
Integrated Task and Motion Planning for Mobile
Service Robots

Shih-Yun Lo, Shiqi Zhang and Peter Stone
University of Texas at Austin

{yunl;szhang;pstone}@cs.utexas.edu

I. INTRODUCTION

“Planning”, or selecting a sequence of actions to achieve a
goal, has been a core focus of interest within the field of
Artificial Intelligence (AI) since the field was founded in the
1950’s. Initially, the focus of attention was on task planning
which is concerned with sequencing actions within a symbolic
representation of the state space [2]. When action costs are
further incorporated into the planning process, existing task
planners can find the optimal plan that minimizes the overall
plan cost. A largely independent thread of research has arisen
on motion planning that focuses on producing a continuous
motion while avoiding collision with obstacles in 2D or
3D continuous space [8]. Traditionally, motion planning has
been concerned with computing a path connecting a single
start configuration to a single goal configuration, without any
concern for sequencing of subgoals.

Task and motion planning remained generally independent
in large part for a long time, because until recently, physical
robots have only been able to execute very short missions
that could be solved entirely with motion planning algorithms.
Meanwhile, complex task plans have needed to be generated
in simulation or in purely software domains. However, with
the recent advances in long-term autonomy on mobile robots
in large-scale indoor environments [10, 6], there is a pressing
need for the ability to generate task plans that are fully aware
of, and indeed dependent upon, the grounded costs of actions
that can only be determined by motion planning algorithms.
In principle, motion planning costs could be evaluated on all
the possible action sequences in the task planning space. How-
ever, especially in cases with combinatorially many possible
sequences (for example if there are many possible separate
places to buy coolers, ice, milk, and hot dogs), doing so is
computationally infeasible.

The aim of this research is to fully integrate task and
motion planning in order to find the lowest cost, optimal
plan in task planning1 in a computationally tractable manner.
We develop a novel task and motion planning algorithm that
has bi-directional communication between task and motion
planners: the task planner is capable of computing a symbolic
plan with the lowest cost conditioned on existing evaluations
of action costs; and the motion planner is capable of evaluating
the true cost of these constituent actions in the “lowest-cost”
plan. This interactive process is repeated until a lowest-cost

1Motion-level optimality is intractable in practice.

task plan is achieved such that all the plan’s actions have been
evaluated by the motion planner, and is thus guaranteed to
achieve task-level optimality. The algorithm has been evalu-
ated using a mobile service robot working on delivery tasks in
an indoor environment in simulation. We observe significant
improvements in overall efficiency compared to a baseline that
evaluates costs of all actions at the motion planning level.

II. RELATED WORK

Existing research on integrating task and motion planning
has been largely focused on manipulation domains [1, 4, 7, 9].
For instance, symbolic plans computed by a task planner have
been used to generate constraints for pruning the geometric
search space [7], and a motion planner has been used to
check the feasibility of symbolic actions and to update the
task planner accordingly [9]. Task and motion planners have
been integrated in belief space to account for current-state and
future-state uncertainty [4]. All the above work focused on
manipulation tasks, presumably because (from the viewpoint
of motion planning) 3D manipulation problems are more chal-
lenging than 2D navigation problems: task planning techniques
can thus be useful for “guiding” motion planning.

Recent advances in long-term autonomy have enabled mo-
bile robots to provide service to people in large-scale indoor
environments [10, 6]. In such domains, task planners need
to represent large numbers of rooms, humans, objects and
their locations, which soon becomes computationally infea-
sible. Therefore, in this paper, we focus on integrating task
and motion planning in large-scale indoor environments and
develop a novel algorithm that, for the first time, significantly
improves the overall efficiency while maintaining a guarantee
of task-level optimality.

III. PROBLEM STATEMENT

A task and motion planning (TMP) problem requires do-
main descriptions at both a symbolic level for task planning
and a geometric level for motion planning.

Symbolic-level Domain Description: Dsym

Dsym specifies a task planning domain that includes a set of
states, S, and a set of actions A. We assume a factored state
space such that each state is defined by the values of a fixed set
of variables; each action a ∈ A is defined by its preconditions
and effects. A cost function Cost maps a state-action pair to
a real number such that Cost(〈s,a〉)→ R represents the cost
of action a being executed in state s.

Given domain Dsym, a task planning problem is defined by
an initial state sinit ∈ S and a specification of the goal that
corresponds to a set of goal states SG ⊆ S. Solving a task
planning problem produces plan p∗ that has the lowest cost
among the plans that can lead state transitions from sinit to
sgoal ∈ SG. p∗ is called the optimal plan. A plan p ∈ P that
includes a sequence of actions and states before and after each
action can be represented as: p = 〈s0,a0, · · · ,sN−1,aN−1,sN〉.
where P is the set of satisfactory plans. We compute p∗ as:

p∗ = argminp∈PΣ〈s,a〉∈pCost(〈s,a〉)

Geometric-level Domain Description: Dgeo

Dgeo specifies a motion planning domain, where we directly
search in the 2D workspace (instead of higher-dimensional
configuration space), because in this work we focus on only
2D navigation problems for motion planning. Given Dgeo, a
motion planning problem can be specified by an initial position
xinit and a goal position xgoal . The 2D space is represented as a
region in Cartesian space such that the position and orientation
of the robot can be uniquely represented as a pose (x,θ). Some
parts of the space are designated as free space, and the rest is
designated as obstacle.

The motion planning problem is solved by algorithm A to
compute a collision-free trajectory ξ ∗ (connecting xinit and
xgoal taking into account any motion constraints on the part of
the robot) with minimal trajectory length Len(ξ) = L. We use
Ξ to represent the trajectory set that includes all satisfactory
trajectories. The optimal trajectory is

ξ
∗ = argminξ∈ΞLen(ξ), where ξ (0) = xinit and ξ (L) = xgoal

Connecting Dsym and Dgeo in TMP problems
A symbolic state s in Dsym corresponds to a geometric
constraint in Dgeo that can be represented as a set of positions
X in 2D space. For instance, the symbol of “beside a table”
corresponds to a (infinite) set of positions within a range of
the table. This mapping from s to X is represented as function
f : X = f (s). Given function f , each state transition, 〈s,a,s′〉,
at the symbolic level can be realized as a motion planning
problem 〈x,ξ ,x′〉 at geometric level: we first use f to map
states s and s′ to position sets X and X ′, and then arbitrarily
select x ∈ X and x′ ∈ X ′.

Therefore, the input of a TMP problem is a five-tuple

〈Dsym,Dgeo,sinit ,SG,xinit , f 〉

where xinit ∈ f (sinit) meaning that the geometric initial position
must be consistent with the symbolic initial state.

A satisfactory output of a TMP problem is a two-tuple,

〈p, [ξ0,ξ1, · · · ,ξN−1]〉

that includes a symbolic plan and a set of trajectories, where
p(0) = sinit , p(N) ∈ SG, |p| = N, ξ0(0) = xinit , ξi(0) ∈ f (si),
and ξi(Ti) ∈ f (si+1) for 0≤ i≤ N−1.

Finally, we define the task-level optimal plan to be the
lowest-cost plan p∗, conditioned on the motion planning

Action cost
heuristics

Task Planner:

Symbolic plan

Action costs

Motion Planner:

Computing “optimal” plan Estimating motion cost

HUMAN

Service
request

ROBOT

Motion
plan

Fig. 1. Overview of our algorithm for efficiently solving TMP problems,
with guarantee of task-level optimality.

algorithm A and constraint function f :

p∗ = argminp∈P
(

∑
0≤i<|p|

Len(ξi)|A, f
)

where ξi = A(〈si−1,ai−1,si〉) is the trajectory returned by A
given state transition 〈si−1,ai−1,si〉 ∈ p.

IV. ALGORITHM

Our TMP algorithm is summarized in Figure 1. A task
planner, Psym, and a motion planner, Pgeo, serve as the two
main components of our algorithm. The task planner interacts
with humans by taking their service requests and generating
human-understandable symbolic plans. We apply answer set
programming (ASP) [3] for its strong capability of knowledge
representation to formalize our task domain and query human
inputs (our algorithm is not restricted to specific task planners).
We initialize the cost function of Psym using a loose lower-
bounded heuristic. Our motion planner is used for generating
motion plans for robots and for evaluating more realistic
motion costs of each action in symbolic plans.

The task planner uses a lower-bounded heuristic action cost
function, h, for initializing its cost function. h maps each
motion planning problem (specified by a symbolic state-state
pair) to a cost value that is less than or equal to the real cost:

h(〈x,x′〉)≤C(〈x,x′〉).

where C reports the real cost of a 2D motion planning problem.
In our framework, h computes the Euclidean distance be-

tween x and x′. It is a good lower bound because motion cost
cannot be smaller than the Euclidean distance and it satisfies
our inexpensive-computation expectation.

h(〈x,x′〉) = ||x− x′||2,

Algorithm 1 shows our algorithm for TMP problems. It
requires a task planner Psym and a motion planner Pgeo for
planning at the symbolic and geometric levels respectively.
A TMP problem is specified by its initial state and goal
specification at symbolic level: sinit and SG. The output is
a symbolic plan that with guarantee of task-level optimality,
which is conditioned on the function that maps each task-level
state to a motion-level point and the motion planner.

V. EXPERIMENTS

We have conducted experiments in an indoor office envi-
ronment using a map that is generated using a real robot.
We focus on evaluating the overall efficiency (both task and
motion planning) by comparing our algorithm to a baseline
algorithm that evaluates all possible navigation actions. Here,

Algorithm 1 Our algorithm for TMP problems
Input: Task planner Psym : (s,s′,C)→ p, where C is a cost function
Input: Motion planner Pgeo : 〈x,x′〉 → ξ

Input: Initial state sinit , and goal specification SG

Input: Lower-bounded heuristic function h : 〈x,x′〉 → R
Output: Symbolic plan p that is optimal at task level
1: Initialize motion-cost evaluation function C with h: C← h
2: while true do
3: p←Psym(sinit ,SG,C)
4: Initialize termination flag: term = true
5: for each 〈s,a,s′〉 ∈ p do
6: Map symbolic states to 2D points: x← f (s); x′← f (s′)
7: if C(x,x′) == h(x,x′) then
8: Evaluate motion cost: C(x,x′)← Len

(
Pgeo(x,x′)

)
9: term = false

10: end if
11: end for
12: break if term is true
13: end while
14: return p

Motion-level samples and path
Waypoints: x = f(s)
Initial position
Fridge
Newsstand
End position

Fig. 2. An illustration of applying our algorithm to a TMP problem. The robot
needs to collect newspaper from one of the newsstands (upward triangles)
and juice from one of the fridges (downward triangles), and then deliver to a
person whose position is marked with a solid red dot.

it is assumed that non-navigation actions (e.g., load and deliver
actions) have no time consumption. Our hypothesis is that our
algorithm requires significantly less time than the baseline and
scales well in domains that include more objects.

Figure 2 shows the occupancy-grid map generated by run-
ning a SLAM algorithm on a real robot. At task level, we
formalize a set of areas such as rooms and corridors and a set
of objects that include doors, persons, and containers (fridges
and newsstands). At the motion level, we apply the probabilis-
tic roadmap method [5] along with A∗ to search in a space
that includes random samples. The two levels are connected
through waypoints at motion level (a subset is shown as blue
hollow circles on the map) that each corresponds to an object
at task level. The red-star path in Figure 2 shows an illustrative
result generated by our algorithm, where the robot needs to
collect a newspaper and a bottle of juice and then deliver them
to a target person (solid red dot).

We compare our algorithm to a baseline that pre-computes
costs of all navigation actions. Both algorithms can guarantee
task-level optimality. Our algorithm aims to improve overall
computational efficiency. Figure 3 shows the quantitative re-
sults. For instance, when only two newsstands and two fridges
are in the domain, the baseline requires more than 50s while
our algorithm needs less than 15s. We attribute this efficiency
improvement to the fact that our algorithm enables the motion
planner to evaluate costs of only a small number of navigation
actions. For example, in the last trial, out of 3081 navigation
actions from one location to another, only 15 (0.52%) were

0 2 4 6 8 10 12 14 16 18
Number of each type of containers

0

50

100

150

T
im

e
(s

ec
)

A baseline that evaluates all motion costs

Our algorithm

Fig. 3. Results of comparing our algorithm to a baseline that computes costs
of all navigation actions. The x-axis represents the number of containers in the
environment: the numbers of newsstands and fridges are the same. The y-axis
corresponds to the overall time (sec) needed by task and motion planners.

evaluated towards finding the optimal task plan.

VI. CONCLUSIONS

In this paper, we propose a novel algorithm that fully
integrates task and motion planning for navigational tasks,
with the guarantee of task-level optimality. We introduce a
lower-bounded heuristic for initializing the cost function of
our task planner. The task planner computes an “optimal”
plan using the current cost function and the motion planner
keeps improving the cost function by evaluating the real cost
of navigation actions. This process is iterated until all action
costs in a plan have been evaluated when we report the optimal
symbolic plan. We compare this algorithm with a baseline that
pre-computes all action costs, and experimental results suggest
that our algorithm performs better in overall efficiency.

ACKNOWLEDGMENT

This work has taken place in the Learning Agents Research Group (LARG)
at UT Austin. LARG research is supported in part by NSF (CNS-1330072,
CNS-1305287), ONR (21C184-01), and AFOSR (FA9550-14-1-0087).

REFERENCES
[1] Esra Erdem, Kadir Haspalamutgil, Can Palaz, Volkan Patoglu, and

Tansel Uras. Combining high-level causal reasoning with low-level
geometric reasoning and motion planning for robotic manipulation. In
International Conference on Robotics and Automation (ICRA), 2011.

[2] Richard E Fikes and Nils J Nilsson. Strips: A new approach to
the application of theorem proving to problem solving. Artificial
intelligence, 2(3-4):189–208, 1971.

[3] Michael Gelfond and Yulia Kahl. Knowledge representation, reasoning,
and the design of intelligent agents: The answer-set programming
approach. Cambridge University Press, 2014.

[4] Leslie Pack Kaelbling and Tomás Lozano-Pérez. Integrated task and
motion planning in belief space. International Journal of Robotics
Research, 32(9-10):1194–1227, 2013.

[5] Lydia E Kavraki, Petr Švestka, Jean-Claude Latombe, and Mark H
Overmars. Probabilistic roadmaps for path planning in high-dimensional
configuration spaces. Robotics and Automation, IEEE Transactions on,
12(4):566–580, 1996.

[6] Piyush Khandelwal, Samuel Barrett, and Peter Stone. Leading the way:
An efficient multi-robot guidance system. In International Conference
on Autonomous Agents and Multiagent Systems (AAMAS), 2015.

[7] Fabien Lagriffoul, Dimitar Dimitrov, Julien Bidot, Alessandro Saffiotti,
and Lars Karlsson. Efficiently combining task and motion planning using
geometric constraints. The International Journal of Robotics Research,
33(14):1726–1747, 2014.

[8] Jean-Claude Latombe. Robot motion planning. Springer Science &
Business Media, 2012.

[9] Sanjeev Srivastava, Eugene Fang, Lorenzo Riano, Rohan Chitnis,
Stephen Russell, and Pieter Abbeel. Combined task and motion
planning through an extensible planner-independent interface layer. In
International Conference on Robotics and Automation (ICRA), 2014.

[10] Manuela Veloso, Joydeep Biswas, Brian Coltin, and Stephanie Rosen-
thal. Cobots: robust symbiotic autonomous mobile service robots. In
International Joint Conference on Artificial Intelligence (IJCAI), 2015.

	Introduction
	Related Work
	Problem Statement
	Algorithm
	Experiments
	Conclusions

