100, GS also identifies an alternative subset motif for 3lzt.
GS was unable to eliminate the alternative subset motif because overlapping
confidence intervals (see Section 3.1) did not separate by the time sampling was
complete. The same was true at a step size of 500 for 3lzt, and 1ukr. This sug-
gests that for some motifs, achieving certainty of the optimized motif beyond
95% confidence can require sampling more than 5% of the PDB. Median estima-
tion strongly accelerates the determination of the optimized motif with minor
sacrifices in accuracy.

4.4 Geometric Uniqueness Identifies Effective Motifs

GS was designed for the purpose of improving the sensitivity and specificity of
motifs by identifying the subset motif with highest median LRMSD, our mea-
sure of Geometric Uniqueness. We demonstrate that optimized motifs, on our
six input sets, are among the most sensitive and specific of all possible motifs
definable from the input sets.

Experiment. For each input set, we computed a match between every possible
subset motif and every functional homolog in the corresponding EC class, ex-
cept for the identical structure. Then, for each match, we accessed the p-value,
a measure of statistical significance determined using a method from previous
work [3]. Using α = .02, our standard of statistical significance, we determined
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1acb 1rx7 1ukr

1acb 1rx7 3lzt 1juk 1kpg 1ukr

Max Sens. 100.0% 98.7% 96.7% 100.0% 100.0% 58.4%

Avg Sens. 94.2% 90.4% 93.4% 93.9% 93.4% 29.2%

GS Sens. 100.0% 93.3% 96.3% 100.0% 100.0% 27.0%

Fig. 6. Sensitivity of 1acb, 1rx7, 1ukr vs median LRMSD (above), and sensitivity per
input set: the most sensitive subset motif, the average sensitivity, and the sensitivity
of the optimized motif from GS (table)

the number of matches with p-values below α - the true positives. The propor-
tion of true positives relative to the total number of functional homologs is the
sensitivity of the motif. With α at .02, specificity was always slightly above 98%.

Observations. In exhaustive comparison to all possible motifs definable from
the input sets at their respective k values, GS identified optimized motifs which
were quite sensitive, at a high level of specificity. From the 6 input motifs, GS
produced 5 optimized motifs with greater sensitivity than the average subset
motif from the same input set (see Figure 6). The exception, 1ukr, displayed no
subset motifs with high sensitivity, even though it was created with the same
criteria as the other input sets. Overall, Geometric Sieving performed well, iden-
tifying optimized motifs among the most sensitive of 5 out of 6 input sets, except
where no effective motif could be found.

4.5 Geometric Uniqueness Correlates with Evolutionary
Significance

Using the motif profiles calculated over Ω5, we have the median LRMSD of every
subset motif. Since we also have the evolutionary significance of every amino acid

1acb 1r7 3lzt

Fig. 7. Geometric Uniqueness vs. Evolutionary Significance
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in our input sets, we can evaluate the evolutionary significance of every subset
motif relative to its Geometric Uniqueness. In this experiment, we represented
the total evolutionary significance of a subset motif as the sum of the ET ranks
of its elements. Increasing sums relate to decreasing evolutionary significance,
displayed on the vertical axis in Figure 7. Median LRMSD was plotted on the
horizontal axis.

Observations. Motif profiles with high medians corresponded to subset motifs
with evolutionarily significant amino acids (grey circles in Figure 7). In all cases
but Lysozyme (3lzt), the input sets used demonstrate how evolutionary signifi-
cance increases proportionately with increasing median LRMSD. In Lysozyme,
a control set where every candidate motif point was evolutionarily significant,
no apparent trend is visible. The existence of this apparent trend suggests that
Geometric Uniqueness may be tied to evolutionary conservation.

5 Conclusions

We have presented GS, a novel distributed algorithm for exhaustively refining
input sets of candidate motif points into optimized motifs. We have implemented
GS with techniques and optimizations suitable for large scale distributed sys-
tems, and tested it on a cluster with more than 600 CPUs. By demonstrating
refinement on 6 well-studied input sets, we show that, at a very high level of speci-
ficity, the optimized motifs from these examples were among the most sensitive
of all motifs definable from these input sets. Using GS in conjunction with the
Evolutionary Trace permitted us to demonstrate examples where amino acids
that are evolutionarily significant are also Geometrically Unique. Our current
observations show that GS is a powerful motif refinement algorithm which can
be used in conjunction with other motif design techniques in an effort to create
sensitive and specific motifs. In the future, we hope to accomplish larger-scale
investigations to help clarify the problem of selecting the appropriate motif size,
which remains an open problem, and also to understand how Geometric Unique-
ness can be combined with other motif design principles to produce more effective
motifs.
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