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I. ABSTRACT

Our work presents the functional object-oriented network
(FOON), a structured knowledge representation which can be
used for representing object-motion affordances as observed
in a variety of activities. Ideally, a FOON can be learned
from observations of human activities either from instructional
videos or from demonstration. From these sources, we can
learn about the objects and manipulative motions needed to
produce a certain effect observed as state changes; an objects
state before and after a motion action is executed is captured
in an atomic unit which we refer to as functional units (shown
in Figure 1). A FOON will generally be comprised of many
of such structures.

A. Overview of FOON

A FOON is a bipartite network [10] containing two types
of nodes: object nodes and motion nodes. Object nodes are
identified by their object type, their observable state and, if it
is a container, its ingredient content. Motions are identified by
a type. This graphical structure is similar to Petri Nets (PNs)
[13] [9], where object nodes are parallel to place nodes and
motion nodes to transition nodes. It is also a directed, acyclic
graph, meaning that there exists edges within the graph that
indicate the flow or sequence in an object’s change of state.

A functional unit is the basic learning unit of a FOON,
and this unit reflects a single action in a manipulation task. A
collection of such units that reflect an entire activity is referred
to as a subgraph. A functional unit contains three parts: input
and output object nodes (much like input and output places
in PNs) and a motion node. The motion node describes the
action that causes an object’s change in state from a single
manipulation action. Functional units make our FOON behave
like a transition system like PNs, as they can be traced along
to show the series of steps and objects required to make an
object of a particular state. With a collection of subgraphs, we
can use a merging procedure to combine the knowledge from
all sources to create a universal FOON. For a more detailed
explanation of the basics of a FOON and how we represent a
FOON, we refer readers to [12].

B. Learning a Generalized FOON

In our previous work [12], we demonstrated how we can use
knowledge from several sources to produce novel and flexible

Fig. 1. The basic functional unit with two input objects, an interactive motion
node, and two output objects.

procedures for solving problems using knowledge retrieval
taking ideas from graph searching principles. We can build a
FOON comprising of knowledge from multiple video sources
(where each video is annotated by hand, producing a subgraph
a set of functional units which describe the procedure needed
to create a single meal) and merge their contents into one
single universal FOON. With a universal FOON, we can solve
a manipulation problem through a knowledge retrieval process
given a target node and a set of objects which are available
to the robotic system. The outcome of this graph search is a
task tree, a series of functional units (or simply steps) which
can be executed in sequence to create the target object node.
The knowledge contained in task trees can span several video
sources, hence the novelty of the manipulations.

Despite the ability to produce novel task trees, our FOON
is not designed to handle unknown objects or unfamiliar
states for known objects due to a lack of information from
source videos. We would solely be limited to the object states
we have observed in videos. Our searching algorithm will
only work when we have the exact items needed to create
a specific goal object node. In our present work, we are
currently investigating a means of generalizing knowledge
so we can apply it to those unknown objects which are
similar to those which are represented in FOON without the
need for annotating additional sources of knowledge. We can
either expand our network using object similarity to create
new functional units from those we already have or we can
abstract the knowledge even further using object categories.
With our first method, we expand our network by adding
new functional units based on those we have seen already but
extending them to other objects which are similar to them.



Fig. 2. An example of how expansion helps us to add knowledge which can
be useful for solving a situational problem. In this example, we wish to make
a salad (goal node denoted in dark green) using lettuce and other items in the
environment (denoted in blue); however, we initially only have knowledge on
making salads with kale. Using similarity, we can connect the knowledge of
chopping lettuce and adding it to a bowl with other ingredients to make a
salad.

An example of this is shown in Figure 2, where we can
apply the knowledge we have of cutting lettuce to a similar
object kale. The second method uses a similar principle, but
instead of expanding the network, we condense the network to
a much more generalized state by substituting specific objects
with object categories. For example, objects like “tomato” and
“orange” can be generalized to a category “fruits”. The issue
with object similarity is determining a method for measuring
how similar two objects are; we solve this by using WordNet
[4] and semantic similarity metrics (specifically Wu-Palmers
[18] [3] metric).

C. Evaluation of Proposed Methods

We compare the efficacy of expansion and abstraction
through experiments. We simulate random kitchen environ-
ments with which we try to find task trees for 50 random
objects over 10 trials using each network type: 1) a regular
FOON with knowledge from just 65 videos, FOON-REG,
2) an expanded version of our regular FOON (by adding
new object nodes with similarity), FOON-EXP, and 3) a
generalized, compacted and abstracted version of our regular
FOON (using object types rather than objects), FOON-GEN.

Fig. 3. Our current universal FOON that is constructed from 65 instructional
videos.

The FOON that performs best will be indicated by the number
of successful task trees found (i.e. the number of objects for
which we found a tree out of the 50 goal nodes). We have
shown that theoretically, we should be able to use a similar
subset of objects in the same way, i.e. they should have similar
affordances attributed to them. By using object categories as in
FOON-GEN, we can find more task trees since the knowledge
is generalized.

D. Future Work

Our present (and future) goals are to implement the use of
FOON in problem solving with real robots and to investigate
the implications of using expansion or abstraction of a FOON
in real-world scenarios. A drawback to using such methods
is the drastic increase in size of functional units because
each object-state combination must be expressed individually
if we use an expanded version of FOON. We can compact
the functional units based on object types; however, we are
not able to represent this knowledge as formal expressions.
The main question we wish to answer is as follows: how
do we extend manipulation knowledge (grasp types, motion
trajectories, etc.) of objects we have in FOON to those
we do not know in the real world? We are also exploring
event recognition for annotating new videos and sources of
information using probabilities based on knowledge contained
in FOON or other datasets and apply them to a system which
can be used for identifying objects in a scene and/or the
action taking place. A deep learning object and affordance
recognition approach would be taken to solve this problem of
recognizing activities for semi-automatic construction.
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