
Online Multilayered Motion Planning with Dynamic Constraints
for Autonomous Underwater Vehicles

Eduard Vidal1, Mark Moll2, Narcı́s Palomeras1, Juan David Hernández2,
Marc Carreras1, and Lydia E. Kavraki2

Abstract— Underwater robots are subject to complex hydro-
dynamic forces. These forces define how the vehicle moves, so
it is important to consider them when planning trajectories.
However, performing motion planning considering the dynam-
ics on the robot’s onboard computer is challenging due to the
limited computational resources available. In this paper an effi-
cient motion planning framework for autonomous underwater
vehicles (AUVs) is presented. By introducing a loosely coupled
multilayered planning design, our framework is able to generate
dynamically feasible trajectories while keeping the planning
time low enough for online planning. First, a fast path planner
operating in a lower-dimensional projected space computes a
lead path from the start to the goal configuration. Then, the
lead path is used to bias the sampling of a second motion
planner, which takes into account all the dynamic constraints.
Furthermore, we propose a strategy for online planning that
saves computational resources by generating the final trajectory
only up to a finite horizon. By using the finite horizon strategy
together with the multilayered approach, the sampling of the
second planner focuses on regions where good quality solutions
are more likely to be found, significantly reducing the planning
time. To provide strong safety guarantees our framework
also incorporates the conservative approximations of inevitable
collision states (ICSs). Finally, we present simulations and
experiments using a real underwater robot to demonstrate the
capabilities of our framework.

I. INTRODUCTION
Among many other applications, autonomous underwater

vehicles (AUVs) are used nowadays to perform robotic
exploration and inspection [1], [2], [3]. For such tasks, where
the robot navigates close to obstacles and great precision is
required, it is important to carefully plan the robot trajectory
taking into consideration the vehicle’s dynamic constraints
and safety. At the same time, the robot localization and the
map of the environment, if available, are usually not accurate
enough to plan all trajectories before the mission begins. In
such situations, part of the mission will have to be planned
online using the onboard computer. In this work we focus
on this specific problem, and we are particularly interested
in creating algorithms suitable for online planning.

Work at University of Girona has been supported by the GIRONA1000
and 3DAUV projects, under the grant agreements DPI2017-86372-C3-2-
R and DPI2015-73978-JIN respectively, and by the Spanish Government
through the FPU14/05493 PhD grant to E. Vidal.

1E. Vidal, N. Palomeras, and M. Carreras are members of the Un-
derwater Robotics Research Center (CIRS), University of Girona, Spain.
eduard.vidalgarcia@udg.edu, npalomer@silver.udg.edu,
and marc.carreras@udg.edu.

Work at Rice University has been partially supported by NSF IIS
1317849.

2M. Moll, J. D. Hernández, and L. E. Kavraki are members of the
Kavraki Lab, Rice University, Houston, TX, USA. mmoll@rice.edu,
juandhv@rice.edu and kavraki@rice.edu.

(a) (b)

Fig. 1. Our approach has been validated using the Sparus II AUV, a torpedo-
shaped underwater robot with partial hovering capabilities (a). Experimental
data has been obtained in a breakwater structure, shown in (b).

Different strategies have been proposed to generate on-
line robot trajectories. If during the mission the deviations
with respect to a preplanned trajectory are expected to be
small, reactive algorithms such as potential fields can be
enough [4]. Alternatively, an online geometric path planner
can be used. For instance, Dubins paths have been used in
the past in the underwater domain [5] with great success.
If the vehicle’s dynamics must be considered, state lattices
provide a convenient framework to plan feasible trajectories
online, although they restrict the possible maneuvers of the
vehicle [6]. Finally, it is also possible to use a sampling-based
kinodynamic planner, but often this approach is too slow for
online planning. In order to speed up the computations, some
authors have proposed multilayered planning solutions [7].
We review the state of the art in motion planning with
constraints and multilayered planning in section II.

In this paper we present a novel motion planning frame-
work that takes into consideration the dynamic model of the
vehicle, generating trajectories that are feasible according to
the provided model, and utilizing the full dynamic range of
the vehicle. A multilayered planning scheme is proposed,
where a kinematically feasible path (generated using the
asymptotic optimal rapidly-exploring random tree (RRT*)
planner, [8]) is used to bias the search for a trajectory
that is dynamically feasible and safe (generated using the
stable sparse-RRT (SST) planner, [9]). As demonstrated in
the results section, the SST planner on its own may be
too slow for online planning with complex dynamics, so
our multilayered framework aims to speed up the planning
computation to make it suitable for online planning. Strong
safety guarantees are also imposed by using the concept of
inevitable collision states (ICSs). To the best of the authors’
knowledge, this work presents for the first time a motion
planning framework that combines the SST planner with the
RRT* path planner with the goal of reducing the planning

time. Furthermore, it is also the first time that safety con-
tingency maneuvers are applied to autonomous underwater
vehicles. The multilayered planner scheme is shown through
simulation and experiments to be a practical and efficient
scheme for underwater navigation in challenging scenarios.
The details of the algorithm can be found in section III, and
then sections IV and V present the results using the Sparus
II AUV (see Fig. 1) and conclusions.

II. RELATED WORK

This section reviews related work on motion planning for
underwater robots, starting by geometrical approaches, con-
tinuing by planning on state lattices, kinodynamic planning
and finally, multilayered motion planning. It also analyzes
the applicability of all methods to our underwater motion
planning problem according to our requirements: we want a
fast kinodynamic motion planner with asymptotic optimality.

Hernández et al. [5] presented a online geometric path
planning framework for underwater robots that approximates
the robot trajectories by Dubins paths. Lin et al. [10] also
used Dubins paths for aerial vehicles. As an alternative,
splines have also been used in motion planning by Connors
et al. [11]. However, when geometric path planners are used,
it is seldom possible to follow the path with zero error. For
instance, Dubins paths present sudden changes in angular
velocity from section to section, which are only achievable
by a system capable of infinite angular acceleration. Our goal
in this work is to overcome this limitation by considering the
vehicle’s dynamics in the planning stage.

Another set of work relevant to underwater robotics is
planning in state lattices. When using a state lattice the
motion planning problem is solved as an unbounded graph
search where the vertices and edges of the graph are gen-
erated according to a reduced set of precomputed motion
primitives. The state lattice can be geometric or can include
also the vehicle dynamics. Relevant examples to our under-
water planning problem can be found in Pivtoraiko et al. [12],
Likhachef et al. [6], and Hent et al. [13], [14]. However,
using a reduced set of motions can be undesirable because
some of the real capabilities of the robot are lost. Since we
want to use the full dynamic range of our underwater vehicle,
state lattices are not suitable for our application.

Alternatively, there are many kinodynamic motion plan-
ners available that do not restrict the state space. Most
of them do not offer asymptotic optimality guarantees, but
some of them do, at the expense of longer computational
times. A kinodynamic version of the asymptotic optimal
rapidly-exploring random tree (RRT*) was proposed by
Webb et al. [15]. They use a fixed-final-state free-final-
time controller that optimally connects any pair of states.
The disadvantage of their method is that it was designed
for systems with linear dynamics. If the dynamics are not
linear, under some assumptions their approach can still be
used by linearizing the system. However, this approach
is not suitable for underwater robots due to their highly
nonlinear dynamics. Hauser et al. [16] proposed a method to
obtain asymptotic optimality from any feasible kinodynamic

planner. They augment the state variable with the cost, and
then the planning problem is repeatedly solved imposing
that the solution must have a better cost at each iteration.
Although this method guarantees asymptotic optimality, it is
not very computationally efficient, rendering it unusable for
online planning. Finally, the stable sparse-RRT (SST) planner
by Li et al. [9] is a tree based motion planner that divides
the motions in two categories, active and inactive, according
to the cost of the path. Eventually the best motions remain
in the tree while the least efficient disappear, providing also
asymptotic optimality guarantees.

Since this work presents a multilayered planning approach,
it is also important to review the literature about multilayered
motion planning. Sequeira et al. [17] proposed a two layer
path planning approach for underwater vehicles. In their
proposal, a geometric high level planner (HLP) computes
a set of consecutive waypoints from the start configuration
to the goal configuration, and then the low level planner
(LLP) implements a potential field technique to generate
the vehicle configurations between waypoints. Alternatively,
Arinaga et al. [18] also proposed a two layer path planner.
Their global planner uses a connectivity graph to find the
path class with minimum cost, and then, in the geometric
local motion planning step, a smooth path that connects two
configurations is computed. However, both approaches do
not take into account the dynamics of the vehicle.

Palmieri et al. [19] proposed the use of the Theta* path
planner to generate a lead path to bias the search of a rapidly-
exploring random tree (RRT) planner. However, since the
second planner is a RRT, no asymptotic optimality guar-
antees are provided. Herbert et al. [20] proposed a motion
planning algorithm that plans a trajectory using simplified
dynamics. In their approach, the generated trajectory is an
approximation of the actual robot trajectory. Then, tracking
and safety controllers are used to follow the approximate
trajectory with a bounded error that depends on the worst-
case disturbance. However, this means that it is required to
collision check all the path for the worst-case disturbance,
which is too restrictive in the underwater domain, specially
when planning taking into account water currents.

Finally, Plaku et al. ([21], [22] and later on [7]) presented
a multilayered approach where two path planners are tightly
integrated. The first planner computes a lead, which it is
defined in their work as a sequence of decomposition regions
that starts and ends at regions associated with the start and
goal states. In their work, the lead can be understood as a
rough sketch of the cells to be visited to go from the start to
the goal. Then, this lead is passed to the second planner. If
the second planner does not find a trajectory within the given
lead, the first planner is executed to recompute an alternative
lead. In their proposal, the first planner uses discrete search,
and the second planner is a sampling-based motion planner.
However, the proposed combination of planners does not
guarantee asymptotic optimality, and the discrete planner can
become slow in problems with high dimensionality.

III. MULTILAYERED PATH PLANNING WITH
DYNAMIC CONSTRAINTS

The proposed motion planning framework aims to plan
trajectories which satisfy the dynamic model of an underwa-
ter vehicle while taking into account safety and performance.
We consider two cases: offline planning and online planning.
In offline planning the map is fully known in advance, and
only one planning iteration takes place. In online planning
the workspace representation evolves over time and the robot
has to dynamically recompute the best trajectory to reach
the goal. Multiple planning iterations take place in the robot
computer, so there are often time/computing constraints.

In this work we have developed a fast motion planning
framework suitable for both offline and online planning. This
section presents the main parts of the proposed framework.
Please, refer to the Appendix section for further details.

A. Sampling around a lead path

First we introduce the concept of sampling around a lead
path. Consider a robot in a workspace W . The robot uses
its sensors to update an evolving workspace representation
s(W, t) where t is the elapsed time. Let Q be the state space
of the robot, nQ be its order, and q ∈ Q be a state. For
each pair of a states we define a metric ρ(q1, q2) which
obeys the triangle inequality. Consider now a second state
space Q′ with nQ′ < nQ and q′ ∈ Q′ where we define
a projection operation proj(q) → q′. For Q′ we also have
a metric ρ′(q′1, q

′
2) which satisfies the Lipschitz condition

ρ′(proj(q1), proj(q2)) < Mρ(q1, q2). For us, a lead path is
a path in Q′ defined by q′l = lead path(t) with t ∈ [t1, t2].
We say that a state q is around the lead path if there exists
a q′l in the lead path such that ρ′(q′l, proj(q)) ≤ d, where d
is the maximum allowed distance around the lead path. In
our implementation, we sample around the lead path by first
sampling a random point q′ along the lead path. Then we
randomly sample a point within the ball of radius d centered
on q′. Finally we lift the random sample to q ∈ Q while
preserving the distance.

The idea of sampling around a lead path is really powerful
as it enables a two layered scheme for motion planning
for the problem considered in this paper. Furthermore, if
sampling around the lead path is used in combination with
uniform sampling, the optimality and probabilistic complete-
ness guarantees of the second planner are not lost.

B. Selection of motion planners

We have selected the asymptotic optimal rapidly-exploring
random tree (RRT*) motion planner [8] to generate the lead
path because of its simplicity, flexibility, speed and because
we expect it to scale better than grid based algorithms when
the number of dimensions increase.

To generate the final trajectory we have selected the stable
sparse-RRT (SST) planner [9] because of its asymptotic
near-optimal (and even optimal) guarantees. According to
our experiments, the SST planner by itself may not be fast
enough to compute good quality trajectories online. In this
work we aim to increase its performance using the proposed

multilayered framework. In the results section we provide a
quantitative comparison where our framework outperforms
the SST planner, enabling its use in online planning.

It is important to clarify that the RRT* planner is only
used to generate the geometric lead path. It is not possible to
use RRT* to solve the considered motion planning problem
with the dynamics of the vehicle because it is not possible
to implement the required reconnection (tree rewiring) step.

C. Cost functions

Both the RRT* planner and the SST planner select the best
path according to a cost function. Let cost(q1, q2, s(W, t)) be
the cost of a robot motion between q1 and q2 according to the
workspace representation at time t. For the RRT* planner,
which computes the lead path, we propose a cost function (1)
that reflects both the path length and the amount of occupied
space around according to the integral expression:

costRRT∗(q
′
1, q
′
2, s(W, t)) =∫ q′2

q′1

occupied space around(q′, s(W, t))dq′,
(1)

where the function occupied space around(q′, s(W, t)) re-
turns the area of the occupied cells around the configuration
q′ according to the current representation of the workspace.

The proposed cost function for the SST motion planner
(2) is similar to the one used in the RRT*, but an extra term
has been added to take into account the elapsed time (with
the purpose of penalizing slow movements):

costSST (q1, q2, s(W, t)) = K elapsed time(q1, q2) +∫ q2

q1

occupied space around(q, s(W, t))dq,
(2)

where K is a user defined constant that reflects how
much the planner has to optimize for faster trajectories and
elapsed time(q1, q2) returns the duration of the motion.

Obstacle A Obstacle B

Lead path

SST Tree

Planned path
Robot

Map s(W, t)

Robot path

Fig. 2. The lead path helps reducing sampling in areas that are less likely
to produce a good quality solution. This figure shows how the sampling
takes place around the lead path. The sampling distance around the lead
path should depend on the maximum possible deviation between the lead
path and the final path.

D. Safety through inevitable collision states

As introduced in the previous section, the cost functions
used in both the RRT* and SST motion planners take into
account the occupied space around the motions. This means
that motions that are further away from the obstacles will

be preferred. However, as this section highlights this can not
be used as the only safety measure and other criteria are
required to avoid collisions.

When planning a path from a start state to a goal state
it is important to take into account whether the workspace
representation s(W, t) will evolve over time (online planning,
more than one planning iteration) or not (offline planning,
only one planning iteration), because it has performance and
safety implications.

To understand the implications it is important to introduce
the concept of an inevitable collision state (ICS). Intuitively,
an ICS is a state where, no matter what the robot does from
there, it will always end up in collision [23]. It is difficult to
precisely determine if a state is an ICS, but in [24] a method
was proposed to compute a superset of all the ICSs by
collision checking a reduced set of contingency maneuvers,
which are a set of simple maneuvers such as braking or
turning. If from a state q there exists at least one contingency
maneuver that is collision free, then the state q is not an ICS.

 	

(a) (b)

Fig. 3. In (a), although the robot is in a collision free state, all contingency
maneuvers collide with the environment, so we consider this state to be an
ICS. In (b), however, one of the contingency maneuvers is collision free,
meaning that at least there is a maneuver that avoids the collision.

Since this work presents offline and online results, both
scenarios will be discussed. In the offline planning scenario
the initial planner plans a lead path from the projected start
state to the projected goal state, and then the second planner
uses the lead path to focus the sampling where a good
solution is more likely to be found, providing a performance
increase over using the second planner with only uniform
sampling. Regarding safety, during planning it is enough to
check the states for collision. Even if some of them are ICSs,
they never become part of the final solution because it is
impossible to find a collision free path from an ICS to the
goal state.

In the online planning scenario it is possible to plan the
whole path as in the offline case. However, in this work we
propose an alternative to avoid unnecessary computations
by planning only up to a finite horizon (see Fig. 2). In
the presented framework, the initial planner computes a
lead path from the projected robot state to the projected
goal state. Then this lead path is trimmed up to a defined
horizon. Finally the second planner only plans up to where
the trimmed lead path ends. The horizon distance depends on
the vehicle dynamics (for systems with complex dynamics,
the horizon will have to be increased to ensure the goal is
always reachable). Regarding safety, in the online case the
proposed framework checks that the robot never ends in an
ICS between planning iterations. If the planning time is set

to T seconds, the SST motion planner checks all states at
exactly time T and discards those which are ICSs, because
there is where we expect the robot to be at the beginning of
the next planning iteration.

In our implementation we have defined three contingency
maneuvers, shown in Fig. 3: braking to a complete stop,
braking to a complete stop while turning right and braking
to a complete stop while turning left. While checking for only
one of the contingency maneuver is sufficient to guarantee no
collision, having three maneuvers helps us avoid discarding
too many safe motions. Contingency maneuvers are only
checked in the SST planner, since the RRT* planner does
not account for the full dynamic state of the vehicle.

IV. RESULTS

To test the proposed motion planning framework the
Sparus II AUV has been used (see Fig. 1, [25]). It is
a torpedo-shaped robot with partial hovering capabilities.
The surge, heave and yaw degrees of freedom (DOFs) are
actuated, while sway, roll and pitch DOFs are not actuated.

Two different scenarios have been used. The first scenario
consists of a series of breakwater concrete blocks (see Fig. 1)
located outside the harbor of St. Feliu de Guı́xols, Girona,
Spain. Each block spans an area of 12x12 meters, and the
distance between blocks is 5 meters. It is a challenging
scenario to test motion planning algorithms due to its narrow
passages and water currents. The second scenario is a 100
meters long narrow passage, similar to a canyon, between
the coast cliffs of St. Feliu and a large boulder (see Fig. 6).

A. Simulated results

We have compared the performance of the SST planner
with uniform sampling against the proposed framework. A
set of 100 experiments, each of them with a duration of
90 seconds, has been performed. Figure 4 represents the
box plots of the path cost (from Eq. (2)) as a function
of the planning time. It can be seen that after the same
amount of planning time has been elapsed, the cost of the
solution provided by our framework is lower than for the
SST planner alone, specially at the beginning, which is of
particular interest for online planning. Figure 5 graphically
shows the evolution of the planning tree in both cases after
10 seconds. It can be seen that the framework has already
converged to a solution close to the optimal while the SST
planner has not converged in all cases due to the large area
that it has to explore. This experiment can be classified as
offline planning because the map is known and only one
planning iteration is performed to compute the trajectory
from the start to the goal configurations.

The second simulated experiment we have performed con-
sists in planning online in a complex non-structured scenario.
The goal of this simulation was to test the framework for
online planning before our real experiments. Figure 6 shows
a top view of the environment and the robot trajectory. The
robot trajectory is smooth and the robot is never close to
the obstacles. The robot speed was close to the maximum
allowed speed of 0.3 m/s at all time.

0 30 60 90
0

100

200

300

400

500

Time (s)

Pa
th

co
st

SST Planner
Proposed framework

Fig. 4. This plot represents the solution cost as a function of the planning
time. A box plot is represented every second. The proposed framework
provides a clear convergence advantage.

(a) (b)

Start

Goal

Start

Goal

Start

Goal

Start

Goal

Start

Goal

Start

Goal

Fig. 5. Comparison between (a) the SST planner and (b) the proposed
framework after 10 seconds of planning. In the proposed framework
the solution converges faster to the optimal solution. This behavior is
representative of what happens in other environments.

Start

Goal

Fig. 6. Simulated experiment in a canyon scenario. The orange dot
represents the initial robot position. The red dot represents the goal. The
proposed framework is able to compute a safe path even in narrow passages.
The total length of the trajectory is 128 meters.

Since our motion planning framework takes into account
the dynamics of the system, it is possible to introduce the
effects of water currents at the motion planning stage. This
is achieved by considering the relative velocity of the vehicle
with respect to the water in the damping term of the dynamic
equations (see Eqs. (5)). The third simulated experiment we
have performed shows the difference between ignoring water
currents and taking them into account. Figure 7 shows the
planned trajectory and the actual robot trajectory in a simple
scenario, where the goal is placed between two breakwater
blocks but there is a lateral water current, and it can be seen
that the trajectory tracking error is much lower when currents
are taken into account at the motion planning stage. For this
experiment a uniform current of 0.4 m/s in the north direction
is considered, although the framework can cope with any
time/state parameterizable water current.

(a)

(b)

(c)

Start Goal

Start Goal

Start Goal

Water current

Water current

Noisy water current

Fig. 7. In (a) the water current is fully taken into account, and in (b) it is
not. There is a clear trajectory tracking error when the current is not taken
into account, which depends on the parameters of the trajectory tracking
controller. By taking the water current into account at the planning stage,
it is possible to generate much more realistic trajectories. Since modeling
the current accurately is difficult, (c) shows the robot trajectory when noise
is added to the water current during the simulation. The robot trajectory
deviates slightly from the the planned trajectory because of the water current
mismatch, but results are much better than in (b).

B. Experimental results

Figure 8 shows real in-water experiments using the Sparus
II AUV. The experiments consisted in crossing the breakwa-
ter blocks autonomously doing online planning. The robot
was equipped with a mechanically scanning profiling sonar
which captured exteroceptive data up to a range of 10 meters.
The map was incrementally built during the experiment and
replanning occurred every 5 seconds. All the experiments
were performed at a depth of 2.0 meters and the requested
speed was close to the maximum allowed speed of 0.3 m/s,

only decreasing for tight turns. The proposed framework was
able to compute a safe path to the goal for all experiments, so
no contingency maneuvers were executed to bring the robot
to a safe state during the missions.

Start

Goal

Start

Goal

(a)

Start

Intermediate goal

Goal

(b)

Start

Intermediate goal

Goal

(c)

Fig. 8. In the first two experiments (a) the robot crossed the breakwater
structure from different starting positions. Then, (b) and (c) show experi-
ments where the robot crossed twice. An initial goal was set at the other
side of the blocks, and then a second goal was put so that the robot returns
to the same side where the mission started. Although some localization drift
is present, the robot never gets close to the obstacles.

V. CONCLUSIONS

In this paper we have presented a novel motion planning
framework which generates trajectories that take into account
the dynamic constraints and safety of an underwater vehicle,
even with a limited amount of computational resources.

To the best of the authors’ knowledge, this work presents
for the first time a motion planning framework that combines
the stable sparse-RRT (SST) planner with the asymptotic op-
timal rapidly-exploring random tree (RRT*) motion planner
with the goal of reducing the planning time. Furthermore, it
is also the first time that safety contingency maneuvers are
applied to underwater vehicles.

In addition to the previous contributions, this work also
includes experimental data to evaluate the proposed planning
framework. Simulations show a significant performance in-
crease over running the SST planner on its own, achieving a
faster convergence rate, which is of particular interest when
performing online planning. Real experiments show that the
planned trajectories are suitable for a real underwater robot,
and also demonstrate that the proposed framework is able
to operate within our computational budget, enabling for the
first time the use of a dynamic model for planning trajectories
online with the Sparus II AUV.

Finally, this framework can be easily adapted to other
robots because only their dynamic model is used. It is flexible
and disturbances such as water currents can be easily taken
into account. Because of the aforementioned considerations,
we believe this work may be relevant to the rest of the motion
planning community.

APPENDIX
The state vector q used along this paper for the Sparus II

AUV (using the notation of the society of naval architects
and marine engineers (SNAME) [26] in Table I) is:

q = [x, y, ψ, u, v, r]. (3)

TABLE I
SNAME NOTATION.

DOF Forces and
torques

Linear and
angular

velocities

Linear
damping

Quadratic
damping

Added
mass

Surge X u Xu Xuu Xu̇

Sway Y v Yv Yvv Yv̇

Yaw Z r Nr Nrr Nṙ

Taking advantage of the actuated degrees of freedom
(DOFs) of the vehicle, the control variables are the surge
and yaw accelerations, as defined by:

µ = [u̇, ṙ]. (4)

At the motion planning stage, we limit the control inputs
so that the planned accelerations are always achievable by
the controllers of the system.

The dynamic model of the vehicle is a 2-dimensional (2D)
adaptation of the 3-dimensional (3D) model found in [26].
It includes linear and quadratic damping, Coriolis and added
mass terms:

ẋ = cos(ψ)u− sin(ψ)v

ẏ = sin(ψ)u+ cos(ψ)v

ψ̇ = r

u̇ = µ[0]

v̇ =
(Yv + Yvv|v′|)v′ − u(m−Xu̇)r

m− Yv̇
ṙ = µ[1],

(5)

where m is the mass of the vehicle and the rest of the
parameters use the SNAME notation. For the damping term
v′ is the relative sway velocity with respect to the water.

REFERENCES

[1] F. S. Hover, R. M. Eustice, A. Kim, B. J. Englot, H. Johannsson,
M. Kaess, and J. J. Leonard, “Advanced Perception, Navigation and
Planning for Autonomous In-Water Ship Hull Inspection,” Interna-
tional Journal of Robotics Research (IJRR), vol. 31, no. 12, pp. 1445–
1464, 2012.

[2] E. Galceran, R. Campos, N. Palomeras, D. Ribas, M. Carreras, and
P. Ridao, “Coverage Path Planning with Real-time Replanning and
Surface Reconstruction for Inspection of Three-dimensional Under-
water Structures using Autonomous Underwater Vehicles,” Journal of
Field Robotics (JFR), vol. 32, no. 7, pp. 952–983, 2015.

[3] E. Vidal, J. D. Hernández, K. Istenic, and M. Carreras, “Online View
Planning for Inspecting Unexplored Underwater Structures,” IEEE
Robotics and Automation Letters (RA-L), vol. 99, no. 3, pp. 1436–
1443, 2017.

[4] H. T. Chiang, N. Malone, K. Lesser, M. Oishi, and L. Tapia, “Path-
guided artificial potential fields with stochastic reachable sets for
motion planning in highly dynamic environments,” in IEEE Interna-
tional Conference on Robotics and Automation (ICRA), pp. 2347–
2354, 2015.

[5] J. D. Hernández, M. Moll, E. Vidal, M. Carreras, and L. E. Kavraki,
“Planning feasible and safe paths online for autonomous underwater
vehicles in unknown environments,” in IEEE International Conference
on Intelligent Robots and Systems (IROS), pp. 1313–1320, 2016.

[6] M. Likhachev and D. Ferguson, “Planning Long Dynamically Fea-
sible Maneuvers for Autonomous Vehicles,” International Journal of
Robotics Research (IJRR), vol. 28, no. 8, pp. 933–945, 2009.

[7] E. Plaku, “Region-guided and sampling-based tree search for motion
planning with dynamics,” IEEE Transactions on Robotics (T-RO),
vol. 31, no. 3, pp. 723–735, 2015.

[8] S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal
motion planning,” International Journal of Robotics Research (IJRR),
vol. 30, no. 7, pp. 846–894, 2011.

[9] Y. Li, Z. Littlefield, and K. E. Bekris, “Asymptotically optimal
sampling-based kinodynamic planning,” International Journal of
Robotics Research (IJRR), vol. 35, no. 5, pp. 528–564, 2016.

[10] Y. Lin and S. Saripalli, “Path planning using 3D Dubins Curve for Un-
manned Aerial Vehicles,” in International Conference on Unmanned
Aircraft Systems (ICUAS), pp. 296–304, 2014.

[11] J. Connors and G. Elkaim, “Analysis of a spline based, obstacle avoid-
ing path planning algorithm,” IEEE Vehicular Technology Conference,
pp. 2565–2569, 2007.

[12] M. Pivtoraiko and A. Kelly, “Differentially constrained motion replan-
ning using state lattices with graduated fidelity,” in IEEE International
Conference on Intelligent Robots and Systems (IROS), pp. 2611–2616,
2008.

[13] L. Heng, L. Meier, P. Tanskanen, F. Fraundorfer, and M. Pollefeys,
“Autonomous obstacle avoidance and maneuvering on a vision-guided
mav using on-board processing,” in IEEE International Conference on
Robotics and Automation (ICRA), pp. 2472–2477, 2011.

[14] L. Heng, A. Gotovos, A. Krause, and M. Pollefeys, “Efficient visual
exploration and coverage with a micro aerial vehicle in unknown
environments,” in IEEE International Conference on Robotics and
Automation (ICRA), pp. 1071–1078, 2015.

[15] D. J. Webb and J. van den Berg, “Kinodynamic RRT*: Asymptot-
ically optimal motion planning for robots with linear dynamics,” in
IEEE International Conference on Robotics and Automation (ICRA),
pp. 5054–5061, 2013.

[16] K. Hauser and Y. Zhou, “Asymptotically optimal planning by feasible
kinodynamic planning in a state-cost space,” IEEE Transactions on
Robotics (T-RO), vol. 32, no. 6, pp. 1431–1443, 2016.

[17] J. Sequeira and M. Ribeiro, “A two level approach for underwater
path planning,” MTS/IEEE Oceans, vol. 2, pp. 87–91, 1994.

[18] S. Arinaga, S. Nakajima, H. Okabe, A. Ono, and Y. Kanayama, “A
motion planning method for an AUV,” Symposium on Autonomous
Underwater Vehicle Technology, pp. 477–484, 1996.

[19] L. Palmieri, S. Koenig, and K. O. Arras, “RRT-based nonholonomic
motion planning using any-angle path biasing,” in IEEE International
Conference on Robotics and Automation (ICRA), pp. 2775–2781,
2016.

[20] S. L. Herbert, M. Chen, S. Han, S. Bansal, J. F. Fisac, and C. J.
Tomlin, “Fastrack: A modular framework for fast and guaranteed
safe motion planning,” in IEEE Conference on Decision and Control
(CDC), pp. 1517–1522, 2017.

[21] E. Plaku, L. E. Kavraki, and M. Y. Vardi, “Discrete search leading
continuous exploration for kinodynamic motion planning,” Robotics:
Science and Systems (RSS), pp. 326–333, 2007.

[22] E. Plaku, L. E. Kavraki, and M. Y. Vardi, “Motion planning with
dynamics by a synergistic combination of layers of planning,” IEEE
Transactions on Robotics (T-RO), vol. 26, no. 3, pp. 469–482, 2010.

[23] T. Fraichard and H. Asama, “Inevitable collision states - a step towards
safer robots?,” Advanced Robotics, Taylor & Francis, vol. 18, no. 10,
pp. 1001–1024, 2004.

[24] K. E. Bekris and L. E. Kavraki, “Greedy but safe replanning under
kinodynamic constraints,” IEEE International Conference on Robotics
and Automation (ICRA), pp. 704–710, 2007.

[25] M. Carreras, J. D. Hernández, E. Vidal, N. Palomeras, D. Ribas, and
P. Ridao, “Sparus II AUV-A Hovering Vehicle for Seabed Inspection,”
IEEE Journal of Oceanic Engineering (JOE), vol. PP, no. 99, pp. 1–12,
2018.

[26] T. I. Fossen, Handbook of Marine Craft Hydrodynamics and Motion
Control. John Wiley & Sons, Ltd, 2011.

