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Abstract

The protein kinases are a large family of enzymes that play fundamental roles in propagating signals within the cell. Because
of the high degree of binding site similarity shared among protein kinases, designing drug compounds with high specificity
among the kinases has proven difficult. However, computational approaches to comparing the 3-dimensional geometry and
physicochemical properties of key binding site residue positions have been shown to be informative of inhibitor selectivity.
The Combinatorial Clustering Of Residue Position Subsets (CCORPS) method, introduced here, provides a semi-supervised
learning approach for identifying structural features that are correlated with a given set of annotation labels. Here, CCORPS is
applied to the problem of identifying structural features of the kinase ATP binding site that are informative of inhibitor
binding. CCORPS is demonstrated to make perfect or near-perfect predictions for the binding affinity profile of 8 of the 38
kinase inhibitors studied, while only having overall poor predictive ability for 1 of the 38 compounds. Additionally, CCORPS is
shown to identify shared structural features across phylogenetically diverse groups of kinases that are correlated with
binding affinity for particular inhibitors; such instances of structural similarity among phylogenetically diverse kinases are
also shown to not be rare among kinases. Finally, these function-specific structural features may serve as potential starting
points for the development of highly specific kinase inhibitors.

Citation: Bryant DH, Moll M, Finn PW, Kavraki LE (2013) Combinatorial Clustering of Residue Position Subsets Predicts Inhibitor Affinity across the Human
Kinome. PLoS Comput Biol 9(6): e1003087. doi:10.1371/journal.pcbi.1003087

Editor: Mona Singh, Princeton University, United States of America

Received September 7, 2012; Accepted April 22, 2013; Published June 6, 2013

Copyright: � 2013 Bryant et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work has been supported in part by NSF Graduate Research Fellowship grant DGE-0237081 to DHB, NSF ABI grant ABI-0960612, the John and Ann
Doerr Fund for Computational Biomedicine at Rice University, and the Texas Higher Education Coordinating Board NHARP 01907. Equipment used to run the
experiments presented in this paper is part of the Shared University Grid at Rice which is funded in part by NSF under Grant EIA-0216467, and a partnership
between Rice University, Sun Microsystems, and Sigma Solutions, Inc. The funders had no role in study design, data collection and analysis, decision to publish, or
preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: kavraki@rice.edu

Introduction

The protein kinases constitute the largest enzyme family

encoded by the human genome, with currently 518 known

sequences, making up 1.7% of all human genes [1,2]. Because

these protein kinases are intimately involved in cellular commu-

nication and regulation networks, the loss of normal kinase

regulation has been implicated in a wide variety of pathological

conditions. The large number of disease states found to be

associated with kinase dysregulation has motivated the develop-

ment of kinase-specific inhibitor compounds and research to

discover protein kinase inhibitors has come to constitute 20–30%

of the drug development programs at many companies [1].

The bulk of this effort has been directed at identifying inhibitors

that bind at the ATP binding site. However, due to the large number

of existing protein kinase domains and the high degree of (ATP)

binding site similarity among them, designing highly selective

inhibitors has proven difficult. For example, type I kinase inhibitors

that only target the ATP site have typically been found to have low

selectivity across the kinome [3]. To increase inhibitor selectivity,

type II inhibitors bind both the ATP site and the immediately

adjacent allosteric site. By also binding to the allosteric site, type II

inhibitors are able to make additional highly specific interactions,

thereby allowing them to be more selective [3].

Identifying highly specific structural features that can be

uniquely targeted by inhibitors can be facilitated by comparative

analysis of multiple kinase structures [4]. Comparative analysis of

multiple structures allows for the identification of kinase structural

features that are available for inhibitor targeting as well as insight

into the effect of activation conformation dynamics, such as

structural features that are only available for targeting in the

inactive, DFG-out conformation [3–6]. Furthermore, combining

structure and sequence is important when analyzing the kinases

holistically due to the large degree of sequence divergence among

the protein kinases [7]. A specific example of the insight derived

from the comparative analysis of kinase structural features follows.

Many of the effective inhibitor selectivity strategies involve

exploiting the differences in the size of the ATP binding site and

targeting residue variability at a few key positions [3,8]. These

structure-based comparison approaches have proven more useful

than sequence-only measures of overall kinase similarity in

evaluating the potential selectivity profile of inhibitors [8]. For

example, the size of the gatekeeper residue directly moderates the

availability of a hydrophobic pocket. Inhibitors having larger

functional groups that bind this hydrophobic pocket may be able

to select for the roughly 20% of protein kinases that have a

relatively small gatekeeper residue (e.g., Gly, Val, Ala or Thr).

This is because kinases with a larger gatekeeper residue (e.g., Phe)
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do not have a large enough hydrophobic pocket to accommodate

the inhibitor [8]. However, in order to select for an even more

specific subset of the human kinome, it has proven necessary to

take advantage of multiple structural features of the kinase binding

site (both ATP and allosteric sites) simultaneously [3,8].

A review of related work is given below. Recent work has

illustrated that local structural similarity exists among phylogenet-

ically diverse groups of kinases [5,9] and has highlighted the

importance of large-scale, multiple-structure analysis of structure-

affinity relationships among the kinases [9,10].

The PharmMap method [10] incorporates an aligned set of

receptor-ligand co-crystals in order to identify pharmacophores

common to a set of inhibitors. It has been developed to identify

kinase inhibitor pharmacophores useful for selecting molecules for

kinase screening panels.

Huang et al. have utilized a knowledge-based approach to

constructing a minimal binding site ‘‘fingerprint’’ that captures

only a pre-specified set of well-studied, structurally selective

features, such as the size and hydrogen-bonding ability of the

gatekeeper residue [8]. The per-kinase fingerprint utilizes nine

binding site features (e.g., residue type at gatekeeper position) that

have been shown to encode for selectivity among type I inhibitors.

Anecdotally, kinases with similar fingerprints were shown to also

have similar inhibitor selectivity profiles [8], illustrating the utility

of structural features in predicting and understanding kinase

selectivity.

Rather than relying upon pre-specified structural features, the

recently developed Pocketfeature method decomposes a binding

site into all possible ‘‘micro-environments’’ [11]. Pairs of kinase

binding sites with highly similar sets of micro-environments were

anecdotally shown to share a common inhibitor in 9 out of the top

50 most similar (as calculated by PocketFEATURE) kinase binding

site pairs. The CavBase [12] cavity matching approach has been

used to cluster kinase ATP binding cavities from multiple families

across the kinome [5]. The kinase binding cavity clusterings

derived from CavBase have been shown to generally agree with

the sequence-derived kinase families and sub-families [5], demon-

strating that the overall kinase cavity is well-conserved within

families.

Recent work by Jackson et al. demonstrated a related structural

clustering approach to predicting kinase inhibitor binding affinities

[9]. Their geometric hashing approach to whole-site comparison

of the ATP binding pocket was demonstrated to be effective at

identifying possible instances of inhibitor cross-reactivity and

further emphasized the importance of taking into account subtle

conformational changes in the binding site.

However, despite the successes of existing approaches, several

outstanding problems to identifying structural features of the

kinase binding site that are predictive of inhibitor selectivity

remain. The reliance upon a single, representative structure

precludes the ability of existing methods to identify features

common only to active conformations if an inactive structure is

chosen as representative (and vice versa). Additionally, choosing

one representative structure disregards the role that binding site

flexibility and plasticity may play in inhibitor interactions.

Furthermore, the availability of multiple structures for individual

kinases, exhibiting a variety of binding site conformations and

bound ligands, provides a vast quantity of structure data that

remains unexploited by existing approaches. Much of the difficulty

in incorporating multiple conformations per individual kinase

sequence into existing analyses stems from the non-uniform

distribution of available kinase structures, with kinases such as

CDK2 having more than a hundred available crystallographic

structures while other kinases have only a single (or no) available

structure. Finally, the availability of multiple kinase structures

known to bind a given inhibitor and other kinase binding sites

known not to bind that same inhibitor provides a rich set of

structural examples and counter-examples beyond a single

instance of pairwise similarity. Existing receptor-based methods

focus on identifying meaningful pairwise similarity to a character-

ized kinase known to bind a given inhibitor. These methods

currently do not account for the similarity of a given kinase

binding site to other kinase sites that have been characterized to not

bind the inhibitor in question.

To this end we have developed the Combinatorial Clustering

Of Residue Position Subsets (CCORPS) method. CCORPS solves the

following problem: given a set of sequence-aligned kinase

domains (each having §1 available PDB structures) and a per-

sequence inhibitor binding label (either binds, does-not-bind
or unknown), predict whether a given kinase domain binds the

given inhibitor. Taking a set of kinase binding site residue

positions as input, CCORPS identifies clusters of kinases that share

structurally and chemically similar subsets of residue positions.

Given a particular kinase with unknown ability to bind a

particular inhibitor, CCORPS identifies kinase binding sites that

share similar residue positions that are both known to bind and not

to bind the inhibitor (i.e., it finds evidence both for and against

binding a particular inhibitor). Finally, CCORPS aggregates the

residue position subset similarities for all possible k-position

subsets of the kinase binding site and predicts whether or not the

given inhibitor will bind the given uncharacterized kinase binding

site.

In addition to the development of CCORPS, three major results

from the analysis of the human kinome are presented here. First,

the identification of structural features within the kinase ATP

binding site that are correlated with the ability of certain kinases

to bind specific inhibitors is demonstrated. Second, the existence of

affinity-correlated structural features that are shared among

kinases from distinct families of the kinome are enumerated,

shown to be not rare and also to differ depending upon the

inhibitor being analyzed. Third, the ability of CCORPS to predict

the affinity for kinases lacking affinity annotations is quantified and

compared to a recent structural binding site analysis approach [9].

Author Summary

The kinases are a group of essential signaling proteins
within the cell and are the largest family of enzymes
encoded by the human genome. The high degree of
binding site similarity shared across the protein kinases has
made them difficult targets for which to design highly
selective inhibitors, but kinome-wide binding site analysis
can help predict unintended off-target inhibitions. Given
the increasingly large number of available kinase struc-
tures, kinome-wide comparative analysis of binding sites is
now possible. In this paper, the Combinatorial Clustering
Of Residue Position Subsets (CCORPS) method is introduced
and used to synthesize kinome-wide structure datasets
with a kinome-wide inhibitor affinity screening dataset
consisting of 38 kinase inhibitors. CCORPS identifies struc-
tural features of the kinase binding site that are correlated
with an inhibitor binding and uses these features to
predict if this inhibitor will be capable of binding to
uncharacterized kinases. This paper demonstrates the
ability of CCORPS to accurately predict inhibitor binding
and identify features of the kinase binding site that are
unique to kinases capable of binding a given inhibitor.

Clustering of Residues Predicts Kinome Affinity
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CCORPS is demonstrated to make perfect or near-perfect

predictions for the binding ability of 8 of the 38 kinase inhibitors

studied, while only having overall poor predictive ability for 1 of the

38 compounds. The performance of CCORPS for predicting inhibitor

binding is compared to the method of Jackson et al. [9] and shown to

meet or exceed the predictive ability for the subset of the 38

inhibitors also tested by Jackson et al. We also compare CCORPS

against a sequence-based approach and show that they have

complementary strengths. Finally, CCORPS is shown to identify

shared structural features across phylogenetically diverse groups of

kinases that are correlated with binding affinity for particular

inhibitors; such instances of structural similarity among phylogenet-

ically diverse kinases are also shown to not be rare among kinases.

These function-specific structural features may serve as potential

starting points for the development of highly specific kinase inhibitors

and provide a basis for understanding patterns of inhibition by

compounds such as sunitinib that target multiple kinases [13].

In contrast to existing pairwise binding site comparison

approaches, CCORPS provides an automated way to incorporate

the similarity of an uncharacterized binding site to all character-

ized binding site structures, without the need to manually select a

reference binding site. CCORPS also accounts for the similarity of an

uncharacterized binding site to both kinases that bind and those

that do not bind a particular inhibitor.

The high degree of ATP binding site similarity shared across the

protein kinases has made them a difficult target for which to design

highly selective inhibitors. However, by identifying the patterns of

local structural similarity among binding sites at the kinome scale,

potential off-target interactions may be identifiable at earlier stages

of pharmaceutical development and compensated for by further

inhibitor modification. This would allow researchers to make

predictions of binding affinity for a given ligand across the kinome

with less experimental data. Furthermore, the emergence of kinase

inhibitor resistance due to binding site position mutations may be

better understood through the identification of kinases having

similar structural features at the mutated positions. Structural

features that are found to be unique to one or a small number of

chosen kinases may provide the starting point for designing highly

specific inhibitor interactions and therefore highly selective protein

kinase inhibitors.

Methods

The Combinatorial Clustering Of Residue Position Subsets

(CCORPS) method is designed to solve a very general semi-

supervised learning problem:

Find the structural features among the set of proteins that are correlated

with a particular set of annotation labels.

While in the Results section we focus on the specific problem of

predicting ligand binding affinity across the human kinome, we

will first describe CCORPS in its most general form. To solve the

general semi-supervised learning problem stated above, CCORPS

requires the following interface:

Input: an aligned set of protein substructures, where a

substructure is defined as a collection of residues not necessarily

contiguous in sequence but grouped together in 3D.

Input: annotation labels for some of the protein substructures.

Output: predicted annotation labels for the unlabeled protein

substructures.

The per-substructure annotation labels may derived from a

wide range of sources [14–25]. While this paper focuses on the

application of CCORPS for the prediction of inhibitor binding

affinity annotations for the human kinome, CCORPS generalizes to a

variety of annotation prediction problems. The ability of CCORPS to

also identify specificity-determining enzymatic substructures for

the prediction of EC class annotations for 48 different protein

families is outlined in Text S2 and summarized at the end of this

section.

Combinatorial clustering of residue position subsets
In order to identify locally similar features among substructures,

all k-sized combinations of the r residue positions (i.e.,
r

k

� �

combinations) are generated. For example, given r~20 and k~3,

all
20

3

� �
3-position subsets (1140 subsets) are generated. Then,

each of these position subsets are examined one-by-one. Continu-

ing the example, given the position subset (7,13,14), all the protein

structures are compared by examining the pairwise similarity of

only positions 7, 13, and 14 in isolation (i.e., disregarding the other

17 positions). 3-position subsets are used in this work because they

allow for a unique 3-dimensional lrmsd superposition and are

more computationally tractable than subsets of size w3, while still

allowing for binding site position decomposition.

The dissimilarity between a pair of substructures is quantified by

a combination of structural distance and chemical feature

dissimilarity introduced in [26]. Specifically, the distance between

any two substructures s1 and s2 is expressed as:

d(s1,s2)~dside chain centroid(s1,s2)zdsize(s1,s2)

zdaliphaticity(s1,s2)zdaromaticity(s1,s2)

zdhydrophobicity(s1,s2)zdhbond acceptor(s1,s2)

zdhbond donor(s1,s2):

The dside chain centroid(s1,s2) term is the pairwise-aligned side chain

centroid lrmsd between the substructures. The remaining terms

account for differences in the amino acid properties between the

substructures s1 and s2 as quantified by the pharmacophore

feature dissimilarity matrix as defined in [26].

For a given set of residue positions, we can calculate a matrix of

pairwise distances between substructures using the distance

measure defined above. Each row can be thought of as a feature

vector that represents how different a protein is with respect to all

other proteins in terms of the selected residues. The distance

matrix is highly redundant. We use Principal Component Analysis

(PCA) to obtain a low-dimensional embedding. Our previous work

[27] showed that this dimensionality reduction typically results in

negligible information loss. Some technical details on how we

correct for overrepresentation are described in Text S3. The

dimensionality-reduced feature vectors are then clustered to

identify sub-groups that share strong structural similarity. The

number of clusters is not known beforehand and the number of

clusters will vary depending on the set of positions being

compared. The Gaussian Mixture Model (GMM) clustering method

implemented in the mclust package [28] was used to identify both

the number of clusters present and the cluster memberships for

each of the feature vectors.

Selecting Highly-Predictive Clusters (HPCs)
The above feature vector computation and clustering steps are

repeated for each possible 3-position subset in order to compare all

possible local structural features across all proteins. Structural

variation in most subsets is not expected to be informative, either

Clustering of Residues Predicts Kinome Affinity
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because no significant variation is present, or because spurious

patterns can occur due to chance. However, functionally relevant

structural variation can be detected with many different subsets

and therefore distinguished from random patterns, as will be

shown below.

A cluster that is dominated by one annotation label can be used

to predict the label for other structures in that cluster whose

annotation is unknown. We therefore call such clusters ‘‘highly

predictive’’ (HPCS). Identification of HPCs is performed by

selecting a minimum threshold for the label purity of clusters,

and then selecting all clusters with equal or greater label purity

than this minimum as HPCS; we used the strictest purity threshold

possible (1.0 or 100% purity) in this work (see Fig. 1). In general,

purity is calculated for a multiset of labels, L, as

purity~IL(mode(L))=DLD where IL is the multiplicity function of

a label within the multiset L and mode(L) is the most frequent

label within L. As with the dimensionality reduction mentioned

above, we need to correct for overrepresentation bias, the details of

which are described in Text S3. Purity alone does not account for

the distinctness of the proteins in the cluster relative to the

remainder of the dataset. For example, an hpc for label l1 that

partially overlaps a second hpc for label l2 is less likely to be

informative than an l1 cluster greatly separated from the

remainder of the dataset. The ‘‘degree of separation’’ or

‘‘distinctness’’ of a cluster was quantified by calculating the cluster

silhouette score [29]. The mean silhouette score for a cluster was

then used as a further selection criteria for identifying HPCS by

removing potential HPCS with negative average silhouette scores

(malformed clusters).

Support Vector Machine-based (SVM) decision boundary
Each time an unlabeled protein falls within an HPC, that protein

receives a single vote in favor of the majority label associated with

the HPC. Because a protein can be a member of at most one cluster

per k-position subset, the maximum number of votes any protein

can receive is equal to the number of possible k-position subsets.

For any given k-position subset, it is possible that all clusters are

HPCS or that no clusters are HPCS, depending on how the labels

are distributed among the clusters. It is also possible that a protein

may never fall within any hpc and therefore would receive zero

votes for any label; such proteins are excluded from further

analysis after the voting step. In the experiments described below

this case rarely occurred. After tallying the label votes across all k-

position subsets, the label predicted for a given structure is

determined by an SVM-derived decision boundary as described

below.

Given a set of label votes that have been determined for an

unlabeled structure, the threshold(s) used to decide which of the

two or more label classes to assign to the structure requires the

definition of a decision boundary procedure. For example, given a

set of annotation labels containing the label classes ftrue,falseg
(e.g., indicating whether a kinase is known to bind to a given

ligand), a simple decision rule may be that given a structure with

w1 true vote, predict the true label for that structure. However,

determining a single threshold for deciding the number of label

votes required to classify a structure into one of several classes is

difficult to generalize.

Because CCORPS is a semi-supervised approach, the labels for the

training structures are known and can be used to empirically

estimate a vote count decision boundary. For example, given

structure X with known label, the number of times that X
appeared in a false HPC or a true HPC, across all k-position

subsets, can be calculated using the same approach as for

unlabeled structures. The structure X is then represented by an

DlD-dimensional vote vector, where each of the l dimensions

corresponds to the number of votes X received for label li,1ƒiƒl
(l~2 for the case of kinase binding affinity, since we only have

false and true labels). Application of this procedure to all labeled

structures in the dataset provides an empirical basis for calculating

a decision boundary in the vote space given the vote distribution

for labeled structures. For example, the blue and red points shown

in the scatter plot of Fig. 2 denote the vote vectors for training set

substructures with known true and false labels, respectively.

Given the vote vectors calculated for all labeled training set

substructures in the dataset, it is then possible to train any number

of classifiers in order to determine a decision boundary. To

compute a decision boundary in the vote space for classifying

unlabeled proteins, SVMs were selected in this paper. First, an SVM

(linear kernel) is trained using the vote vectors of labeled training

set substructures. For example, the decision boundary determined

Figure 1. Illustration of cluster evaluation procedure. The star
and diamond symbols represent structures with known labels and the
question marks represent structures with an unknown label. Clusters A
and B will both be selected as HPCS for their respective labels (star and
diamond, respectively) because they are each pure in a single label
(unknown labels are disregarded). Cluster C will not be selected as an
HPC because it has low purity.
doi:10.1371/journal.pcbi.1003087.g001

Figure 2. Decision boundary for label vote vectors computed
by SVM. In the above scatter plot, each point corresponds to the
number of true/false votes accumulated by each substructure across all
clusterings. Combining the above label vote vectors with the known
labels for substructures to train an SVM (using linear kernel) results in the
decision boundary shown as the bold black line. The red and blue
regions (right and left sides of the boundary, respectively) denote the
values for which the predicted label will be false and true, respectively.
Blue points indicate substructures known to have the true label while
red points denote the false label. In the case of Roscovitine above,
wide separation between the two classes exists.
doi:10.1371/journal.pcbi.1003087.g002

Clustering of Residues Predicts Kinome Affinity
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by training an SVM on vote vectors is shown in Fig. 2 as the bold,

black line. Next, for an unlabeled substructure with a given vote

vector, the label for the substructure can be predicted by

determining which side of the SVM decision hyperplane the

unlabeled structure falls within. As illustrated in Fig. 2, test vote

vectors falling within the blue region will be predicted as having

the true label and those falling within the red region, the false
label. For training SVMs and calculating the p-values of predictions

made by those SVMs, libSVM [30] was used in this work.

Validation experiments and method generalization
To validate the predictive ability of the structural features

identified by CCORPS an extensive dataset of 48 families was

automatically constructed using the Pfam database [17] as a

source of well-curated protein alignments. The annotation labels

analyzed in the validation set were per-structure Enzyme

Commission (EC) number classifications. Cross-validation was

performed in order to evaluate the predictive power of CCORPS and

the utility of the distinguishing structural features identified. The

overall classification accuracy of CCORPS (Text S2) when applied to

the validation dataset demonstrates the ability of CCORPS to identify

structural features that distinguish functionally different protein

homologs and the ability of CCORPS to generalize to non-kinase

protein families.

Results

First, we will introduce the components of the kinome structure

and affinity datasets used in this work. Next, structural features of

the kinase binding site that are identified by CCORPS to be

predictive of inhibitor binding ability are presented. Then, cases of

these predictive structural features that are common to phyloge-

netically diverse sets of kinases are highlighted. Finally, the

performance of CCORPS for predicting the binding ability of

inhibitors across the kinome is quantified and compared to the

related approach of Jackson et al. [9] as well as a sequence-based

approach.

Dataset
In order to enable the kinome-scale analysis of the protein

kinase ATP binding site presented here, a dataset of protein kinase

binding site structures was assembled and then mapped to the

affinity dataset of Karaman et al. [31]. Karaman et al. studied the

affinity of 38 kinase inhibitors across 317 kinases and was one of

the most comprehensive studies of kinase inhibitor selectivity at

that time. Mapping a structure-affinity-phylogeny dataset by

further incorporating the kinome family labeling of Manning et al.

[2] has enabled the incorporation of all available crystallographic

structures of the ATP binding site and the analysis of shared

structural features between major kinase families that is presented

later in this paper.

Kinase structure dataset. The kinome structural dataset

was constructed from all structures (domains) annotated as

belonging to PFAM:Pkinase and PFAM:Pkinase_Tyr (all e pk

domains, apks excluded) in release 25 of PFAM (2154 total

domains before filtering). After the binding site residue positions

to analyze were selected, as detailed in the following section, and

proteins having one or more gaps at those positions were

excluded, a total of 1958 structures remained. These 1958

structures correspond to 208 unique kinase proteins. The

distribution of sequences and structures across the seven major

kinome families is shown in Table 1. Of the 1958 kinase

structures within the dataset, 1281 (65.4%) were part of the

kinome inhibitor affinity dataset of Karaman et al. [31] and

therefore have known annotation labels for each of the 38

inhibitors that were experimentally determined by Karaman et

al. [31]. The dataset contained a large number of active DFG-in,

inactive DFG-out and other conformations.

Binding site position selection. All residues having one or

more atoms within 5 Å of one or more imatinib atoms from the

imatinib-bound structures PDB:2pl0 or PDB:3hec were selected as

candidate binding site positions. Candidate positions were

eliminated if they corresponded to highly gapped columns in

either the PFAM:Pkinase or PFAM:Pkinase_Tyr Multiple Sequence

Alignments (MSAS). After filtering, 27 binding site residue positions

remain (shown in Fig. 3): 30, 38, 51–53, 71, 74, 75, 78, 83, 84,

104–109, 111, 146–149, 157, 166–169 (residue numbering

according to PDB:3HEC). Imatinib was chosen as a reference

inhibitor for selecting the binding site positions to include in the

analysis because it is of the large type II kinase inhibitor variety

and extends both into the ATP binding pocket as well as the

neighboring allosteric pocket. The cutoff distance of 5 Å was

selected in order to be consistent with the binding site selection

cutoff chosen by Jackson et al. [9]. For full details on the mapping

and alignment of positions among structures within the kinase

dataset please refer to Text S1.

Kinase inhibitor affinity dataset. The affinity (Kd) for 38

small molecule kinase inhibitor compounds was determined for a

set of 317 kinases using an in vitro competition binding assay by

Karaman et al. [31]. The 38 inhibitors tested include staur-

osporine, 1 lipid kinase inhibitor, 15 serine-threonine kinase

inhibitors and 21 tyrosine kinase inhibitors. Affinity values were

mapped from the Karaman et al. [31] dataset to the kinome

structural dataset by mapping the NCBI RefSeq IDs provided by

Karaman et al. [31] to the UniProtKB IDs [32] of the proteins in

the structural dataset. 137 of the 208 protein sequences in the

structural dataset mapped to the affinity dataset published by

Karaman et al. [31].

In order to simplify the problem of correlating structural

features with binding affinities, the binding affinity (Kd) values

were binned into 2 classes (true/false) by thresholding the

affinity values at 10 mM (i.e., v10 mM?true; §10 mM?false).

This 10 mM cutoff between the two label classes was used

consistently across all inhibitors and selected because it is the

largest Kd considered by Karaman et al. [31] to be meaningful for

inhibitor binding in the screening dataset used in their work [31].

Table 1. Statistics for the human kinome dataset.

Kinase Family AGC CAMK CK1 CMGC Other STE TK TKL Unclassified

# Structures 171 231 20 500 114 55 445 58 364

# Sequences 19 34 6 33 18 17 47 9 75

# Annotated 6 13 2 16 5 11 35 6 43

doi:10.1371/journal.pcbi.1003087.t001

Clustering of Residues Predicts Kinome Affinity
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Interpretation of Highly Predictive Clusters (HPCs)
The process by which CCORPS recognizes structural features that

are associated with kinase binding affinity is through the

identification of Highly Predictive Clusters (HPCS). Given the

27-position binding site (Fig. 3), CCORPS computes a clustering for

each of the
27

3

� �
~2925 unique 3-position subsets. For example,

consider the 3-residue substructure shown in Fig. 4A. The 3

residues shown correspond to 3 positions in the full kinome

alignment and the corresponding residues for each structure in the

kinome dataset are structurally compared to compute the

substructure clustering shown in Fig. 4B. Each of the 1958

substructures within the kinase structure dataset is shown in Fig. 4B

as a single point. The color of each point in Fig. 4B corresponds to

the cluster assignment as computed by CCORPS.

Several informative observations regarding kinase structural

diversity and its association to inhibitor binding affinity can be

made by further examination of the substructure clustering shown

in Fig. 4B. Immediately upon examination of the substructure

clustering it can be noted that multiple distinct clusters of kinases

exist. This observation alone indicates that the 3-position

substructure that resulted in this clustering is highly diverse

among kinase binding sites. Conversely, the presence of a single

large cluster would indicate that the 3-position substructure was

structurally conserved, exhibiting little variance across the kinome;

indeed instances of clusterings with a single dominating cluster

were also observed for some 3-position subsets. As demonstrated in

Fig. 4C, where one randomly selected representative substructure

is shown for each of the 21 clusters identified by CCORPS, both the

geometry and residue types vary significantly for this 3-position

subset.

By incorporating the affinity annotation labels for a particular

inhibitor, further observations can be made about the association

between the 3-position substructure shown in Fig. 4A and the

kinases capable of binding that inhibitor. For example, mapping

the affinity annotation labels for the inhibitor flavopiridol onto the

substructure clustering (Fig. 4D) reveals that some of the clusters

consist of only a single annotation label while others are a mixture

of labels. In Fig. 4D, kinases capable of binding flavopiridol are

colored red (true label), kinases incapable of binding flavopiridol

are colored black (false label) and kinases lacking affinity

annotation are colored white (undefined label). As shown in

Fig. 4D, multiple clusters of purely true labels exist and are

considered to be HPCS by CCORPS.

The existence of true-only clusters indicates that the 3-positions

shown in Fig. 4A are a distinguishing structural feature for

identifying kinases that bind flavopiridol. More interestingly,

however, is the fact that multiple, structurally distinct versions of

the same 3-position substructure exist for different kinases that all

are capable of binding flavopiridol. This result is significant because

it indicates that across the kinome there are different structural

motifs that are associated with binding flavopiridol, as opposed to a

single, shared structural motif across all flavopiridol-binding kinases.

The ability to identify multiple structural motifs that can each be

associated with inhibitor binding is a strength of CCORPS.

Furthermore, the existence of clusters containing only kinases

incapable of binding flavopiridol can also be observed in Fig. 4D.

These HPCS are also informative because they identify particular

structural versions of the 3-position substructure in Fig. 4A that are

all incapable of binding flavopiridol. Finally, clusters consisting of

a mixture of kinases that are both capable and incapable of

binding flavopiridol can be identified in Fig. 4D. For kinases in

these clusters, the 3-position substructure is not a distinguishing

feature of flavopiridol-binding ability.

Finally, while flavopiridol is discussed in detail here for

illustration, the same analysis was computed by CCORPS for each

of the 38 different inhibitors within the affinity dataset. For each of

the inhibitors, the affinity labels can be mapped separately onto

the same substructure clustering as shown in Fig. 5. However, it

should be noted that no information is shared between the results

for different inhibitors in this work; that is, each inhibitor is

computed in a fully separate CCORPS computation (the substructure

clusterings do not vary, just the annotation labels).

Examination of the affinity-annotated substructure clusterings

shown in Fig. 5 reveals that the set of clusters which are HPCS

varies greatly depending on the inhibitor considered. While the

flavopiridol-annotated substructure clustering contains multiple

HPCS for both true and false labels, the correspondingly

annotated clustering for other inhibitors, such as VX-745, PI-103

and imatinib, contain only false HPCS. This result demonstrates

that the substructures that are informative of inhibitor binding are

inherently inhibitor-specific. That is, a subset of binding site

positions that are predictive for one inhibitor are not necessarily

predictive for another inhibitor.

It is important to note that Fig. 4 and Fig. 5 represent the same

clustering for just one 3-residue substructure. However, all 2925

clusterings are computed and all HPCS detected in these

clusterings are used to predict binding affinity. The particular

three-residue subset shown in Fig. 4A was chosen because the

resulting clustering exhibits a number of illustrative features. First,

the clustering is relative ‘‘clean’’ with well-separated clusters.

Second, it contains highly predictive clusters for both binding and

not binding to flavopiridol (the ocher cluster in the top-left and the

Figure 3. Kinase binding site definition: The 27 alignable residue
positions (blue) within 5 Å of the bound imatinib molecule (yellow) are
mapped on to protein kinase structure PDB:3HEC.
doi:10.1371/journal.pcbi.1003087.g003
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red cluster in the bottom right of figure Fig. 4B, respectively).

None of these features are essential for predicting binding affinity;

all automatically selected HPCS in all clusterings are used to

predict affinity, each casting one ‘‘vote.’’

Phylogenetically diverse HPCs
Numerous instances of cross-family affinity for both type I and

II kinase inhibitors have been identified, as was clearly illustrated

by the kinome affinity maps created by Karaman et al. [31]. It is

important to identify structural features shared among phyloge-

netically diverse kinases that share affinity for a particular

inhibitor, because they provide a basis for reasoning about

inhibitor cross-reactivity when overall sequence similarity will be

low. Furthermore, by identifying these shared structural features, it

may be possible to rationally re-engineer the specificity of

inhibitors by avoiding the targeting of these features, since they

are not unique to the intended kinase target. In order to identify

the number of instances of cross-family structural features that can

Figure 4. Highly predictive clusters. (A) Structure of lck (PDB:2pl0) with a 3-position substructure shown in blue stick representation (Thr-316,
Tyr-318, Gly-322) and bound imatinib molecule in red. (B) Substructure embedding computed by CCORPS when comparing the 3-positions shown in A
across the entire 1958 structure dataset. Each point in the clustering represents a single 3-residue substructure. The coloring indicates the cluster
membership of each substructure (21 clusters in total are shown). (C) Aligned 3-residue substructure representatives, from each of the 21 clusters
identified by CCORPS, for the 3-position subset shown in A. The color of each substructure corresponds to its cluster assignment. (D) Same embedding
as in B, but now colored according to affinity. The red and black coloring of each point indicates true and false affinity labels for flavopiridol,
respectively, while white indicates substructures lacking affinity annotations.
doi:10.1371/journal.pcbi.1003087.g004
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Figure 5. Affinity annotation labeling for all 38 inhibitors. The substructure clustering computed for the same 3 positions examined in Fig. 4
is relabeled above for each of the 38 inhibitors included in the dataset. In each cell above, red and black indicate the true and false affinity labels,
respectively, for each inhibitor, while white indicates a lack of annotation. As can be noted by comparing the distribution of red points across the
different inhibitors, for most inhibitors, the kinase proteins capable of binding to them are not distributed in a single cluster, indicating structurally
diverse features exist among the kinases selected by each inhibitor.
doi:10.1371/journal.pcbi.1003087.g005
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be associated with specific inhibitor binding, the distribution of

substructure clusters across all 3-position subsets was analyzed.

Each individual cluster, across all 2925 clusterings and all 38

inhibitors, was evaluated to calculate the purity of both affinity

labels and family-level phylogenetic labels. For example, a cluster

containing 3 distinct kinase sequences with affinity labels

ftrue,false,trueg and family labels {AGC, CAMK, TK} would have

an affinity purity of 0:66 and a phylogenetic purity of 0.33. By

plotting the affinity and phylogenetic purity scores of each cluster

(separately for each inhibitor) as shown in Fig. 6, the distribution of

clusters across the spectrum of possible scores can be evaluated.

Note that only the clusters having a true label majority are plotted

in Fig. 7 (i.e., a true label majority is §0:5 purity in the true label).

Additionally, Table 2 lists per inhibitor statistics for cluster

distributions shown in Fig. 7.

In order to build intuition for interpreting the cluster

distributions, the cluster distribution for VX-680 (Fig. 7) is

examined in more detail because it is representative of the

distribution for many of the other inhibitors. As listed in Table 2,

23,495 clusters were identified by CCORPS that have §0:5 purity in

the true label for VX-680 (hereafter referred to as true-majority

clusters). Only these true-majority clusters are plotted in the

cluster distribution shown in Fig. 7, meaning the minimum

‘‘affinity purity’’ displayed in Fig. 7 is 0.5 by definition (because

only 2 different affinity labels exist, true and false).

As can be seen in Fig. 7, the vast majority of clusters identified

by CCORPS have low affinity purity as well as low phylogenetic

purity. This is to be expected because highly conserved portions of

the kinase ATP binding site are known to exist. Structural features

that consist of conserved residue positions will be common to

many kinases from different families due to the fact that these

positions are so heavily conserved, which explains the low

phylogenetic purity of these clusters. Furthermore, these conserved

features are unlikely to be correlated with the affinity for a

particular inhibitor because most inhibitors have been engineered

to not have broad cross-reactivity across the kinome. Staurospor-

ine is an exception as it is a very non-selective inhibitor due to its

interaction with highly conserved binding site features; the cluster

distribution corresponding to staurosporine (Fig. 6) is markedly

different from the other inhibitors with most clusters having high

affinity purity across a range of phylogenetic purity values.

Examination of the extremes of the VX-680 cluster distribution

reveals further insights into the frequency of structural similar

features among kinases with different degrees of sequence

similarity. Clusters having a phylogenetic purity of 1.0 (i.e., all

proteins belong to the same family) but having low affinity purity

exist, and for VX-680 276 such clusters were identified by CCORPS.

This observation is interesting because it illustrates that kinases

sharing sequence similarity (relative to kinases outside the family)

have multiple common structural features that are not informative

of the ability of these kinases to bind VX-680 and are therefore

unlikely to be good features to target in design studies. Because

CCORPS only incorporates clusters with high affinity purity (i.e.,

HPCS), these conserved structural features that are not indicative

of VX-680 binding are ignored by CCORPS when predicting affinity

for unannotated kinases. This observation can also be made for

each of the other inhibitors as shown in Fig. 6.

Another interesting extreme of the VX-680 cluster distribution

to examine is the existence of HPCS that are phylogenetically

diverse. The HPCS selected by CCORPS correspond to the right-

most column of points in Fig. 7; these clusters all have an affinity

purity of 1.0 for VX-680 and therefore contain only structures with

known VX-680 affinity. As can be noted in Fig. 7, HPCS exist at a

range of phylogenetic purity values. CCORPS identified a total of

2707 HPCS for VX-680, and 1786 (66%) of these HPCS contain

proteins belonging to two or more distinct kinase families. This

result demonstrates that CCORPS is capable of identifying cross-

family structural features that are associated with VX-680 binding.

Furthermore, this result is not unique to VX-680. As shown in

Fig. 6 and tabulated in Table 2, cross-family structural features

associated with inhibitor binding were identified for all of the

inhibitors tested with the exception of GW-2580, for which no

true-majority clusters were identified.

Examination of the cluster distributions across each of the

inhibitors reveals a wide range of observations. While many

inhibitors have a cluster distribution similar to that of VX-680, for

some inhibitors CCORPS identified relatively fewer true-majority

clusters. For example, only 133 clusters with affinity purity w0.5

were identified by CCORPS for SB-431542 and all of these happen

to be HPCS. However, even among this relatively low number of

HPCS, 69 (52%) of the clusters contain kinases from two or more

families. As demonstrated by the corresponding distributions for

all 38 inhibitors in Fig. 6, such shared structural similarity is not

rare.

Predicting kinase-inhibitor binding
The approach used by CCORPS to classify an unlabeled kinase is

to identify the cluster to which the unlabeled kinase belongs. If the

associated cluster is an hpc, the label for the hpc is transferred to

the unlabeled kinase. Non-informative clusters containing a mix of

labels (non-HPCS) do not contribute to the label prediction

process. This ‘‘co-clustering’’ analysis approach is repeated for all

of the 2925 substructure clusterings and the final label prediction

for an unlabeled kinase is then selected as detailed in Methods.

The ability of CCORPS to predict the binding of each inhibitor for

proteins within the annotated structural dataset was assessed using

the cross-fold validation approach described in the following

section. For each of the 38 inhibitor annotation label sets, an

independent evaluation of CCORPS was performed. No information

was shared among the evaluations in order to validate the

predictive ability of CCORPS to identify structural features predictive

of the binding ability of each inhibitor independently.

Cross-fold validation. To assess the utility of HPCS for

identifying substructure positions indicative of functional special-

ization, cross-fold validation was performed for each family within

our dataset. The structures within a protein family were first

divided into 70% sequence identity groups (NR-clusters) so that no

protein in a test set shares w70% sequence identity with any

protein in the training set. The sequence identity is computed over

the domain (i.e., not the whole sequence nor just the binding site).

Because of the non-uniform distribution of structures across the

NR-clusters, the number of structures in the test set varies with each

fold. In each fold, structures that were part of the test set are

marked with label unknown, and are disregarded when calculating

the purity of clusters (defined in Methods) during the HPC selection

step, just as the structures with truly unknown label. Finally,

standard k-fold cross validation was performed with each of the

NR-clusters each being one fold (i.e., k~DNR-clustersD). Given the

NR-clusters-based fold partitioning above, the training set is used to

identify HPCS and train an SVM-based classifier to predict labels

for kinases in the test set.

Prediction performance. For each of the 38 inhibitors

included in the affinity dataset, CCORPS was used to predict the set

of kinases able to bind to that inhibitor. The performance of

CCORPS was assessed for each inhibitor, independently, by

computing the Receiver Operator Characteristic (ROC) curve for

the set of predictions, which evaluates the sensitivity (# true
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Figure 6. Distribution of phylogenetic and affinity purity cluster scores for all 38 inhibitors. As can be seen in the case of drugs such as
imatinib and lapatinib, very few clusters that have a majority of true labels were identified, yet clusters of phylogenetically diverse structures all
having true labels can be identified. Staurosporine exhibits a reflected distribution relative to the other drugs, because due the nature of its non-
selectivity across the kinome, instances of phylogenetically distant structures that exhibit Staurosporine affinity are common. Refer to Fig. 7 for
additional details.
doi:10.1371/journal.pcbi.1003087.g006
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positives/(# true positives + # false negatives)) at each specificity

(# true negatives/(# true negatives + # false positives)) value. The

ROC curves for the predictor constructed by CCORPS are shown in

Fig. 8 for each inhibitor and the Area Under Curve (AUC) for each

roc curve is listed in Table 3. Additionally, the Precision-Recall

(PR) curve for each inhibitor can be found in Fig. 9. The PR curve

plots the precision (# true positives/(# true positives + # false

positives)) versus the recall (equivalent to sensitivity).

In order to make a direct comparison of the performance of

CCORPS to the work of Jackson et al. [9], another performance

measure, the enrichment factor, was also computed per inhibitor

tested. The enrichment factor of the top 5% most highly ranked

true affinity predictions (for a given inhibitor) can be calculated as

follows:

E5%~
Atop 5%=Ntop 5%

Atotal=Ntotal
,

where Atop 5% is the number of structures with known affinity for a

given inhibitor (# actives) in the top 5% of most confident

predictions ranked by p-value as computed by CCORPS, Ntop 5% is

the total number of structures in the top 5%, Atotal is the total

number of active structures in the dataset and Ntotal is total

number of structures in the dataset. The enrichment factor at 5%

(E5%) for each inhibitor is shown in Table 3 and where available,

the corresponding E5% values from Jackson et al. [9] are listed

alongside. It should be noted that the E5% values are not directly

comparable between CCORPS and Jackson et al. [9] as listed in

Figure 7. Distribution of phylogenetic and affinity purity
cluster scores for VX-680. Each point in the scatter plot above
marks the purity for the drug affinity true label on the x-axis and the
phylogenetic label purity on the y-axis. For example, a point above
located at the coordinates (1:0,0:2) denotes a cluster that is 100% pure
in the true drug affinity label (for VX-680 in this case) but is only 20%
pure in the most common phylogenetic label present; that is, this
cluster indicates one instance of structural similarity among phyloge-
netically diverse proteins that also coincides with having affinity for VX-
680. Conversely, a point at the coordinates (0:5,1:0) indicates a cluster
that contains only structures from one phylogenetic (family-level)
branch but contains an equal proportion of true and false affinity
labels; that is, a case where structurally similar, closely related
(phylogenetically) structures have different affinities for VX-680. Each
point is semi-transparent so that darker areas in the plot indicate a
higher density of points.
doi:10.1371/journal.pcbi.1003087.g007

Table 2. Phylogenetically diverse HPC statistics per inhibitor.

Inhibitor # true -HPCS # §2 Families

ABT-869 345 249

AMG-706 274 202

AST-487 2415 1955

AZD-1152HQPA 506 374

BIRB-796 893 730

BMS-387032 728 447

CHIR-258 1577 800

CHIR-265 242 184

CI-1033 1247 704

CP-690550 11 5

CP-724714 115 89

Dasatinib 1848 1193

EKB-569 1133 684

Erlotinib 596 456

Flavopiridol 921 481

GW-2580 0 0

GW-786034 1443 809

Gefitinib 203 169

Imatinib 57 45

JNJ-7706621 4087 2761

LY-333531 634 314

Lapatinib 115 89

MLN-518 92 70

MLN-8054 435 301

PI-103 182 69

PKC-412 3419 2368

PTK-787 7 6

Roscovitine 593 335

SB-202190 644 513

SB-203580 738 546

SB-431542 133 69

SU-14813 4415 3116

Sorafenib 561 405

Staurosporine 17098 14802

Sunitinib 5525 4077

VX-680 2707 1786

VX-745 189 151

ZD-6474 1059 610

For each inhibitor, the total number of true -HPCS (column ‘‘# true -HPCS’’) is
shown. The subset of true -HPCS that consist of proteins from two or more of
the kinase families defined by Manning et al. [2] (column ‘‘# §2 families’’) are
also shown. The multitude of true -HPCS that include proteins from distinct
families of the kinome can be noted by the relatively large percentage (73%
overall across all inhibitors) of HPCS that span families. All of these 41964
instances of structurally similar features between families are provided in
Dataset S1.
doi:10.1371/journal.pcbi.1003087.t002
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Table 3, due to the fact that the maximum possible enrichment

(Emax) for a given inhibitor is dataset-dependent, and the dataset

presented in this work is larger both in number of structures

compared and the number of per-inhibitor affinity annotations.

The ratio of E5% to Emax is a slightly better basis for comparison,

since it normalizes for differences in Emax.

Figure 8. Per inhibitor Receiver Operator Characteristic (ROC) curves. The x- and y-axis plot (1-specificity) and sensitivity, respectively, both
ranging from 0 to 1. The Area Under Curve (AUCROC) as well as the E5% per drug can be found in Table 3. As shown above, CCORPS is able to construct
a near-perfect classifier for several drugs, such as PI-103, SB-431542. The classifiers constructed for some inhibitors, such as flavopiridol, are able to
achieve high precision, but only at low sensitivities (recalls), as further illustrated by the pr curves in Fig. 9.
doi:10.1371/journal.pcbi.1003087.g008
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As shown in Table 3, CCORPS achieves high predictive

performance across the 38 inhibitors tested. As quantified by

ROC AUC w0:90, CCORPS achieved perfect or near-perfect

predictive ability for 8 of the 38 inhibitors: AMG-706, CHIR-

265, CP-690550, CP-724714, Lapatinib, PTK-787, Roscovitine

and SB-431542. Furthermore, CCORPS is demonstrated to be very

competitive with the method by Jackson et al. [9] as also shown

in Table 3. In the case of Lapatinib, CCORPS significantly

improved on Jackson et al. [9]. Comparison of enrichment scores

ignores another important difference: with our method no

Table 3. Affinity prediction performance of CCORPS for the kinase inhibitors.

CCORPS Jackson et al. [9] Sequence-based

Inhibitor AUCROC AUCPR E5%/Emax E5%/Emax AUCROC AUCPR E5%/Emax

ABT-869 0.50 0.23 0.51 (4.27/8.41) 0.64 0.36 0.59 (5.00/8.43)

AMG-706 0.96 0.74 0.87 (5.91/6.77) 0.77 0.56 0.84 (5.66/6.71)

AST-487 0.81 0.86 1.00 (1.71/1.71) 0.84 0.90 1.00 (1.71/1.71)

AZD-1152HQPA 0.65 0.27 0.46 (3.12/6.77) 0.69 0.34 0.45 (3.07/6.78)

BIRB-796 0.75 0.48 0.51 (1.67/3.28) 0.91 (3.65/3.98) 0.54 0.33 0.16 (0.51/3.27)

BMS-387032 0.88 0.80 1.00 (3.69/3.69) 0.93 0.88 1.00 (3.69/3.69)

CHIR-258 0.86 0.81 1.00 (4.05/4.05) 0.93 0.85 1.00 (4.05/4.05)

CHIR-265 0.97 0.81 0.90 (6.61/7.31) 0.91 0.71 0.67 (4.86/7.24)

CI-1033 0.70 0.42 0.56 (2.48/4.47) 0.77 0.57 0.94 (4.20/4.48)

CP-690550 0.94 0.22 0.25 (8.33/32.79) 0.35 0.03 0.05 (1.54/32.85)

CP-724714 1.00 0.99 0.86 (20.30/23.69) 0.71 0.07 0.00 (0.00/23.72)

Dasatinib 0.70 0.48 0.27 (0.78/2.90) 0.74 0.67 0.94 (2.71/2.89)

EKB-569 0.79 0.56 0.71 (3.31/4.63) 0.82 0.60 0.83 (3.84/4.64)

Erlotinib 0.67 0.38 0.51 (2.79/5.49) 0.75 (6.89/9.19) 0.74 0.46 0.94 (5.15/5.50)

Flavopiridol 0.71 0.68 1.00 (3.09/3.09) 0.87 0.86 1.00 (3.09/3.09)

GW-2580 0.87 0.01 0.00 (0.00/255.80) 0.30 0.00 0.00 (0.00/256.20)

GW-786034 0.70 0.58 0.94 (5.14/5.49) 0.75 0.53 0.84 (4.60/5.45)

Gefitinib 0.65 0.29 0.37 (3.38/9.27) 0.55 0.11 0.00 (0.00/9.28)

Imatinib 0.63 0.21 0.38 (4.51/11.84) 0.25,0.50 (2.99,5.98/11.95) 0.63 0.22 0.55 (6.49/11.86)

JNJ-7706621 0.81 0.75 0.59 (1.17/2.00) 0.85 0.87 1.00 (2.00/2.00)

LY-333531 0.85 0.55 0.65 (4.57/7.03) 0.90 0.55 0.80 (5.61/7.04)

Lapatinib 1.00 0.99 0.86 (20.30/23.69) 0.00 (0.00/19.92) 0.71 0.07 0.00 (0.00/23.72)

MLN-518 0.87 0.24 0.16 (3.44/21.68) 0.75 0.28 0.20 (4.41/21.71)

MLN-8054 0.72 0.57 0.73 (4.99/6.84) 0.79 0.60 0.97 (6.64/6.85)

PI-103 0.75 0.11 0.00 (0.00/16.40) 0.93 0.30 0.30 (4.75/16.01)

PKC-412 0.49 0.40 0.00 (0.00/2.20) 0.81 0.71 0.53 (1.17/2.20)

PTK-787 0.95 0.22 0.22 (7.68/34.57) 1.00 0.99 0.58 (20.02/34.62)

Roscovitine 0.92 0.78 0.97 (4.66/4.81) 1.00 (2.81/2.81) 1.00 1.00 1.00 (4.82/4.82)

SB-202190 0.88 0.71 0.92 (3.90/4.24) 0.91 0.79 0.97 (4.08/4.21)

SB-203580 0.78 0.54 0.60 (2.24/3.71) 1.00 (5.43/5.43) 0.84 0.68 0.87 (3.23/3.69)

SB-431542 1.00 0.98 0.41 (20.30/49.19) 0.44 0.02 0.00 (0.00/49.27)

SU-14813 0.68 0.43 0.27 (0.83/3.08) 0.87 0.78 1.00 (3.09/3.09)

Sorafenib 0.82 0.62 0.87 (3.58/4.10) 0.63 0.48 0.89 (3.63/4.08)

Staurosporine 0.83 0.96 0.97 (1.11/1.14) 0.93 0.99 1.00 (1.15/1.15)

Sunitinib 0.70 0.48 0.21 (0.52/2.51) 0.87 0.83 1.00 (2.52/2.52)

VX-680 0.77 0.63 0.56 (1.64/2.95) 0.79 0.68 0.94 (2.77/2.95)

VX-745 0.87 0.47 0.48 (3.02/6.33) 0.49 0.19 0.36 (2.28/6.34)

ZD-6474 0.90 0.77 0.95 (4.30/4.52) 0.90 0.81 1.00 (4.53/4.53)

mean 0.80 0.55 0.59 0.76 0.54 0.66

For each of the 38 inhibitors in the affinity dataset of Karaman et al. [31], the prediction performance of CCORPS, the Jackson et al. [9] method, and the sequence-based
method is shown below. The performance of the Jackson et al. [9] method is shown alongside that of CCORPS for the subset of inhibitors tested by both methods. Note
that for imatinib, two E5% values are provided by Jackson et al. [9] because each value is derived by selecting a different reference structure. While the mean auc values
and enrichment scores are close, the standard deviations of the differences between the corresponding columns (0.21, 0.33, and 0.36, respectively) highlight that the
two methods have complementary strengths.
doi:10.1371/journal.pcbi.1003087.t003
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reference structure needs to be selected. As is clear from Jackson

et al.’s result for imatinib, the E5% enrichment value can change

by a factor of 2 depending on which reference structure is

chosen.

Finally, in order to evaluate the contribution of the local

structural features over sequence information alone, a ‘‘binding

site sequence’’-based approach was implemented (see Text S3) and

used to predict inhibitor binding for the full 38 inhibitor dataset

Figure 9. Per inhibitor Precision-Recall (PR) curves. The x- and y-axis plot the recall and precision, respectively, both ranging from 0 to 1. The
Area Under Curve (AUCPR) per drug can be found in Table 3. As shown above, CCORPS is demonstrated to have very high precision across a wide
range of inhibitors when tested for targets spanning the kinome.
doi:10.1371/journal.pcbi.1003087.g009
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presented here. The prediction performance for the binding site

sequence-based approach is shown in Table 3 in terms of roc and

pr auc as well as enrichment score. The binding site sequence-

based approach outperformed CCORPS by a significant margin for

several inhibitors: Staurosporine, Sunitinib, SU-14813, PKC-412,

JNJ-7706621, VX-680. These 6 inhibitors on which CCORPS

significantly underperforms are 6 of the top 7 inhibitors in terms

of number of kinases inhibited. That is, the aforementioned 6

inhibitors are relatively promiscuous and tend to interact with a

large number of kinases across several kinase families. Further-

more these same 6 inhibitors also have the 6 highest hpc counts

across the entire dataset. This result indicates that CCORPS has

difficulty predicting inhibitor binding for broad spectrum inhib-

itors and is discussed further in the following section. In the cases

of JNJ-7706621 and VX-680, the performance difference is only

significant in terms of the enrichment score. CCORPS significantly

outperforms the binding site sequence-based approach for several

narrow spectrum inhibitors including, but not limited to:

Lapatinib, CP-724714, CP-690550, SB-431542, VX-745. Overall,

when CCORPS performed better than the sequence-based approach

the magnitude of the performance difference tended to be larger

than when it performed worse. It should also be noted that the

standard deviations of the differences between in AUCROC,

AUCPR, and enrichment score (0.21, 0.33, and 0.36, respectively)

highlight that the two methods have complementary strengths. We

repeated the cross-fold validation using 50% sequence identity

(instead of 70%) to determine the folds. This makes the prediction

problem harder for both CCORPS and the sequence-based approach

(see Table S2). The mean performance is slightly lower for both,

but the standard deviations of the differences in performance

remain the same, reinforcing the observation that CCORPS and the

sequence-based approach have complementary strengths.

Discussion

Identifying structural features of the kinase binding site that

directly or indirectly mediate the binding ability of inhibitors is a

significant component in developing and optimizing kinase

inhibitors. Given the increasingly large number of available kinase

structures, kinome-wide comparative binding site analysis is now

possible as has been demonstrated here. By combining available

structure data with large-scale inhibitor affinity data, it becomes

possible to automatically learn the features of the kinase binding

site that predict the binding ability of a given inhibitor. This is

useful for predicting whether kinases whose binding affinity is

unknown will bind to a given drug, but, perhaps more

importantly, knowing the structural basis for binding to a

particular drug can be exploited in the design of analogs that

bind more strongly and have fewer off-target interactions. This

information could further improve well-established structure-based

computer-aided drug design methods, where it is challenging to

develop reliable models for the contributions of individual

interactions or groups of interactions between inhibitor and

protein to binding affinity.

CCORPS has been demonstrated here to be capable of learning

the features of the kinase binding site that are informative of

inhibitor binding across a set of 38 inhibitors. Furthermore, the

binding site features selected by CCORPS as informative of inhibitor

activity/inactivity have been shown to be interesting in and of

themselves, for example, the existence of residue triad clusters that

are unique in kinases capable of binding a given inhibitor but that

exist within kinases from different major branches of the kinase

family tree. The identification of such shared binding site features

among sequence-diverse kinases is an important contribution for

structure-based methods because of the relative difficulty of

identifying small subsets of sequence non-contiguous but spatially

compact positions that are correlated with a given indicator, such

as inhibitor binding ability. The complete set of 41,964 true-

majority HPCS that contain kinases from two or more of the

kinome families as defined by Manning et al. [2] is provided as

Dataset S1 to facilitate further analysis of these phylogenetically

diverse structural features that distinguish kinases binding each of

the 38 inhibitors.

As was demonstrated here, CCORPS is capable of incorporating

all of the available protein kinase structure data, so as to operate at

the kinome scale, and then using this data to construct highly

accurate predictors of kinase affinity for a variety of different small

molecule inhibitors. While CCORPS relies upon the aggregation of

structural similarity that coincides with affinity similarity to build

predictors, the individual instances may be informative in and of

themselves. Further analysis of the vast number of structurally

similar features shared among phylogenetically distant kinases may

provide additional insights into the structural mechanisms of

inhibitor recognition occurring across the kinome.

The existence of affinity datasets containing structurally similar

inhibitors, that differ by only one or a small number of chemical

substitutions, provides the opportunity to associate specific

structural features identified by CCORPS with specific inhibitor

pharmacophores. A recent approach by Milletti and Hermann [6]

has been demonstrated to identify specific chemical transforma-

tions that can be associated with selectivity differences. In future

work we will seek to further incorporate this cross-inhibitor level of

analysis and broaden the scale of the structure dataset by further

incorporating newly available kinase crystallographic structures.

Several potential optimizations of CCORPS may increase its

inhibitor binding prediction performance on broad spectrum

inhibitors. For the 38 inhibitor dataset analyzed in this paper, the

number of HPCS identified was well correlated with the number of

kinases inhibited (R2~0:69). That is, CCORPS tended to perform

less well on inhibitors for which large numbers of HPCS were

identified. Developing an approach to weighting and ranking the

large number of HPCS generated by broad spectrum inhibitors

may aid in increasing the predictive performance of CCORPS for

these inhibitors. For example, ranking HPCS by the mean within-

cluster affinity (Kd ) would more heavily weight structural features

correlated with strong binders and decrease the impact of

structural features only correlated weak binders. Such an approach

would help to increase the signal-to-noise ratio of HPCS when the

number of HPCS identified grows large. As our results showed,

there are cases where CCORPS significantly outperforms a sequence-

based method, but there also cases where the reverse is true. While

this paper focused on quantifying the extent at which structure

alone can be used to predict binding affinity, for practical usage we

envision that structure- and sequence-based methods are used in

tandem.

A major advantage of the work presented is the generality of

CCORPS to detect structurally distinguishing features for a wide

variety of applications beyond the kinase inhibitor affinity analysis

presented here. No assumptions regarding the nature of the

annotation labels nor of the alignment type are made at any point

by CCORPS. CCORPS provides a general framework for automatically

learning structural features that distinguish proteins having

different annotation labels. This allows the incorporation of purely

structure-based alignments, such as those available in databases

like HOMSTRAD [33] or even local structure alignments such as

those identified by motif/template search algorithms (e.g., SOIPPA

[34], and LabelHash, [35]). Other sources of annotation labels,

including Gene Ontology (GO, [14]) terms, binding affinity for a
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given molecule and ligation state can be incorporated as-is with

CCORPS without modification to the method.

Supporting Information

Figure S1 Structure-based binding site alignment via
MATT. In order to identify a mapping between residues in the TK

and non-TK PFAM alignments, MATT was used to compute a

structural alignment of the kinase domains of p38 structure

PDB:3HEC (white) and LCK structure PDB:2Pl0 (black), both with

bound imatinib inhibitor (red). The Ca rmsd of the above binding

site alignment region (27 residue positions) was 1.169 Å and the

RMSD of the imatinib inhibitors is 1.736 Å; the imatinib molecule

coordinates were ignored during computation of the alignment.

(TIF)

Figure S2 Substructure clustering for one 3-position
subset of the a-amylase binding site alignment. In each

scatter plot above, the dimensionality-reduced feature vectors

computed by CCORPS are shown. Each point shown is one feature

vector and each feature vector represents one protein substructure.

Tightly grouped points correspond to binding site substructures

with high structural and chemical similarity. Plots A, B and C

above all show the same clustering with different sets of annotation

labels applied (labels are denoted by color): (A) cluster ID labeling;

(B) 3-tier EC labeling; (C) 4-tier EC labeling. Solid ellipses

indicated clusters identified automatically as HPCS. Dashed

ellipses indicate subsets of non-HPC clusters that would have been

considered HPCS if the clustering step had distinguished each as a

separate cluster.

(TIF)

Dataset S1 The complete set of 41,964 true-majority
HPCS that contain kinases from two or more of the
kinome families.

(CSV)

Text S1 Details on the mapping and alignment of
positions among structures within the kinase dataset.
(PDF)

Text S2 Using CCORPS to predict the EC classification for
an extensive dataset of 48 families constructed using the
PFAM database: a large-scale validation experiment.
(PDF)

Text S3 Details of the CCORPS method.
(PDF)

Table S1 Accuracy of predicted EC classifications for
Pfam protein families in cross-fold validation. Predictions

are made at all 4 tiers of the EC hierarchy.

(PDF)

Table S2 Affinity prediction performance of CCORPS for
the kinase inhibitors using a 50% sequence identity
clusters for cross validation. For each of the 38 inhibitors in

the affinity dataset of Karaman et al., the prediction performance

of CCORPS and the sequence-based method is shown below. While

the mean auc values and enrichment scores are close, the standard

deviations of the differences between the corresponding columns

(0.21, 0.31, and 0.40, respectively) highlight that the two methods

have complementary strengths.

(PDF)
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