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Algorithms for geometric and chemical comparison of protein substructure can be
useful for many applications in protein function prediction. These motif matching al-
gorithms identify matches of geometric and chemical similarity between well-studied
functional sites, motifs, and substructures of functionally uncharacterized proteins, tar-
gets. For the purpose of function prediction, the accuracy of motif matching algorithms
can be evaluated with the number of statistically significant matches to functionally re-
lated proteins, true positives (TPs), and the number of statistically insignificant matches
to functionally unrelated proteins, false positives (FPs).

Our earlier work developed cavity-aware motifs which use motif points to signify
functionally significant atoms and C–spheres to represent functionally significant vol-
umes. We observed that cavity-aware motifs match significantly fewer FPs than matches
containing only motif points. We also observed that high-impact C–spheres, which signif-
icantly contribute to the reduction of FPs, can be isolated automatically with a technique
we call Cavity Scaling.

This paper extends on our earlier work by demonstrating that C–spheres can be used
to accelerate point-based geometric and chemical comparison algorithms, maintaining
accuracy while reducing runtime. We also demonstrate that the placement of C–spheres
can significantly affect the number of TPs and FPs identified by a cavity-aware motif.
While the optimal placement of C–spheres remains a difficult open problem, we compared
two logical placement strategies to better understand C–sphere placement.
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1. Introduction

Geometric and chemical comparison of protein substructures can be applied to the
problem of protein function prediction by identifying new sites that share geometric
and chemical characteristics with well studied active sites. Several motif matching
algorithms have been designed for this application, including JESS 7, PINTS 67,
Geometric Hashing 41,74, pvSOAR 11,13, and Match Augmentation 18. These al-
gorithms search for matches of geometric and chemical similarity between motifs,
representing known active sites, and the structures of target protein. Within this
approach, one difficult subproblem is how to choose active site characteristics, for
representation in motifs, so that matches to functionally related targets are found.

In the past, motifs have been created to represent many different types of
data, in an effort to characterize different aspects of active site structure and
chemistry. These include point-based motifs 5,7,18,38,55,56,60,63,64,67,68,70,69, which
use motif points to represent labeled atomic coordinates, and cavity-based motifs
11,13,16,27,26,32,40,42,47,66,72, which use volumetric constructs to represent protein cav-
ities and clefts associated with protein function.

Given comparison algorithms for computing matches of each motif type, indi-
vidual motifs can be evaluated by measuring the number of statistically significant
matches to functionally related proteins, true positives (TPs), and the number of
statistically significant matches to functionally unrelated proteins, false positives
(FPs).

In earlier work 16, we hypothesized that point-based and cavity-based motifs
could be combined for complementary benefits. This hypothesis led us to propose
cavity-aware motifs, which combine motif points to represent atomic structure and
C–spheres to represent protein cavities and clefts. We observed that cavity-aware
motifs identify nearly as many TP matches as do point-based motifs, while elimi-
nating a large proportion of FP matches. In earlier work 16, also developed Cavity
Scaling, an algorithm for refining cavity-aware motifs by identifying high-impact
C–spheres that tend to eliminate more FP matches.
Contributions While cavity-aware motifs have the potential to identify most TP
matches while eliminating many FP matches, it remains a difficult open problem
to position C–spheres so that this potential is achieved. Beginning with manually
selected motif points, this paper expands on our earlier work to compare two C–
sphere placement strategies: Ligand-based C–sphere placement and Volume-based
C–sphere placement, which does not require ligated protein structures, expanding
the applicability of our technique.

This paper also expands on our earlier work by combining aspects of point-based
and cavity-based motifs to accelerate the matching computation. In particular, we
demonstrate a method for using C–spheres to reduce comparisons in our matching
algorithm relative to point-based motifs.

Finally, this paper provides expanded evidence that Cavity Scaling is capable
of identifying high-impact C–Spheres. While our earlier work used CS to refine
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cavity-aware motifs with ligand-based C–sphere placement, we demonstrate here
that CS is equally effective at refining motifs with volume-based C–spheres place-
ment. CS enables the identification of high-impact C–spheres even for unligated
protein structures, generalizing the applicability of cavity-aware motifs.
Organization In Section 2 this paper first surveys existing types of motifs, al-
gorithms for motif matching, and statistical models of geometric matching. Section
3 describes cavity-aware motifs in depth, and then explains two strategies for C–
sphere placement. Section 4 presents an expanded description of our pipeline for
identifying and statistically scoring matches, describing how we use C–spheres to
accelerate our matching algorithm. Section 5 presents the CS algorithm in detail,
describing how modifications for large-scale computation can yield significantly im-
proved performance. In Section 6, we present our experimental results. Finally, a
discussion of our conclusions is given in Section 7.

2. Related Work and Contributions

Most approaches to the problem of motif matching include a specific representation
of motifs, an algorithm for identifying matches for those motifs, and a statistical
model for measuring the statistical significance of matches found. This section high-
lights recent innovations in motif matching, and explains our contributions in the
context of this work.

2.1. Active Site Representations

Every approach to the problem of motif matching must include motifs: a formal rep-
resentation of active sites that can be used for geometric and chemical comparison.
Developing such a representation is very difficult because biological characteristics
relevant for active site function may not be well understood, or may be difficult
to represent within the formal motif definition. The two most popular active site
representations are point-based motifs and cavity-based motifs.
Point Based Motifs Point-based motifs are composed of motif points in three di-
mensions that represent atoms taken from protein structures and active sites. Point-
based motifs have represented amino acid C-alpha atoms 68,18, sidechain atoms 5,67,
atoms in hinge-bending flexible active sites 68, atoms in catalytic sites 7,69, catalytic
triads 70, and conserved binding patterns 63,64. Motif points have also been used to
represent points 60,55,56 and electrostatic potentials 38 on Connolly surfaces 22, and
pairs of points have been used to represent vectors of sidechain orientation 31.

Motif points can be labeled with atom and residue information, evolutionary
significance and mutation data 18 from the Evolutionary Trace 49,53, hydrogen
donor/acceptor and hydrophobic/hydrophilic properties 64, and electrostatic po-
tentials 38. These labels allow additional discriminating information, derived from
protein structures or sequences, to create more selective or more general compar-
isons.
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The design of point-based motifs is fundamentally related to the selection of
atoms chosen to represent the active site. Choosing certain atoms rather than others
may cause the motif to have less geometric and chemical similarity to functionally
related active sites. Alternatively, other atom choices may cause the motif to have
greater geometric and chemical similarity to functionally unrelated proteins. To
address the former problem, MULTIBIND 63,64 can be applied to identify conserved
binding patterns among functionally related proteins, so that motifs retain similarity
to functionally related active sites. In response to the latter problem, we developed
Geometric Sieving 17, which refines motifs to have less similarity to functionally
unrelated proteins.
Cavity-based Motifs Active sites and functional regions can also be represented
using the shape of the active cleft or cavity. These volumetric motifs have been
represented with spheres 40,47,66,72,16, alpha-shapes 27,26,11,13, and grid-based tech-
niques 42,47. The design of volumetric motifs requires an understanding of which
regions the motif should occupy and what amino acids should border the motif. Two
examples of volumetric motif refinement are SURFNET-Consurf 32, which modifies
the boundaries of computationally identified active clefts to avoid regions distant
from highly conserved amino acids, and CS 16, which is summarized later in this
work.

2.2. Geometric Comparison Algorithms

After selecting a formal representation of active sites, it is necessary to develop an
algorithm for motif comparison. Many algorithms have been designed to identify
matches, but all methods are optimized for distinct active site representations and
thus performance and accuracy is difficult to compare.
Point-based Comparison Algorithms The comparison of point-based mo-
tifs is dependent on finding point-to-point correlations between points in the tar-
get structure (target points) and motif points. One excellent example of a point-
based comparison algorithm is Geometric Hashing, 41,74, which uses rotationally and
translationally invariant representations of points in space to identify substructural
similarity. In addition to being used to search for point-based motifs 60,68,5,69,63,
Geometric Hashing has also been used to simultaneously align multiple 46,45, even
hinge-bent 62, protein structures. Other point-based comparison algorithms test pos-
sible point-to-point correlations in a depth-first-search manner, such as the database
search algorithm used in PINTS 61, JESS 7, and Match Augmentation 18 (MA).
Volume-based Comparison Algorithms pvSOAR 11,13 compares volumes in
protein structure using cavity-based motifs derived from alpha-shapes and protein
sequences. Earlier work on volumetric representations features analysis of only a sin-
gle protein without comparison. Using varying representations of protein surfaces,
these studies, using grid-based algorithms SURFNET 42 and SURFNET-ConSURF
32, and alpha-shapes technique CASTp 48, observed that ligand binding sites are
often the largest “pocket” on the protein surface.
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2.3. Statistical Models of Geometric Similarity

Finding a match indicates only that substructural geometric and chemical similar-
ity exists between the motif and a substructure of the target, not that the motif
and the target have functionally similar active sites. This observation adds the third
subproblem to motif matching: eliminating matches that are inconsistent with func-
tional similarity. In order to use matches to imply functional similarity, it is essential
to understand the degree of similarity consist ant with matches to between motifs
and functionally related targets.

A simple LRMSD a threshold is insufficient to indicate functional similarity
between any motif and a matching target. Some motifs match functionally related
proteins at lower values of LRMSD than other motif-target pairs, and LRMSD itself
is affected by the number of matching points 18. Fortunately, it has been observed
that matches to functionally related proteins tend to have geometric and chemical
similarity which is statistically significant 7,11,18,67.

A match indicates statistically significant geometric similarity if the motif has
unusually high geometric and chemical similarity to a subset of the target, in com-
parison to a baseline degree of similarity. Statistical significance is measured, for
a given match m, by first determining or estimating the geometric and chemical
similarity of the motif relative to a reference set of protein structures. Next, the
probability p, called the p-value, of observing another match with equal or greater
geometric and chemical similarity is measured. If p is sufficiently low, it is said that
m indicates an instance of statistically significant geometric and chemical similarity.

The PINTS 67 database begins with a reference set based on a nonredundant
subset of SCOP 54. The low-RMSD tail of the frequency distribution of matches
follows the extreme value distribution, with parameters that can be estimated from
motif data, such as the number and type of amino acids. Careful calibration of
these parameters to existing matches allows PINTS to generate the extreme value
distribution for a wide range of motifs a priori. Using the extreme value distribution
with a given motif and match LRMSD, PINTS can explicitly evaluate p.

JESS 7 uses a reference set based on set of nonredundant multi-domain repre-
sentatives from the CATH database 58. Distributions of matches between a motif
and this reference set are modeled using a parametric model of mixtures of normal
distributions. JESS applies this approach to comparatively evaluate the significance
of matches between a library of motifs and a given target structure. The most sig-
nificant match in the library provides evidence of functional similarity between the
given target and the matching motif.

pvSOAR 11,12, assesses the statistical significance of volume matches between
two surface pockets. Given an input match, pvSOAR gathers approximately 38
million other pairs of pockets at random. Ordering these pairs based on geometric

aWe use LRMSD, the root mean square distance (RMSD) between matching points in 3D when
aligned with smallest RMSD 36, to measure geometric similarity.
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similarity, pvSOAR finds the number of pairs with greater geometric similarity.
The fraction of pairs with greater similarity, relative to the total number of pairs,
provides the measure of statistical significance.

3. Cavity-Aware Motifs

It is hypothesized that ligand binding proteins often contain active clefts or cavities
which create chemical microenvironments essential for biological function. In several
instances, large surface concavities have been associated with protein function43,48.
Inspired by seminal work in the modeling and search for protein cavities 43,26,11, we
developed cavity-aware motifs, presented in earlier work 16, which combine our own
point-based motifs, developed earlier 18,17, with C–spheres that represent volumes
essential for protein function.

Cavity-aware motifs, as shown in Figure 1, contain motif points taken from
atom coordinates labeled with evolutionary data18,39. A motif S contains a set of
|S| motif points {s1, . . . , s|S|} in three dimensions, whose coordinates are taken from
backbone and side-chain atoms. Each motif point si in the motif has an associated
rank, a measure of the functional significance of the motif point that we use to
prioritize the search for matches. Each si also has a set of alternate amino acid labels
l(si) ⊂ {GLY, ALA, ...}, that allow our motifs to represent homologous active sites
with residues corresponding to evolutionary divergences. In this paper, we obtain
labels and ranks using the Evolutionary Trace49,50.

Cavity-aware motifs also contain a set of C–spheres C = {c1, c2, . . . , ck} with
radii r(c1), r(c2), . . . , r(ck), which are rigidly associated with the motif points.
∀ci, 1 < i < k, a maximum radius, rmax(ci), is defined to be the largest radius
such that ci contains no atoms from the protein structure used to create the mo-
tif. C–spheres are a loose approximation of empty volumes essential for protein
function, such as cavities for ligand or cofactor binding. C–spheres can have arbi-
trary radii, and can be centered at arbitrary positions. While this work targets the
functional prediction of active sites that bind small ligands, the generality of this
representation could also be used to represent protein-protein interfaces and other
interaction zones.

In Section 4, we describe how we use cavity-aware motifs in a pipeline for motif
matching. Our pipeline uses C–spheres that model molecular volumes which are
essential for protein function: If a matching target site truly forms an active site
with similar function, a similar cleft represented by C = {c1, c2, . . . , ck} should
exist in the target. Matches lacking a similar cleft violate this constraint and can
be eliminated.

3.1. Cavity-Aware Motif Design

Using C–spheres to eliminate matches, in the manner above, makes the position
and radius of each ci ∈ C critically related to the set of matches identified. In order
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(a)

(b) (c)

Fig. 1. A diagram of a cavity-aware motif representing the heme-dependent enzyme nitric oxide
synthase (pdb id: 1dww), using a ligand-based C–sphere placement strategy. Beginning with func-
tionally relevant amino acids and bound ligand coordinates (a), motif points are positioned at
alpha carbon coordinates (black dots, (b)), and C–spheres are positioned at ligand and cofactor
atom coordinates (transparent spheres, (c)).

to maximize TPs and FPs, the practical design of cavity-aware motifs, realized in
the placement and radius of C–spheres, is paramount.

Unfortunately, since C–spheres can occupy any position and any radius, an opti-
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mal cavity-aware motif cannot be identified through exhaustive testing. The design
of effective cavity-aware motifs is thus a difficult open problem affected by geo-
metric and biological phenomena. While this paper does not offer a solution to
this problem, we extend our earlier work by studying two logical strategies for C–
sphere placement: Centering C–spheres at atom coordinates of bound ligands, and
positioning C–spheres to maximally occupy cleft volume.

3.1.1. Ligand Based C–spheres

The first strategy manually places C–spheres in the atom positions of bound
ligands. This strategy uses C–spheres to represent volumes that must remain empty
for ligand or co-factor binding. While all of the volume within the ligand- or cofactor-
binding cleft is not necessarily occupied, this strategy is intended to model volumes
essential for protein function.

In general, we did not use every ligand atom, but rather selected atoms so that
C–spheres would generally occupy the volume occupied by the ligand or cofactor.
No other constraints were used, except that we generally chose 10 or less atom
coordinates.

3.1.2. Volume Based C–spheres

The second strategy places C–spheres to maximally occupy volumes believed
to be related to protein function. We accomplish this in two phases. In the first
phase, given the atom coordinates of the protein originating the motif, we use the
Qhull library 6 to compute 3D Voronoi cells surrounding each atom in the protein
structure.

A Voronoi cell is the distinct region in space, surrounding an atom point a,
where any point in the region is closer to a than some other atom point b. In three
dimensions, Voronoi cells are always bounded or unbounded polyhedra bordered
by Voronoi planes which are equidistant to two points. Voronoi planes intersect in
Voronoi lines which form the equidistant boundary between at least 3 atom points.
Voronoi lines intersect in Voronoi points which are equidistant to at least four atom
points. A C–sphere centered at a Voronoi point, at maximum radius, is the largest
sphere in contact with the equidistant atom points.

In the second phase, we eliminate all C–spheres which have a maximum radius
below 15 Å. Then, for each member of a set of indicator points, we select the C–
sphere with largest radius containing the indicator point. All unselected C–spheres
are then eliminated.

This filtering phase eliminates C–spheres of large maximum radius, which, in
our observations, are mostly outside of the protein. This paper uses ligand atom
coordinates as indicator points for functional volumes, but any points, positioned
by experts or algorithms for identifying functional volumes, are sufficient for use
in the second phase. Thus, the second strategy is not dependant on ligated protein
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structures: given a known active cleft or cavity, the placement of indicators in the
region is sufficient.

3.2. Discussion

There are infinite ways to place C–spheres, but determining which placement strat-
egy is most successful is a difficult open problem. This paper studies two placement
strategies as an initial investigation of this difficult problem. Our strategies for C–
sphere placement are not techniques for identifying functional volumes, and assume
that the functional volume is already known.

The complementary problem of identifying functional volumes has been studied
carefully in earlier work 11,14,13,42,43,48,72. Methods for identifying functional vol-
umes have been applied in the past for the design of cavity-based motifs 12, and
have been validated to identify functional volumes 11,42,43. In the future, that these
techniques could be applicable for the design of cavity-aware motifs.

In Section 4, we will demonstrate CS, which refines existing C–sphere place-
ments. CS is not a solution to the C–sphere placement problem, because it is im-
possible to test all possible placements. Instead, CS is a refinement tool designed
to compliment any C–sphere placement strategy by filtering out C–spheres who do
not substantially contribute to the elimination of FP matches.

4. A Pipeline for Cavity-Aware Matching

This section summarizes the operation of Cavity Aware Match Augmentation
(CAMA) and a statistical model used for identifying statistically significant
matches, adding details not found in earlier work. We then explain a new tech-
nique for exploiting C–spheres, also not found in earlier work, which substantially
accelerates CAMA with small loss of accuracy.

4.1. Matching Criteria

CAMA compares a cavity-aware motif S to a target T , a protein structure en-
coded as |T | target points referred to as T = {t1, . . . , t|T |}, where each ti is taken
from atom coordinates, and labeled l(ti) for the amino acid to which ti belongs. A
match m is a bijection correlating all motif points in S to a subset of T of the form
m = {(sa1 , tb1), (sa2 , tb2) . . . , (sa|S| , tb|S|)}. Referring to Euclidean distance between
points a and b as ||a− b||, an acceptable match requires:

Criterion 1 ∀i, sai and tbi are label compatible: l(tbi) ∈ l(sai).
Criterion 2 ∀i, ||A(sai)− tbi || < ǫ, our threshold for geometric similarity.
Criterion 3 ∀ti∀cj ||ti −A(cj)|| > r(cj)

where motif S is in LRMSD alignment with a subset of target T , via rigid trans-
formation A. Criterion 1 assures that we have motif and target amino acids that
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are identical or vary with respect to important evolutionary divergences. Criterion
2 assures that when in LRMSD alignment, all motif points are within ǫ of corre-
lated target points. Finally Criterion 3 assures that no target point falls within a
C–sphere, when the motif is in LRMSD alignment with the matching target points.
This is diagrammed in Figure 2. CAMA outputs the match with smallest LRMSD
among all matches that fulfill these criteria. Partial matches correlating subsets of
S to T are rejected.

(a) (b)
Fig. 2. Two cases of cavity-aware matching. Every time a match is generated by CAMA, an
alignment of the motif points is generated to the matching points of the target. This specifies the
precise positions of the C–spheres in the motif relative to the target. CAMA accepts matches to
targets where no C–spheres contain any target atoms (a), and rejects matches where any target
atom is within one or more C–spheres (b).

It is important to note that CAMA seeks the match with lowest LRMSD, but
eliminates matches where target points occupy a C–sphere. This causes CAMA to
output matches with equal or higher LRMSD, relative to an identical motif lacking
C–spheres.

4.2. Matching Algorithm

CAMA is a two stage hierarchical matching algorithm, based on MA, which identi-
fies correlations for motif points in order of rank. The first stage, Seed Matching is a
hashing technique which exploits pairwise distances between motif points to rapidly
identify correlations between the three highest ranking motif points and triplets of
target points. These triplets are passed to the second stage, Augmentation, which
expands seed matches to full correlations of all motif points. As an improvement
over our method from earlier work 16, as correlations are being expanded, we insist
that C–spheres remain empty. The final output is the correlation with the smallest
LRMSD, satisfying all matching criteria.
Seed Matching Seed Matching identifies all sets of 3 target points T ′ =
{tA, tB, tC} which fulfill our matching criteria with the highest ranked 3 motif
points, S′ = {s1, s2, s3}. In this stage, we represent the target as a geometric graph
with colored edges. There are exactly three unordered pairs of points in S′, and
we name them red, blue and green. In the target, if any pair of target points ti,tj
fulfills our first two criteria with either red, blue or green, we draw a correspond-
ing red blue or green edge between ti,tj in the target. Once we have processed all
pairs of target points, we find all three-colored triangles in T . These are the Seed



December 7, 2006 21:33 WSPC/INSTRUCTION FILE jbcb2007

Cavity Scaling: Automated Refinement of Cavity-Aware Motifs 11

Matches, a set of three-point correlations to S′ that we sort by LRMSD and pass
to Augmentation.
Augmentation Augmentation is an application of depth first search that begins
with the list of seed matches. Assuming that there are more than four motif points,
we must find correspondences for the unmatched motif points within the target.
Interpret the list of seed matches as a stack of partially complete matches. Pop
off the first match, and considering the LRMSD alignment of this match, plot the
position P of the next unmatched motif point si relative to the aligned orientation
of the motif. In the spherical region V around P , identify all target points ti,
compatible with si, inside V . Now compute the LRMSD alignment of all correlated
points, include the new correlation (si, ti). If the new alignment satisfies our first
two criteria, we plot the positions of the C–spheres in rigid alignment with the motif.
Then, for each C–sphere, we check if a target point exists within the C–sphere. If
any target point is found within any C–sphere, the match is discarded.

If there are no more unmatched motif points, we put this match into a heap
which maintains the match with smallest LRMSD. If there are more unmatched
motif points, we put this partial match back onto the stack. We continue to test
correlations in this manner, until V contains no more target points that satisfy our
criteria. Then, return to the stack, and begin again by popping off the first match
on the stack, repeating this process until the stack is empty.
C–spheres Prune the Search Space In addition to eliminating matches that
do not satisfy our matching constraints, C–Spheres can also eliminate some poten-
tial matches being considered by CAMA, increasing algorithmic efficiency. This is
because the Augmentation stage is a depth first search which can be represented
as a branching search tree. Correlations of motif points and target points represent
nodes in this tree, where seed matches represent root nodes. An edge between a
parent node and child node represents an instance where the highest ranking un-
matched motif point can be aligned with a target point, generating an expanded
partial match with an additional correlated pair. Since multiple target points may
be available to expand a partial match, the tree can branch from a parent node to
several child nodes. This is depicted in the left of Figure 3, while the next unmatched
motif points s3, s4, and s5, are shown on the right.

When testing an alignment, if the C–spheres contain a target point, then the
children of this node, having correlations with only one additional motif-target pair,
will have similar alignments and are likely to have C–spheres which also contain the
same target point. Heuristically, we can eliminate the parent node, rather than
continue to test additional partial matches. Pruning the tree in this manner re-
duces the number of comparisons necessary. Empirical testing indicates that this
optimization causes CAMA to be approximately 3 times faster than simply testing
complete matches (See “Cavity Filtering” in Figure 3).
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Fig. 3. Tree of partial matches considered in CAMA. The tree branches on alternative correlations
between the highest ranked unmatched motif point and an unmatched target point. For example,
the three branches from the seed match illustrate that there are three target points that the highest
unranked motif point can be correlated with. If optimal alignment of the motif with the correlated
target points causes a target point to fall within one or more C–spheres, we can immediately
eliminate the match without considering further correlations.

4.3. Statistical Model

In earlier work 18, we demonstrated a statistical model for assessing the statistical
significance of matches between a point-based motif and target. For a given match
m with LRMSD r between motif S and target T , our earlier model assessed the
probability p of observing a match with similar LRMSD r′, when comparing the
same motif and any protein with known structure. First, a match is computed
between S and every member of a representative set of proteins, in order to establish
a baseline degree of geometric similarity between S and the space of known protein
structures. This set of matches is depicted as a frequency distribution, or motif
profile, in Figure 4a. Figure 4b indicates how p, or the p-value, our measure of
statistical significance, is computed. Given a standard of statistical significance α,
we say that m is statistically significant if p < α.

In the context of controlled experiments, where we know when matches identify
functional homologs and when they do not, there are four possibilities: True posi-
tives (TP), False positives (FP), True negatives (TN ), and False negatives (FN ). A
match is a TP if it identifies a functional homolog, and if the match is statistically
significant. A match is a FP, if the match identifies a functionally unrelated protein,
and is statistically significant. A match is a TN if it is not statistically significant
and matches a functionally unrelated protein. A match is a FN if it identifies a
functional homolog, but is not statistically significant.

The purpose of C–spheres is to convert FP matches under point-based motifs
into TNs with cavity-aware motifs, by making them statistically insignificant. Given
a match m between point-based motif Sp and a functionally unrelated target T ,
suppose that m is statistically significant, even though T is functionally unrelated
to S, making m a FP match. We first compute a motif profile of Sp called PSp .
A cavity-aware version of Sp, called S, contains C–spheres which cause LRMSD to
be higher for matches to proteins lacking similar active site clefts, such as T . As
we can see in Figure 4, the increase in LRMSDs causes the p-value of the match
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(a) (b)

Fig. 4. A frequency distribution of matches between a motif and all functionally unrelated proteins
in the PDB (a). Comparing the area under the curve to the left of some LRMSD r, relative to the
entire area under the curve (b).

to be higher, possibly over α, in which case the match between S and T becomes
statistically insignificant, changing from FP to TN.

Due to variations in active site structure, some functional homologs have atoms
which occupy C–spheres, when the match and the motif are optimally superimposed.
In our earlier experimentation, which we review in Section 6, we measure both the
number of FP matches eliminated, as well as the number of TP matches lost by
adding C–spheres. Given effective motifs, the number of TP matches lost is small
in comparison to the number of FP matches eliminated.

5. Cavity Scaling

The design of effective motifs is a critical component in the search for similar active
sites. As demonstrated earlier 17, the selection of motif points is essential for effective
motifs. The position and size of C–spheres in cavity-aware motifs is no exception. In
our experiments, we have observed that the selection of C–sphere positions and radii
can drastically affect the number of TP and FP matches eliminated, significantly
influencing the effectiveness of some cavity-aware motifs.

In order to assist in the design of effective motifs, we have designed CS, a motif
refinement algorithm which takes a cavity-aware motif, identifies high-impact C–
spheres, and returns a refined cavity-aware motif containing only high-impact C–
spheres as output. This section describes how CS identifies high-impact C–spheres.

5.1. Markers of High-impact C–spheres

We have observed that motif profiles derived from cavity-aware motifs that include
certain C–spheres have a tendency of shifting towards higher LRMSDs as C–sphere
radius increases. Figure 5a demonstrates motif profiles computed with a motif that
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has exactly one C–sphere. Each motif profile corresponds to identical motif points
with a C–sphere at an identical position, where the only difference is that radius
changes evenly between zero and the C–sphere’s maximum radius. As size increases,
the motif profile changes very little. In comparison, in Figure 5b, for the same motif
points and a C–sphere in a different position, as radius changes uniformly between
zero and the C–sphere’s maximum radius, many more matches shift towards higher
LRMSDs, as mentioned in Section 4.2.

(a) (b)

Fig. 5. Motif profiles for a low-impact C–sphere (a), and a high-impact C–sphere (b), as radius
increases. For clarity, we provide 20 motif profiles for each C–sphere, showing how much the motif
profile changes for a high-impact C–sphere. CS normally inspects only the motif profile with no
C–spheres (the profile at the furthest left in both (a) and (b), and the motif profile corresponding
to the C–sphere at maximum radius, at the furthest right in both (a) and (b).

As matches shift towards higher LRMSDs, according to our statistical model in
4.3, statistically significant matches become statistically insignificant. This causes
FP matches, which make up the dominating majority of matches computed in a
motif profile, as mentioned in Section 4.3, to become TN matches. Therefore, C–
spheres which cause more substantial shifts towards higher LRMSDs, as radius
increases, cause more FP matches to become TN matches, relative to C–spheres
which cause less substantial shifts in LRMSD. C–spheres which cause substantial
shifts towards higher LRMSDs, therefore, are high-impact C–spheres. This is the
primary principle which allows CS to distinguish high-impact C–spheres from low-
impact C–spheres.

5.2. The CS Algorithm

As diagrammed in Figure 6, CS independently examines motif profiles for each
C–sphere of the input, identifying which C–spheres are high-impact. We measure
changes in motif profiles by comparing the median LRMSD, in order to distinguish
shifts towards higher LRMSDs. While other statistics could be used, our experi-
mentation suggests that motif profile medians are sufficient to identify high-impact
C–spheres. Given an input motif S and one of its C–spheres, ci, CS generates a
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Fig. 6. How CS detects low-impact C–spheres (a) and high-impact C–spheres (b). Motif profiles
corresponding to high-impact C–spheres vary significantly in their medians as C–sphere radius
increases. Medians for low-impact C–spheres vary little.

variation of S which has no C–spheres, called Sp. Using Sp, CS applies CAMA to
compute a motif profile against the PDB, which we call PSp . We then generate an-
other variation of S, called Sci , which has only C–sphere ci at its maximum radius,
and compute a motif profile of Sci , called Pci , against the PDB. Comparison of
the medians of PSp and Pci , med(PSp), and med(Pci), respectively, determines if ci

is a high-impact C–sphere. In order to determine if med(PSp), and med(Pci) vary
substantially enough to identify ci as a high-impact C–sphere, we used a simple
empirical threshold of .5 LRMSD. An alternative threshold can be computed using
confidence thresholds from a method of Efron and Tibshirani 29,28,30.

5.3. Inherent Parallelism of CS

The computation of individual matches, for the assembly of many motif profiles, is
a computationally expensive but fundamentally parallel task. For this reason, CS
could be easily distributed across a cluster of computers. In our own implementation,
we have left the computation of individual motif profiles to separate processes, but
we have not fully parallelized CS. Operation of many instances of CAMA in parallel
leads to an important bandwidth issue which would have to be addressed in a
parallel implementation of CS as well: If all CAMA processes are computing matches
to a set of targets kept on shared storage, file servers can be easily overwhelmed. We
circumvented this problem by storing duplicate targets on local storage, to prevent
this bottleneck. The inherent parallelism of CS could be exploited to produce a very
powerful too, and in our implementation, the full potential of CS is not yet realized.

CAMA was implemented in C/C++. Code was prototyped on a 16-node Athlon
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1900MP cluster and the Rice TeraCluster, a cluster of 272 800Mhz Intel Itanium2
processors. Final production runs ran on Ada, a 28 chassis Cray XD1 with 672
2.2Ghz AMD Opteron cores.

In the future, this could be applied at a larger scale to explore more general
representations of cavity-aware motifs, and provide feedback about C–sphere place-
ments in motif design. CS only tests existing C-spheres to determine which are
high-impact, and does not address the problem of finding high-impact C–sphere
positions from the general set of all possible C–sphere positions. This is a subject
of continuing investigation.

6. Experimental Results

In earlier work 16, we demonstrated that cavity-aware motifs, with Ligand Based
C–spheres, could eliminate many FPs while preserving most TPs. We also demon-
strated that CS could identify high-impact C–spheres, which contribute to the elim-
ination of many FPs while still preserving many FPs, and that motifs refined with
CS eliminated almost as many FPs as pre-refinement motifs, while preserving more
TPs.

The experiments in this section add a new dimension to our earlier observations
by providing a comparison between Ligand Based and Volume Based C–sphere
placements. While the optimal placement of C–spheres remains a difficult open
problem, these results contribute a comparison of two logical placement strategies.
This section also expands our demonstration of CS, providing further evidence that
CS is a capable refinement technique for cavity-aware motifs.

6.1. Input

Point Motifs The motifs used in this work begin as 18 point-based motifs de-
signed to represent a range of unrelated active sites in unmutated protein structures
with biologically occurring bound ligands. These are documented in Figure 7. Ear-
lier work has produced examples of motifs designed with evolutionarily significant
amino acids18,39 and amino acids with documented function44, so these principles
were followed in the design of our point-based motifs. Amino acids for use in 10 of
the motifs were selected by evolutionary significance, and are taken directly from
earlier work39, and the remaining 8 motifs were identified by functionally active
amino acids documented in the literature (marked ⋆ in Figure 7). Manual selection
of evolutionarily significant amino acids and literature search limited the overall
number of motifs we considered to 18. The biochemical mechanisms inspiring these
motifs are carefully described in Appendix A.

The selection of motif points strongly influences motif sensitivity and specificity.
In this work, we seek to demonstrate that adding C–spheres can improve point-
based motifs. For this reason, we take the selection of motif points and the number
of TP and FP matches found, for each point-based motif, as given. These values
are provided in Figure 8.
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Motifs Used in Experimentation
PDB id Amino Acids Used Ligands Used #C Range
16pk⋆ R39,P45,G376,G399,K202 C15H22N5O12F4P3 10 4-6
1ady⋆ E81,T83,R112,E130,Y264,R311 C16H21N8O8P 10 4-6
1ani⋆ D51,D101,S102,R166,H331,H412 Zn2+, O4P3− 10 2-6

1ayl L249,S250,G251,G253,K254,T255 ATP, C2O
2−
4 10 4-8

1b7y⋆ W149,H178,S180,E206,Q218,F258,F260 C19H25N6O7P , Mg2+ 10 4-8
1czf D180,D201,D202,A205,G228,S229,R256,K258,Y291 C8H15NO6, Zn2+ 10 2-8

1did⋆ F25,H53,D56,F93,W136,K182, Mn2+, C6H13NO4 10 2-6
1dww⋆ C194, V346, F363, W366, Y367, E371, D376, Heme, NHA 10 4-10
1ggm⋆ E188,R311,E239,E341,E359,S361 C12H17N6O8P 10 4-10
1ja7 S36,C76,W108,Q57,I58,W63, C8H15NO6 10 4-8
1jg1 E97,G99,G101,D160,L179,G183, C14H20N6O5S 10 6-8
1kp3 R106,F139,E202,L286,R288,Y331 ATP 10 6-8
1kpg D17,G72,G74,W75,G76,F200 C5H11NO2Se 10 6-6
1lbf E51,S56,P57,F89,G91,F112,E159,N180,S211,G233 C12H18NO9P 10 4-6
1ucn K12,P13,G92,R105,N115,H118 O4P3− , Ca2+, ADP 8 4-8
2ahj P53,L120,Y127,V190,D193,I196 F e3+, NO, C4H8O2, Zn2+ 10 4-10
7mht P80,C81,S85,E119,R163,R165 C14H20N6O5S 10 4-8
8tln⋆ M120,E143,L144,Y157,H231 C2H6OS, Ca2+, Zn2+ 9 2-8

Fig. 7. Motifs used, with example diagrams below. Starred (⋆) motifs use functionally documented
amino acids. The column marked “#C” denotes the number of C–spheres in each motif. “R”
denotes the range of C–sphere maximum diameters (in Å) for the motif. Functionally documented
are described in depth in Appendix A.

C–Spheres C–spheres used in our experimentation were generated using the
ligand-based and volume-based strategies described in Section 3. For both C–sphere
designs, the maximum radius of any C–sphere was the distance to the nearest atom
in the protein structure used to generate the motif. The two strategies for C–sphere
placement generated two sets of 18 cavity-aware motifs having with identical motif
points and different C–sphere placements.
Functionally Related and Unrelated Proteins In order to count TP and FN
matches, it is essential to fix a benchmark set of functional homologs. We use the
functional classification of the Enzyme Commission57 (EC), which identifies distinct
families of functional homologs for each motif used. Proteins with PDB structures in
these families form the set of functional homologs we search for. Structure fragments
and mutants were removed to ensure accuracy.

In order to measure FP and TN matches, it is essential to fix the set of func-
tionally unrelated protein structures. The set we use is, initially, a snapshot of the
PDB from Sept 1, 2005. For each motif, the set of functional homologs is removed,
producing a homolog-free variation of the PDB specific for each motif. Further-
more, the PDB was processed to reduce sequential and structure redundancy. In
structures with multiple chains describing the same protein, only one copy of each
redundant chain was used, and all mutants and protein fragments were removed.
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This produced 13599 protein structures. The set of structures used was not strictly
filtered for sequential nonredundancy because eliminating one member of any pair
with too much sequence identity involves making arbitrary choices. Eliminating
fragments and mutated structures, which seem to be the largest source of sequen-
tial redundancy, was the most reproducible and well defined policy.

6.2. C-Spheres Eliminate FPs, Preserve TPs

We compared the number of TP and FP matches found by two different sets of
cavity-aware motifs. Both sets had the same motif points, but one set has C–spheres
placed using the ligand-based strategy, and the other set had C–spheres placed with
the volume-based strategy, as mentioned in Section 3.

We refer to the motifs in each set as {S1, S2, ...S18}. For each motif Si, we gen-
erated 20 C–sphere size variations called {Si0 , Si1 , . . . , Si19}. If Si has C–spheres
{c1, c2, . . . , ck}, with individual maximum radii rmax(c1), rmax(c2), . . . , rmax(ck),
then the variation Sij ∈ {Si0 , Si1 , . . . , Si19} has C–spheres of radii
( j
19rmax(c1)), ( j

19rmax(c2)), . . . , ( j
19rmax(ck)). For example, Si19 has C–spheres of

radii rmax(c1), rmax(c2), . . . , rmax(ci), and Si0 would have only C–spheres of radii
0, making Si0 equivalent to a point-based motif.

Since matches to Si1 , Si2 , . . . , Si19 have p-values greater than or equal to Si0 ,
because they have C–spheres with non-zero radii, the number of FP and TP matches
identified among Si1 , Si2 , . . . , Si19 is less than or equal to that of Si0 . The number
of homologs matched by each point-based motif, Si0 , is listed in the left of Figure
8. The number of TP and FP matches eliminated is calculated relative to the
number matched by the point-based motif, and thus all Si0 have 100% of TP and
FP matches, as in the leftmost point of the graph in Figure 8. Second from the left,
we plot the percentage of TP and FP matches retained among Si1 , relative to Si0 ,
for all i, and then average these percentages over all Si1 . Continuing from left to
right, we compute the average percentage of TP and FP matches, over all Si2 , then
all Si3 , etc., again relative to Si0 .
Observations In Figure 8, as C–sphere radius increases, for both C–sphere place-
ment strategies, the number of FP matches are reduced dramatically. The cavity-
aware motifs designed using the ligand-based strategy eliminated very few matches
until C–sphere radius increased to approximately 80% of maximum radius, whereas
motifs designed using the volume-based strategy eliminated TPs more rapidly.

One motif, Phenylalanyl-TRNA Synthetase (1b7y), exhibited 0 sensitivity for
both C–sphere placement strategies. The point-based version of 1b7y matched no
functional homologs, so no cavity-aware motifs based on 1b7y matched any func-
tional homologs either. For this reason, the percentage of TP matches eliminated
by cavity-aware variations of 1b7y is undefined, and therefore no TP and FP data
(for consistency) is included in the averages plotted in Figure 8. Cavity-aware vari-
ations on 1b7y still rejected more FPs as C–sphere radius increased. Point-based
motifs from 1ja7 and 2ahj exhibited low sensitivity, identifying less than 20% of
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Point-based Motif Perf. Average Percentage of TP and FP Matches
Motif #H TP FP
16pk 20 14 216
1ady 22 20 200
1ani 75 75 205
1ayl 8 8 170
1b7y 9 0 170
1czf 14 14 117
1did 149 149 80
1dww 192 181 76
1ggm 7 5 195
1ja7 1008 448 57
1jg1 13 13 196
1kp3 35 35 162
1kpg 13 11 151
1lbf 11 11 50
1ucn 153 133 162
2ahj 23 6 186
7mht 10 9 160
8tln 59 56 187

Fig. 8. A comparison of the number of TP and FP matches observed when using cavity-aware
motifs, relative to point-based motifs. Since we use C–spheres to eliminate potential matches,
our cavity-aware matches only identify the same or less matches than an identical point-based
motif. Thus, the 100% line at the top of the graph represents the number of TP and FP matches
identified by a point-based motif, normalized accross all 18 motifs. Cavity-aware motifs with C–
spheres of radius zero are identical to point-based motifs, and thus all lines in this line graph
begin at the upper left corner. As C–sphere radius increases (horizontal axis – see Section 6.2 for a
more detailed explanation), lines, corresponding to the number of TP and FP matches observed,
monotonically fall from 100%, as matches are eliminated. This graph shows that while fewer TP
matches are observed when using cavity-aware motifs, in comparison to an identical point-based

motif, FP matches are eliminated in far greater proportions. Using cavity-aware motifs eliminates
many FP matches at a small sacrifice of TP matches, in cavity-aware motifs with ligand-based
(black) and also with volume-based (grey) C–sphere placement strategies. Cavity-aware motifs
with volume-based C–sphere placement strategies tended to eliminate more matches overall in
comparison to ligand-based motif designs.

the total number of true positives. Having a flexible active site, cavity-aware vari-
ations of 16pk were significantly less sensitive than its point-based counterparts.
Overall, cavity-aware motifs eliminate many FP matches, while preserving most
TP matches.

C–spheres designed using the ligand-based strategy seemed to eliminate fewer
matches (both TP and FP) than C–spheres designed using the volume-based strat-
egy. In combination with the earlier observation that C–spheres that preserved the
most TP matches while eliminating the most FP matches were not the largest C–
spheres, but instead around 80% of maximum radius, these observations emphasize
the point that positioning and sizing C–spheres to maximize TP matches while
minimizing FP matches is a difficult open problem.

6.3. Analysis of Individual C–spheres

Some C–spheres have a greater impact on FP match elimination than other C–
spheres. We performed CS on each C–sphere in each of our ligand-based and volume-
based motifs, identifying which C–spheres were high–impact. 1ayl, with ligand-based
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C–sphere placements, used in Figure 9, is an excellent example, having several
high- and low-impact C–spheres. All motifs had related behavior: Some motifs had
many high-impact C–spheres, and others (1czf, 16pk, 8tln) had none, but significant
increases in motif profile medians remained correlated to the elimination of FP
matches in all examples.

Observations Motif profiles of some single-C-sphere motifs, over increasing radii,
shift significantly in the median towards higher LRMSDs and eliminate more FP
matches as radii increase. Alternatively, motif profile medians of other single-C-
sphere motifs that do not eliminate many FP matches also do not shift towards
higher LRMSDs as radii increase. This is apparent in Figure 9, which details this
effect for single C-sphere motifs based on 1ayl. In the inset graphs, copies of the 1ayl
motif containing only C-spheres 4 or 6 undergo significant increases in motif profile
medians, as radius increases. In the main graph, single-C-sphere motifs, containing
only C-sphere 4 or 6, rapidly eliminate FP matches. 1ayl motif copies with only C-
spheres 9 or 10 experience insignificant changes in motif profile medians, eliminating
FP matches more slowly as radius increases. C-sphere positions relative to active
site geometry are provided in the inset graphic in Figure 9. No correlation between
high-impact C–spheres and location within the cavity was apparent, emphasizing
again the difficulty of cavity-aware motif design.

Motifs with only one C–sphere eliminate very few TP matches, but careful in-
spection indicates that individual cavities cause different TP matches to be rejected.
This effect accumulates into the slow loss of TP matches observed in Section 6.2.

6.4. Automatically Refined Cavity-aware Motifs

In an experimental function prediction setting, rules and automated techniques for
defining sensitive and specific motifs are important for high throughput function
predictions. Having shown in the previous section that CS can identify high-impact
C-spheres, we use CS to generate ligand-based and volume-based motifs containing
only high-impact C–spheres, and demonstrate that they are reasonably effective.
Experiment We applied CS to every C–sphere in both our ligand-based and
volume-based motifs. Among the ligand-based versions of each motif, CS identified
a set of high-impact C–spheres for all motifs except 1czf, 16pk and 8tln. Among the
volume-based versions, CS identified high-impact C–spheres for all motifs except
1ayl, 1czf, 1did, 1lbf, and 2ahj.

We repeated the experiment described in Section 6.2 for the remaining motifs,
using only high-impact C–spheres. Motifs without high-impact C–spheres were not
included. We refer to these as automatically refined motifs. We compared our results
to unrefined the motifs used in Section 6.2.
Observations Like the axes of Figure 6.2, Figure 10 plots percent of maximum
radius (horizontal axis) versus the average percent of remaining TP and FP matches
(vertical axis). Refined cavity-aware motifs reject a large majority of FP matches,



December 7, 2006 21:33 WSPC/INSTRUCTION FILE jbcb2007

Cavity Scaling: Automated Refinement of Cavity-Aware Motifs 21

Fig. 9. Effect of Individual C–spheres on Motif Specificity.

As C–sphere size uniformly increases, as described in Section 6.2 (horizontal
axis), some high-impact C–spheres, such as 4 and 6, eliminate more FP matches
(vertical axis) than others, such as 10 and 9. Line plots show the number of
remaining FP matches for a specific single-C-sphere motif, and for a motif con-
taining all C-spheres. C-sphere positions relative to cavity shape are illustrated
in the inset graphic. High-impact C–spheres, such as C–sphere 6, generate mo-
tif profiles whose medians shift towards higher LRMSDs as C–sphere radius
increases. Other C–spheres, which do not eliminate as many FP matches, such
as C–sphere 10, do not affect motif profiles as much. CS identifies C–spheres
which eliminate more FP matches.
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Impact of High-Impact C–Spheres in Cavity-Aware Motifs

(a) (b)

Fig. 10. TP/FP matches preserved when using automatically refined cavity-aware motifs. Axes
here are identical those of Figure 8. Cavity-aware motifs with ligand-based (a) and volume-based
(b) C–sphere placements, when refined with CS, tended to identify more TP matches, while still
eliminating many FP matches, in comparison to unrefined cavity-aware motifs. Motifs refined with
CS (gray) reject a large majority of FP matches, retaining slightly more than manually designed
(black) motifs. Automatically refined motifs also preserve slightly more TP matches than manually
designed motifs.

retaining a only few more than unrefined motifs. In addition, refined motifs tended
to identify additional TP matches.

These results, achieved automatically by applying CS to refine C–spheres based
on bound ligands, demonstrate that it is possible to automatically refine config-
urations of C–spheres to produce improved cavity-aware motifs with little expert
knowledge.

7. Conclusions

In earlier work 16, we introduced cavity-aware motifs, and demonstrated that cavity-
aware motifs can reduce many FP matches while retaining motifs TP matches.
We also demonstrated that CS was capable of refining existing cavity-aware motif
designs.

This paper expanded on our earlier work by offering an initial investigation into
the design of cavity-aware motifs. Studying ligand-based and volume-based design
strategies, we observed that ligand-based designs seemed to eliminate less matches
overall, even tho both techniques eliminated many FP matches while preserving TP
matches. Alternatively, volume-based motif design strategies can be used to design
cavity-aware motifs without ligated protein structures. One additional advantage
of cavity-based motifs is that C–spheres can be used to accelerate the matching
computation by pruning the search space.

We have also expanded our demonstration of the effectiveness of CS, an algo-
rithm which refines cavity-aware motifs by selecting high-impact C–spheres. CS is
particularly relevant to the problem of cavity-aware motif design because it op-
erates independently of expert knowledge. C–spheres centered on general spatial
locations, or selected by nonexpert users, could be filtered with CS for high-impact
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C–spheres. This approach provides one way to take advantage of existing techniques
for identifying functional volumes in protein structures, and also makes the problem
of cavity-aware motif design more accessible to nonexpert users. On ligand-based
and volume-based motifs, we observed that CS identifies additional true positives
while still eliminating many false positive matches.

CS does not entirely answer the problem of refining cavity-aware motifs, because
it does not provide quantitative reasons for selecting specific sphere sizes. In the
future, by developing a testing apparatus which generates and tests general C–
sphere positions, it may be possible to improve the CS process and further assist
human motif design.
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Appendix A. Functionally Documented Active Sites

This appendix describes the functionally documented active sites used in this experimenta-
tion. Each biochemical mechanism is described in conjunction with the amino acids used,
in order to justify their selection in our motifs, citing all papers used to identify these
amino acids.

16pk – Phosphoglycerate Kinase Phosphoglycerate kinase (PGK), a flexible gly-
colytic enzyme 10, is highly conserved across prokaryotic and eukaryotic species 71. Upon
binding both a diphosphate sugar (1,3-bis-phosphoglycerate) and ADP at two different
sites 71 separated by a 10 Åto 12 Åcavity, PGK undergoes a drastic hinge bending mo-
tion, bringing the two substrates and the N- and C-termini into brief contact for phosphoryl
transfer. The transition state is stabilized by the conserved residues Arg-39, Gly-376, and
Gly-399 10. The absolutely conserved Pro-45 creates a crucial turn that dictates the final
3-dimensional structure of the N-terminal binding site 25.

1ady – Histidyl-TRNA Synthetase 1ADY is a histidyl-aaRS (class II). Glu-130
and Tyr-264 ensure specificity for histidine by hydrogen bonding to histidine’s side-chain
nitrogens and excluding hydrophobic residues by making the cavity highly polar. Glu-81
and Thr-83 interact with the bound histidine’s α-ammonium group and are along with
Arg-311 and Arg-112 are conserved class II residues. 9 1

1ani – Alkaline Phosphatase Alkaline phosphatase is a ubiquitous, non-specific phos-
phomonoesterase 19 capable of removing an inorganic phosphate (Pi) from a phosphory-
lated alcohol or transphosphorylation of Pi to a hydroxyl group of an acceptor 73. Catalysis
occurs in a cavity with three bound metal ligands 37. Pi is coordinated in the cavity by
two zinc ions which play a direct role in catalysis 37 and by the two guanidinium nitrogens
of Arg-166. His-331 and His-412 are ligated to Zn1 while Asp-51 is ligated to Zn2 and Mg.
52,37,65,3 The Zn1 activated hydroxyl group of Ser-102 is responsible for a nucleophilic
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attack on Pi that serves as a transition state in dephosphorylation or transphosporylation
19,37,52.

1b7y – Phenylalanyl TRNA Synthetase A highly hydrophobic environment is cre-
ated in the active cavity of phenylalanyl-aaRS (1B7Y) by Phe-258 and Phe-260 which flank
the binding region, thereby creating a localized hydrophobic environment that sterically
and electrostatically complements phenylalanine while excluding hydrophilic amino acid
substrates 59. Gln-218 is crucial in stabilizing the amino acid to aminoacyl-adenylate tran-
sition state 15. The orientation of the bound phenylalanine substrate is stabilized by the
hydrogen bonding of Trp-149 and His-178 to the carboxylate oxygens of the C-terminus
59 and of Ser-180 to the α-ammonium group of the substrate 8.

1did – D-xylose Isomerase D-xylose isomerase catalyzes the conversion of a xylose
to a xylulose (ex. glucose to fructose). Asp-56 activates His-53, enabling it to act as a
monoprotic base and catalyzes the ring opening of the sugar. A coordinated magnesium
ion catalyzes isomerization of the sugar by ionization and is stabilized by Lys-182. Phe-25,
Phe-93, and Trp-136 together provide a hydrophobic environment in which a hydride shift
occurs 20,21.

1dww – Nitric Oxide Synthase The heme-dependent enzyme nitric oxide synthase, as
its name implies, catalyzes the synthesis of nitric oxide (NO) from an L-arginine substrate.
Synthesis of NO occurs by conversion of L-arginine to Nω-hydroxy-L-arginine (NHA),
NHA to L-citrulline, and finally L-citrulline to NO24. This multi-step reaction takes place
in a deep cavity and involves zinc, tetrahydrobiopterin, and hydride-donating (NADPH or
H2O2) cofactors 24,2. The many cofactors involved in this complicated process are bound
by active site residues. Cys-194 is axially coordinated to heme. Glu-371 and Trp-366 form
hydrogen bonds with the guanidinium group of NHA while Tyr-367 and a protonated
Asp-376 form hydrogen bonds to the carboxylate group of NHA 23. Val-346 and Phe-363
create a small hydrophobic cavity within the larger heme-binding cavity allowing dioxide
(O2) to bind end-on to heme without steric interference 24.

1ggm – Glycyl-TRNA Synthetase Because glycine lacks a side-chain, glycyl-aaRS
chemical recognition occurs by the α-ammonium group. The active cavity is ligned by
Glu-188, Glu-239, Glu-359, and Glu-241, the carboxlate groups of which create a con-
centration of negative charges which electrostatically complements the positively charged
α-ammonium group of glycine. Selectivity is further improved by the rigid active cavity
which is able to sterically exclude larger amphiphilic amino acids. Ser-361 and Glu-359
sterically block competing residues, such as the sterically and electrostatically similar ala-
nine, from binding by excluding all side-chains. The class II conserved Arg-220 is also
included 4 51.

1lbf – Glycerol Phosphate Syntase Thermolysin, a member of the family of met-
alloproteases, utilizes an active cavity with possible hinge regions 35. Two zinc ions are
coordinated to His-231, and the side-chains of Met-120, Glu-143, and Leu-144 assume an
alternate conformation that opens or closes the active cavity 33. The active site is known
to include the following residues : Met-120, Glu-143, Leu-144, Tyr-157, and His-231 34.


