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I. INTRODUCTION

Autonomous transportation, particularly autonomous driv-
ing, is receiving a lot of interest in the research community
since the DARPA challenge showed it to be viable with current
technologies (e.g. Levinson et al. [5]). It involves a highly
dynamic environment where cars need to plan and actuate fast
and be responsive to unexpected situations. In such scenarios,
cars frequently switch between tasks such as parking, passing
a car, switching lanes. Also, they need to reason about the
long term effects of their actions.

Here we present ongoing work motivated by an autonomous
driving competition where a model car drives on a two-
lane road with intersections, everything at a scale 10:1. We
address this challenge with a modular system built on ROS
[7], that allows us to focus on smaller problems. The car is the
AutoNOMOS mini robot (Rojas and Boroujeni [6]), a model
at scale 10:1 equipped with the typical perception, computing,
and acting capabilities found in current autonomous cars.

We are interested in using a minimal set of sensors without
relying on global information. Instead, we make a probabilistic
localization of the road in the vicinity of the robot using the
RGB data of its frontal camera (Intel SR300) and the range
reported by its laser scanner (RPLiDAR 360◦). We aim to
complete high-level tasks given uncertain motion and a prob-
abilistic localization on an incomplete map. A global planner,
generated from Linear Temporal Logic specifications (Bhatia
et al. [2]), feeds goals to a local planner that attempts to reach
them through basic skills, encoded as Partially Observable
Markov Decision Processes (Bai et al. [1]).

II. PROBLEM DEFINITION

We address a simplified version of the problem of au-
tonomous driving for a car on a two-way road. It may also have
crossroads. There is no global map available, thus decisions
need to be made locally only with the information captured
on-the-fly. Basically, we want the car to traverse the road as
it would be expected from a human driver, but we limit its
behaviors. First, it should traverse the road on its lane when
it is the only car. Second, if it catches up with a car that goes
at a very low speed, it should overtake it. Third, if it finds a
crossroads, it should stop and wait for its turn to pass it.
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III. ENVIRONMENT

A. Perception

1) Local probabilistic localization: We localize the robot
with respect to the road based on the visual input using a
standard probabilistic estimation of states. We feed the camera
data to a road line recognition program (Blahut [3]) that
performs an inverse perspective mapping to obtain a bird’s eye
view of the road, applies a Canny edge detector, and applies
Random Sample Consensus (RANSAC) for fast line fitting
into Newton Polynomials. We assume that the car can see at
least one road line and that there are no significant reflections.
Obstruction or partial visibility of lines can be problematic.

We estimate the state of the car with respect to the road as
a discrete probabilistic distribution (Fig. 1). First, we compute
the distance in pixels between the car and the lines. Next, we
mark the states consistent with the observation as hit and the
others as miss. Finally, the Bayes Rule and normalization are
applied over the distribution.

2) Obstacle Detection: We detect obstacles, such as cars,
through the LiDAR which produces a 2D point cloud in a
range of 6m in our scale model. We identify clusters to map
to grid cells in our environment model.

B. Environment Model

We model the environment locally around the robot as a
grid as shown in Fig. 1. On one dimension we have the
same information as gathered from the localization system.
On the other dimension we have the equally spaced values
for distance from the car. In this way each cell represents a
pair of lane localization, distance from the car. The perception
system is also used to determine the cells that may be occupied
by obstacles (for our current purposes, other cars) within the
perception range (shown as a shaded circle in the figure).

The resulting map that models the environment is not
complete nor accurate. We construct it while moving on it,
and we have uncertainty over the robot pose since we are
relying on a probabilistic localization.

IV. GLOBAL AND LOCAL PLANNING

We propose a system that interleaves global and local
planning. At the global level, we describe the tasks that the
car should execute using Lineal Temporal Logic (LTL). At
the local level, we propose to keep a set of skills encoded as



Fig. 1. States defined for the road lanes: Do not know left (DNL), Out left
(OL), Left left (LL), Left center (LC), Center center (CC), Right center (RC),
Right right (RR), Out right (OR), Do not know right (DNR)

Partially Observable Decision Processes (POMDPs) that may
be labelled as inactive or running, and one of the running
ones is in control of the robot. In our proposed approach,
the local planners also provide feedback to the global planner
regarding the potential validity of the future states so that the
local planner may disambiguate alternate courses of action.

A. Global planner and decision making

LTL has been successfully used in task representation for
motion planning systems (e.g., Bhatia et al. [2], Fainekos et al.
[4]). For the global planner, we propose taking decisions based
on the probabilistic state of the car and using LTL to describe
the tasks for the robot to execute in real time, (e.g. staying in
the right lane at constant velocity, or passing a car).

The LTL functions are translated to minimized Determinis-
tic Finite Automatons (DFA) using a simplified method based
on ( Bhatia et al. [2]) double layered planner. The DFAs are
designed so the regions of interest of the LTL propositions are
related to the environment model described in Sect. III-B.

The global planner is designed around the main goal of
driving forward at the center of the right lane. With this
purpose, we can define basic skills such as speeding up,
slowing down, passing a car, and stopping in relation to the
states of the environment model discussed in Sect. III-B and
shown in Fig.1. Most of the time, the car needs to be on the
right center (RC) state or on the left center state (LC) when
overtaking another car. Other states are generally avoided.
When we are approaching a car on the right lane, we are
getting closer to the region just behind the other car (e.g.,
RC2). While in this region, the car either slows down or starts
passing the other car. The decision of what action to take
may be based on the feedback provided by the local planners
regarding the validity of future states in the corresponding
skill. If the decision is to slow down, the task would be defined
as moving to the adjacent region RC1 staying behind it always
on the right lane. If the decision is to overtake the car ahead,
the task would be defined as visiting a sequence of regions
starting on the right lane behind the car, then getting in the
left lane (LCn), and merging again in the right lane in front
of the other car (RC5) β = �(RC1 ∧ �(LCn ∧RC5)).

The decisions made by the global planner are based on the
environment model processed by the perception system and

also in simple outputs from the sensors and controller that
can be mapped to simple boolean values.

B. Local planning with POMDP

The use of POMDPs in autonomous driving has shown good
results but it is costly ( Bai et al. [1]). Some hierarchical
approaches have had good results. In our case, we propose
to define our POMDPs as follows: The states are the ones
discussed in Sect. III-B and illustrated in Fig. 1 (with the
robot in state RC0), the observations come from our sensors,
the actions allow the robot to move to the adjacent cells,
the transition probabilities come from the joint probability of
failure in sensors and the uncertainty of action execution, the
estimation of observations given actions and states come from
experiments in the robot, and the discount factor for immediate
and future rewards is a user-defined constant to be adjusted.

V. CONTROL

We use a Proportional and Integral (PI) controller which
receives a coordinate of the target state in pixels and through
a vision feedback from the camera provides a degree of direct
steering to the vehicle.

VI. CONCLUSIONS

We present ongoing work on a system that integrates Task
and Motion Planning for Autonomous Driving. Our modular
system is implemented in model car to drive on a two-way road
with intersections on a scale 10:1. We focus on the completion
of high-level tasks based on low-level skills.
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