
STRIPS Planning in Infinite Domains
Caelan Reed Garrett

MIT CSAIL
Cambridge, MA 02139

caelan@csail.mit.edu

Tomás Lozano-Pérez
MIT CSAIL

Cambridge, MA 02139
tlp@csail.mit.edu

Leslie Pack Kaelbling
MIT CSAIL

Cambridge, MA 02139
lpk@csail.mit.edu

I. INTRODUCTION

Many important planning domains naturally occur in con-
tinuous spaces involving complex constraints among variables.
Consider planning for a robot tasked with organizing several
blocks. The robot must find a sequence of pick, place, and
move actions involving continuous robot configurations, robot
trajectories, block poses, and block grasps. These variables
must satisfy kinematic, collision, and motion constraints which
affect the feasibility of the actions. Each constraint typically
requires a special purpose procedure to efficiently evaluate it
or produce satisfying values for it such as an inverse kinematic
solver, collision checker, or motion planner.

We propose an approach, called STRIPSTREAM, which can
model such a domain by providing a generic interface for
blackbox procedures to be incorporated in an action language.
The implementation of the procedures is abstracted away using
streams: finite or infinite sequences of objects such as poses,
configurations, and trajectories. We introduce the following
two additional stream capabilities to effectively model domains
with complex predicates that are only true for small sets of
their argument values:
• conditional streams: a stream of objects may be defined

as a function of other objects; for example, a stream of
possible positions of one object given the position of
another object that it must be on top of or a stream of
possible settings of parameters of a factory machine given
desired properties of its output.

• certified streams: streams of objects may be declared
not only to be of a specific type, but also to satisfy
an arbitrary conjunction of predicates; for example, one
might define a certified conditional stream that generates
positions for an object that satisfy requirements that the
object be on a surface, that a robot be able to reach the
object at that position, and that the robot be able to see
the object while reaching.

The approach is entirely domain-independent, and reduces
to STRIPS in the case of finite domains. The only additional
requirement is the specification of a set of streams that can
generate objects satisfying the static predicates in the domain.
It is accompanied by two algorithms, a simple and a focused
version, which operate by constructing and solving a sequence
of STRIPS planning problems. This strategy takes advantage
of the highly optimized search strategies and heuristics that
exist for STRIPS planning, while expanding the domain of

applicability of those techniques. In this extended abstract,
we present the STRIPSTREAM representation and implement
a robotics domain. See the full version of this paper for the
presentation of the algorithms and additional domains [1].

II. REPRESENTATION

In this section we describe the representational components
of a planning domain and problem, which include static and
fluent predicates, operators, and streams. Objects serve as
arguments to predicates and as parameters to operators; they
are generated by streams.

A static predicate is a predicate which, for any tuple of ob-
jects, has a constant truth value throughout a problem instance.
Static predicates generally serve to represent constraints on the
parameters of an operator. We restrict static predicates to only
ever be mentioned positively because, in the general infinite
case, it is not possible to verify that a predicate does not hold.

An operator schema is specified by a tuple of formal
parameters (X1, . . . , Xn) and conjunctions of static positive
preconditions stat, fluent literal preconditions pre, and fluent
literal effects eff and has the same semantics as in STRIPS.
An operator instance is a ground instantiation of an operator
schema with objects substituted in for the formal parameters.
When necessary, we augment the set of operator schemas with
a set of axioms that naively use the same schema form as
operators. We assume the set of axioms can be compiled into
a set of derived predicates as used in PDDL.

A generator g = 〈ȳ1, ȳ2, ...〉 is a finite or infinite sequence
of object tuples ȳ = (y1, ..., yn). The procedure NEXT(g)
returns the next element in generator g and returns the special
object None to indicate that the stream has been exhausted
and contains no more objects. A conditional generator f(x̄)
is a function from a tuple of input objects x̄ = (x1, ..., xn)
to a generator gx̄ which generates tuples from a domain not
necessarily the same as the domain of x̄.

An stream schema, σ(Ȳ | X̄), is specified by a tuple of input
parameters X̄ = (X1, ..., Xm), a tuple of output parameters
Ȳ = (Y1, ..., Yn), a conditional generator gen = f(X̄) defined
on X̄ , a conjunction of input static atoms inp defined on
X̄ , and a conjunction of output static atoms out defined
on X̄ and Ȳ . The conditional generator f is a function,
implemented in the host programming language, that returns
a generator object such that, for all x̄ satisfying the conditions
inp, ∀ȳ ∈ f(x̄), (x̄, ȳ) satisfy the conditions out. A stream
instance is a ground instantiation of a stream schema with



objects substituted in for input parameters (X1, . . . , Xn); it is
conditioned on those object values and, if the inp conditions
are satisfied, then it will generate a stream of tuples of objects
each of which satisfies the certification conditions out.

The notion of a conditional stream is quite general; there
are two specific cases that are worth understanding in detail.
An unconditional stream σ(Ȳ | ()) is a stream with no
inputs whose associated function f returns a single generator,
which might be used to generate objects of a given type, for
example, independent of whatever other objects are specified
in a domain. A test stream σ(() | X̄) is a degenerate, but
still useful, type of stream with no outputs. In this case,
f(X1, ..., Xm) contains either the single element (), indicating
that the inp conditions hold of X̄ , or contains no elements at
all, indicating that the inp conditions do not hold of X̄ . It can
be interpreted as an implicit Boolean test.

A planning domain D = (Ps,Pf , C0,A,X ,Σ) is specified
by finite sets of static predicates Ps, fluent predicates Pf , ini-
tial constant objects C0, operator schemas A, axiom schemas
X , and stream schemas Σ. Note that the initial objects (as well
as objects generated by the streams) may in general not be
simple symbols, but can be numeric values or even structures
such as matrices or objects in an underlying programming
language. They must provide a unique ID, such as a hash
value, for use in the STRIPS planning phase.

A STRIPSTREAM problem Π = (D, O0, s0, s∗) is specified
by a planning domain D, a finite set of initial objects O0, an
initial state composed of a finite set of static or fluent atoms
s0, and a goal set defined to be the set of states satisfying
fluent literals s∗. We make a version of the closed world
assumption on the initial state s0, assuming that all true fluents
are contained in it. This initial state will not be complete: in
general, it will be impossible to assert all true static atoms
when the universe is infinite.

III. EXAMPLE ROBOTIC DOMAIN

Although the specification language is domain independent,
our primary motivating examples for the application of STRIP-
STREAM are pick-and-place problems. The objects in this do-
main include a finite set of blocks, 6-dimensional block poses
and grasp transforms, 11-dimensional robot configurations,
and trajectories specified by sequences of configurations. The
static predicates in this domain include simple static types
(IsBlock , IsPose , IsGrasp, IsConf , IsTraj ) and typical flu-
ents (HandEmpty , Holding , AtPose, AtConfig). In addition,
atoms of the form IsKin(P,G,Q, T ) describe a static relation-
ship between a pose P , grasp G, robot configuration Q, and
trajectory T . Finally, fluents of the form Safe(b′, B,G, P, T )
are true in the circumstance that: if object B were held at using
grasp G while executing trajectory T , it would not collide with
object b′ at its current pose. These predicate definitions enable
the following MOVE and PICK operator schema definitions.
The PLACE operator (omited) is similar to the PICK operator.

MOVE(Q1, Q2):
stat = {IsConf (Q1), IsConf (Q2)}
pre = {AtConf (Q1)}
eff = {AtConf (Q2),¬AtConf (Q1)}

PICK(B,P,G,Q, T ):
stat = {IsBlock(B), ..., IsTraj (T ), IsKin(P ,G,Q ,T )}
pre = {AtPose(B,P ),HandEmpty(),AtConfig(Q)} ∪
{Safe(b′, B,G, T ) | b′ ∈ B}

eff = {Holding(B,G),¬AtPose(B,P ),¬HandEmpty()}

We use the following axioms to evaluate the Safe predicate.
We need two slightly different definitions to handle the cases
where the block B1 is placed at a pose, and where it is in
the robot’s hand (denoted by or). The Safe axioms mention
each block independently which allows us to compactly per-
form collision checking. Without using axioms, PLACE would
require a parameter for the pose of each block in B, resulting
in an prohibitively large grounded problem.

SAFEAXIOM(B1, P1, B2, G, T ):
stat = {IsBlock(B1), ..., IsTraj (T ), IsCFree(B1, P1, B2, G, T )}
pre = {AtPose(B1, P1)} or {Holding(B1)}
eff ={Safe(B1, B2, G, T )}

Next, we provide stream definitions. The simplest stream is
an unconditional generator of poses. It uses SAMPLE-POSE to
randomly sample poses. These poses satisfy IsPose .

POSE(P | ()):
gen = lambda() : SAMPLE-POSE()
inp = ∅
out = {IsPose(P )}

The conditional stream CFREE is a test, calling the underly-
ing function COLLIDE(B1, P1, B2, G, T ). The stream is empty
if block B1 at pose P1 collides with block B2 held using grasp
G while the robot executes trajectory T . It contains the single
element ( ) if it does not collide. It is used to certify statically
satisfies the IsCFree predicate.

CFREE(() | B1, P1, B2, G, T ):
gen = lambda(B1, P1, B2, G, T ) :

〈() if not COLLIDE(B1, P1, B2, G, T )〉
inp = {IsBlock(B1), ..., IsTraj (T )}
out = {IsCFree(B1, P1, B2, G, T )}

Finally, KIN specifies a conditional stream, which takes a
pose P and a grasp G as inputs and generates a stream of
configurations and trajectories. It must first produce a grasp
configuration Q that reaches manipulator transform PG−1

using INVERSE-KIN. Additionally, it calls a motion planner
MOTIONS to generate legal trajectory values T from a constant
rest configuration qrest to the grasping configuration Q that do
not collide with the fixed environment.

KIN(Q,T | P,G):
gen = lambda(P ) : 〈(Q,T ) | Q ∼ INVERSE-KIN(PG−1),

T ∼ MOTIONS(qrest, Q)〉
inp = {IsPose(P ), IsGrasp(G)}
out = {IsKin(P,G,Q, T ), IsConf (Q), IsTraj (T )}

REFERENCES

[1] Caelan Reed Garrett, Tomás Lozano-Pérez, and
Leslie Pack Kaelbling. STRIPS planning in infinite
domains. arXiv preprint arXiv:1701.00287, 2017.


	Introduction
	Representation
	Example robotic domain

