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I. INTRODUCTION

Robots in the real world have to deal with complex scenes
involving multiple actors and complex, changing environ-
ments. Both its continuous motion in the physical world
and the discrete goals it must accomplish are pertinent to
correctly completing a complex task. In particular, self-driving
cars are faced with a uniquely challenging task and motion
planning problem that incorporates logical constraints with
multiple interacting actors in a scene that includes other cars,
pedestrians, and bicyclists.

Current methods for task and motion planning (TAMP)
succeed at solving many sequential path planning and spa-
tial reasoning problems [8], but the combined discrete and
continuous state space tends to explode in size for complex
problems. The addition of linear temporal logic constraints
makes the search problem even more difficult, though there
has been recent progress in this direction [6]. On the other
hand, recent work in Deep Reinforcement Learning (DRL) has
shown promise in challenging domains including autonomous
driving[1, 9], and has been combined with Monte Carlo Tree
Search (MCTS) for game playing [7], where it was able
to achieve master-level performance. However, the question
remains open whether these approaches can be integrated to
produce reliable robot behavior.

We achieve the best of both worlds by using neural networks
to learn both low-level control policies and high-level action
selection priors, and then using these multi-level policies as
part of a heuristic search algorithm to achieve a complex
task. We formulate task and motion planning as a variant
of Monte Carlo Tree Search over high-level options, each of
which is represented by a learned control policy, trained on
a set of Linear Temporal Logic (LTL) formulae [2]. LTL is
an expressive language that has been used to concisely and
precisely specify a wide range of system behaviors for robots.
This approach allows us to efficiently explore the relevant parts
of the search space to find high quality solutions when other
methods would fail to do so. Fig. 1 shows some scenarios to
which our algorithm was applied. For more details, see the
full version of the paper [5].

II. APPROACH

For this work, we assume the existence of a simulator
for the environment. One of our goals is to achieve robust
behavior in complex scenes containing multiple other entities
with relatively few simulations. In a dynamic environment
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Figure 1: Solutions to simulated self driving car problems
containing an intersection and multiple vehicles.

with many actors and temporal constraints, decomposing the
problem into reasoning over goals and trajectories separately
is infeasible.

Instead, we use learned policies together with an approach
based on a variant of MCTS with two specializations. We learn
two types of policies: a policy π∗U (·, o) for each high-level
option o that maps from arbitrary feature values to controls:

π∗U (φ(xw), o) = arg max
u

(V ∗(δ(xw, uo)))

We also compute a second policy over options, π∗O:

π∗O(φ(xw)) = arg max
o

(V ∗(δ(xw, π∗U (φ(xw), o)o)))

Planning is a variant of Monte Carlo Tree Search. We
choose the next option to explore from a particular world state
s)i− 1 according to:

Q(si, oi) = Q∗(si, oi) + C
P (si, oi)

1 +N(si, oi)

where Q∗(si, oi) is the average value of option oi from
simulated play, N(si, oi) is the number of times option oi
was observed from si, N(si) is the number of times si has
been visited, and P (si, oi) is the predicted value of option oi
from state si. The goal of this term is to encourage useful
exploration while focusing on option choices that performed
well according to previous experience; it grants a high weight
to any terms that have a high prior probability from our learned
model. We use MCTS with Progressive Widening to limit the
number of new nodes added to the search tree. Whenever we
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Figure 2: Comparison of MCTS on a test problem with a
stopped car. Letters indicate option being executed: 0 = root, D
= default “stay in lane” policy, W = wait, C = Finish/complete
level, R = lane change to the right. On the left, we see tree
search with a manually defined preference; on the right, we
see the tree using the high-level policy acquired through DQN.
Green leaves indicate success; red leaves indicate failure. The
right side finds a higher-reward solution faster.

add a node, we use the current high-level policy to explore
until we reach a termination condition.

Each discrete option is associated with an LTL formula ϕo

which establishes conditions that must hold while applying
that option. We can evaluate ui = πU (o, φ(xiwi)) to get
the next control as long as ϕo holds. In addition, we have a
shared set Φ of LTL formulae that constrain the entire planning
problem. At every step, we check whether a sampled trajectory
satisfies all associated LTL formulae to ensure it meets safety
conditions.

III. SELF DRIVING CAR DOMAIN

We apply our approach to the problem of planning for a
self-driving car passing through an all-way stop intersection.
Our scenarios take place at the intersection of two two-lane,
one-way roads. Stop signs are described as “stop regions”:
areas on the road that vehicles must come to a stop in before
proceeding. Other vehicles follow a manually defined driving
policy, designed for good performance under expected driving
conditions.

The reward function is a combination of a a cost term
based on the current continuous state and a bonus based on
completing intermediate goals or violating constraints (e.g.
being rejected by the DRA corresponding to an LTL formula).
The cost term penalizes the control inputs, acceleration and
steering angle rate, as well as other terms determined from
the state of the simulated vehicle. We add a terminal penalty
of −100 for trajectories that hit obstacles or violate constraints.

A. Learning

All control policies were represented as multilayer percep-
trons with a single hidden layer of 32 fully connected neurons.
We used the ReLu activation function on both the input and
hidden layer, and the tanh activation function on the outputs.
Outputs mapped to steering angle rate ψ̇ ∈ [−1, 1] rad/s and
acceleration a ∈ [−2, 2] m/s2. Control policies were trained
according to the Deep Direct Policy Gradients algorithm [3].
We then performed Deep Q learning [4] on the discrete set

of options to learn our high-level options policy. High-level
policies were trained on a challenging road environment with
0 to 6 randomly placed cars with random velocity, plus a 50%
chance of a stopped vehicle ahead in the current lane.

IV. RESULTS AND CONCLUSIONS

We generated 100 random worlds in a new environment
containing 0-5 other vehicles. We also test in the case with an
additional stopped car in the lane ahead. For cases with the
learned or simple action sets, we performed 100 iterations of
MCTS to a time horizon of 10 seconds and select the best
path to execute. Fig. 2 shows how the algorithm works in
practice with different methods for choosing the high-level
policy. With the learned high-level policy, we see excellent
performance on the test set for simple problems and three
failures in complex problems. These failures represent cases
where there was a car moving at the same speed in the adjacent
lane and a stopped car a short distance ahead, and there was
no good option to explore. Our system avoids these situations
where it is possible. When it predicts that such a situation will
arise, our planner would give us roughly 2 seconds of warning
to execute an emergency stop and avoid collision.

Our approach allows off-the-shelf DRL techniques to better
generalize to challenging new environments, and allows us to
verify their behavior in these environments by checking LTL
constraints during execution. We use learned neural nets to
prune possible solutions when performing task planning. In
the future, we will extend this work to use stochastic control
policies, and will also apply our system to real robots. For
more details, see the full version of the paper [5].
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