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Abstract Omni-directional vision allows for the development of techniques for mobile
robot navigation that have minimum perceptual requirements. In this work, we
focus on robot navigation algorithms that do not require range information or
metric maps of the environment. More specifically, we present a homing strat-
egy that enables a robot to return to its home position after executing a long
path. The proposed strategy relies on measuring the angle between pairs of fea-
tures extracted from panoramic images, which can be achieved accurately and
robustly. In the heart of the proposed homing strategy lies a novel, local con-
trol law that enables a robot to reach any position on the plane by exploiting
the bearings of at least three landmarks of unknown position, without making
assumptions regarding the robot’s orientation and without making use of a com-
pass. This control law is the result of the unification of two other local control
laws which guide the robot by monitoring the bearing of landmarks and which
are able to reach complementary sets of goal positions on the plane. Long-range
homing is then realized through the systematic application of the unified control
law between automatically extracted milestone positions connecting the robot’s
current position to the home position. Experimental results, conducted both in
a simulated environment and on a robotic platform equipped with a panoramic
camera validate the employed local control laws as well as the overall homing
strategy. Moreover, they show that panoramic vision can assist in simplifying the
perceptual processes required to support robust and accurate homing behaviors.

1. Introduction

Vision-based robot navigation is an important application of computer vi-
sion techniques and tools. Many approaches to this problem either assume the
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existence of a geometric model of the environment [Kosaka and Pan, 1995]
or the capability of constructing an environmental map [Davison and Murray,
2002]. In this context, the problem of navigation is reduced to the problem
of reconstructing the workspace, computing the robot’s pose therein and plan-
ning the motion of the robot between desired positions. Probabilistic meth-
ods [Thrun, 2000] have been developed in robotics that deal with this prob-
lem, which is usually referred to as the simultaneous localization and mapping
(SLAM) problem.

Catadioptric sensors have been proposed as suitable sensors for robot nav-
igation. A panoramic field of view is advantageous for the achievement of
robotic navigational tasks in the same way that a wide field of view facili-
tates the navigational tasks of various biological organisms such as insects and
arthropods [Srinivasan et al., 1997]. Many robotic systems that use panoramic
cameras employ a methodology similar to the one employed in conventional
camera systems. Adorni et al. discuss stereo omnidirectional vision and its
advantages for robot navigation [Adorni et al., 2003]. Correlation techniques
have been used to find the most similar pre-stored panoramic image to the cur-
rent one [Aihara et al., 1998]. Winters et al. [Winters et al., 2000] qualitatively
localize the robot from panoramic data and employ visual path following along
a pre-specified trajectory in image coordinates.

Panoramic cameras, however, offer the possibility of supporting naviga-
tional tasks without requiring range estimation or a localization approach in the
strict sense. Methods that rely on primitive perceptual information regarding
the environment are of great importance to robot navigation because they pose
minimal requirements on a-priori knowledge regarding the environment, on
careful system calibration and, therefore, have better chances to result in effi-
cient and robust robot behaviors. This category includes robot navigation tech-
niques that mainly exploit angular information on image-based features that
constitute visual landmarks. Several such methods exist for addressing a spe-
cific navigation problem, the problem of homing [Hong et al., 1991]. Homing
amounts to computing a path that returns a robot to a pre-visited “home” po-
sition (see Figure 1). One of the first biologically-inspired methods for visual
homing was based on the “snapshot model” [Cartwright and Collett, 1983]. A
snapshot represents a sequence of landmarks labeled by their compass bearing
as seen from a position in the environment. According to this model, the robot
knows the difference in pose between the start and the goal and uses this in-
formation to match the landmarks between the two snapshots and to compute
its path. There have been several implementations of snapshot-based tech-
niques on real mobile robots. Some of the implemented methods rely on the
assumption that the robot has constant orientation or can make use of a com-
pass [Lambrinos et al., 2000, Moller, 2000]. These approaches are not able to
support robot homing for any combination of goal (home) snapshot, current
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Figure 1. The robot acquires a snapshot of the environment at home position. Then, it
wanders in its environment (solid line) and, at some position G homing is initiated so as to
return to home (dashed line) by making use of the landmarks available in the workspace (small
black rectangles).

position and landmark configuration. Furthermore, the conditions under which
the related control laws are successful are not straightforward and cannot be
directly inferred from the visual information available at the current and the
goal snapshots.

In this work, we present a complete long-range homing strategy for a robot
equipped with a panoramic camera. The robot does not have to be aware of
its position and orientation and does not have to reconstruct the scene. At the
core of the proposed strategy lies a snapshot-based local control law [Argyros
et al., 2001], which was later further studied and extended [Bekris et al., 2004].
The advantage of this particular local control law is that it can guide a robot
between two positions provided that three landmarks can be extracted and cor-
responded in the panoramas acquired at these two positions. This implies that
there is no inherent control-related issue that restricts the set of position pairs
that the algorithm can accommodate. Constraints are only related to difficulties
in corresponding features in images acquired from different viewpoints.

Establishing feature correspondences in images acquired from adjacent view-
points is a relatively easy problem. Thus, short-range homing (i.e., homing that
starts at a position close to home) can be achieved by directly applying the pro-
posed local control law as it is described in [Argyros et al., 2005]. In the case
of long-range homing (i.e., homing that starts at a position far from home),
prominent features are greatly displaced and/or occluded, and the correspon-
dence problem becomes much more difficult to solve [Lourakis et al., 2003].
Therefore, control laws based on the comparison of two snapshot are only lo-
cal in nature and they cannot support long-range homing. To overcome this
problem, the proposed method decomposes homing into a series of simpler
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navigational tasks, each of which can be implemented based on the proposed
local control law. More precisely, long-range homing is achieved by automat-
ically decomposing the path between the current robot position and the home
position with the aid of a set of milestone positions. The selection process guar-
antees that pairs of milestone positions view at least three common landmarks.
The local control law can then be used to move the robot between consecutive
milestone positions. The overall mechanism leads the robot to the home posi-
tion through the sequential application of the control law. Note that using only
the basic control law to move between adjacent milestone positions leads to a
more conservative selection of such intermediate goals. With the introduction
of the complementary control law [Bekris et al., 2004] and its unification with
the basic one, the only constraints on the selection of the milestone positions
are due to landmark visibility.

The proposed method for robot homing has been implemented and exten-
sively tested on a robotic platform equipped with a panoramic camera in a real
indoor office environment. Different kinds of visual features have been em-
ployed and tested as alternative landmarks to the proposed homing strategy. In
all experiments the home position could be achieved with high accuracy after
a long journey during which the robot performed complex maneuvers. There
was no modification of the environment in order to facilitate the robot’s homing
task. The proposed method can efficiently achieve homing as long as enough
features exist in the world. Homing will fail only if three robust features cannot
be extracted and tracked at any time.

Our approach of robot navigation is similar to that of purposive vision [Aloi-
monos, 1993]. We use information specific to our problem which is probably
not general enough to support many other navigational tasks. We derive partial
representations of the environment by employing retinal motion-based quanti-
ties which, although sufficient for the accomplishment of the task at hand do
not allow for the reconstruction of the state of the robot. Similar findings have
been reported for other robotic tasks such as robot centering in the middle of
corridors [Argyros et al., 2004].

The rest of the work is organized as follows. Section 2 focuses on the lo-
cal control strategy that enables a robot to move between adjacent positions
provided that a correspondence between at least three features has been es-
tablished in panoramas acquired at these positions. Section 3 describes our
approach on how to automatically decompose a long-range homing task into
a series of short-range navigation tasks each of which can be implemented
through the proposed local control law. In section 4 we present alternative
panoramic image features that can be used to perceptually support the homing
strategy. Extensive experimental results from implementations of the proposed
homing strategy on a robotic platform are provided in section 5. Moreover, the
benefits stemming of the use of panoramic cameras compared to conventional
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ones are described in section 6. The work concludes in section 7 with a brief
discussion on the key contributions of this work.

2. Control law

In the following, the robot is abstracted as a point on the 2D plane. The
objective of the local control law is to use angular information related to fea-
tures extracted in panoramic images in order to calculate a motion vector

−→
M

that, when updated over time, drives the robot to a pre-visited goal position.
A snapshot of the workspace from a configuration P ∈ (R2 × S1), corre-
sponds both to the sequence of visible landmarks and the bearings with which
the landmarks are visible from P . The current and the goal position of the
robot, together with the corresponding snapshots, will be denoted as A and T ,
respectively.

Basic control law

We will first consider the case of two landmarks Li and Lj . The angular
separations θij , θ

′

ij ∈ [0, 2π) correspond to the angles between Li and Lj as
measured at A and T respectively. If ∆θij = θ′ij − θij is positive, then the
robot views the two landmarks from position T with a greater angle than from
position A. The robot will move in a direction that increases the angle θij . If
0 ≤ θij ≤ π and ∆θij ≥ 0, the robot should move closer to the landmarks. All

Figure 2. The definition of the motion vector for two landmarks.



6

directions that are in the interior of the angle between vectors
−−→
ALi and

−−→
ALj

will move the robot to a new position with greater θij including the direction
of the angle bisector

−→
δij . Similarly, when θij ≥ π, moving on the direction of

−→
δij increases θij . When ∆θij is negative, the robot should follow the inverse
of
−→
δij . A motion vector that has the above properties and has magnitude that is

a continuous function over the entire plane is given by the following equation:

−−→
Mij =







∆θij ·
−→
δij , if −π ≤ ∆θij ≤ π

(2π −∆θij) ·
−→
δij , if ∆θij > π

(−2π −∆θij) ·
−→
δij , if ∆θij < −π.

(1)

If the robot moves according to the motion vector
−−→
Mij as this is described

in Eq.(1), it is guaranteed to reach the point of intersection of the circular arc
(LiTLj) and the branch of the hyperbola that goes through A and has points
Li and Lj as foci. An example of such a point is T ′ in Figure 2. If a third
landmark, Lk, exists in the environment, then every position T is constrained
to lie on two more circular arcs. A partial motion vector

−−→
Mij is then defined

for each possible pair of different landmarks Li and Lj . By taking the vector
sum of all these vectors the resultant motion vector

−→
M is produced. Figure 3

gives an example where
−−→
Mki and

−−→
Mjk have the same direction as the bisector

vectors.
−−→
Mij is opposite to

−→
δij because ∆θij is negative. The control law can

be summarized in the equation
−→
M =

−−→
Mij +

−−→
Mjk +

−−→
Mki, (2)

where the component vectors are defined in Eq.(1). Note that when the robot
reaches the goal position, it is guaranteed to remain there because at that point
the magnitude of the global motion vector

−→
M is equal to zero.

In order to determine the reachability set of this basic control law, i.e., the
set of points of the plane that can be reached by employing it in a particular
configuration of three landmarks, we ran extensive experiments using a simu-
lator as computed by detailed simulations. The gray area in Figure 4(a) shows
the reachability area of the basic control law. The sets of points that are always
reachable, independently of the robot’s start position, are summarized below:

The interior Ĉ of the circle defined by L1, L2 and L3.

The union Ĥ of all sets Hj . A set Hj is the intersection of two half-
planes. The first half-plane is defined by line (LiLj) and does not in-
clude landmark Lk, while the second is defined by the line LjLk and
does not include landmark Li, where k 6= i 6= j 6= k. In Figure 4(b) the
white area outside the circle defined by the three landmarks corresponds
to the set Ĥ .
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Complementary control law

We now present the complementary control law, that reaches the positions
that are unreachable by the basic law. As in the case of the basic control law,
the complementary control law exploits the bearings of three landmarks.

We first define the π-difference of an angular separation θij to correspond to
|π−θij|. Points on the line segment (LiLj) will have π-difference of θij equal
to zero. The nearest landmark pair (NLP) to the goal is the pair of landmarks
(LiLj), that has the minimum π-difference. The corresponding motion vector
will be called the nearest motion vector (NMV). From the study of the basic
control law, it can be shown that for an unreachable point T , the dominating
component vector is the NMV. The robot follows a curve that is close to the
hyperbola with the NLP landmarks Li and Lj as the foci, until it approaches
the circular arc (LiTLj). Close to the arc, the NMV stops dominating, because
∆θij approaches zero. If the goal position is located at the intersection of the
curve and the arc (LiTLj), then the robot reaches the goal. Otherwise, the
robot reaches the arc and follows the opposite direction from the goal. Notice
that the robot can easily detect which landmark pairs do not correspond to the
NLP. When the robot is close to the circular arc defined by the NLP, those two
vectors guide the robot away from the goal.

In order to come up with a control law that reaches the complementary set
of points to that of the basic control law, the two component motion vectors
that are not the NMV vectors should be inverted. The gray area in Figure 4(b)
shows the reachability set of this new law.

Figure 3. The definition of the motion vector for three landmarks.
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(a) (b) (c)

Figure 4. Simulation results. The robot’s initial position is point A and three landmarks
L1, L2, L3 exist in the scene. Every point is painted gray if it constitutes a reachable destination
by employing (a) the basic control law, (b) the complementary law or (c) the unified control law.

The unification of the two local control laws

In this section we show how to unify the two control laws that have comple-
mentary reachability areas in a single law with a reachability area that equals
the entire plane. The previous discussion suggests that in order to decide which
is the appropriate algorithm to use, the robot must distinguish whether the goal
is located in the set Ĉ or in the set Ĥ so as to use the basic control law or
whether it is located somewhere in the rest of the plane and the complemen-
tary law must be used. Deciding whether a snapshot has been taken from
the interior of the circle of the landmarks based only on angular information
is impossible. Nevertheless, the robot can always move towards the goal by
employing the basic algorithm and, while moving, it can collect information
regarding the goal snapshot. Based on a set of geometric criteria it is possible
to infer whether the basic algorithm was the right choice or if the robot should
switch to the complementary law. The geometric criteria consider only the
bearings of the landmarks and in one case their rate of change.

For the description of the geometric criteria, we will denote the interior of
the landmark’s triangle as T̂ and the circumscribed circle of two landmarks
and the goal as a landmark-goal circle. If the landmarks that correspond to a
landmark-goal circle belong to the NLP pair then the circle is called the NLP

landmark-goal circle. The geometric criteria that can be used to infer which
control law to use based on angular measurements are the following:

1. T ∈ T̂? The goal snapshot T is in the set T̂ if and only if θ′ij < π, ∀i, j ∈
[1, 3], where Li and Lj are consecutive landmarks as they are seen from
T .

2. T ∈ Ĥ and A ∈ T̂ ? The goal snapshot T is in the set Ĥ if and only if
T can see the landmarks with a different order than A does when A is in
T̂ .



Exploiting Panoramic Vision for Bearing-Only Robot Homing 9

3. T 6∈ T̂ and A on opposite half-plane defined by NLP pair? The robot will
then enter T̂ . If it is going to exit T̂ then:
If the last landmark-goal circle intersected by the robot before leaving T̂
is the NLP circle then: T 6∈ Ĉ.

4. A is on the NLP landmark-goal circle? The goal T is reachable by the
basic control law if the non-NLP differences in angular separation are
decreasing when the robot has reached the NLP landmark-goal circle.

The overall algorithm that is used for the navigation of the robot is described
in Algorithm 1. The robot can be in three possible states: UNCERTAIN, BASIC
and COMPLEMENTARY. When in BASIC the robot moves according to the basic
control law and when in COMPLEMENTARY the complementary control law is
applied.

Algorithm 1 Unified Control Law
status = UNCERTAIN;
repeat

if status is UNCERTAIN then
if T ∈ T̂ then

status = BASIC;
else if T ∈ Ĥ and A ∈ T̂ then

status = BASIC;
else if T 6∈ T̂ and A on opposite half-plane defined by NLP pair then

if last landmark-goal circle intersected before leaving T̂ is the NLP circle then
status = COMPLEMENTARY

else
status = BASIC

end if
else if A is on the NLP landmark-goal circle then

if the non-NLP differences in angular separation are increasing then
status = COMPLEMENTARY

end if
end if

end if

if status is BASIC or status is UNCERTAIN then
compute motion vector M with Basic Control Law

else
compute motion vector M with Complementary Control Law

end if

move according to M

until current snapshot A and goal snapshot T are similar

The initial state is the UNCERTAIN one. The robot is applying the basic con-
trol law, but also continuously monitors whether any of the above geometric
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conditions have been met. If the goal is located in the interior of the landmark’s
triangle then the unified algorithm will immediately switch to BASIC. The sec-
ond criterion can be checked if the robot enters the landmarks’ triangle while
the third one only upon exiting this triangle. The last criterion is used only if
none of the previous ones has given any information and the robot has reached
the NLP landmark-goal circle. At this point, the robot can switch behavior by
tracking the change in angular separations. These criteria guarantee that the
appropriate control law will be used, regardless of the location of the goal.

3. The strategy for long-range homing

The presented unified local control law may support homing when the latter
is initiated from a position close to home. However, in the case that home is
far apart from the position where homing is initiated, it may be the case that
these two positions do not share any visual feature in common and, therefore,
the unified local control strategy cannot support homing. In the following, we
propose a memory-based extension to the local control law which enables it to
support such a type of long range homing.

The proposed approach operates as follows. Initially the robot detects fea-
tures in the view acquired at its home position. As it departs from this position,
it continuously tracks these features in subsequent panoramic frames. During
its course, some of the initially selected features may not be visible anymore
while other, new features may appear in the robot’s field of view. In the first
case the system “drops” the features from subsequent tracking. In the sec-
ond case, features start being tracked. This way, the system builds an internal
“visual memory” where information regarding the “life-cycle” of features is
stored.

A graphical illustration of this type of memory is provided in Figure 5. The
vertical axis in this figure corresponds to all the features that have been identi-
fied and tracked during the journey of the robot from its home position to the
current position G. The horizontal dimension corresponds to time. Each of
the horizontal black lines corresponds to the life cycle of a certain feature. In
the particular example of Figure 5, the home position and position G do not
share any common feature and, therefore, the local control law presented in
section 2 cannot be employed to directly support homing. In order to alleviate
this problem, milestone positions (MPs) are introduced. Being at the end posi-
tion G, the method first decides how far the robot can go towards home based
on the extracted and tracked features. A position with these characteristics is
denoted as MP1 in Figure 5. Achieving MP1 from the goal position is feasi-
ble (by definition) by employing features F5, F6 and F7 in the proposed local
control law. The algorithm proceeds in a similar manner to define the next MP
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Figure 5. Graphical illustration of the memory used in long-range homing.

towards home. The procedure terminates when the last MP achieved coincides
with the home position.

The local control law of section 2 guarantees the achievement of a target
position but not necessarily the achievement of the orientation with which the
robot has previously visited this position. This is because it takes into account
the differences of the bearings of features and not the bearings themselves.
This poses a problem in the process of switching from the features that drove
the robot to a certain MP to the features that will drive the robot to the next MP.
This problem is solved as follows. Assume that the robot has originally vis-
ited a milestone position P with a certain orientation and that during homing
it arrives at position P

′

where P
′

denotes position P , visited under a differ-
ent orientation. Suppose that the robot arrived at P

′

via features F1, F2, ...,
Fn. The bearings of these features as observed from position P are Ap(F1),
Ap(F2), · · ·, Ap(Fn) and the bearings of the same features as observed from
P ′ are AP ′(F1), AP ′(F2), · · ·, AP ′(Fn). Then, it holds that

AP (Fi)−AP ′(Fi) = φ, ∀i, 1 ≤ i ≤ n,

where φ is constant and equal to the difference in the robot orientation at P and
P ′. This is because panoramic images that have been acquired at the same lo-
cation but under a different orientation differ by a constant rotational factor φ.
Since both AP (Fi) and AP ′(Fi) are known, φ can be calculated. Theoretically,
one feature suffices for the computation of φ. Practically, for robustness pur-
poses, all tracked (and therefore corresponded) features should contribute to
the estimation of φ. Errors can be due to the inaccuracies in the feature track-
ing process and/or due to the non-perfect achievement of P during homing.
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For the above reasons, φ is computed as:

φ = median{AP (Fi)−AP ′(Fi)}, 1 ≤ i ≤ n.

Having an estimation of the angular shift φ between the panoramas acquired at
P and P

′

, it is possible to start a new homing procedure. The retinal coordi-
nates of all features detected during the visit of P can be predicted based on the
angular displacement φ. Feature selection is then applied to small windows
centered at the predicted locations. This calculation results in registering all
features acquired at P and P

′

which permits the identification of a new MP
and the continuation of the homing procedure. Moreover, if the robot has al-
ready arrived at the home position it can align its orientation with the original
one by rotating according to the computed angle φ.

An important implementation decision is the selection of the number of fea-
tures that should be corresponded between two consecutive MPs. Although
three features suffice more features can be used, if available. The advantage
of considering more than three corresponded features is that reaching MPs
(and consequently reaching the home position) becomes more accurate be-
cause feature-tracking errors are smoothed-out. However, as the number of
features increases, the number of MPs also increases because it is less proba-
ble for a large number of features to “survive” for a long period. In a sense, the
homing scheme becomes more conservative and it is decomposed into a larger
number of safer, shorter and more accurate reactive navigation sessions. Spe-
cific implementation choices are discussed in the experimental results section
of this work.

4. Extracting and tracking landmarks

The proposed bearing-only homing strategy assumes that three landmarks
can be detected and corresponded in panoramic images acquired at differ-
ent robot positions and that the bearings of these features can be measured.
Two different types of features have been employed in different experiments,
namely image corners and centroids of color blobs.

Image corners

One way to achieve feature correspondence is through the detection and
tracking of image corners. More specifically, we have employed the KLT
tracking algorithm [Shi and Tomasi, 1993]. KLT starts by identifying char-
acteristic image features, which it then tracks in a series of images. The KLT
corner detection and tracking is not applied directly on the panoramic images
provided by a panoramic camera (e.g., the image of Figure 7) but on the cylin-
drical image resulting by unfolding such an image using a polar-to-Cartesian
transformation [Argyros et al., 2004] (see for example the image in Figure
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6). In the resulting cylindrical image, the full 360o field of view is mapped
on the horizontal image dimension. Once a corner feature F is detected and
tracked in a sequence of such images, its bearing AP (F ) can be computed as
AP (F ) = 2πxF /D where x is the x-coordinate of feature F and D is the
width of this panoramic image in pixels.

Figure 6. Cylindrical panoramic view of the workspace from the home position that the robot
is approaching in Fig. 13. The features extracted and tracked at this panorama are also shown
as numbered rectangles.

Centroids of colored blobs

The detection and tracking of landmarks can also be accomplished with
the aid of a blob tracker [Argyros and Lourakis, 2004]. Although originally
developed for tracking skin-colored regions, this tracker may track multiple
colored objects in images acquired by a possibly moving camera. The method
encompasses a collection of techniques that enable the modeling and detec-
tion of colored objects and their temporal association in image sequences. In
the employed tracker, colored objects are detected with a Bayesian classifier
which is bootstrapped with a small set of training data. A color model is
learned through an off-line procedure that permits the avoidance of much of
the burden involved in the process of generating training data. Moreover, the
employed tracker adapts the learned color model based on the recent history of
tracked objects. Thus, without relying on complex models, is able to robustly
and efficiently detect colored objects even in the case of changing illumination
conditions. Tracking in time is performed by employing a novel technique that
can cope with multiple hypotheses which occur when a time-varying number
of objects move in complex trajectories and occlude each other in the field of
view of a moving camera.

For the purposes of the experiments of this work, the employed tracker has
been trained with color distributions corresponding to three colored posters
(Figure 7). These posters are detected and subsequently tracked in the panoramic
images acquired during a navigation session. A byproduct of the tracking pro-
cess is the coordinate (xFi

, yFi
) of the centroid of each tracked landmark Fi.

Then, assuming that the center of the panoramic image is (xp, yp), the bearing

of landmark Fi can easily be computed as tan−1

(

yp−yFi

xp−xFi

)

. Landmarks that

appear natural in indoor environments, such as office doors and desks, have
also been successfully employed in our homing experiments.
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Figure 7. Sample panoramic image with extracted landmarks. Small squares represent the
position of the detected and tracked landmarks. The contour of each detected landmark is also
shown.

5. Experiments

A series of experiments have been conducted in order to assess qualitatively
and quantitatively the performance of the proposed homing scheme.

Verifying the local control laws

Towards verifying the developed local control strategies, a simulator has
been built which allows the design of 2D environments populated with land-
marks. The simulator was used to visualize the path of a simulated robot as
the latter moves according to the proposed local control laws. Examples of
such paths as computed by the simulator can be seen in Figure 8. Addition-
ally, the simulator proved very useful in visualizing and verifying the shape of
the reachability areas for the basic, the complementary and the unified local
control laws.

Although simulations provide very useful information regarding the ex-
pected performance of the proposed local control laws, it is only experiments
employing real robots in real environments that can actually test the perfor-
mance of the proposed navigational strategy. For this reason, another series
of experiments employ an I-Robot, B21R robot equipped with a Neuronics,
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Figure 8. Paths computed by the unified local control law. The reachability sets of the basic
and the complementary control laws are shown as dark and light gray regions, respectively.

V-cam360 panoramic camera in a typical laboratory environment. Figure 9(a)
illustrates the setting where the reported experiments were conducted. As it can
be seen in the figure, three distinctive colored panels were used as landmarks.
Landmarks were detected and tracked in the panoramic images acquired by the
robot using the method described in section 6. The floor of the workspace was
divided into the sets Ĉ, Ĥ and the rest of the plane for the particular landmark
configuration that was used. It should be stressed out that this was done only
to visually verify that the conducted experiments were in agreement with the
results from simulations. The workspace also contains six marked positions.
Figure 9(b) shows a rough drawing of the robot’s workspace where the sets Ĉ,
Ĥ as well as the marked positions are shown. Note that these six positions are
representative of robot positions of interest to the proposed navigation algo-
rithm, since A ∈ T̂ , F ∈ Ĉ − T̂ , C,D ∈ Ĥ and B,E are positions in the rest
of the plane.

In order to assess the accuracy of the tracking mechanism in providing the
true bearings of the detected and tracked landmarks, the robot was placed in
various positions in its workspace and was issued a variety of constant ro-
tational velocities (0.075 rad/sec, 0.150 rad/sec). Since this corresponds to a
pure rotational motion of the panoramic camera, it was expected for the tracker
to report landmark positions changing at a constant rate, corresponding to the
angular velocity of the robot. For all conducted experiments the accuracy in
estimating the bearing was less than 0.1 degrees per frame, with a standard
deviation of less than 0.2.
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(a) (b)

Figure 9. The environment where the experiments were conducted.

A first experiment was designed so as to provide evidence regarding the
reachability sets of the three control strategies (basic, complementary and uni-
fied). For this reason, each algorithm has been tested for various start and goal
positions (3 different starting positions × 3 different types of starting positions
× 3 different goal positions × three algorithms). The table in Figure 10 sum-
marizes the results of the 81 runs by providing the accuracy in reaching goal
positions, measured in centimeters.

The main conclusions that can be drawn from this table are the following:

The basic control law fails to reach certain goal positions, independently
of the starting position. The reachability set is in agreement with simu-
lation results.

The complementary control law fails to reach certain goal positions, in-
dependently of the starting position. The reachability set is in agreement
with simulation results.

Algorithm Basic Law Complementary Combination
Attempt Positions A C E A C E A C E

1
st Initial point 3.5 3.0 Fail Fail Fail 4.5 1.0 4.5 5.5

2
nd in Ĉ 2.0 1.0 Fail Fail Fail 5.5 2.0 3.5 8.5

3
rd 0.0 1.5 Fail Fail Fail 4.0 4.0 3.0 3.0

1
st Initial point 3.5 11.5 Fail Fail Fail 6.0 2.0 9.0 1.5

2
nd in Ĥ 1.5 1.5 Fail Fail Fail 2.5 3.5 3.0 6.5

3
rd 2.5 2.0 Fail Fail Fail 8.5 2.0 3.0 3.5

1
st Initial point 2.0 2.0 Fail Fail Fail 2.5 1.5 2.0 2.0

2
nd not in Ĉ 4.0 0.0 Fail Fail Fail 9.0 3.5 2.0 5.5

3
rd or , Ĥ 0.5 5.5 Fail Fail Fail 3.0 1.5 3.5 8.0

Figure 10. Experiments testing the reachability area and the accuracy of the proposed local
control laws.
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The unified control law reaches all goal positions.

The accuracy in reaching a goal position is very high for all control laws.

To further assess the accuracy of the unified algorithm in reaching a goal
position, as well as the mechanisms that the algorithm employs to switch be-
tween the complementary and the basic control law, the unified control law
was employed 30 times to reach each of the 6 marked positions, resulting in
180 different runs. Figure 11 shows the results of the experiments and summa-
rizes them by providing the mean error and the standard deviation of the error
in achieving each position. As it can be verified from Figure 11, the accuracy
of the unified law in reaching a goal position is very high as it is in the order
of a very few centimeters for all goal positions.

Position: A B E D F C
Mean Val. 1.45 4.65 3.22 2.55 2.28 2.85
St. Dev. 1.13 2.10 1.96 1.35 1.22 1.41

Figure 11. Accuracy of the proposed local control laws in reaching a desired position (dis-
tance from actual position, in centimeters)

Additional experiments have been carried out for different landmark config-
urations, including the special case of collinear landmarks. It is important to
note that except from different landmark configurations, different landmarks
have been also used. These landmarks were not specially made features such
as the colored panels but corresponded to objects that already existed in the
laboratory (e.g. the door that can be seen in Figure 9(a), the surface of an of-
fice desk, a pile of boxes, etc). The algorithm was also successful in the case
that a human was moving in the environment occasionally occluding the land-
marks for a number of frames. The tracker was able to recapture the landmark
as soon as it reappeared in the robot’s visual field. Finally, if the robot’s motion
towards the goal was interrupted by another process, such as manual control of
the robot, the algorithm was able to continue guiding the robot as soon as the
interrupting process completed. Sample representative videos from such ex-
periments can be found in http://www.ics.forth.gr/cvrl/demos. In all the above
cases the accuracy in reaching the goal position was comparable to the results
reported in Figures 10 and 11.

Verifying the strategy for long-range homing

Besides verifying the proposed local control strategy in isolation, further
experiments have been carried out to assess the accuracy of the full, long-
range navigation scheme. Figure 12 gives an approximate layout of the robot’s
workspace and starting position in a representative long-range homing experi-
ment. The robot leaves its home position and after executing a predetermined
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set of motion commands, reaches position G, covering a distance of approx-
imately eight meters. Then, homing is initiated, and three MPs are automat-
ically defined. The robot sequentially reaches these MPs to eventually reach
the home position. Note that the properties of the local control strategy applied
to reaching successive MPs are such that the homing path is not identical to
the prior path. During this experiment, the robot has been acquiring panoramic
views and processing them on-line. Image preprocessing involved unfolding
of the original panoramic images and Gaussian smoothing (σ=1.4). The re-
sulting images were then fed to the KLT corner tracker to extract features as
described in section 4. Potential features were searched in 7x7 windows over
the whole image. The robots maximum translational velocity was 4.0 cm/sec
and its maximum rotational velocity was 3 deg/sec. These speed limits depend
on the image acquisition and processing frame rate and are set to guarantee
small inter-frame feature displacements which, in turn, guarantee robust fea-
ture tracking performance. The 100 strongest features were tracked at each
time. After the execution of the initial path, three MPs were automatically
defined by the algorithm so as to guarantee that at least 80 features would be
constantly available during homing.

Figure 13 shows snapshots of the homing experiment as the robot reaches
the home position. Figure 6 shows the visual input to the homing algorithm
after image acquisition, unfolding and the application of the KLT tracker. The
tracked features are superimposed on the image. It must be emphasized that
although the homing experiment has been carried out in a single room, the
appearance of the environment changes substantially between home position
and position G. As it can be observed, the robot has achieved the home position
with high accuracy (the robot in Figure 13(c) covers exactly the circular mark
on the ground).

Figure 12. Workspace layout of a representative long-range homing experiment.
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(a) (b) (c)

Figure 13. Snapshots of the long-range homing experiment, as the robot approaches home.

6. Advantages of panoramic vision for bearing-only
navigation

A major advantage of panoramic vision for navigation is that by exploiting
such cameras, a robot can observe most of its surroundings without the need
for elaborate, human-like gaze control. An alternative would be to use perspec-
tive cameras and alter their gaze direction via pan-tilt platforms, manipulator
arms or spherical parallel manipulators. Another alternative would be to use
a multi-camera system in which cameras jointly provide a wide field of view.
Both alternatives, however, may present significant mechanical, perceptual and
control challenges. Thus, panoramic cameras, which offer the possibility to
switch the looking direction effortlessly and instantaneously, emerge as an ad-
vantageous solution.

Besides the practical problems arising when navigational tasks have to be
supported by conventional cameras, panoramic vision is also important be-
cause the accuracy in reaching a goal position depends on the spatial arrange-
ment of features around the target position. To illustrate this, assume a panoramic
view that captures 360 degrees of the environment in a typical 640×480 image.
The dimensions of the unfolded panoramic images produced by such panora-
mas are 1394×163, which means that each pixel represents 0.258 degrees of
the visual field. If the accuracy of landmark localization is 3 pixels, the accu-
racy of measuring a bearing of a feature is 0.775 degrees or 0.0135 radians.
This implies that the accuracy in determining the angular extent of a pair of
features is 0.027 radians, or, equivalently, that all positions in space that view
pair of features within the above bounds cannot be distinguished. Figure 14
shows results from related simulation experiments. In Figure 14(a), a simu-
lated robot, equipped with a panoramic camera, observes the features in its
environment with the accuracy indicated above. Then the set of all positions
that the robot would stop by the proposed control strategy are shown in the
figure in dark gray color. It is evident that all such positions are quite close to
the true robot location. Figure 14(b) shows a similar experiment but involves
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a robot that is equipped with a conventional camera with limited field of view
that observes three features. Because of the limited field of view, features do
not surround the robot. Due to this fact, the uncertainty in determining the
true robot location has increased substantially although that the accuracy in
measuring each landmark’s direction is higher.

(a) (b)

Figure 14. Influence of the arrangement of features on the accuracy of reaching a desired
position. The darker area represents the uncertainty in position due to the error in feature lo-
calization (a) for a panoramic camera and (b) for a 60

o f.o.v. conventional camera, and the
corresponding landmark configuration.

In current implementations of panoramic cameras, however, the omnidirec-
tional field of view is achieved at the expense of low resolution, in the sense of
low visual acuity. This reduced acuity could be a significant problem for tasks
like fine manipulation. For navigation tasks, however, it seems that acuity
could be sacrificed in favor of a wide field of view. For example, the estima-
tion of 3D motion is facilitated by a wide field of view, because this removes
the ambiguities inherent in this process when a narrow field of view is used
[Fermuller and Aloimonos, 2000]. As an example, in the experiment of Figure
14(b), the camera captures 60 degrees of the visual field in a 640×480 image.
Thus, each pixel represents 0.094 degrees of the visual field and the accuracy
of measuring a bearing of a feature is 0.282 degrees or 0.005 radians. Con-
sequently, accuracy in determining the angular extend of a pair of features is
0.01 radians, which is almost three times better compared to the accuracy of
the panoramic camera. Still, the accuracy in determining the goal position is
larger in the case of panoramic camera.

7. Discussion

This work has shown that panoramic vision is suitable for the implemen-
tation of bearing-only robot navigation techniques. These techniques are able
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to accurately achieve a goal position as long as the visual input is able to pro-
vide angular measurements without having to reconstruct the robot’s state in
the workspace. Compared to the existing approaches to robot homing, the pro-
posed strategy has a number of attractive properties. The requirement for an
external compass is no longer necessary. The proposed local control strategy
does not require the definition of two types of motion vectors (tangential and
centrifugal), as in the original “snapshot model” [Cartwright and Collett, 1983]
and, therefore, the definition of motion vectors is simplified. We have extended
the capabilities of the local control law strategy so that the entire plane is reach-
able as long as the features are visible by the robot while executing homing.
This fact greatly simplifies the use of the proposed local strategy as a building
block for implementing long-range homing strategies. In this work we have
also presented one such long-range homing algorithm that builds a memory
of visited positions during an exploration step. By successively applying the
local control strategy between snapshots stored in memory the robot can return
to any of the positions it has visited in the past. Last, but certainly not least, it
has been shown that panoramic vision can be critically important in such nav-
igation tasks because a wide field of view corresponds to greater accuracy in
the achievement of the goal position compared to the increased resolution that
pinhole cameras offer. Both the local control laws and the long-range strategy
have been validated in a series of experiments which have shown that hom-
ing can be achieved with a remarkable accuracy, despite the fact that primitive
visual information is employed in simple mechanisms.
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