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Abstract: The Class I Major Histocompatibility Complex (MHC) is a central protein in immunology
as it binds to intracellular peptides and displays them at the cell surface for recognition by T-cells.
The structural analysis of bound peptide-MHC complexes (pMHCs) holds the promise of interpretable
and general binding prediction (i.e., testing whether a given peptide binds to a given MHC).
However, structural analysis is limited in part by the difficulty in modelling pMHCs given the
size and flexibility of the peptides that can be presented by MHCs. This article describes APE-Gen
(Anchored Peptide-MHC Ensemble Generator), a fast method for generating ensembles of bound
pMHC conformations. APE-Gen generates an ensemble of bound conformations by iterated rounds
of (i) anchoring the ends of a given peptide near known pockets in the binding site of the MHC,
(ii) sampling peptide backbone conformations with loop modelling, and then (iii) performing energy
minimization to fix steric clashes, accumulating conformations at each round. APE-Gen takes only
minutes on a standard desktop to generate tens of bound conformations, and we show the ability
of APE-Gen to sample conformations found in X-ray crystallography even when only sequence
information is used as input. APE-Gen has the potential to be useful for its scalability (i.e., modelling
thousands of pMHCs or even non-canonical longer peptides) and for its use as a flexible search tool.
We demonstrate an example for studying cross-reactivity.
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1. Introduction

The Class I Major Histocompatibility Complex (MHC) is a protein that plays a central role in
our adaptive immune system [1]. MHCs bind to intracellular peptides, about 8–11 amino acids in
length, and the combined peptide-MHC (pMHC) complex is transported to the cell surface. Surveilling
T-cells then inspect the pMHCs to determine whether a given cell is diseased or healthy. Diseased
cells will tend to display a set of peptides that are different from the types of peptides that are
presented by healthy cells, and an immune response is triggered if a T-cell is able to recognize such a
differing peptide. Studying pMHCs has potential applications for immunotherapy, which leverages
this mechanism to deliver precise treatments against certain diseases, such as cancer [2].

One direction in studying pMHCs is binding prediction, since not every peptide binds to a given
MHC. There are thousands of different MHC allotypes found in the human population, each with
its own preference for the kinds of peptides that will bind, which is in turn determined by the
MHC sequence. Experimental methods alone cannot cover the sheer number of combinations of
pMHCs possible (i.e., all possible peptides presented by all MHC allotypes in the population),
making computational methods an attractive complementary approach. The leading approaches
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for computational binding prediction are based on using sequence as the basis for prediction, typically
through the use of neural networks, and are trained using a dataset of experimentally-determined
binding affinities [3–5]. While sequence-based methods allow for rapid prediction of pMHC binding,
their performance for allotypes not included in training sets is difficult to quantify [6].

An alternative computational approach is based on analyzing the structure of pMHCs.
Structure-based methods have the potential to be more interpretable and general across pMHCs,
since binding predictions are based on the existence of structural features, such as atomic interactions.
The structural analysis can be based on structures derived from X-ray crystallography experiments
for example, and there are about 600 pMHC crystal structures available in the Protein Data Bank
(PDB) at the time of this writing. However, given that the number of pMHC crystal structures only
covers a small fraction of pMHC combinations, computational methods have been developed to model
conformations of peptides bound to MHCs [7].

Toward this end, molecular docking tools can be used to generate bound pMHC structures [8].
Molecular docking aims to predict the most likely conformation a given ligand (e.g., peptide) will
take in the binding site of a receptor (e.g., MHC). The main challenge that molecular docking
methods face with pMHCs is handling the high-dimensional conformational space of peptides in a
computationally efficient manner. Please note that the receptor conformation must also be considered,
as the sidechains in the binding site of the MHC can rearrange depending on the peptide conformation.
Popular molecular docking software, such as AutoDock Vina [9], do search in conformational space
with genetic algorithms, and candidate conformations (peptide plus MHC) are evaluated with the help
of a scoring function [10]. The output is a single conformation or a select few conformations that are
considered high quality by the scoring function. The accuracy of such methods is then assessed by
comparing the returned conformations with those found in the reference crystal structure, typically
with a metric known as root mean square deviation (RMSD) that computes a distance between two
conformations. In the context of pMHCs, general molecular docking methods [11] as well as methods
built specifically for pMHCs have been applied to model bound pMHC conformations. Examples
of docking methods built specifically for pMHCs include using a priori knowledge of bound pMHC
conformations to limit the conformational search [12–14] or incorporating a pMHC-specific scoring
function [15]. For a more comprehensive discussion of molecular docking for pMHCs or more generally
how structure-based methods have been applied to pMHCs, we refer the interested reader to a recently
published review [7].

However, a largely ignored component in the structural analyses is that biomolecules such as
pMHCs are not static in solution. The pMHC system may adopt multiple conformations, and thus
subsequent analyses involving only a single conformation per pMHC could lead to misleading
conclusions. In [16], the authors used a technique known as ensemble refinement to generate
alternative conformations of pMHCs that are still consistent with the X-ray crystallography experiment.
They found that when structural analyses are instead done with conformations produced from
ensemble refinement, alternative conclusions can be formed due to the existence of different interactions
between peptide and MHC.

Therefore, in this work, we are interested in developing a method that can generate an ensemble
of conformations, as opposed to simply producing the most probable one as done with docking-based
methods. Structural analysis of pMHCs can then be done on the ensemble, which takes into account
the previously neglected flexibility of the peptide within the MHC binding site. Having access to such
an ensemble could allow one to explore alternative bound conformations, which the pMHC may adopt
naturally in solution or in response to interacting T-cells. Currently there is a lack of computationally
efficient methods that can produce such an ensemble of plausible (clash-free) pMHC conformations.
A naive way of generating an ensemble would be to rerun docking tools to generate multiple bound
pMHC conformations. However, molecular docking methods simply were not built to perform this
task since they are relatively slow to rerun often given the size and flexibility of peptide ligands,
and do not aim to produce diverse bound conformations. Additional work would need to be done
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with molecular docking tools to keep track of what conformations have already been produced at
a particular point. Another method that could be used is molecular dynamics, which simulate the
interactions between atoms through time [17–19]. However, besides the fact that this method requires
a bound pMHC conformation to begin with, molecular dynamics is computationally demanding
in that it requires massive amounts of computational resources to explore physiologically relevant
timescales [20].

To develop a method that is both computationally efficient and can produce diverse bound
pMHC conformations, we gained insight from two previously noted observations. The first takes
advantage of the fact that the ends of the peptide are known to be anchored at particular pockets
within the MHC binding site. Therefore, if the ends of the peptide are more or less in fixed positions,
the majority of the conformational search can focus on finding conformations for the middle of the
peptide. This insight turns the problem into a loop modelling problem, for which there are methods
already developed [21–24], and indeed this insight has also been used by other methods for modelling
pMHCs [12–14]. A method that focuses on only the middle portions of the peptide makes it more
efficient as it limits the conformational search. However, loop modelling software typically works by
fixing the surrounding conformation, meaning that the peptide conformations are generated with a
fixed receptor conformation. Thus, the peptide conformations that are sampled by loop modelling are
biased by the receptor conformation. The second observation allows our method to overcome this bias.
In [25], DOCKTOPE overcomes docking with a rigid receptor conformation by alternating docking
with energy minimization. Since loop modelling is done with respect to a given fixed conformation,
our method can similarly alternate loop modelling with energy minimization. Multiple rounds of
loop modelling followed by energy minimization then ensures a more diverse sampling of peptide
conformations, since a different receptor conformation can be used in each round.

These insights allowed us to develop APE-Gen (Anchored Peptide-MHC Ensemble Generator),
a fast method for generating bound pMHC conformations. APE-Gen generates an ensemble of bound
conformations by iterated rounds of loop modelling followed by energy minimization, and only
requires the sequence of the peptide and MHC as input. A single round consists of i) anchoring the
ends of a given peptide near known pockets in the binding site of the MHC, ii) sampling peptide
backbone conformations with loop modelling, and then iii) performing energy minimization to fix steric
clashes. The energy minimization is done with a scoring function typically used for docking [26] that
models electrostatic, hydrogen bonding, solvation, and hydrophobic effects. The energy minimization
is done over the peptide conformation as well as the receptor sidechains in the binding site. At the
end of a round, the sampled conformations are pooled together with the conformations sampled from
previous rounds, and the conformation with the lowest energy is used as input to the next round.
The combination of loop modelling followed by energy minimization allows APE-Gen to generate
a diverse ensemble of bound pMHC conformations that can be used for further structural analysis.
APE-Gen is fast and naturally takes into account receptor flexibility through the energy minimization.
We validate APE-Gen by assessing its ability to sample the conformation found in the corresponding
crystal structures, even when only sequence information is used as input. We also discuss a few
application scenarios that showcase the scalability and flexibility of APE-Gen. APE-Gen is open-source
and freely available at https://github.com/KavrakiLab/APE-Gen.

2. Results

2.1. Reproducing Crystal Structures

We tested APE-Gen on its ability to find the native conformation as determined with X-ray
crystallography. The pMHC crystal structures available in the PDB were determined with the help of
the IMGT/3Dstructure database [27] and a total of 603 entries were found. We excluded structures that
had missing domains, gaps in sequence, modified residues, or structures with peptides longer than
11 amino acids, leaving a total of 535 pMHCs. APE-Gen was run for each of these pMHCs, using the
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sequence of the peptide along with the receptor conformation found in the crystal structure. Please
note that while the correct receptor conformation is used as input (resembling redocking experiments
in molecular docking), APE-Gen samples different receptor sidechains within every round through the
energy minimization step. APE-Gen was run for 10 rounds, and we report the RMSD of the sampled
peptide conformation that is closest to the one found in the crystal structure (Figure 1).

Figure 1. Distribution of final full-atom RMSD across various peptide lengths. The average full-atom
RMSD across whole dataset is 2.02 Å. There are a total of 93, 317, 91, and 34 structures of 8-mers, 9-mers,
10-mers, and 11-mers, respectively.

For a given peptide and MHC, APE-Gen takes approximately 5 min per round to generate tens of
conformations on 12 processor cores at 2.83 GHz. The average full-atom RMSD across whole dataset is
2.02 ± 0.46 Å (Cα RMSD 0.91 ± 0.32 Å). Given that the resolution of X-ray crystallography experiments
is around 2 Å, these results show that APE-Gen can sample conformations that are found in crystal
structures. Figure 1 shows the distributions of the full-atom RMSD values across different peptide
lengths. While there are some pMHCs for which APE-Gen was only able to sample conformations
around 3 Å or greater, the low reported Cα RMSD values show that most of the differences are
likely concentrated in the sidechains of the peptide. Small errors in sidechain configuration can be
easily corrected in post-processing steps, and most pipelines for structural analysis include a short
minimization with a more accurate energy function. From Figure 1, we notice that the average RMSD
values are larger for 10-mers and 11-mers compared to 9-mers. This makes intuitive sense since longer
peptides have more degrees of freedom, and thus, lower the likelihood that APE-Gen can sample a
conformation near the crystal structure.

2.2. Using Only Sequence Information

Next we tested the ability of APE-Gen to sample a crystal-like structure when only using
sequence information (i.e., no structural data on the MHC receptor). Two MHCs were tested and
input conformations were obtained using homology modelling: HLA-A*02:01 was modelled with
a structure of HLA-A*24:02 (PDB code 3I6L), and HLA-A*24:02 was modelled with a structure of
HLA-A*02:01 (PDB code 1DUZ), using the software MODELLER [28]. Then, we assessed the ability
of APE-Gen to sample the crystal conformation for pMHCs of HLA-A*24:02 or HLA-A*02:01 that
have crystal structures. These two allotypes were chosen because they are the most prevalent in the
human population, and HLA-A*02:01 has the greatest number of crystal structures available in the
PDB. APE-Gen was run for 10 rounds, and we measure the RMSD of the conformation that is most
similar to the one found in the crystal structure. The mean full-atom RMSD across the 13 pMHCs for
HLA-A*24:02 was 2.20 ± 0.21 Å (Cα RMSD 1.10 ± 0.17 Å), and across 123 pMHCs for HLA-A*02:01
was 2.18 ± 0.34 Å (Cα RMSD 1.12 ± 0.29 Å). We also compared the difference in full-atom RMSD
between using the modelled MHC versus the actual crystal structure. For HLA-A*02:01, the average
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difference was 0.35 Å, while the average difference HLA-A*24:02 was a mere 0.05 Å. In some cases,
APE-Gen was even able to sample a conformation closer to the crystal when using the modelled MHC.
Therefore, we see that while the average RMSDs are slightly worse than when using an actual crystal
structure of the receptor, the average RMSDs are still at acceptable values.

2.3. Application: Modelling Thousands of pMHCs

One potential application of APE-Gen takes advantage of its ability to model thousands of
pMHCs. As mentioned in the Introduction, there is considerable interest in being able to predict
whether a given peptide will bind to a particular MHC, or even predicting the strength of peptide
binding. We wanted to test the limits of applicability and see if APE-Gen as it is currently built would
be able to do large-scale screening of peptides (i.e., to discriminate between so-called binders and
non-binders). Each conformation produced goes through a scoring function [10,26], and so APE-Gen
can score a particular peptide using the best scoring conformation that was sampled. We wanted
to test whether the scoring function used within APE-Gen (SMINA scoring function [26]) could be
used to classify binders and non-binders, where known binders would produce better scores than
known non-binders. APE-Gen was used to model 11234 HLA-A*02:01-restricted peptides for which
there are known experimental binding affinities [4]. The receptor conformation found in PDB code
1DUZ was used as the input HLA-A*02:01 conformation. To save on computing time, APE-Gen was
run for a single round per peptide. Running APE-Gen for a single round opens the possibility of
insufficient sampling, but the average relative difference between a binder and a nonbinder is assumed
to stay the same since the final score used can only be better with more sampling. APE-Gen required
almost 24 h of wall clock time on a computing cluster across 45 nodes with 12 processing cores each to
produce a score for each peptide. Unfortunately, there is only a weak correlation between the scores
obtained using APE-Gen and the true binding affinities (Spearman R: 0.255). In other words, there
was no clear separation between binders and non-binders using the scores. However, this experiment
serves as a proof-of-concept on the ability of APE-Gen to perform large-scale modeling of pMHC
complexes, regardless of available structural data. APE-Gen could be combined with pMHC-specific
scoring functions or used to generate training data sets for machine learning based methods to conduct
structure-based binding affinity prediction.

2.4. Application: Modelling a 15-mer Peptide

The speed of APE-Gen allows one to model many different peptides within a reasonable time.
In addition to this scalability, we wanted to test the ability of APE-Gen to model longer, non-canonical
peptides (>11 amino acids). Longer peptides have more degrees of freedom, in the form of rotatable
bonds, which presents a computational challenge for molecular docking tools as the conformational
space is higher dimensional and it becomes more difficult to identify high quality conformations
with respect to a scoring function. For APE-Gen in particular, the likelihood of sampling a given
structure decreases since the loop modelling and energy minimization steps are less likely to sample
the correct backbone and sidechain conformations, respectively. As a proof-of-concept, we wanted to
see if APE-Gen could sample the crystal structure given enough time.

Here we present the results of running APE-Gen on the 15-mer “FLNKDLEVDGHFVTM”,
which is known to bind to HLA-A*02:01, and checking whether APE-Gen can sample a conformation
similar to the one reported in PDB (PDB code 4U6Y). This 15-mer is a naturally processed peptide
that has also been shown to be recognized by T-cells [29]. Therefore, the ability to model this peptide
and other longer, non-canonical peptides can lead to further insights into T-cell immunity. In Figure 2,
we show the conformation sampled that was closest to the conformation found in the crystal structure
after a total of 20 rounds. The anchor template used was taken from a different structure (PDB code
4U6X), and the receptor conformation was taken from PDB code 1DUZ. APE-Gen was able to produce
a model of the peptide to 2.82 Å full-atom RMSD (1.57 Å Cα RMSD). The total time taken by APE-Gen
was about 200 min on an Intel Core i7-4790. Please note that APE-Gen produced not only this structure,
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but an ensemble of conformations that could better capture the intrinsic flexibility of such long peptide
ligands. Knowledge of these alternative possible conformations could be key to understand T-cell
responses against non-canonical peptide binders.

(a) Backbone view (b) Sidechain view

Figure 2. Modelling 15-mer peptide, FLNKDLEVDGHFVTM, onto HLA-A*02:01. The crystal structure
is in blue (PDB code 4U6Y), while the modelled structure is in green. APE-Gen can generate a model of
the peptide to 2.82 Å full-atom RMSD (1.57 Å Cα RMSD)

2.5. Application: Studying Cross-Reactivity

We present a different application that illustrates another potential use of APE-Gen. MAGEA3 is
a well-known melanoma-associated antigen that binds to HLA-A*01:01 [30]. This particular pMHC
was originally intended as a target for T-cell-based cancer immunotherapy. Unfortunately, in some
cases, the T-cells targeting MAGEA3 were also able to recognize and target an unrelated Titin-derived
self-peptide, which has resulted in the death of at least 4 patients in recent clinical trials [31,32]. Similar
off-target reactions have been found in other studies [33,34]. This phenomenon where two different
pMHCs are recognized by the same T-cell is known as cross-reactivity [35]. Two pMHCs are more
likely to be cross-reactive if their T-cell interacting interfaces (Figure 3a) are “similar” [36]. One way to
assess the similarity of two T-cell interacting interfaces is by inspecting their electrostatic surfaces [36].
Therefore, if the structure of a potential pMHC target is known, we could search for other potentially
dangerous cross-reactive pMHCs by inspecting their electrostatic surfaces [37].

We show that APE-Gen could, in principle, be a tool that can search for conformations of a pMHC
that present similar T-cell interacting interfaces to a reference one. In this scenario, the structure of
MAGE-A3 bound to HLA-A*01:01 is known (Figure 3a, PDB code 5BRZ) and we can compute the
electrostatic surface of its T-cell interacting interface (Figure 3b). We run APE-Gen on the self-peptide
derived from Titin, bound to HLA-A*01:01, with the goal of sampling a conformation that presents
a similar surface to the reference (MAGEA3). APE-Gen was run until the backbone conformation of
the self-peptide matched the backbone conformation of the MAGEA3 peptide, as measured when
the Cα RMSD between the two peptides falls below 1 Å. Only one round of APE-Gen was needed
and the minimum backbone RMSD conformation was used to generate electrostatic surfaces for
analysis (Figure 3c). Electrostatic surfaces are computed by mapping electrostatic potentials to the
solvent-accessible surface of the T-cell interacting interface. Figure 3 shows that the two systems present
qualitatively similar electrostatic surfaces, which is consistent with the fact that the two peptides are
known to be cross-reactive [30]. Given its scalability, we anticipate that APE-Gen could be used in the
future to conduct structure-based screenings for potentially dangerous cross-reactive targets, as part of
the development of new T-cell-based immunotherapies.
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(a) (b) (c)

Figure 3. View of T-cell interacting interface. (a) Ribbon view of MAGEA3 (pink) bound to HLA-A*01:01
(green), PDB code 5BRZ (b) Electrostatic surface of MAGEA3 bound to HLA-A*01:01, PDB code
5BRZ (c) Electrostatic surface of Titin-derived self-peptide bound to HLA-A*01:01 (APE-Gen model).
APE-Gen can search for conformations Titin-derived self-peptide that produce similar pMHC interfaces
to the reference MAGEA3 conformation. Electrostatic surfaces are computed using PyMOL’s “Protein
Contact Potential” feature.

3. Materials and Methods

As mentioned in the Introduction, APE-Gen consists of iterated rounds of three steps: (i) anchoring
the ends of a given peptide near known pockets in the binding site of the MHC, (ii) sampling
peptide backbone conformations with loop modelling, and then (iii) performing energy minimization
to fix steric clashes. For detailed information, APE-Gen is open-source and freely available at
https://github.com/KavrakiLab/APE-Gen. In this section, we describe the steps that APE-Gen
takes to generate an ensemble of bound conformations for a particular pMHC. The steps for a given
round can be summarized in Figure 4. First, we describe how the input is prepared, followed by a
description of the steps, and then how APE-Gen transitions between rounds.

Figure 4. Steps within a single round of APE-Gen. From left to right: anchor alignment, peptide
backbone sampling, and energy minimization. After a round is complete, the highest quality
conformation as determined by the scoring function is used to initialize the next round.

3.1. Input Preparation

Ultimately, all the method requires as input to generate bound pMHC complexes is the sequence
of the peptide ligand and the sequence of the MHC receptor. If there is a known conformation of the
MHC from the PDB, this structure can be used as input and it would have a positive impact on the
results. If not, APE-Gen will use MODELLER and a template to generate a model for the MHC of
interest [28]. Given a template MHC structure and the sequence of the MHC receptor, MODELLER
searches for conformations of the MHC receptor that are favorable according to MODELLER’s internal
DOPE score [28] and multiple conformations are generated. More precisely, only conformations of
the alpha chain are modelled, since the sequence of the β2-microglobulin chain is the same across
allotypes. We then use the best scoring conformation according to the DOPE score as input to the
first round. Please note that the generated MHC conformations are typically similar to the template
MHC structure. Thus, the template MHC structure used largely affects the results of the homology
modelling. The ideal template for a given allotype to choose would belong to an allotype of the same

https://github.com/KavrakiLab/APE-Gen
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supertype. MHC allotypes belonging to the same supertype are known to have similarities in the
kinds of peptides that bind to them [38]. Otherwise the structure of the MHC receptor obtained by
other means (such as crystallography) can be used as input.

3.2. Anchor Alignment

As mentioned in the Introduction, the ends of a bound peptide are usually “anchored” to the
MHC at particular pockets in the binding site. With the sequence of the peptide ligand and the
structure of the MHC receptor, APE-Gen places terminal atoms of the peptide backbone onto the
receptor using a template pMHC conformation. The structure of the MHC receptor is aligned to the
template pMHC, and the coordinates of the terminal atoms of the peptide backbone found in the
template are transferred onto the MHC receptor after alignment. Please note that the pMHC template
here is used to determine the coordinates of the peptide anchors, while the template mentioned in
the previous section is used to generate a model of the MHC structure. APE-Gen uses the terminal
atoms of the first and last two residues of the peptide found in the template, since two residues at each
terminus are also the minimum number required for the subsequent loop modelling step. The template
pMHC used depends on the length of the peptide sequence, where APE-Gen uses a template with a
bound peptide of the same length as the input sequence. This is done since longer peptides bind with
an extended “bulge” along the middle of the conformation, which affects the position of the termini
backbone atoms, especially for the inner terminal atoms. The template for a given n-mer was chosen
by finding the n-mer pMHC structure from PDB that has the minimum average distance to every other
n-mer pMHC structure from PDB. The PDB codes for the templates are 2VAA, 1DUZ, 1I4F, and 2NW3
for 8-mers, 9-mers, 10-mers, and 11-mers, respectively. Custom templates are also possible, including
the ability to use the highest quality structure sampled from the previous rounds. Higher n-mers can
be modelled with APE-Gen, up to 15-mers; however higher n-mers are more susceptible to alternative
binding poses where the peptide termini are in atypical locations on the MHC receptor [39].

3.3. Peptide Backbone Sampling

In this step, various backbone conformations of the peptide are generated using loop modelling
software. Any loop modelling software could be used in this step, but in this work we use a recently
developed implementation known as RCD [24]. The underlying algorithm of RCD is based on Random
Coordinate Descent, a modification of the more popular CCD or Cyclic Coordinate Descent [22].
The RCD algorithm achieves fast conformational sampling by introducing more randomization into
the optimization, tries to close the loop from both ends, and has a fast loop conformation update
method with spinor matrices and geometric filters [24]. The software that implements this algorithm
is freely available and used by APE-Gen without modification. In this work 100 peptide backbone
conformations are sampled per round with a RMSD tolerance of 1.0 Å (i.e., the residues in contact with
the middle of the backbone are allowed to move at most 1.0 Å).

3.4. Sidechain Sampling and Energy Minimization

With the backbone conformations obtained from the previous step, sidechains are added to
the peptide using PDBFixer [40]. PDBFixer internally attempts to add sidechains in a manner that
avoids steric clashes. Then, with full-atom conformations of the pMHC, APE-Gen performs energy
minimization of the pMHC using SMINA [26]. SMINA is a molecular docking tool that is included in
the APE-Gen’s pipeline because of its fast “local search” protocol. SMINA refines the conformation
of the peptide and the sidechains of the MHC by performing energy minimization using its internal
scoring function. The scoring function used by SMINA resembles a simplified forcefield with
empirical terms and models electrostatic, hydrogen bonding, solvation, and hydrophobic effects [26].
Every conformation from the previous step is run through PDBFixer followed by SMINA’s local search
feature to produce a candidate bound pMHC conformation. This step is how APE-Gen incorporates
receptor conformational changes in response to different peptide conformations. Please note that some
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pMHC conformations get filtered out in this step as SMINA cannot fix clashes (e.g., clashes introduced
by RCD or PDBFixer). Note also that the energy minimization using SMINA has no constraint on
the positions of the anchors and can end up producing significantly different peptide conformations
(greater than 2 Å change). Thus, conformations that do not feature the peptide anchors in the correct
pockets of the MHC are filtered out as a post-processing step.

3.5. Running APE-Gen for Multiple Rounds

A single round of running APE-Gen consists of performing the previously described steps of
anchor alignment, backbone sampling, and energy minimization. Note again that while receptor
flexibility is taken into account in the energy minimization step, the receptor is kept rigid during the
step prior when sampling peptide backbone conformations. As mentioned in the Introduction, different
peptide backbone conformations may be sampled in the loop modelling step given a different receptor
conformation since sidechains in the receptor may be blocking off regions in the binding site for the
peptide. Therefore, one way to be more exhaustive in sampling peptide backbone conformations is to
input a different receptor conformation in subsequent rounds of running APE-Gen. One convenient
way to obtain a different conformation is to use the best scoring pMHC conformation sampled at the
end of a given round. Thus, the receptor conformation to be used as input is taken from the best scored
pMHC conformation sampled from the previous round. This creates diversity in the conformations
sampled across rounds, since different receptor conformations are used for each subsequent loop
modelling step. Another way to create diversity is to input a different anchor template for the peptide.
This can be done in a similar way for the input receptor conformation, where the best scoring pMHC
conformation sampled in the previous round is used to obtain the anchor template for the next round.
This feature may be useful if one has reason to believe that a given peptide binds in a different manner
(i.e., binding to different pockets in the MHC), which may be more common for higher n-mers or
particular MHC allotypes [39]. For the results presented in this work, we have kept this feature disabled.
The complete ensemble that APE-Gen computes is the combination of all the bound conformations
generated at each round.

4. Discussion and Conclusions

APE-Gen stands out as a method that can quickly generate bound conformations of pMHCs given
only sequence information. As alluded to in the Results section, APE-Gen has a wide array of potential
applications. As a tool, APE-Gen can rapidly sample native-like conformations. The scalability of
APE-Gen allows the modelling of thousands of different pMHCs within a reasonable timeframe.
Additionally, non-canonical longer peptides (up to 15-mers) can also be modelled by APE-Gen, which
is an extremely difficult task for traditional molecular docking approaches due to the additional
degrees of freedom. The modelled ensemble of bound conformations can then be used as datasets for
further structural analyses.

First, we evaluated APE-Gen on its ability to sample a conformation that is similar to a reference
crystal structure. Current general-purpose molecular docking tools, such as AutoDock Vina [9],
simply cannot reach the scalability of APE-Gen without invoking some domain-specific knowledge,
and so the same task cannot be performed with it. As shown in the Results, APE-Gen can sample
a conformation that is similar to the one found in the crystal structure across all the pMHC crystal
structures available in the PDB. As a point for comparison, the performance of APE-Gen is comparable
to GradDock, a docking tool developed specifically for pMHCs that also features a pMHC-specific
scoring function [15], in its ability to generate conformations that have low full-atom RMSDs to a
reference crystal structure. While our results show that the produced ensembles include conformations
similar to those found in crystal structures, selecting such conformations out of this ensemble is
a non-trivial task. For instance, the highest quality conformations in the ensembles produced by
APE-Gen (using the SMINA scoring function) are not necessarily the same conformations that are
nearest to the ones found in the corresponding crystal structure. This is not a problem specific to
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APE-Gen, and the top scoring conformations derived from other methods may also be dissimilar to the
reference crystal conformation [41]. Future work could investigate the use of other scoring functions,
particularly pMHC-specific functions that may be able to better align the quality of a conformation
with the crystal-like ones.

However, as mentioned in the Introduction, the structural analyses of pMHCs using a single
conformation can be misleading. Interactions between peptide and MHC may be missed when only
considering a single conformation and entropic effects are ignored in general. APE-Gen is a step
toward the structural analyses of pMHCs in an ensemble fashion. However, the generated ensemble
is by no means an optimal one. In fact, the conformations contained within can be viewed as rather
coarse, given the nature of the sampling process and the use of the SMINA scoring function. As a
result, it is difficult to assign a “weight” to each conformation.

Nevertheless, APE-Gen now provides a rapid way to generate an ensemble of plausible pMHC
conformations and enables new kinds of analysis. For instance, in Section 2.3, we investigated the use
of the scoring function as a possible way to classify binders from non-binders, where the predicted
binding affinity of a particular pMHC is taken as the best score of the highest quality conformation
from the ensemble. While our results show that APE-Gen was unable to reliably do binding prediction,
the ensembles produced by APE-Gen may lead to future work in improving structure-based binding
prediction methods. The models produced by APE-Gen can be used as training sets for future scoring
functions that aim to classify binders from non-binders or even predict binding affinities. Future work
could also focus on how the ensemble as a whole could be used in predicting binding affinities, as the
use of the ensemble could be a way to include previously neglected effects of peptide flexibility.

We have also shown a use case of APE-Gen as a conformational search tool. In the context of
cross-reactivity, we have shown how APE-Gen can be used in principle to search for conformations
that produce similar “looking” interfaces to a reference pMHC. Other analyses could be possible as
one could simply filter through the conformations generated by APE-Gen to fit within some pipeline
or run the APE-Gen method until some desirable conformation has been found. The search aspect of
APE-Gen could be improved in future work by either making sampling more directed or incorporating
some notion of memory to prevent re-sampling similar conformations.

Finally, another exciting application of APE-Gen is the ability to initialize molecular dynamics
simulations from multiple diverse starting conformations as it only requires sequence information to
produce models. The results of a given simulation may be heavily biased by the starting conformation,
and it is becoming more apparent that molecular dynamics simulations should be instead run in an
ensemble fashion [42]. A new class of methods known as adaptive sampling are gaining popularity,
where many short parallel simulations are iteratively restarted in a principled way to achieve some
goal [20,43–45]. APE-Gen has the potential to be an ideal companion for adaptive sampling methods
that will enable the study of any pMHC system with molecular dynamics.
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Abbreviations

MHC Major Histocompatibility Complex
pMHC peptide-MHC
PDB Protein data bank
RMSD Root mean square deviation
Cα alpha-carbon
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