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Abstract. The study of disease often hinges on the
biological function of proteins, but determining pro-
tein function is a difficult experimental process. To
minimize duplicated effort, algorithms for function
prediction seek characteristics indicative of possible
protein function. One approach is to identify sub-
structural matches of geometric and chemical simi-
larity between motifs representing known active sites
and target protein structures with unknown function.
In earlier work, statistically significant matches of
certain effective motifs have identified functionally
related active sites. Effective motifs must be care-
fully designed to maintain similarity to functionally
related sites (sensitivity) and avoid incidental sim-
ilarities to functionally unrelated protein geometry
(specificity).

Existing techniques design motifs using the ge-
ometry of a single protein structure. Poor selection
of this structure can limit motif effectiveness if the
selected functional site lacks similarity to function-
ally related sites. To address this problem, this paper
presents composite motifs, which combine structures
of functionally related active sites to potentially in-
crease sensitivity. Our experimentation compares the
effectiveness of composite motifs with simple motifs
designed from single protein structures. On six dis-
tinct families of functionally related proteins, leave-
one-out testing showed that composite motifs had
sensitivity comparable to the most sensitive of all sim-
ple motifs and specificity comparable to the average
simple motif.

On our data set, we observed that composite mo-
tifs simultaneously capture variations in active site
conformation, diminish the problem of selecting motif
structures, and enable the fusion of protein structures
from diverse data sources.
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1 Introduction

Developing an improved understanding of biological
systems, the molecular basis of disease, and the de-
sign of novel and effective drugs are important ef-
forts which could be enhanced with a broader under-
standing of the biological function of proteins. How-
ever, elucidating protein function is an expensive and
time consuming experimental process, depending on
the insight of experienced investigators and expensive
laboratory equipment. To support and accelerate this
cause, computational techniques for protein function
prediction have been developed to gather evidence
suggesting hypothetical functions of target proteins.

This paper focusses on one family of function pre-
diction techniques that we call motif matching algo-
rithms, such as Match Augmentation (MA) [11], Jess
[2], PINTS [44], and pvSOAR [3], among many oth-
ers. The evidence gathered by motif matching algo-
rithms are instances of geometric and chemical simi-
larity, matches, between motif structures, represent-
ing sites of known biological function, and substruc-
tures of target proteins, for which functional informa-
tion is unavailable. In the past, matches with statis-
tically significant geometric and chemical similarity
have identified targets with sites functionally simi-
lar to the motif [44, 2, 3, 11], suggesting that matches
may provide meaningful evidence of similar function.

One major challenge confronting the motif match-
ing strategy is the fact that motifs are imperfect tem-
plates for geometric and chemical comparison. While
generally they are designed to represent a known ac-
tive site, the geometric form and chemical composi-
tion of active site characteristics can drastically affect
the number of matching functionally related targets
(motif sensitivity), as well as the number of unin-
tended matches to unrelated sites (motif specificity).
Effective motifs, which are both sensitive and spe-
cific, are critical for a successful application of mo-
tif matching. For this reason, motif refinement to-
wards heightened sensitivity and specificity is a crit-
ical open problem. This paper contributes one prac-
tical method for motif refinement.

Motif refinement strategies in earlier work [10, 9,
41, 42] implement analyses which ultimately select ge-
ometric components for motifs from only one protein
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structure. We refer to these motifs as Simple Mo-
tifs. In response, this paper asks if Composite Mo-
tifs, which combine the geometry of several active site
structures, could better capture the natural variabil-
ity inherent in functionally related active sites. We
also asked if the design of motifs based on multiple
protein structures could escape the potentially nega-
tive effects of using simple motifs.

This paper proposes two specific types of compos-
ite motifs, averaged motifs and centered motifs, which
are constructed from a multiple structural alignment
of related active sites. Beginning with a data set of 6
distinct families of functionally related proteins, we
conducted a series of leave-one-out experiments to
test the sensitivity and specificity of averaged and
centered motifs. In comparison to all possible simple
motifs from the same family, averaged and centered
motifs performed with high sensitivity and average
specificity, while simple motifs exhibited wildly vary-
ing sensitivity and specificity, demonstrating that com-
posite motifs diminish the need to select individual
motifs. Furthermore, the high sensitivity of averaged
motifs also demonstrates that composite motifs can
better capture geometric variations within a family
of related sites.

This paper does not argue that composite mo-
tifs are a solution to the difficult problem of motif
design. Rather, we propose that composite motifs are
one method for achieving effective motifs which could
compliment existing strategies for motif refinement,
such as MULTIBIND [41, 42], Geometric Sieving [10],
Cavity Scaling [9], and Surfnet-Consurf [25].

Composite motifs contribute to the study of motif
refinement with three unique strengths: First, com-
posite motifs capture variations in active site confor-
mations, which are not apparent in any individual
protein structure. Improved representation of active
site conformations can enhance motif effectiveness.
Second, composite motifs eliminate the problem of
selecting an individual protein structure, eliminating
the risk of selecting ineffective simple motifs. Finally,
composite motifs provide a novel opportunity for the
integration of protein structures from novel sources.
Since the effectiveness of the motif is based on the ge-
ometry of a potentially large set of protein structures,
alternative sources of protein structure data, such as
snapshots from molecular dynamics simulations and
NMR data, could be incorporated into the design of
composite motifs. Composite motifs are a first step
towards the synthesis of multiple protein structures
for improved function prediction.

2 Related Work

The application of motif matching to protein func-
tion prediction is affected by at least three distinct
subproblems:

1. selecting a functional site representation
2. designing a matching algorithm
3. filtering biologically irrelevant matches

This paper describes composite motifs, which con-
tribute to the first subproblem. However, a complete
demonstration of the effectiveness of composite mo-
tifs, in the context of function prediction, also re-
quires solutions to the other two subproblems. This
section explains existing approaches to all three sub-
problems in relation to our contributions.

2.1 Related Work in Motif Design

The design of effective motifs is a two stage problem
requiring a computational representation of protein
structure, or motif type, and the choice of specific
active site elements to include, the motif design.

Motif types in earlier work can be loosely classi-
fied into two classes: point-based motifs, and volume-
based motifs. Point-based motifs have used points
in space to represent alpha carbon atoms [11, 45],
sidechain atoms [1, 44], points [28] on the connolly
surface [13], and chemical binding patterns [41, 42].
These motif points can be labeled with atomic and
residue identity [11, 45, 2, 44], electrostatic potential
[28], and evolutionary significance and variation [11],
among many other chemical and biological proper-
ties. Labeling motif points allows additional chemical
and biological knowledge to be mapped to an other-
wise purely geometric comparison process, increasing
the relevance of the motif type.

Volume-based motifs use spheres [9, 30, 33, 43, 46],
grids [33] and other geometric representations, such
as alpha shapes [3, 5, 14, 15], to represent active clefts
and cavities in protein structures. Rather than di-
rectly representing atomic structure, volumetric mo-
tifs represent volumes that can be functionally signif-
icant, such as ligand or cofactor binding sites. While
volume-based motifs are not always labeled, some
techniques which apply volume-based motifs also in-
tegrate sequence analysis and point-based compari-
son with volumetric comparisons.

Once the motif type is chosen, given a specific ac-
tive site to represent, a specific motif design must be
established for the active site. For point-based motifs,
this can involve the selection of the atoms thought
to be most closely involved with the function of the
protein. In the past, functionally documented amino
acids from the literature [10], databases of catalytic



sites [2], and evolutionarily significant amino acids
[11] have been used to design point-based motifs. Vol-
umetric motifs have been designed by identifying sta-
tistically significant cavities and indentations on pro-
tein surfaces [6].

Given the active site to be represented, recent
results suggest that a selection of amino acids can
then be refined for geometric and chemical compari-
son. For example, identifying geometrically conserved
binding patterns common among several function-
ally related active sites [41, 42] could yield additional
matches to functionally related proteins. Motifs can
be refined to be geometrically unique, recurring rarely
among functionally unrelated proteins [10]. Finally,
point-based motifs can be augmented with volumet-
ric data and eliminate matches lacking functionally
significant cavities [9].

Volumetric motifs have been refined by identify-
ing indentations on the protein surface that are dis-
tant from evolutionarily significant amino acids [25].
In addition, high-impact volumes within a surface
clefts, which seem to be essential for functionally re-
lated matches, can be automatically identified to re-
fine cavity-aware motifs [9].

This paper provides a unique approach to the re-
finement of point-based motifs. While other motif re-
finement techniques focus on the selection of amino
acids [41, 42, 10] or integrate additional data [10, 29],
this paper improves on existing motif designs by in-
corporating the geometry of other protein structures
containing similar active sites. In our experimenta-
tion, we asked if this approach would yield motifs that
more closely resemble the population of structures
with functionally related active sites. The possibil-
ity of integrating multiple protein structures yields
the first technique, to our knowledge, where motifs
can contain geometric information not taken directly
from a single protein structure.

Our approach is most related to techniques de-
signed to represent a range of protein structures, such
as hinge-bending point-based motifs [40], and mo-
tifs representing conserved binding patterns [41, 42].
Hinge-bending motifs can represent multiple protein
structures, but only capture structures implied by the
range of hinge motions, which can differ from the pop-
ulation of proteins containing similar functional sites.
In comparison, the composite motifs studied in this
work are built explicitly from populations of protein
structures with similar functional sites. Motifs rep-
resenting conserved binding patterns represent the
largest common set of motif points between a set of
functionally similar active sites, but the largest com-
mon set of motif points may not include functionally
significant motif points with geometric variations in

active site conformations. In contrast, our techniques
for generating composite motifs, described in Section
3, can represent a consensus structure among these
variations.

2.2 Earlier Motif Matching Algorithms
Motif matching algorithms are designed for compat-
ibility and efficiency with a specific motif type. In
addition to full structure alignment methods such
as DALI [26], which could be applied to the mo-
tif matching problem, motif matching algorithms for
point-based motifs include Geometric Hashing [31,
47], JESS [2], PINTS [39], and Match Augmenta-
tion [11, 9] (MA). One unique advantage of composite
motifs is that composite motifs are point-based mo-
tifs that are assembled in a novel manner but remain
compatible with existing point-based motif matching
algorithms.

Motif matching algorithms are also designed for
compatibility with volume-based motifs, such as pv-
SOAR [4, 5]. Other function prediction and analysis
techniques based on volume-based motifs analyze a
single protein structure in an effort to identify charac-
teristics consistent with an active site: SCREEN [36]
identifies cavities which are likely to be drug binding
sites, SURFNET [32] and SURFNET-Consurf [25]
seek to identify catalytic sites. CASTp [6] analyzes
cavities on the protein surface and identifies those
probable of biological activity.

2.3 Statistical Models for Motif Matching
Having found a set of matches using a motif matching
algorithm, the final subproblem for function predic-
tion via motif matching is to eliminate matches which
are unlikely to have any biological relevance. In sev-
eral approaches to motif matching, statistical models
have been developed which model the degree of ge-
ometric and chemical similarity observed in matches
with functionally related proteins. In comparison to
a baseline degree of similarity observed in matches at
random, matches to functionally related proteins ex-
hibit statistically significant geometric and chemical
similarity. The statistical models employed by PINTS
[44], JESS [2], and MA [11], have been shown to be
capable of identifying functionally related active sites.

Statistical models can be used to assign p-values
to a given match. The p-value estimates the probabil-
ity of observing another target, selected at random,
with greater geometric and chemical similarity than
the target identified with the given match. Thus, a
match is statistically significant if the p-value falls
below a given significance threshold α.

2.4 The MASH pipeline
In earlier work [8], we developed the MASH software
pipeline, which contains a matching algorithm and



Fig. 1. Composite motif construction begins with the multiple structure alignment of the individual motifs p0, p1,
etc, yielding clusters of correlated points in the ultimate alignment. We describe this iterative alignment process in
Section 3.2.

a statistical model for identifying matches to point-
based motifs. Because of its availability and compati-
bility with composite motifs, we use MASH to bench-
mark the effectiveness of composite motifs in our ex-
perimentation.

As input, MASH takes a simple or composite mo-
tif, a target protein structure, and a reference set of
protein structures. Using MA [11], MASH computes
a match m between the motif and the target as well
as a match between the motif and all members of the
reference set. Then, applying our statistical model
[11], MASH uses these matches to assign a p-value
to m. The output of MASH is the match m, and the
p-value of m. If p < α, then we say that the match
m is statistically significant, and a positive prediction
of functional similarity. Otherwise, we say that m is
statistically insignificant, and a negative prediction of
functional similarity.

In our experimentation, we use MASH for exper-
imentation on composite motifs and running control
experiments on simple motifs.

3 Generating Composite Motifs

In our experimentation, we asked if composite motifs
represent geometric variations in functionally related
active sites better than simple motifs. For this reason,
we detail both simple and composite motifs here.

3.1 Simple Motifs
Derived originally from a single protein structure P0,
a simple motif p0 is composed of l points in space
p(0,0), p(0,1), . . . , p(0,l), where the coordinates for each
p(0,i) are derived from an atom in P0.

Each motif point p(0,i) is also labeled with biolog-
ical and chemical information. Initially, each motif

point is identified with its atom type and amino acid
type within P0. Each motif point also bears a ranking
r(p(0,i)) which is associated with the functional im-
portance of the motif point. The matching algorithm
used in this paper, MA [11] is capable of prioritizing
its search for motifs in order of functional importance.
Finally, each motif point also contains a list of as-
sociated amino acids l(p(0,i)), called alternate labels,
which represent acceptable substitutions in matching
target amino acids. This permits our motifs to repre-
sent amino acids substitutions in major evolutionary
divergences [11, 34, 35] or variations between distinct
but chemically related amino acids.

3.2 Composite Motifs

Composite motifs are point-based motifs whose mo-
tif points are positioned by the geometric consensus
of related active site structures. This paper presents
averaged and centered motifs which are two exam-
ples of composite motifs designed from related active
sites.

In the design of composite motifs, we begin with
a set of k protein structures P0, P1, . . . , Pk, where
each Pi is contains a functionally related active site,
which is defined as an individual motif pi = {p(i,0),
p(i,1), . . ., p(i,n)} with exactly n motif points. Given
that these motifs are functionally related, we list the
motif points in p0, p1, . . ., pk in such an order that
for any i, 0 ≤ i ≤ n, the motif points p(0,i), p(1,i), . . . ,
p(k,i) are functionally identical. Furthermore, for any
i, 0 ≤ i ≤ n, the motif points p(0,i), p(1,i), . . ., p(k,i)

are assigned the same ranking and the same alternate
labels.

Using a method from [48], we first compute a
multiple structural alignment of the individual mo-



tifs. This is accomplished by first computing a least
RMSD (LRMSD) alignment1 of each pi to an arbi-
trarily selected pj . In each alignment between one pi

and pj , p(i,0) is correlated to p(j,0), p(i,1) is correlated
to p(j,1), etc, resulting in a cluster containing all p(i,0),
a cluster containing all p(i,1), and so on. We compute
a centroid for each cluster, and refer to each centroid
as c0, c1, . . . , cl. In the next iteration, we align each pi

to this set of centroids, instead of the arbitrarily se-
lected individual motif, and recompute the centroids
for the new multiple structural alignment. Repeated
iterations converge rapidly to a single multiple struc-
tural alignment [48], with centroids C0, C1, . . . , Cl.

Once the multiple structural alignment is com-
plete, we use the newly aligned formation of struc-
tures to finalize averaged and centered motifs.

Fig. 2. The multiple structure alignment of the individ-
ual motifs generates clusters of correlated motif points,
demonstrated on the left side of this figure. As demon-
strated above, averaged motif points are positioned at the
centroid of the cluster. Centered motifs, demonstrated be-
low, compute the smallest containing sphere around the
correlated motif points, and use the center of the sphere
for the composite motif point.

Averaged Motifs Averaged motifs use C0, C1, . . .,
Cl as the coordinates of their motif points. This is
demonstrated in Figure 2. Once we have the coordi-
nates of the averaged motif points, the labels, rank-
ing, and alternate labels, being identical in each of
p0, p1, . . ., pk, are applied respectively to each of C0,
C1, . . ., Cl, completing an averaged motif.
Centered Motifs Centered motifs are initially
generated with the same iterative multiple structural
alignment. However, once the alignment is complete,
the smallest sphere containing each cluster of corre-
lated motif points is computed, and the center of the
sphere is used for each composite motif point. We

1 An LRMSD alignment of two sets of points A and B ro-
tates and translates A to the position where root mean
squared deviation (RMSD) between A and B is mini-
mized

demonstrate this in Figure 2. Again, the labels, rank-
ing, and alternate labels are mapped to each of these
points.
Advantages of Composite Motifs We designed
composite motifs to represent variations in active site
structures, to reduce the need to select motif struc-
tures, and to promote the fusion of protein structures
from varying data sources. Towards the first goal, av-
eraged and centered motifs select points in space to
represent the variation exhibited by each motif point.
This straightforward approach is strongly applicable
to the natural variability of protein structures, un-
der the assumption that geometric identity implies
functional similarity.

Generating a single composite motif that repre-
sents a set of related sites also reduces the problem
of selecting a single protein structure to represent the
entire set. In our experimentation, we will test the de-
gree to which composite motifs can identify function-
ally related proteins, in comparison to simple motifs
based on individual related sites. One concern we had
was that some sites might be overrepresented in the
family of protein structures, thereby affecting motif
points in averaged motifs. Since structural overrepre-
sentation is inevitable, due to the fact that structures
are unavailable for all proteins, we designed centered
motifs, to use the geometric position of the overall
cluster (the smallest surrounding sphere) for motif
points.

Composite motifs have the distinctive character-
istic that protein structure data from many sources
could be fused in a single representation. As the avail-
ability of protein structures and functional annota-
tions accelerates, composite motifs could provide a
useful method for applying additional knowledge to-
wards function prediction. In particular, because hun-
dreds of protein structures can be integrated into
composite motifs, additional sources of data, such as
snapshots from molecular dynamics simulations and
models from structure prediction techniques, could be
integrated to counterbalance experimental biases in-
herent in existing structures and further expand the
set of structural variations represented by composite
motifs.

4 Experimentation

In controlled experimentation, this section compares
the effectiveness of simple motifs against averaged
and centered motifs. First, we identified 6 families
in the Enzyme Commission (EC) classification which
contained many distinct protein structures with func-
tionally related active sites. Treating these classifica-
tions as a gold standard for functional similarity, we



Fig. 3. Multiple structural alignment of Peroxidase active sites in EC family 1.11.1.7. The substructures aligned in
this image demonstrate the distinct geometric variability of related sites in each EC family. Structural differences
between sites in each structure are apparent in both sidechain conformations as well as alpha carbon (spheres, in this
image) positions. Some families, such as 1a3h, were distinctly more variable, while others, such as 1did, exhibited less
variability.

used each family to generate averaged and centered
motifs on a leave-one-out basis. Finally, we tested the
effectiveness of these averaged and centered motifs to
identify statistically significant matches with the left
out structure, in comparison to simple motifs.

4.1 Protein Families
In this work, we identified six families of proteins
within the Enzyme Classification (EC) specified by
the Nomenclature Committee of the International Un-
ion of Biochemistry and Molecular Biology [27], which,
although imperfect, is standard and useful for our
purposes. In each family, we required one primary
structure, with functional amino acids documented in
the literature, as well as at least 10 other non-mutant
protein structures (although EC families with more
structures were preferred), all with resolution below
3Å.

The next six paragraphs describe the functionally
documented amino acids from each primary struc-
ture. For simplicity, in our experimentation, we will
refer to each EC family (bolded, below) using the
PDB code (bolded, below) of its primary structure.
1a3h/3.2.1.4 Bacillus agaradherans endoglucanase
is a cellulase and belongs to EC family 3.2.1.4. Five

points were selected for this motif, including trypto-
phan 262, which exists in an orientation that allows
it to interact with substrate, tryptophan 178, which
is an invariant residue in the subfamily 5-2 enzymes
that is part of the aglycon binding sites, and histidine
206, which may play an important role in catalysis,
perhaps as part of substrate binding [19]. Glutamic
acid 139 and 228 were also included, being the cat-
alytic acid/base and the enzymatic nucleophile, re-
spectively [19].

1aru/1.11.1.7 Peroxidase from the fungus Arthro-
myces ramosus is a heme protein belonging to EC
family 1.11.1.7. Five points were selected for this mo-
tif, including histidine 184, which binds the heme iron
[23], and the distal arginine (Arg-52 in this structure
[21]), which has been proposed to play a role in sub-
strate binding and stabilization of the product of the
first step of the enzyme reaction [24]. Also included
was histidine 56, which is suggested to be responsi-
ble for proton translocation in the hydrogen peroxide
substrate and has been shown to undergo conforma-
tional change in complexes with both cyanide and tri-
iodide [21]. Asparagine 93 and glutamic acid 87 form
a hydrogen bond network with histidine 56 [21].



1asy 1did 1k55 1rx7 1a3h 1aru

Min. Å 0.072773 0.000272 0.018086 0.007937 0.000383 0.00021
Max. Å 3.034972 0.820726 7.134243 5.299205 5.754516 4.169486
Avg. Å 1.947437 0.251243 3.790644 1.514413 2.429289 1.346931

# of Structs. 14 93 181 132 119 28

Fig. 4. A summary of the variations in geometric similarity between all pairs of simple motifs used in experimentation,
as well as the number of structures in each family. Families denoted by the PDB code of their primary structure.

1asy/6.1.1.12 Aspartyl-tRNA synthetase is a di-
meric aminoacyl tRNA synthetase responsible for the
translation of genetic information and belongs to EC
family 6.1.1.12. Eight points were selected for this
motif. Serine 329 is part of a loop that interacts with
the discriminator base G73 and the first base pair
of the stem of the tRNA molecule, serine 423 and
lysine 428 are the endpoints of a segment that inter-
acts with the phosphate groups of A72 and G73, and
lysine 293 is the only residue making direct contact
with a tRNA molecule bound to the other monomer
[17]. Arginine 325 and 531 are involved in binding
the ATP substrate, bonded to the α-phosphate and
γ-phosphate, respectively [16], while aspartic acid 342
plays a role in binding the amino groups of the aspar-
tic acid substrate [18]. Proline 273 has been confirmed
to be essential in the dimerization [20], and enzymatic
activity has been shown to decrease markedly when
this residue is substituted [16].
1did/5.3.1.5 D-xylose isomerase, belonging to EC
family 5.3.1.5, converts xylose to xylulose, such as
in the conversion of glucose to fructose. Six points
were selected for this motif. It has been proposed
that aspartic acid 56 polarizes and activates histi-
dine 53, which acts as a base to catalyze ring open-
ing, and that lysine 182 aides in isomerization, while
tryptophan 136 and phenylalanine 93 and 25 from
a completely hydrophobic environment in which the
hydride shift occurs [12].
1k55/3.5.2.6 Class D β-Lactamase, a member of
EC family 3.5.2.6, is responsible for the hydrolysis
of β-lactam antibiotics, and as a result, it is one of
the causes of bacterial resistance to this group of an-
tibiotics [22]. Eight points were selected for this mo-
tif. Serines 67 and 115 and lysine 205 are among the
residues active in catalysis, while phenylalanines 69
and 120, valine 117, tryptophan 154, and leucine 155
create a hydrophobic pocket within the active site
[22].
1rx7/1.5.1.3 Dihydrofolate reductase, belonging to
EC family 1.5.1.3 and required for normal metabolism
in prokaryotic and eukaryotic cells, is an enzyme that
catalyzes the NADPH-dependent reduction of 7,8-
dihydrofolate to 5,6,7,8-tetrahydrofolate [38]. Seven
points were chosen for this motif. Histidine 45 creates

an ionic interaction with the pyrophosphate moiety
of the NADP+ coenzyme and makes a bifurcated hy-
drogen bond with two oxygens of the ADP group [7].
Glycine 96 also makes such a hydrogen bond with
two oxygens of the ADP 5’-phosphate [7]. Aspartic
acid is the single polar residue in the folate bind-
ing cleft and participates in the catalyzing reduction
of 7,8-dihydrofolate in two ways: by indirect proto-
nation of N5 and by the precise positioning of the
dihydropteridine ring through H-bonding [7]. Pheny-
lalanine 31 forms a rigid ceiling to the pteridine bind-
ing site, which appears to be important for catalysis
[7]. Isoleucine 50 is among the residues that create
a hydrophobic pocket surrounding the folate tail [7].
Finally glycine 15 is part of group of amino acids
that function as a lid that controls that entry and
exit of ligands into the enzyme, and tryptophan 22 is
involved in the slow, rate-limiting release of product
[38].

4.2 Motifs used in Experimentation

Simple Motifs From every structure in every fam-
ily, we created one simple motif as a control set for
our experimentation.

Creating a simple motif for the primary structure
in each family was accomplished by running the Evo-
lutionary Trace (ET) [34, 35] to identify alternate la-
bels and a ranking of evolutionary significance (see
Section 3.1) for all functionally documented amino
acids. The geometric positions of the alpha carbons in
functionally documented amino acids, coupled with
the alternate labels and ranking provided by ET,
complete a primary motif for each family.

Creating a simple motif for all non-primary struc-
tures in each family is substantially more difficult,
because functional documentation was not available
for many non-primary structures. For this reason, we
applied MA [11, 10] to search for the primary motif in
the other structures of each protein family, identify-
ing a set of similar sites. In each structure, we use the
most geometrically similar site as the simple motif.

The lack of functional documentation in many
of the non-primary structures of each family leaves
few alternative methods for discovering similar sites,
but regardless of which site is used, MA is no substi-



tute for functional documentation. Existing alterna-
tive methods, such as sequence comparison and other
structure comparison algorithms, do not provide any
improved guarantees to identify cognate active sites.
A similar approach for identifying related sites was
implemented in the Catalytic Site Atlas [37], which
uses sequence analysis to relate functionally docu-
mented amino acids to similar amino acids in proteins
of related function. Sequence analysis does not guar-
antee functional similarity, but significantly widens
the range of similar active sites.

In order to minimize any bias introduced by MA,
we used very broad geometric thresholds when search-
ing for similar sites. We used MA to consider all simi-
lar sites which had matching alpha carbons as distant
as 10Å in the LRMSD alignment, while searching for
the site with smallest LRMSD. Geometric thresholds
used by MA do not appear to have significantly biased
the set of simple motifs. As documented in Figure 4,
between the simple motifs of each family, we mea-
sured the degree of pairwise geometric similarity, and
observed notable geometric variations in all families
except 1did.

In our experimentation, a statistically significant
match between a simple motif and a structure in the
same family is called a true positive (TP) match, and
a statistically significant match to a structure outside
the family is a false positive (FP) match. A statis-
tically insignificant match to a structure inside the
family is a false negative (FN), and a statistically in-
significant match to a structure outside the family is
called a true negative (TN).
Composite Motifs For each family of k simple mo-
tifs, we also created k averaged and k centered mo-
tifs in a leave-one-out manner. This is accomplished
by identifying the k − 1 simple motifs that are not
left out, and using them as individual motifs in the
construction of an averaged or a centered motif, as
described in Section 3.2.

Assembling simple motifs creates a test set where
each composite motif can be tested against the left
out structure. For each leave-one-out motif generated,
if the left-out member of the protein family has a sta-
tistically significant match, then we call this match a
TP. If the left out structure is not statistically signif-
icant we call the match a FN. FP and TN matches
are counted in the same way as simple motifs.

4.3 Experimental Protocol

For every simple and composite motif, we computed
matches between the motif and every member of the
associated protein family. We also computed matches
between the motif and 5000 randomly sampled struc-
tures from the PDB, to represent a set of functionally

unrelated proteins. We then assessed the statistical
significance of each match computed, and counted the
number of TPs, FPs, TNs, and FNs for all motifs.

Given greater computing time, the set of randomly
sampled PDB structures could be expanded further.
However, in earlier work [11, 10] we observed that
sampling 5% (5000 is more than 5%) of the PDB
can reasonably represent the geometric composition
of the proteins in the PDB. For this reason, sampling
5000 functionally unrelated proteins was deemed suf-
ficient to simulate the number of FP matches ob-
served in general conditions. Overall, approximately
4054 distributed CPU hours were spent gathering
these matches.

4.4 Implementation Specifics

This work uses a snapshot of the PDB database from
09.14.2006. Structures with multiple chains were di-
vided into separate structures, producing 93582 struc-
tures. While separating chains might block the iden-
tification of matches to active sites that span mul-
tiple chains, re-integration of separate chains might
yield errors which lead to chemically impossible pro-
tein structures. None of the motifs used in this ex-
perimentation span separate chains.

Composite motifs were computed using C/C++
code developed on an Athlon XP 2600+, with 1Gb
of ram, running Debian Linux. Computing averaged
and centered motifs, described in Section 3, takes ap-
proximately 10-15 seconds on this machine. P-values
and matches computed using distributed MASH, doc-
umented in [10], was run on Ada, a 28 chassis Cray
XD1 with 672 2.2Ghz AMD Opteron cores.

4.5 Averaged and Centered Motifs are
Sensitive and Specific

We compared the sensitivity and specificity of aver-
aged and centered motifs to the sensitivity of every
possible simple motif in each protein family.

Observed sensitivity is plotted Figure 5. The hor-
izontal axis represents each family of EC proteins,
denoted by their primary structure. The vertical axis
represents sensitivity: the proportion of TP matches
observed relative to the number of proteins in the
protein family. The black brackets, each having three
hash marks, signify the minimum, mean, and maxi-
mum number of TP matches identified by simple mo-
tifs in the EC class. Every simple motif in the family
corresponding to 1did matched all members of the
family. The dark grey line represents the number of
TP matches identified by centered motifs, and the
light grey line represents the number of TP matches
identified by averaged motifs. Averaged motifs were
among the most sensitive of all individual matches.



Fig. 5. A comparison of TP matches found by composite motifs, relative to TP matches found by simple motifs from
the same family. On the vertical axis, we normalize the total proportion of TP matches for each family; a value at
1.0 demonstrates that the motif identified statistically significant matches to all structures in its EC family. On the
horizontal axis, we chart the protein families studied in this work. The vertical black bars indicate the maximum,
minimum, and average number of TP matches identified by single-structure motifs from each EC family. It is apparent,
with the exception of 1did, that single-structure motifs can fall within a wide range of sensitivity. The dark and light
grey lines signify the number of TP matches identified by centered and averaged motifs, respectively. Composite
motifs, especially averaged motifs, are significantly more sensitive than most simple motifs on almost all protein
families studied.

One family of protein structures, 1did, demon-
strated very low structural variability. This is con-
sistant with the observation from Figure 4 that sim-
ple motifs in 1did expressed little geometric variabil-
ity. As a result, composite motifs generated from this
family performed perfectly also.

Among individual motifs, sensitivity fluctuates sig-
nificantly. For example, in the family of 1rx7, some
individual motifs identify matches with only 2 out
of the 136 remaining members of the family, while
other individual motifs identify as many as 112. In
the family of 1aru, some individual motifs identify
matches with only 11 out of the 27 remaining mem-
bers of the family, while others identify as many as
24. The choice of individual structures for motif de-
sign significantly risks the sensitivity and specificity
of the motif created. In comparison, the sensitivity
of averaged motifs was consistantly greater than the
mean sensitivity of individual motifs, which was sim-
ilar to the sensitivity of centered motifs as well. With
the exception of averaged motifs for 1a3h, compos-
ite motifs in general did not outperform all individ-
ual motifs. This demonstrates that composite motifs
largely avoid the problem of selecting individual mo-

tifs, and that averaged motifs can achieve very high
sensitivity.

We measured specificity in Figure 6. The horizon-
tal axis again corresponds to each family of EC pro-
teins, and the vertical axis corresponds to the num-
ber of FP matches, from the random sample 5000
PDB proteins, observed for each motif. We report
the number of FPs observed, instead of specificity,
because there are so many more unrelated proteins
than functionally related proteins, that specificity is
almost always close to 99%. Reporting the number of
FPs makes the results easier to observe. The black
brackets correspond to the highest, lowest, and mean
number of FP matches to each individual Mi. The
dark grey and the light grey lines correspond to the
number of FP matches to centered and averaged mo-
tifs, respectively. The mean number of FP matches
observed with simple motifs was very similar to the
number of FP matches observed with centered and
averaged motifs.

The number of FPs observed can fluctuate signif-
icantly among individual motifs. In 1a3h, some indi-
vidual motifs identify 123 FP matches, whereas oth-
ers identify only 41. In other families, specificity did



Fig. 6. A comparison of FP matches found by composite motifs, relative to FP matches found by simple motifs from
the same family. On the vertical axis, we plot the number of FP matches observed. On the horizontal axis, we chart
the protein families studied in this work. The vertical black bars again indicate the maximum, minimum, and average
number of FP matches identified by single-structure motifs from each EC family. The dark and light grey lines signify
the number of FP matches identified by centered and averaged motifs, respectively. With one exception, composite
motifs tend to identify an average number of FP matches, in comparison to single-structure motifs, demonstrating
that composite motifs are not an additional source of prediction error.

not fluctuate as much, such as in 1rx7, where individ-
ual motifs identified between 38 and 57 FP matches.
In comparison, averaged and centered motifs almost
always identified an average number of FP matches.
Composite motifs appear to avoid high false positive
rates which can occur with individual motifs, again
reducing the problem of selecting individual protein
structures.

5 Conclusions

We have described composite motifs, a unique ap-
proach to motif refinement. Overall, composite motifs
seem to achieve sensitivity among the most sensitive
individual motifs, while maintaining average speci-
ficity and eliminating the problem of accidentally se-
lecting an ineffective simple motif.

On 6 families of functionally related proteins, our
experimentation demonstrates, on a small scale, that
composite motifs can capture variations in active site
conformations. We observed that averaged motifs per-
formed with sensitivity comparable to the most sen-
sitive simple motifs, and that centered motifs per-
formed with sensitivity typical of the average simple
motif. While increasing sensitivity, averaged and cen-
tered motifs tended to identify FP matches typical of
the average simple motif.

We also observed that simple motifs had sensitiv-
ity and specificity falling in a very wide range. Select-
ing any individual structure for the design of a motif
risks the selection of insensitive or nonspecific sim-
ple motifs. In our experimentation, we observed that
composite motifs may diminish this problem, because
no selection needs to be made, and because they per-
formed with high sensitivity and average specificity.

As the availability of protein structures and func-
tional annotations accelerates, we feel that composite
motifs will become increasingly applicable for effec-
tive annotation of protein structures and for the inte-
gration of additional types of structural information
from diverse data sources.
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