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Abstract—We consider Task and Motion Planning (TAMP)
problems for object manipulation under partial observability.
More specifically, we aim at defining long-term policies for
manipulation problems in environments where a robot has to
explore its environment to complete its task (for example, look
inside a box to check to see if an object is inside). Our Partially-
Observable-Logic-Geometric-Programming approach (POLGP)
is a trajectory-optimization-based approach of TAMP and builds
on the Logic-Geometric-Programming framework (LGP) pre-
sented in prior work [1, 2]. To enable the robot to explore its
environment, we add "perceptual actions" (for example Look) to
the robot’s classic actions (Pick, Place, etc.) used for manipulation
problems. The perceptual actions aim at placing the robot sensor
where it can gain information. To represent partial observability,
we enable the planner to reason about the agent belief-state
on both a symbolic and geometric level. Perceptual actions
lead to a branching point in the policy. A TAMP policy is,
therefore, not a sequence of actions but a tree of actions. To
handle this specificity, we introduce the notion of "trajectory-
tree optimization" for optimizing trajectories across branching
points. To our knowledge, this is the first TAMP approach
that computes long-term policies under partial observability
and, hence, computes trajectories that are not sequential but
arborescent.

I. INTRODUCTION

As an example, we consider a robot equipped with a vision
sensor and having to fetch an object placed in a box. The robot
is surrounded by several boxes and doesn’t know which one
contains the object to fetch. To perform its task, the robot has
to "take a look" inside the boxes (see Figure 1). To do so,
the robot has to move its sensor in order to have the target
location within its field of view. If some boxes are too far
away, the robot must grasp them to bring them closer and,
simultaneously, move its sensor. Some boxes may be closed.
The robot would have to open them first. Our current work
aims at capturing this kind of robot behavior.

Most current TAMP research on object manipulation as-
sumes full observability [1, 2, 3]. We believe that partial
observability is pervasive in many real world situations. When
the environment is cluttered, object recognition may fail be-
cause objects may be hidden or partially hidden. If objects
are inside containers (objects inside a cabinet, a box, etc.),
the objects may not be visible at all at first. To solve this, we
enrich the action space with perceptual actions, like Look :
The agent places its sensor (or move existing objects) so that
the location to observe is in the sensor field of view. Object
recognition is, then, triggered and outputs a binary observation
(whether the object has been seen or not). The observation is

used to update the belief state. The geometric implementa-
tion of those perceptual actions is closely related to robotic
sub-fields traditionally called "Sensor Placement" or "Active
Perception". In [4], Lozano-Perez and Kaebling describe an
approach which explicitly models partial observability and,
also uses a Look action to gain information. This approach
(Hierarchical Planning in the Now) interweaves planning with
execution (in the now). The system plans sequences of actions
by approximating the system dynamics (results of actions and
observations). Replanning is triggered once the robot ends up
in a state not covered by the plan. Our approach aims at
planning a full policy from the starting state to the final state.

Fig. 1. The robot doesn’t know at first which box contains the ball

II. WORKING HYPOTHESIS FROM A POMDP PERSPECTIVE

1) Partial Observability and the Observation model: The
POLGP approach aims at handling a "discrete" or "categorical"
partial observability of the environment. For example, the
robot doesn’t know beforehand which box the object is in.
This method doesn’t intend to cope with a more "continuous"
partial observability like a residual uncertainty of the objects’
positions. We believe that this latter kind of uncertainty can
be managed at execution time with a controller able to adapt
to small changes in the environment.

2) Uncertainty: Our current research assumes that the
action model is deterministic. However, actions may fail at
execution time.

In future work, we intend to explore ways to handle this
uncertainty. One common contingency strategy would be to
reattempt an action that has failed i.e. adding cycles in the
policy. The definition of the motion planning problem for
contingency actions is, however, difficult. Indeed, when an
action fails (for instance, if a grasped object falls), the system



potentially ends up in an infinity of very different kinematic
states: the grasped object may fall upside down, strongly
impacting how to re-grasp it. One solution could be to defer
the motion planning of the contingency actions / cycles to
execution time.

3) Conclusion: The POLGP approach can be considered a
particular case of a Non-Stochastic-Continuous-State-POMDP.
Although it may seem over-optimistic compared to a full
POMDP approach, we think that these are important working
hypotheses for keeping the problem tractable.

III. ARBORESCENT NATURE OF THE POLICY

Perceptual actions have a structural impact on the planning
process because they lead to a branching point. A long-term
policy must have a plan which reacts to each percept. For
example: "take a look inside the first box; IF the object is
there, then pick it up, ELSE, take a look inside the second
box, etc...". We use a Monte-Carlo AND / OR tree search for
optimizing such arborescent policies.

The arborescent nature of the policy also has an important
impact on a geometric level. The geometric instantiation of
a policy is not a trajectory but a trajectory-tree. Our current
research formulates trajectory-tree optimization as a general-
ization of a trajectory optimization.

IV. TRAJECTORY-TREE OPTIMIZATION

The Partially-Observable-Logic-Geometric-Programming
approach builds on the Logic-Geometric-Programming
framework (LGP); presented in prior work [1, 2]. Under
this framework, each agent state-action on a symbolic level
is "grounded" on a geometric level: it specifies costs and
constraints on the trajectory-tree for a given time interval.

Therefore, a policy defines a constrained trajectory opti-
mization problem. It is solved using non-linear mathematical
programming (NLP) techniques to efficiently find smooth
(locally) optimal paths.

V. INTERACTION BETWEEN THE SYMBOLIC AND
GEOMETRIC LEVEL

The policy optimization is performed by alternating a sym-
bolic search and trajectory-tree optimization. When the plan-
ning process is started, the planner only uses heuristic values
for the expected cost of each action. The AND / OR Monte-
Carlo-Tree-Search is performed until a "candidate policy" is
found. Then, the trajectory optimization is performed. If the
trajectory optimization succeeds, the policy is stored in a set
of solutions. Otherwise, the part of the tree whose trajectory
optimization failed is pruned. In both cases, the symbolic
search is pursued to generate new candidate policies that are
then optimized. This iterative process is continued until some
termination criterion is reached (time limit, trajectory cost).

With our current implementation, the additional complexity
implied by partial observability is linear with respect to the
size of the belief state. This raises a particular challenge for
the scalability: for a robot having to achieve manipulations
on N objects, each one being at M potential locations, the

planning time is expected to be MN bigger compared to the
observable case (positions initially known). In future work,
we intend to discuss the complexity challenge, as well as
to describe the conditions under which this approach can
guarantee completeness and optimality.

VI. EXAMPLE

Consider the set-up of Figure 1. The robot has 4 actions:
look inside a container, grasp an object, place an object on
the table and "home": go back to the start position. The
goal condition is that the robot has seen the ball, that the
two containers are on the table, and that the robot is at its
start position. Figure 2 shows two candidate policies. The
policy (a) is found first because it appears more optimal.
However, the trajectory-tree optimization indicates that this
policy is infeasible: since the taller container (container_1)
is far away from the robot, there is no reachable point of
view that allows the robot to look inside, which causes the
trajectory optimization to fail. The robot has to grasp the
container first to bring it closer (policy (b)). For viewing the
optimized trajectories and their executions, we refer the reader
to the following video: https://youtu.be/eZMLxteKrj8.

Fig. 2. Example of policies, only the second policy (b) is a solution. The
first option (a), is feasible symbolically but not geometrically
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