
HLA-Arena: A customizable environment for the
structural modeling and analysis of peptide-HLA
complexes for cancer immunotherapy
Dinler A. Antunes, PhD∗1, Jayvee R. Abella∗1, Sarah Hall-Swan1, Didier Devaurs, PhD2,
Anja Conev1, Mark Moll, PhD1, Gregory Lizée, PhD3, and Lydia E. Kavraki, PhD†,1

1Department of Computer Science, Rice University, Houston, TX 77005, USA
2Univ. Grenoble Alpes, CNRS, Inria, Grenoble INP‡, LJK, 38000 Grenoble, France
3Department of Melanoma Medical Oncology - Research, The University of Texas MD Anderson Cancer Center,
Houston, TX 77054, USA

KEY POINT SUMMARY

Key objective: Enabling large-scale structural modeling and analysis of peptide-HLA complexes for
cancer immunotherapy applications.
Knowledge generated: We created a customizable environment, called HLA-Arena, with user-friendly
computational workflows that allow for varied structure-based analyses of peptide-HLA complexes. To
illustrate this, we show how researchers can use HLA-Arena to perform geometry prediction of peptide
binding modes, peptide binding energy prediction, and structure-based virtual screening of tumor-derived
peptides, for any classical class I HLA of interest.
Relevance: HLA-Arena can be integrated in computational pipelines to support basic cancer research
or to help inform physicians in pre-clinical settings. It can be used to perform structure-based selection
of peptides for T-cell-based immunotherapy, neoantigen discovery, and vaccine development.
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ABSTRACT
Purpose Human Leukocyte Antigen (HLA) protein receptors play a key role in cellular immunity.

They bind intracellular peptides and display them for recognition by T-cell lymphocytes. As T-cell
activation is partially driven by structural features of these peptide-HLA complexes, their structural
modeling and analysis is becoming a central component of cancer immunotherapy projects. Unfortunately,
this kind of analysis is limited by the small number of experimentally-determined structures of peptide-
HLA complexes. Overcoming this limitation requires developing novel computational methods to model
and analyze peptide-HLA structures.

Design Here we describe a new platform for the structural modeling and analysis of peptide-HLA
complexes, called HLA-Arena, that we have implemented using Jupyter Notebook and Docker. It is a
customizable environment that facilitates the usage of computational tools, such as APE-Gen and DINC,
that we previously applied to peptide-HLA complexes. By integrating other commonly-used tools, such
as Modeller and MHCflurry, this environment includes support for diverse tasks in structural modeling,
analysis, and visualization.

Results To illustrate the capabilities of HLA-Arena, we describe three example workflows applied
to peptide-HLA complexes. Leveraging the strengths of our tools, DINC and APE-Gen, the first two
workflows show how to perform geometry prediction for peptide-HLA complexes and structure-based
binding prediction, respectively. The third workflow presents an example of large-scale virtual screening
of peptides for multiple HLA alleles.

Conclusion These workflows illustrate the potential benefits of HLA-Arena for the structural mod-
eling and analysis of peptide-HLA complexes. As HLA-Arena can easily be integrated within larger
computational pipelines, we expect its potential impact to vastly increase. For instance, it could be used
to conduct structural analyses for personalized cancer immunotherapy, neoantigen discovery or vaccine
development.
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Introduction
Immunotherapy treatments are now at the forefront of methods used for cancer therapy. These

treatments aim at harvesting a patient’s own immunological defenses to identify and eliminate cancer
cells.1 Many of these immunotherapy treatments involve class I human leukocyte antigen (HLA) protein
receptors. HLA receptors bind peptides produced by the cleavage of intracellular proteins, which is a
continuous process present in almost every cell. The resulting peptide-HLA (pHLA) complexes are then
exposed at the surface of cells. Being also present in cancer cells, this mechanism allows circulating T-cell
lymphocytes to recognize tumor-associated peptides, thus triggering T-cell activation, tumor elimination,
and immunological memory against the tumor.1, 2

It has been shown that immunological outcomes are partially driven by structural features of pHLA
complexes.2–4 Therefore, the structural modeling and analysis of these complexes is becoming essential
to ensure the efficacy and safety of immunotherapy treatments.2 However, pHLA structural features are
impacted by the genetic variability of both patients and tumors.2, 5 First, the set of peptides available for
presentation reflects the patient’s genetic background and cancer-specific alterations.2, 5 Second, each
individual has up to six class I HLA alleles,6 among the nearly 19,000 alleles in the human population.7

Each allele encodes for a receptor with specific characteristics, that will display a different pool of peptides.
Therefore, the structural modeling and analysis of pHLA complexes for cancer immunotherapy requires
fast and customizable methods that can handle patient-specific data.

Unfortunately, the cost and time requirements of gold-standard experimental techniques in structural
biology prevent their use in personalized medicine. In addition, very few structures of pHLA complexes
have been determined experimentally. Therefore, researchers have turned toward computational methods
for the structural modeling of pHLA complexes. However, the length and flexibility of displayed peptides
represent a major challenge for traditional methods.5 As an alternative, in previous work we have developed
several computational tools for the accurate and efficient modeling of pHLA complexes. For example,
we have described a very fast method, called APE-Gen, to generate ensembles of peptide conformations
bound to a given HLA receptor.8 We have also developed a meta-docking approach, called DINC, which
allows predicting binding modes of pHLA complexes.9, 10

In this paper, we present a higher-level platform, called HLA-Arena, that allows carrying out a
sophisticated structural modeling and analysis of pHLA complexes. Instead of having to deal with
several computational tools, HLA-Arena provides researchers with a single customizable environment
that fully integrates the tools we have developed, as well as other commonly-used software. HLA-Arena
simplifies the interactions with these tools by leveraging the capabilities of Jupyter Notebook and Docker.
It allows users to perform various workflows, each one involving a specific combination of tools and steps
within a coherent scenario. Besides APE-Gen and DINC, HLA-Arena currently integrates Modeller,11

for homology modeling, MHCflurry,12 for binding affinity prediction, and NGL Viewer,13 for structure
visualization, among others.

Here, we present three example workflows illustrating the capabilities of HLA-Arena. The first one
relies on DINC to predict the binding modes of two known peptides with their corresponding HLA
receptors (i.e., geometry prediction). The second workflow relies on APE-Gen to assess differences in
binding between peptides restricted to a given HLA receptor, based on generated binding mode ensembles
(i.e., binding prediction). The third workflow aims at performing structure-based virtual screening, which
requires speed and scalability. Using real immunopeptidomics data and a fictitious diplotype (i.e., six
classical class I HLA alleles) we show how MHCflurry and APE-Gen can complement each other to select
target-peptides for a hypothetical immunotherapy treatment.
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Figure 1. Generating binding mode ensembles with APE-Gen. A. Templates of backbone termini are used to
position the anchor residues of a peptide in the binding site. B. The random coordinate descent (RCD) loop-closure
tool19 is utilized to generate an ensemble of backbone conformations for this peptide. C. Full-atom reconstruction of
peptide side-chains and local optimization of the resulting complex are performed for each sampled backbone. The
highest-quality binding mode can be selected to be used as template for the next round of the iterative process.

Design
Computational approaches for pHLA binding mode prediction

Despite their huge sequence diversity, HLA receptors feature very conserved secondary and tertiary
structures, as illustrated by available data.14–16 Such conserved folding makes HLA modeling an easy
task with tools leveraging homology modeling.8, 17, 18 On the other hand, predicting the binding modes
of peptides to HLA receptors is much harder because of the size and flexibility of these peptides. As
recently reviewed, strategies used to overcome this challenge include (i) constrained backbone prediction,
(ii) constrained termini prediction, and (iii) incremental prediction.5

In recent years, we have implemented two computational approaches for pHLA binding mode predic-
tion using these strategies. The first one, called APE-Gen (anchored peptide-MHC ensemble generator),
can quickly produce an ensemble of binding modes for a pHLA complex, using termini templates to
position the peptide in the HLA binding cleft (see Fig. 1 and Supplemental Material).8 The second one,
called DINC, can incrementally dock a peptide in the binding site and does not require any template (see
Fig. 2 and Supplemental Material).9, 10, 21 Each approach has different strengths and limitations, and can
therefore suit various user needs, depending on the task at hand. For instance, its speed makes APE-Gen
better suited for large-scale modeling and structure-based virtual screening. On the other hand, since it
does not rely on templates, DINC’s predictions can be more general and account for unusual binding
modes, thus making it more suited for geometry prediction.9, 22 Both APE-Gen and DINC have been
validated in previous publications.8, 10, 23 In this paper, we present a unified environment that facilitates
the utilization of APE-Gen, DINC and other tools, for various research applications.
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Figure 2. Workflow of DINC’s parallel and incremental meta-docking approach. DINC starts by selecting a
small fragment of the input ligand, with only k flexible bonds. Multiple conformations are created by randomly
sampling different values for the dihedral angles of this fragment. These n conformations are then used as input for
multiple independent runs of a docking tool, in this example, Vina,20 which are executed in parallel by different
threads. From all the binding modes produced by these parallel runs, the n “best” ones are selected for expansion:
they are “grown” by adding several atoms and bonds from the input ligand. These larger fragments are then docked
independently, in parallel, while keeping the number of flexible bonds equal to k. This process is repeated until the
entire input ligand has been incrementally reconstructed, and is docked in the receptor’s binding site.

HLA-Arena: Structural modeling and analysis of pHLA complexes
Using Jupyter Notebook and Docker, we have created a customizable environment, called HLA-Arena,

that enables researchers to easily model any class I pHLA complex of interest and perform varied structural
analyses (see Fig. 3). HLA-Arena includes different workflows, defined as separate notebooks, that consist
of the following main stages:

• Input processing: Available structures of HLA receptors are obtained from the PDB26 to be used
as such or as templates. Unavailable HLA structures are modeled with Modeller,11 using a HLA
sequence and the structure of a similar HLA receptor as template, if these are provided by the
user. Alternatively, users can just provide an allele name (e.g., HLA-A*24:02); HLA-Arena will
then fetch the proper sequence from IMGT/HLA,7 and a reasonable template (based on the HLA
supertype27 classification) from the PDB. In addition, binding affinity of peptides can be estimated
with MHCflurry12 to select the most relevant ones.
Minimal example: HLA_allele = arena.model_hla(’HLA−A∗24:02’)

• Peptide docking: Structures of pHLA complexes are modeled with APE-Gen and/or DINC, which
only requires the sequence of the target peptide(s) and the HLA structure(s) obtained previously.
Modeled structures can also be minimized with a force field, using OpenMM.24

Minimal example: structure = arena.dock(’QFKDNVILL’, HLA_allele)

• Data analysis: A variety of post-processing options for data analysis can be incorporated in a
workflow. These include binding mode rescoring or peptide ranking with DINC, and structure
visualization with NGL Viewer,13 among others.
Minimal example: arena.visualize(structure)

For a smooth user experience, all computational tools involved in HLA-Arena are packaged within a
Docker image (see Supplemental Material for installation details), therefore eliminating the burden of
managing software dependencies. Another advantage of Docker containerization is to make HLA-Arena
platform-agnostic. As a result, it can be deployed on a desktop computer or a high-performance computing
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Figure 3. HLA-Arena leverages Docker and Jupyter Notebook, offering a customizable environment to build and
execute various workflows for the structural modeling and analysis of pHLA complexes. Three proposed workflows
are depicted here: geometry prediction of pHLA binding modes, structure-based prediction of binding energy, and
virtual screening of tumor-derived peptides. In the geometry prediction workflow, after obtaining the structure of a
HLA receptor, a peptide of interest is docked in its binding site by DINC, and all generated binding modes are
scored with several scoring functions. In the binding prediction workflow, after modeling a given HLA structure,
ensembles of binding modes are generated with APE-Gen (and optionally minimized with OpenMM)24 for various
peptides, and these binding modes are scored to rank the peptides with Smina.25 In the virtual screening workflow,
after filtering peptides with MHCflurry,12 ensembles of binding modes are generated with APE-Gen for the selected
peptides, and the top-scoring binding modes are used to rank these peptides with Smina, in terms of binding affinity
to a (set of) HLA receptor(s). Note that these workflows can be modified, and that new ones can be created by users.
In each application, different types of data analysis can be used to guide the selection of the best pHLAs before
experimental validation.
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cluster, across different operating systems. Users can customize available workflows by adding modeling
or analysis steps. We plan to continuously expand the capabilities of HLA-Arena by providing support for
additional tools.28–30

Results
We now present the results we obtained when carrying out three different workflows that exemplify the

diversity of applications offered by HLA-Arena. Each workflow leverages the functionalities of several
tools in a coherent scenario.

Geometry prediction of pHLA binding modes
HLA-Arena can be used to predict conformations of peptides bound to HLA receptors even for peptides

presenting unusual binding modes.10 To illustrate this, using the geometry prediction workflow based on
DINC (see Fig. 3), we try and reproduce the crystal structures of two such peptides.

First, we conduct a self-docking experiment with a crystal structure (with PDB code 1E27) involving
HLA-B*51:01 and a 9-mer peptide derived from HIV-1. It has been suggested that the fifth residue acts as
a secondary anchor for this peptide, leading to structural rearrangement of its central and amino-terminal
residues.31 Our experiment evaluates the capability of DINC to reproduce the bound geometry of this
peptide, without considering receptor flexibility. To evaluate performance and reproducibility, we carry
out this experiment with either 8 or 32 threads (for the parallel process in DINC), running five replicates
in each case. Default values are used for other DINC parameters.23 Results (see Fig. S1.A) show that, in
every single run, HLA-Arena sampled a near-native peptide conformation, i.e., a conformation with an
all-heavy-atom RMSD (root mean square deviation) to the crystal structure less than 2.5 Å.

Geometry prediction involves two issues that are especially challenging with peptides.5 The first
relates to sampling, i.e., how to explore the full flexibility of a large ligand. The second relates to scoring,
i.e., how to identify the “best” ligand conformation in a pool of diverse binding modes. HLA-Arena
relies on the incremental process of DINC to overcome the sampling issue. It also includes a filtering
step to remove peptide conformations with reverse orientation in the binding cleft. To address the scoring
issue, HLA-Arena makes use of multiple scoring functions. For instance, in this self-docking experiment,
conformations were ranked with the scoring functions of AutoDock4,32 Vina20 and Vinardo.33 All
three scoring functions were able to identify near-native conformations. However, only in the case of
AutoDock4 (see Fig. 4.A), the top five ranking conformations in one of the replicates included the overall
lowest-RMSD conformation, i.e., the conformation with the lowest-RMSD to the crystal structure among
all sampled conformations (see Fig. S1.A).

Second, we try and reproduce a crystal structure (with PDB code 2GTW) involving HLA-A*02:01 and
a 9-mer peptide derived from the MART-1/Melan-A protein.34 This peptide has an A27L substitution in
comparison to the MART-1 peptide targeted by numerous clinical studies.35, 36 This substitution leads to an
alternative arrangement of primary anchor residues, resulting in an unusual binding mode.10, 29, 34 Again,
we run five replicates of the geometry prediction workflow, using either 8 or 32 threads. For the prediction
task to be closer to a real-case scenario, we perform a cross-docking experiment, accounting for receptor
flexibility. It makes this task much harder, from both the sampling and scoring perspectives.37, 38 In spite of
that, HLA-Arena sampled near-native conformations, although it performed better when using 32 threads
(see Fig. S1.B and S2). In terms of scoring, only AutoDock4 and Vinardo were able to recover near-native
conformations (see Fig. 4.B). Note that HLA-Arena also allows visualizing the three-dimensional structure
of the top-ranking binding mode (see Fig. 4.C and D).
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Figure 4. Geometry prediction of pHLA binding modes. A. Three scoring functions are used to select the top 5
ranking conformations produced by five replicates of a self-docking experiment aimed at predicting the binding
mode of a 9-mer peptide (under PDB code 1E27), using 8 or 32 threads for DINC. Each box plot aggregates results
of the five replicates. Each dot corresponds to a conformation, plotted according to its all-heavy-atom RMSD (root
mean square deviation, in Å) to the reference crystal structure. B. Results of a cross-docking experiment aimed at
predicting the binding mode of a 9-mer peptide (under PDB code 2GTW), obtained with the same methodology. C.
Side view of the best binding mode (in red), identified by AutoDock4 and Vinardo, and aligned with the crystal
structure (in blue) of this peptide (under PDB code 2GTW). Only heavy atoms are depicted, using a sticks
representation. Note that this sampled conformation has an all-heavy-atom RMSD of 2.35 Å, and does not perfectly
reproduce the side-chain arrangement of the first residue. A better conformation, with an all-heavy-atom RMSD of
2.15 Å, was sampled by HLA-Arena (see Fig. S2), but was not among the top ranking conformations. D. Top view
of the HLA binding site (depicted by a grey surface) with peptide conformations shown in C within it (as sticks).
This peptide uses its first amino acid as primary anchor (i.e., residue p1 is anchored in pocket B), which is quite
unusual for HLA-A*02:01 binders. Images in C and D were generated with HLA-Arena using the embedded NGL
Viewer.13 Both images were edited to add labels.
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Structure-based prediction of binding energy

Figure 5. HLA-A*02:01–binding predicted
for a small set of peptides. Each plot illustrates
the correlation between experimentally-obtained
binding affinities (extracted from the Immune
Epitope Database) and structure-based binding
energies, as predicted by a given scoring function
(namely AutoDock4, Vina or Vinardo). Structures
were generated with APE-Gen, with or without
minimization with OpenMM (see text for details).
Correlation coefficients are also reported (as
Pearson’s R). Each point corresponds to a peptide
in Table S1.

To demonstrate another application of HLA-Arena,
we use the binding prediction workflow (see Fig. 3) to
predict binding to HLA-A*02:01, for a small dataset of
selected peptides (see Table S1). This dataset includes
five experimentally-identified non-binders, as well as 11
binders whose experimental binding affinities are avail-
able in the Immune Epitope Database (IEDB),39 and
whose crystal structures in complex with HLA-A*02:01
are available in the PDB. For each peptide, we gener-
ate an ensemble of bound conformations with APE-Gen.
Each peptide’s binding energy is then estimated as the
median score within the conformation ensemble, for each
scoring function (namely AutoDock4, Vina and Vinardo).
Correlations between these predicted binding energies
and experimentally-determined binding affinities are then
determined (see Fig. 5).

In addition to the default local optimization performed
by APE-Gen, HLA-Arena provides the option of mini-
mizing the resulting complexes with OpenMM.24 To eval-
uate the impact of this procedure, we recalculate binding
energies and correlations after running this energy min-
imization for all conformations in each ensemble. Our
results show a consistent increase of the predicted binding
energies, for all scoring functions (see Fig. 5). This might
reflect the differences in binding energy estimation that
exist between these empirical or semi-empirical scoring
functions40 and the force field used by OpenMM (i.e., am-
ber99sbildn).24 Despite increasing binding energies, the
OpenMM minimization has a positive impact on overall
correlations.

Interestingly, the best correlation with experimental
binding affinities is obtained when using Vina. This
result is in agreement with previous studies evaluating
Vina’s performance for virtual screening of drug-like lig-
ands.40, 41 Note that contrary to the geometry prediction
workflow, in which a scoring function is only used to
rank different conformations of a given peptide, here, the
scoring function also has to rank different peptides. Al-
though the same function can be used for both purposes,5

it is possible that better results are obtained when using
functions optimized for each task.

For the HLA-A*02:01–binders in our dataset, we can
compute RMSDs between their associated crystal struc-
tures and conformations generated by APE-Gen. This
allows verifying that APE-Gen ensembles include near-
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native conformations (see Fig. S3), and evaluating the impact of the OpenMM minimization on these
conformations. This also allows comparing the use of an ensemble of conformations, to predict binding
energies, with the use of a single conformation from this ensemble (e.g., the conformation with the lowest
RMSD to the corresponding crystal structure). Our results with Vina’s scoring function suggest that better
correlations are obtained with ensembles of conformations (see Fig. S4).

Virtual screening of tumor-derived peptides
HLA-Arena allows researchers to perform, for the first time, a large-scale structure-based virtual

screening of HLA-binding peptides. In addition, by combining sequence-based and structure-based
methods, HLA-Arena represents a fresh alternative for the identification of tumor-derived peptide-targets,
considering patient-specific HLAs. To demonstrate this application, we use the virtual screening workflow
(see Fig. 3) to predict which peptides are the strongest binders to the class I HLA receptors of a fictitious
cancer patient.

We consider six alleles: HLA-A*24:02, HLA-A*26:01, HLA-B*15:01, HLA-B*35:01, HLA-C*04:01
and HLA-C*05:01. We build a peptide dataset by selecting 500 known binders and 1,000 decoys for each
allele, for a total of 9,000 peptides. Sequences of known binders are obtained from SysteMHC Atlas,42

where they have been derived from immunopeptidomics studies. Sequences of decoys are obtained from
the training set of NetMHCpan.43

First, the whole dataset of peptides is screened for HLA binding with MHCflurry,12 using an affinity
threshold specified by the user. This allows quickly selecting the most likely binders for each HLA
receptor, before proceeding with the more computationally expensive steps. In this example, a threshold of
500 nM selects 2,604 peptides. Then, we proceed with the structural modeling of the full pHLA complex
for all selected peptides. Finally, peptides are ranked based on binding energies derived from the modeled
structures. The entire pipeline takes ≈86 hours on a desktop computer, or ≈5 hours on a high-performance
cluster (see Supplemental Material).

The threshold used in MHCflurry directly impacts the sensitivity/specificity of the overall prediction.
Recent surveys indicate that commonly used thresholds for sequence-based HLA-binding predictors
(e.g., 500 nM) can yield a sensitivity as low as 40%,44 with great variation in accuracy between HLA
alleles.45 On our dataset, a 500 nM threshold produces several false positive predictions (see the blue dots
in Fig. 6.A) and false negative predictions (data not shown). While trying to address this issue, we have
observed that our structure-based analysis can usually eliminate at least half of false positive predictions,
and recover significant numbers of false negative predictions, although results vary depending on the
studied HLA allele (data not shown).

As our workflow allows varying the MHCflurry threshold, we repeat the aforementioned virtual
screening experiment with a 50,000 nM value. This leads to all 9,000 peptides being selected for modeling
and ranking. The observed enrichment of true binders among the top ranking peptides (i.e., the red dots at
the bottom of the distributions in Fig. 6.B) further corroborates our claim that structural information is
useful when screening HLA-binders.

In these examples, we performed only one sampling round in APE-Gen for each complex, and only the
top-scored conformation was used as input for ranking. Better results could be obtained by (i) executing
more sampling rounds in APE-Gen, (ii) performing the OpenMM minimization, or (iii) using the whole
APE-Gen ensemble. More importantly, accurate scoring remains an open challenge. Therefore, structure-
based predictions cannot yet outperform sequence-based methods, but can be combined with them to
provide additional information when selecting peptides for experimental validation.
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Figure 6. Structure-based virtual screening for high-affinity HLA binders. The HLA-Arena virtual screening
workflow was used to predict peptide binders for 6 HLA receptors of interest. For this exercise, a dataset of 9,000
peptides was created, using 500 known binders (red dots) and 1000 decoys (blue dots) for each HLA. A. Results of a
combined virtual screening (i.e., MHCflurry + APE-Gen) with a 500 nM threshold for MHCflurry. B. Results of the
same virtual screening using a 50,000 nM threshold for MHCflurry. In both plots, each dot corresponds to the
top-scoring conformation of a modeled pHLA complex, selected from the ensemble of conformations produced by
APE-Gen. For each HLA (on the x-axis), complexes with the lowest binding energies (on the y-axis) would be
predicted as the best candidates for further analysis or experimental validation.
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Conclusion
HLA-Arena provides researchers with a customizable environment to create and execute sophisticated

workflows for the structural modeling and analysis of pHLA complexes. Its intuitive interface relies
on Jupyter Notebook and Docker to dramatically reduce the burden of software dependencies and the
need for advanced programming skills, making its resources accessible to a wide audience. Available
workflows combine commonly-used software for protein modeling and analysis, with tools that we
developed to address challenges specific to pHLA complexes. We believe that HLA-Arena could become
a stepping-stone for a broad collaborative effort to study pHLA complexes.

In this paper, we have presented three workflows to showcase the capabilities of HLA-Arena. First,
HLA-Arena enables the geometry prediction of pHLA structures, even for peptides with unusual binding
modes, by using template-free molecular docking. Second, HLA-Arena allows predicting binding energies
for potential HLA binders, by quickly producing ensembles of bound conformations for these peptides
and rescoring all the results. Third, HLA-Arena enables a more accurate virtual screening of HLA binders,
by combining sequence-based and structure-based approaches.

These workflows can be modified to allow for additional analysis of the modeled pHLA complexes, for
example to perform molecular dynamics with OpenMM46, 47 or cross-reactivity assessment.2, 48, 49 Thanks
to high-performance computing and efficient sampling, molecular dynamics could play a bigger role in
providing accurate estimates of pHLA binding affinity and complex stability.50, 51

HLA-Arena can be integrated in computational pipelines for basic cancer research, or help inform
physicians in pre-clinical settings. It can be used to perform the large-scale modeling and selection of
tumor-associated peptides, the computer-aided design of altered peptide ligands, and the study of T-cell
cross-reactivity.2, 8 In addition to HLA binding prediction, immunotherapy applications require identifying
peptides that are uniquely displayed by cancer cells. This important task will be addressed in future
updates of HLA-Arena.

It is important to note that HLA-Arena provides efficient solutions to sampling challenges associated
with pHLA modeling,8, 23 and facilitates the integration of these solutions with other tools for structural
analysis. However, the accuracy of structure-based peptide ranking is limited by existing scoring functions.
As they improve, new scoring functions will be incorporated in HLA-Arena to replace current ones
or be combined into consensus methods.52, 53 In time, we expect that structure-based analyses will
become essential to peptide-target prediction for neoantigen discovery, vaccine development, and cancer
immunotherapy, specially for patients with less prevalent HLA alleles.

Data Availability Statement
HLA-Arena is made available through Docker Hub, under kavrakilab/hla-arena (see Supplemental Ma-

terial for installation details). The HLA-Arena Docker image also contains data related to the experiments
described here, which can be reproduced as demo workflows. Additional information and Documentation
can also be found on GitHub, at https://github.com/KavrakiLab/hla-arena.
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Supplemental Material
APE-Gen: Fast generation of pHLA binding mode ensembles

We recently released a new tool, the anchored peptide-HLA ensemble generator (APE-Gen), that
produces an ensemble of binding modes for a pHLA complex, starting from the sequences of a peptide
and HLA receptor.8 APE-Gen involves an iterative process repeating the three following steps. First,
the ends of the peptide’s backbone are anchored within known pockets in the HLA’s binding site, using
available backbone termini templates. Second, the peptide backbone is completed by applying the
random coordinate descent (RCD) loop-modeling tool,19 which efficiently yields several valid backbone
conformations. Third, side chains are added to the backbone conformations, and local optimization is
performed with Smina25 to fix steric clashes. This step considers full peptide flexibility and binding-site
side-chains flexibility, producing a set of full-atom peptide conformations within the HLA’s binding site.
After each such round of sampling, the highest-quality conformation (according to the internal scoring
function, currently Vinardo) can be used as template for the next round.

By generating a diverse ensemble of pHLA binding modes, APE-Gen implicitly accounts for the
natural flexibility of peptides within the binding site. We have shown that APE-Gen could reproduce the
entire set of non-redundant classical class I pHLA structures available in the protein data bank (PDB),26

i.e., 535 complexes at the time of the study.8 In that case, we used a single round of sampling per complex.
The average root mean square deviation (RMSD) between modeled peptides and their corresponding
crystal structure (considering all heavy atoms) was of only 2.02 Å, which is considered an accurate
reproduction. Even better results can be obtained when performing optimization and/or additional rounds
of sampling, specially for longer peptides.8

APE-Gen is very computationally-efficient, producing dozens of binding modes in a few minutes
on a standard desktop computer. It can be run for several peptides and a given HLA receptor, therefore
producing valuable information for peptide ranking and binding affinity prediction, and enabling structure-
based virtual screening of HLA-binding peptides. We have also shown the potential benefits of APE-Gen
when studying T-cell cross-reactivity.8

DINC: Incremental docking of pHLA complexes
In previous work, we presented a molecular docking approach, called DINC (which stands for docking

incrementally), specifically developed for large ligands, including peptides.21 The underlying idea is to
incrementally dock larger and larger fragments of a ligand, instead of trying to dock it all at once. Note
that this incremental docking process focuses on ligand flexibility, although selected receptor side-chains
can also be sampled. This process is parallelized to allow for broader sampling, by having several runs
of docking performed independently at each step, and grouping their results together. DINC is also a
meta-docking method, in the sense that it relies on existing molecular docking tools, such as AutoDock4,32

Vina20 and Smina25 to perform the docking of the fragments at each step. As a consequence, fragment
sampling and scoring can be performed by different tools.

The latest version of our software, called DINC 2.0, has been made available as a web server.9 We
have recently shown that it performs a more exhaustive sampling than other docking approaches.23 In
that study, DINC was benchmarked using five public datasets including large ligands; it reproduced many
crystal structures on which other docking tools had failed.23 For example, it has been used to study the
inhibition of the Src homology 2 domain of STAT3 by peptidomimetics.22 We have also shown that DINC
could reproduce a diverse set of pHLA structures encompassing ten HLA alleles and peptides with diverse
binding modes; it achieved an average all-heavy-atom RMSD of 1.92 Å.10 Note that DINC is not limited to
common class I HLA receptors, contrary to many related tools.5 It can be applied to complexes involving
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synthetic ligands, rare and non-classical class I HLAs, and potentially to class II HLA receptors.9 An
updated version of DINC is made available through Docker Hub (docker pull kavrakilab/dinc-bin).

HLA-Arena performance for virtual screening
HLA-Arena provides the most efficient workflow available for structure-based virtual screening of

HLA-binders. For the experiment we report in the Results section, the breakdown of computing time is as
follows: MHCflurry12 needs about 15 seconds to screen the entire dataset of 9,000 peptides. The homology
modeling step takes about 3 minutes for each HLA allele, and can be skipped for HLAs with available
crystal structures. The APE-Gen step takes about 2 minutes per pHLA complex, on a desktop computer
with 6-8 threads. The (optional) rescoring takes about 2 seconds per complex, using an HLA-Arena
function that relies on Smina.25 Therefore, running the entire workflow on a desktop computer takes about
86 hours with an MHCflurry threshold at 500 nM, and about 300 hours with an MHCflurry threshold at
50,000 nM. This running time can be dramatically reduced if the APE-Gen step is executed on a cluster.
For instance, on a machine with 64 threads, with an MHCflurry threshold at 500 nM or 50,000 nM, the
same workflow could be executed in 5 hours or 19 hours respectively (without rescoring). Future updates
of HLA-Arena should provide additional resources for running workflows in a remote high-performance
computing cluster.

HLA-Arena installation
1. If you don’t already have it, install Docker.

Docker for Mac or Windows: https://www.docker.com/products/docker-desktop

Docker for Linux: https://docs.docker.com/install

2. In a command prompt, pull the HLA-Arena image from Docker Hub by typing:

docker pull kavrakilab/hla-arena

3. Create a folder in which you want to run the workflows (optional):

mkdir workflows; cd workflows

4. Copy HLA-Arena notebooks and associated data to your local machine by typing:

docker run --rm -v $(pwd):/temp --entrypoint cp kavrakilab/hla-arena /hla_arena_data/data.tar.gz \

/temp/; tar -xzvf data.tar.gz

5. Run HLA-Arena in this folder by typing:

docker run --rm -v $(pwd):/data -p 8888:8888 --entrypoint="" kavrakilab/hla-arena jupyter \

notebook --port=8888 --no-browser --ip=0.0.0.0 --allow-root

6. This should generate a URL with the following format:

http://127.0.0.1:8888/?token=<token_value>

7. Copy and paste this URL into a browser, and open any available Jupyter notebook (i.e., one of
the files with extension .ipynb). Note that all the data created in the container will be saved inside
sub-directories of the current folder.

8. Check out the file “DOCUMENTATION.html," provided alongside the Jupyter notebooks, for
additional information on the workflows and available functions. Enjoy HLA-Arena!
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Supplementary Table S 1. Curated dataset of experimentally-determined peptide binders restricted to
HLA-A*02:01.

Peptide Method Assay Affinity (nM) IEDB Label IEDB ID PDB ID

FLPSDFFPSV cellular/radioactivity IC50 0.57 Positive-High 201178 3OXR
ALWGFFPVL purified/radioactivity IC50 2.7 Positive 1775814 1LP9
LLFGYPVYV purified/radioactivity KD (≈IC50) 3.8 Positive-High 201486 1DUZ
CINGVCWTV purified/radioactivity KD (≈IC50) 55 Positive-Med 1955167 3MRG
VLRDDLLEA purified/fluorescence IC50 365 Positive-Low 1809531 3FT4
AAGIGILTV purified/radioactivity IC50 395 Positive-Med 201470 3QFD
RQISQDVKL purified/radioactivity KD (≈IC50) 1,925 Positive 3243420 4NO5

RGPGRAFVTI purified/radioactivity KD (≈IC50) 4,600 Positive-Low 1022278 3ECB
ILKEPVHGV purified/fluorescence IC50 7,082 Positive-Med 1783069 2X4U
EAAGIGILTV purified/fluorescence IC50 14,560 Positive-Low 2369616 2GT9
SLLMWITQC purified/radioactivity KD (≈IC50) 21,070 Positive-Low 208218 2P5E
AAEQRRSTI cellular/fluorescence IC50 >70,000 Negative 1873146 –
DAKRNSKSL cellular/fluorescence IC50 >70,000 Negative 1872692 –
EIDVSEVKT cellular/fluorescence IC50 >70,000 Negative 1874620 –

ATKRYPGVM cellular/fluorescence IC50 >70,000 Negative 1875085 –
ETLNEYKQL cellular/fluorescence IC50 >70,000 Negative 1873828 –

Selected methods include either cellular HLA or purified HLA, used for competitive radioactive or competitive fluorescence
measurements. Assays measured either the half maximal inhibitory concentration (IC50) or the dissociation constant (KD).
Non-binders are characterized by the lack of a precise measurement in the IEDB (e.g., affinity > 70,000 nM) and of a crystal
structure in the PDB.

Supplementary Figure S 1. Lowest-RMSD binding modes sampled by DINC in the geometry prediction
workflow. A Results of a self-docking experiment aimed at reproducing a crystal structure (with PDB code 1E27)
involving a 9-mer peptide derived from HIV-1 and the HLA-B*51:01 receptor. This experiment was carried out with
either 8 or 32 threads. Each bar corresponds to the so-called top-RMSD conformation (i.e., the conformation with
the lowest RMSD to the target crystal structure) sampled in each of five replicated runs. Near-native peptide
conformations (i.e., conformations with an all-heavy-atom RMSD to the crystal structure less than 2.5 Å) were
sampled in all runs. The best conformation across all runs had an all-heavy-atom RMSD of 0.84 Å. B Results of a
cross-docking experiment aimed at reproducing a crystal structure (with PDB code 2GTW) involving HLA-A*02:01
and a 9-mer peptide derived from the MART-1/Melan-A protein. Near-native peptide conformations were sampled
in two out of five runs when using 8 threads, and in four out of five runs when using 32 threads. The best
conformation sampled across all runs had an all-heavy-atom RMSD of 2.15 Å.
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Supplementary Figure S 2. Lowest-RMSD binding mode sampled in a cross-docking experiment.
Depicted in red, is the lowest-RMSD conformation sampled by DINC in the cross-docking experiment aimed at
reproducing a crystal structure (with PDB code 2GTW) involving HLA-A*02:01 and a 9-mer peptide derived from
the MART-1/Melan-A protein. The all-heavy-atom RMSD of this conformation to the crystal structure (depicted in
blue) is of only 2.15 Å. This conformation accurately reproduces the geometry of the first residue (p1), which has an
unusual arrangement (i.e., anchored in pocket B of the binding cleft).

Supplementary Figure S 3. Binding mode ensembles generated by APE-Gen include near-native peptide
conformations. This plot aggregates the all-heavy-atom RMSD (in Å) between each conformation produced by
APE-Gen for each peptide-binder in our dataset (see Table S1) and its reference crystal structure. Results for
conformations having undergone energy minimization with OpenMM24 are also reported, although differences are
very subtle. These conformations were produced by a single round of sampling with APE-Gen.
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Supplementary Figure S 4. Binding energy rankings associated with ensembles or single conformations.
This plot reports correlations (assessed as Pearson’s R) between experimentally-determined binding affinities and
structure-based binding energies predicted by Vina’s scoring function using different procedures. More specifically,
the binding energy of a given peptide can be defined as: (i) the score of the conformation with the lowest RMSD to
the crystal structure in the ensemble produced by APE-Gen (R = 0.54), (ii) the score of that same conformation
minimized with OpenMM (R = 0.68), (iii) the median score within the ensemble of conformations produced by
APE-Gen (R = 0.74), or (iv) the median score within that same ensemble after minimization with OpenMM (R =
0.74). Each point corresponds to a known peptide-binder to HLA-A*02:01 (see Table S1). Note that the non-binders
were not included in this analysis.
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