Inter Symp of Robotics Research (ISRR), Siena, Italy, 2003. Springer-Verlag, STAR, vol. 15, pp. 80-89

Probabilistic Roadmaps of Treesfor Parallel
Computation of Multiple Query Roadmaps

Mert Akinc, Kostas E. Bekris, Brian Y. Chen, Andrew M. Laddijda Plaku, and
Lydia E. Kavraki

Rice University

Department of Computer Science

Houston, TX, 77005

{maki nc, bekri s, bri anyc, al add, pl akue, kavr aki }@s. ri ce. edu

Abstract. We propose the combination of techniques that solve maltipkries for motion
planning problems with single query planners in a motiompiag framework that can be
efficiently parallelized. In multiple query motion plangina data structure is built during a
preprocessing phase in order to quickly respond to on-lirexigs. Alternatively, in single
query planning, there is no preprocessing phase and all wtatipns occur during query
resolution. This paper shows how to effectively combine werful sample-based method
primarily designed for multiple query planning (the Proitiabic Roadmap Method PRM
with sample-based tree methods that were primarily dedifpresingle query planning (such
as Expansive Space Trees, Rapidly Exploring Random Tredgthers). Our planner, which
we call the Probabilistic Roadmap of Tred¥R(), uses a tree algorithm as a subroutine for
PRM The nodes of theRMroadmap are now trees. We take advantage of the very powerful
sampling schemes of recent tree planners to populate odim@aas. The combined sampling
scheme is in the spirit of the non-uniform sampling and refieet techniques employed in
earlier work onPRM PRT not only achieves a smooth spectrum between multiple quety a
single query planning but it combines advantages of both.pyesent experiments which
show thatPRT is capable of solving problems that cannot be addressedkeffic with PRM

or single-query planners. A key advantageP&T is that it is significantly more decoupled
thanPRMand sample-based tree planners. Using this property, vigndesand implemented
a parallel version oPRT. Our experiments show th&RT distributes well and can easily
solve high dimensional problems that exhaust resourcékbleato single machines.

1 Introduction

Sample-based planners have been used extensively dueitgstrdecade for mul-
tiple query or single query motion planning [6,9,10,12154, In multiple query
motion planning, a data structure, typically a graph, idthiiiring a preprocess-
ing phase in order to quickly respond to on-line queriesq@,3]. Alternatively, in
single query planning, there is no preprocessing phase landmaputations occur
during query resolution. Such planners typically expldre space using a single
or a bi-directional tree [4,9,14,16]. Recent papers (¢931,4]) contain extensive
references to sample-based motion planners.

The Probabilistic Roadmap Metho®RM is an efficient and easy to imple-
ment planner primarily designed for multiple query motidarming problems [10].

Akinc, Bekris, Chen, Ladd, Plaku, and Kavraki

Fig. 1: A scene from our benchmarks. In problem “narrow4h@crerobot must go through
two very narrow passages to the outer side of the opposite wal

PRMoperates by sampling “milestones” (configurations) in thee fconfiguration
space and connecting them using a local planner. Althougbieal implementa-
tion uses a very simple local planner and uniform pseuddaansampling, it has
been shown that a variety of alternate approaches rangsapinistication and cost
can be applied without sacrificing correctness in hopes t&ining a faster planner
[8]. Indeed, two of the key and most studied issues in theexdrdf PRMare the
power of the local planner and the way sampling is perforriRedrecent work see
[2,14].

In this paper we replace the local plannefR&Mwith a powerful single query
sample-based motion planner. We call our planner the Pilidi@bRoadmap of
Trees PRT) [5]. Among the single query planners that have been deeelap-
cently, Expansive Space Treds8STs) [9] and Rapidly Exploring Random Trees
(RRTs) [14] have been very successful and are used in our work ekfenyother
sample-based tree planners can be used (e.g., [12]). Olrisvionportant in many
respects. In particular, we obtain a planner which is fagtenPRMand more ro-
bust than the tree planners that we used, narB8lys andRRTs. MoreoverPRT
provides a smooth spectrum between single query and maudijgry planning that
combines the advantages of both. Furthermore, we take tedy@of recent very ef-
fective sampling methods employed BgTs andRRTs and provide a new sampling
scheme foPRM It should be noted that the proposed overall samplingFar is in
the spirit of non-uniform sampling and refinement techngused in earlier work of
PRM Last but not least, we obtain a planner which is signifigambre decoupled
thanPRMand tree planners such BSTs andRRTs and can be parallelized effec-
tively. We designed and implemented a parallel versioPRT. Although many
subroutines oPRMcan be run effectively in a highly distributed fashion, eéfitt
coordination of various processing resources requiresfgignt additional algorith-
mic design. By increasing the power of the local planner anading more complex
milestonesPRT distributes its computation almost evenly among procasser
quires little communication, and allows us to solve venhhigmensional problems
and problems that exceed the resources available to thesggjimplementation.

PRT for Parallel Computation of Multiple Query Roadmaps

This paper presents experiments with up€degrees-of-freedom (DOF) where
PRT obtains a solution at a fraction of the running time needed®RW EST, or
RRT. Figure 1 shows an example. We were able to obtain nearlgisigeedup for
parallelPRT.

Our long term goal is to study high-dimensional problemd [dith as those
arising in planning with flexible objects [13], reconfigulalbobots [17], complex
planning instances [16], and computational biology segmablems [1,3]. Such
problems test the limits of current planner implementaiddne important avenue
of untapped potential is in making effective use of paraielin motion planning.
Our work describes a robust planner, which provides a sitaatiition from single
guery to multiple query planners and can be used for probteatsare beyond the
capabilities of current planners.

2 ThePRT Planner

In this section, we describe the basic operation ofRR& algorithm [5].PRT con-
structs a roadmap aiming at capturing the connectivity effiee configuration
spaceCiee. The nodes of the roadmap are not single configurationsées twhich
are referred to as milestones. Connections between milestre computed by us-
ing sample-based tree planners. The tree planners thatweaisad ar&®RTs [14]
andESTs [9]. The pseudocode f&RT is given in Algorithm 1.

Aroadmap is an undirected graph= (V, E') over a finite set of configurations
V C Ciee and each edgéu,v) € F represents a local path fromto v. The
undirected graplizr = (Vr, Er) is an induced subgraph of the roadmap which
is defined by partitionindg= into a set of subgraphs,, ..., Tx which are trees
and contracting them into the vertices@#-. In other wordsy = {T1,..., Tk}
and(T;,T;) € Er if there existsy; € T; andv; € T; such that, andv; have
been connected by a local path. As shown in Algorithm 1, tiaelmwap construction
proceeds in three stages: milestone computation (line} &dge selection (lines
7-11), and edge computation (lines 12—-16).

In PRT, the treed; or milestones of the roadmap are computed by sampling
their roots uniformly at random ifisee and then growing the trees using a sample-
based tree planner which has as its goal expansion and aiptorWe have found
RRTs [14] andESTSs [9] to be suitable t&®RT, but other sample-based tree planners
(e.g.,[12]) can be used as well.

The selection of candidate edges is governed by two parasmnetgs. and
Nrandom- EACh Milestond’; defines a representative configuratignvhich is com-
puted as an aggregate of the configurations;irOur implementation uses the cen-
troid. If @ = {q1,...,qx} is the set of centroids, then for eathwe determine
Nclose ClOSESt aNthrandom CONfigurationsy; to ¢; such thati # j and set each
(T;,T;) as a candidate edge. The notion of closeness is determirtae nyetricd.
The graph of candidate edges is denated= (Vr, E¢).

The objective of our planner is to determine the existenca phth. To this
end, we avoid computing a candidate edge unless placingtiy® inE7 would

Akinc, Bekris, Chen, Ladd, Plaku, and Kavraki

Algorithm 1: PRT

Vi —0,Er —0,Q «— 0, Ec — 0.

: while|Vr| < K do

T « build tree with root a randomly chosen free configuration.

Vpr — Vr U {T}

Q — QU {qr}, whereqgr is the representative af.

: end while

: for all T € Vr do

Sclose < @ Set 0fnclose ClOSESly € Q 10 g7.

Srandom < & S€t 0fnyandom randomg € Q to gr.

Ec — Ec U {(T, T’) tqr € Sclose U Srandom}-

. end for

: for all (T1,7%) € Ec do

if not componentG, Ti,7>) and tree-planne(T},T>) then
Er — Er U{(Th,T2)}.

end if

. end for

COXNDURWN L

e el el
oOUuNWNR

decrease the number of connected components;in Then, for each candidate
edge(T;,T;), a number of close pairs of configurationsBfand7}; are quickly
checked with a fast deterministic local plannieg, a straight-line planner. If any
local path is found, the edgd;, T};) is added toE; and no further computation
takes place. Otherwise, a more complex tree-connectiamittign is executed, e.g.,
bi-directional RRT, EST, or other similar algorithms. During the tree connection
additional configurations are typically added to the trEeand’};.

3 Parallel Planning

In this section, we describe the design and implementatfcam parallel version
of PRT. Before relating the details, we discuss data and contrai lependency
in each stage of thPRT algorithm. During milestone computation, there are no
dependencies. Each single milestone can be processedaitepakdditional par-
allelization is stymied by the sampling scheme we use to geéaenilestones and
would be considerably more involved. Random edge selectonbe done in par-
allel; however, the distribution of the closest edge s@ecits more difficult since
it requires the construction of a search structure thatmiggen the representatives
of the milestones. Finally, edge computations are not@gtindependent of each-
other. Since milestones can change after an edge compugatébsince computing
an edge requires direct knowledge of both milestones, the edmputations cannot
be efficiently parallelized without some effort. Furthemmocomputation pruning
due to component analysis entails control flow dependemiciesighout the com-
putation of the edges. Our experiments with the sequentiglementation revealed
that the bulk of the run time occurs in milestone and edge cdation.

PRT for Parallel Computation of Multiple Query Roadmaps

Algorithm 2: Hierarchical Operation of ParallPRT

e
Awb

el
~No o

if computed edges have arrivdten
update connected components.
remove fromGc and Lp,’s all the un-
necessary edges.

end if

: end while

: Broadcast i ni sh to processors.

Scheduler Processor P;
1: Synchronize with processors. . Wait for synchronization.
2: COMPUTEMILESTONES 2: COMPUTEMILESTONES
3: COMPUTEEDGES. 3. COMPUTEEDGES.
1 Q«+ 0. 1: Tpi<—®.
2. i+ 0. 2: Post request for message from scheduler.
3: whilei < K do MILESTONES 3. whilefi ni sh has not been receivetb
4: Wait for somel;., to arrive. 4: T < generate a milestone.
59 Q— QU {Trep} 5. Tp, «— Tp, U{T}.
6: i—i+1. 6: Sendl;ep to the scheduler.
7: end while 7: end while
8: Broadcast i ni sh to processors.
1: Ge = (Vr, Ec) < graph of candidate edges. 1: Post request for message from scheduler.
2: Lp, = (Vi, E;) — empty graph, for alP;. 2: whilef i ni sh has not been receivetb
3 W={P,...,P}. 3: while no message has been receiwaal
4: whileunprocessed edges remairGia: do 4: Complete a pending send operation.
5: COMPUTEPARTITIONS. 5: Complete a pending receive operation.
6: fori:P; € Wand|E;| > 0do 6: endwhile
7: e <« randomly selected fron#;. 7. if partition message has been receittegh
8: Sence to P;. 8: COMPUTE PARTITIONS.
9: B, — F; — {6} 9: end if
10: W — W —{F;}. 10: if e = (v1,v2) has been receivethen
11: endfor 11: Complete pending receive operations (if

any) onT%, andTy,.
Try to connectly,, andTy,.
Send result to scheduler.
end if
Post request for message from scheduler.

: end while

N~ E

S={P : E; =0}
: ComputeGy = (Vs, Es), where

Vs = Upeg Ve, and PARTITIONS

Es ={(v1,v2) € E : v1,v2 € Vg}.
. PartitionGy, into Lp,’s for P; € S.
fori: P, € S do

map, < P; forallv € Vp,.
end for
: Sendmap to P; forall P, € S.

©CoNar®®N R

o
o

: Complete all pending send operations.
: Complete all pending receive operations.
: Receivarap from server.

for i = 1tonr _ns do
if T; € Tpi and P; 75 map; then
Post request to serld to map, .
end if
if T; Q Tpi and P, = map, then
Post request to receie frommap, .
end if

. end for

Akinc, Bekris, Chen, Ladd, Plaku, and Kavraki

We have chosen a scheduler—processor architecture forapaitgd implemen-
tation. The processors are responsible for milestone agd edmputations. The
scheduler arbitrates milestone ownership, handles ediggtion, assigns edge can-
didates to processors, and manages the connected compateestructure. Parallel
PRT is described in Algorithm 2.

During the milestone computation stage, each proce8soomputes a s€f’p,
of milestones and sends to the scheduler their represertaiitil a predefined total
numberK of milestones have been computed. We call the subgraph-dhduced
by Tp,, the local graphLp, = (Tp,, Ep,). The edges of. p, are those which pro-
cessorP; can compute without communicating with other processotsirg the
edge computation, for eaghthe scheduler selects an edgainiformly at random
from Lp,, deletese; from G¢ and L,, and assigns the computation @fto pro-
cessorp;. If the edge connection is successful, thgns added toG. Then all
edges(T;,T;) € G¢ such thatl; andT; lie in the same connected component of
G are deleted frontz¢ as they will not change the connected component struc-
ture of Gr. The above steps are repeated until there are no more edggs. iAt
each step, certaih p,'s may be empty due to edge deletions and cause some of the
processors, sa¥, . . ., Py, to become idle. Our implementation avoids this prob-
lem by repartitioning the milestones owned by these prages§iven the graph
G, we formulate the problem of finding “good” graph partiticass an optimiza-
tion problem: determine a partitiéh, , . . ., Tp,, of the milestones that maximizes
Zfil |Ec N Ep,|. This is an instance of the graph partition iMtbparts problem
which is known to be NP-hard fa¥ > 2. We patrtition the graph using the classical
Kernighan-Lin algorithm [11] which is a greedy local optiration approach. Once
the partitions are computed, they must be assigned to tleegsors in such a way
that the number of milestones that need to be exchanged imiméd. This is an
instance of the maximum bipartite matching problem and easdived efficiently
with the Hungarian algorithm [15].

4 Experiments and Results

The experiments in this paper were chosen for two purposdestPRT on prob-
lems that cannot be efficiently solved BRMand single-query planners and to eval-
uate parallePRT performance compared to the sequential implementation.

BenchmarksWe ran our experiments on a set of benchmarks chosen to vary in
type and in difficulty. Problems “fence2” and “fence4” casted of two and four
non-convex parts, respectively, in a box split by a regdacé-like wall (Figure 2).
Problem “narrow4h2” consisted of four non-convex parts tmal walls with two
disjoint small square holes (Figure 1). Problem “narrowéhsisted of six non-
convex parts and a single wall with a small square hole inrdbRms “random4”

and “random-chain” consisted of four non-convex parts adi@-®OF articulated
arm represented as an open kinematic chain, respectiredybox filled with ran-
dom objects. Problem “puma-maze” consisted of a 6R artiedlimb similar to a
Puma560 surrounded by several vertical bars (Fig 1 and 2).

PRT for Parallel Computation of Multiple Query Roadmaps

Fig. 2: Scenes from our benchmarks. From left to right, th@aed scenes are “puma box”,
“random4”, and “fence2”.

Hardware and Software Setuphe implementation was carried outAnsi C/ C++
using theGNU compilers and libraries. Additionally, we made use of 8w FT++
collision detection library [7], théAt | as2 implementation ofLAPACK for nu-
merical routines, th&Pl CH implementation ofvPl standard for communication
andQpenG. for visualization. The processing nodes consisted of elelsal AVND

At hl on 1900MPs with 1GB of memory each. The scheduler node wag\¢D

At hl on 1800XP with 500MB of memory. The network topology was switched
100Mbps for the processing nodes with a 1Gbps backbone tsctieduler node.
All of the nodes ran Debian Linux with kernel 2.4.21.

Comparison oPRT with Other PlannersBy setting parameters in different ways
our implementation oPRT can be made intBRM bi-directionalRRT, or EST. We
tested their performance on various difficult benchmarks. &€&periments showed
that PRM RRT, or EST could not solve the “fence2” or “fence4” problems even
after8 hours of computation, whilPRT was able to solve these problems#8.18
and3307.14 seconds on average, respectively. We also tested thes#taigoon
“narrow6” and “narrow4h2” benchmarkBRMwas not able to solve any of these
problems after several hours of computation, and for thé absvo or three bi-
directionalRRT or EST queries, we can preprocess the space Ri@f to obtain a
structure that answers queries more robustly and more lguitén these sample-
based tree planners.

Measuring Parallel EfficiencyTo measure the parallel efficiency BRT, we ran
on various benchmarks the parallel code with 1, 2, 4, 8, 162hg@rocessors -
the maximum number of processors we had available. Run tmeeaveraged over
several runs. In Table 1, we report results RRT with RRT andEST as its local
planners. In each case, we report time with one and twenyptacessors (time[1]
and time[22]). Also, for the parallel runs, we report fractiof time spent in mile-
stone computation (mc), edge computation, (ec), commtiaitécomm), waiting
(idle), and parallel efficiency (eff), which is calculated /(¢ - N), wheret, is
sequential timef,, is parallel time, andV is the number of processors.

Akinc, Bekris, Chen, Ladd, Plaku, and Kavraki

Table 1: ParallePRT versus Sequenti®RT.

PRT with bi-directionalRRT as the local planner.

benchmark | time[1](s) | time[22](s) mc ec comm idle eff.
fence2 868.19 42.82 0.4108 0.4539 0.0965 0.0388 0.92
fenced 3307.44 151.84 0.4008 0.5551 0.0203 0.0238 0.99
narrow4h2 1666.95 93.21 0.3902 0.502§ 0.0618§ 0.0452 0.81
narrow6 3131.71 173.41 0.450Q 0.4509 0.06927 0.0299 0.82
random4 2242.39 125.5 0.303§ 0.6417 0.0391 0.0161 0.81
random-chain 10050.44 512.2§ 0.233Q 0.7219 0.0221 0.023Q0 0.89
puma-maze 8097.04 327.32 0.0248 0.8760 0.0844 0.0144 1.12
PRT with bi-directionalEST as the local planner.
benchmark | time[1](s) | time[22](s) mc ec comm idle eff.
fence2 872.78 41.54 0.2776 0.6311 0.0657 0.0256 0.95
fenced 3158.51 149.23 0.2365 0.704Q 0.0449 0.0341 0.96
narrow4h2 1290.25 79.51 0.2715 0.5813 0.093§ 0.053¢ 0.74
narrow6 2935.1(176.13 0.2605 0.65393 0.0583 0.0279 0.76
random4 1577.97 107.83 0.13171 0.7897 0.0488 0.0298 0.67
random-chain 10691.09 551.93 0.2186 0.7429 0.0155 0.0230 0.88
puma-maze 10207.89 414.1Q0 0.0206 0.8939 0.0764 0.0091 1.12
Fig. 3: ParallePRT Timings

:: 90% Idle: 2.38%
B Ideal Speedup ““Actual | e [o

=g Speedup-| , |Computation: |Computation:
%12 w.|40.08% 55.51%

. a0 Partitioning: 2.03%

i .

0 2 4

6 8 10 12 14 16 18 20 22
Number of Processors

60 80 100 120 140

Seconds

In Figure 3, we present two plots of parallRT behavior. The plot on the
left is for “fence2” and indicates the speedup obtained fiffiexent numbers of
processors. The plot on the right is for “fence4” and prestgged data showing
how processing nodes spend their time. These plots areatbassic of the behavior
of the algorithm on the other benchmarks as well.

The overall efficiency of the parall€IRT is reasonably high on averag§e.8%
and in all our experiments in the range-99%. We also had a benchmark were su-
perlinear,1.12, speedup was obtained. Also, the speedup graph in Figure@dast
linear which suggests that the efficiency constant is natyiag with the number of
processors. However, Algorithm 2 as presented places alotte scheduler which
is proportional to the number of processing nodes. As thelbmurof processors in-

PRT for Parallel Computation of Multiple Query Roadmaps

creases, this will eventually become a problem. A possitilletion to this problem
might be to increase the number of schedulers or to have arbier of schedulers.

Nevertheless, there are several advantages of the pdRilehlgorithm. It is
fairly simple and makes insignificant use of any blocking camication calls.
Milestone and edge computations are also nearly fully idigted and storage is
also distributed evenly.

Virtually all of the communication overhead occurs durihg £dge computa-
tions. This phase of the computation would be the most reddemlace to attempt
to make further improvements. The graph partition schemeses in our imple-
mentation optimized the sum of the number edges inthés. A better quantity to
optimize would be to maximize the minimum number of edges alle p,’s. This
would favor better load balancing.

5 Discussion

We observed in our experiments tHaRT is a powerful multiple query planner
which combines advantages of traditional sampling-baseglesquery and multi-
ple query planners. By varying parameters, a smooth spadtetween single-query
planners and®RM can be obtained from oUPRT implementation. The sampling
done inPRT has common attributes with earlier refinement and non-umifgam-
pling techniques used iRRM planning [10]. We believe that the efficiency of the
PRT derives in part from offering the sample-based tree plamasier queries as
they come from the closest neighbor clustering and the fiattthe global sampling
property ofPRMis retained so that sample-based expansion heuristids aSRRT
andEST do not get trapped.

We observed th&RT exhibits similar behavior no matter whether bi-directibna
RRT or EST is being used as its local planner. BRRTs andESTs are well-known
to be extremely sensitive to the interplay between the matrd the success of the
planner[14]. We also made this observation in our implemutgon. In environments
with thin obstacles, in particular the fence environm&RT and EST tended to
produce many configurations that were stuck near obstdol#isese environments
RRT andEST are forced to do a similar amount of work to tRBMor PRT prepro-
cessing phases to answer a single query. The efficieneiRbfis not limited to the
specific single query planners that we used. In fact, oth@ipkabased tree plan-
ners with good coverage properties can be substituteché&umnbre, we suggested a
parallel implementation d®?RT and obtained an efficient division of labor allowing
PRT to tackle problems of unprecedented complexity.

We plan to scale ouPRT implementation to a cluster with several hundred
nodes. To do this, it is likely that some decentralizatiothef scheduling computa-
tions will become necessary. Our goal is to apply our workitwoaasingly hard plan-
ning problems dealing with flexible robots [13], reconfigulearobots [17], complex
planning instances [16], and computational biology a@pians [3,1].

Acknowledgementork on this paper by M. Akinc, K. Bekris, B. Chen, A. Ladd, EaRu,
and L. Kavraki has been partially supported by NSF 97022&g; N308237, NSF 0205671,

Akinc, Bekris, Chen, Ladd, Plaku, and Kavraki

an REU supplement, a Whitaker Grant, and a Sloan FellowsHipKavraki. A. Ladd is also
partially supported by an FCAR grant. The authors thank AMBspplying the processors
where the experiments were carried on.

References

1.

10.

11.

12.
13.

14.

15.

16.

17.

N. Amato, K. Dill, and G. Song. Using motion planning to n@aptein folding land-
scapes and analyze folding kinetics of known native strestu InRECOMB pages
2-11, April 2002.

. N. M. Amato, O. B. Bayazit, L. K. Dale, C. Jones, and D. Malle Choosing good

distance metrics and local planners for probabilistic nnapg methodsTRA pages 442—
447, 2000.

. M. Apaydin, D. Brutlag, C. Guestrin, D. Hsu, and J. Latomb®tochastic roadmap

simulation: An efficient representation and algorithm faalyzing molecular motion.
In RECOMB April 2002.

. J. Barraguand and J. Latombe. Robot motion planning: &ibliged representation

approachlJRR 10:628-649, 1991.

. K. Bekris, B. Chen, A. Ladd, E. Plaku, and L. Kavraki. Mplé query motion plan-

ning using single query primitives. To appear at IROS 20083-R22, Rice University,
Houston, TX, July 2003.

. P.Bessiere, E. Mazer, and J.-M. Ahuactzin. Planningimicoous space with forbidden

regions: The ariadne’s clew algorithm. In K. G. et al, edifdgorithmic Foundations of
Robotics pages 39-47. A K. Peters, Wellsley MA, 1995.

. S. Ehmann and M. Lin. Accurate and fast proximity queriesvieen polyhedra using

surface decompositiolComputer Graphics Forum (Proc. of Eurographic8p01.

. R. Geraerts and M. Overmars. A comparitive study of pridiséib roadmap planners.

In Proc. WAFR 2002.

. D.Hsu, R. Kindel, J. Latombe, and S. Rock. Randomizeddsinamic motion planning

with moving obstacleslJRR 2001.

L. E. Kavraki, P. Svestka, J.-C. Latombe, and M. H. Ovesm®&robabilistic roadmaps
for path planning in high-dimensional configuration spadé3A 12(4):566-580, 1996.
W. Kernighan and S. Lin. An efficient heuristic procedimepartitioning graphsBell
System Technology Journd9:291-307, 1970.

A. Ladd and L. Kavraki. Motion planning for knot untamgi InWAFR 2002.

F. Lamiraux and L. Kavraki. Planning paths for elastifeots under manipulation con-
straints.lIJRR 20(3):188-208, 2001.

S. LaValle and J. Kuffner. Rapidly exploring random $&relerogress and prospects. In
B. Donald, K. Lynch, and D.Rus, editoM/AFR pages 293-308. A.K. Peters, 2001.
C. Papadimitriou and K. SteiglitZZombinatorial Optimization: Algorithms and Com-
plexity. Prentice Hall, 1982.

G. Sanchéz and J.-C. Latombe. On delaying collisiogkihg in prm planning - appli-
cation to multi-robot coordinationJRR 21(1):5-16, 2002.

M. Yim. Locomotion with a Unit-Modular Reconfigurable Rob&hD thesis, Stanford
Univ., December 1994. Stanford Technical Report STAN-@SES36.

