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Abstract

This work shows how to decrease the complexity of modeling flexibility in 

proteins by reducing the number of dimensions necessary to model important 

macromolecular motions such as the induced fit process. Induced fit occurs during the 

binding of a protein to other proteins, nucleic acids or small molecules (ligands) and is 

a critical part of protein function. It is now widely accepted that conformational 

changes of proteins can affect their ability to bind other molecules and that any progress 

in modeling protein motion and flexibility will contribute to the understanding of key 

biological functions. However, modeling protein flexibility has proven a very difficult 

task. Experimental laboratory methods such as X-ray crystallography produce rather 

limited information, while computational methods such as molecular dynamics are too 

slow for routine use with large systems. In this work we show how to use the Principal 

Component Analysis method, a dimensionality reduction technique, to transform the 

original high-dimensional representation of protein motion into a lower dimensional 

representation that captures the dominant modes of motions of proteins. For a medium-

sized protein this corresponds to reducing a problem with a few thousand degrees of 

freedom to one with less than fifty. Although there is inevitably some loss in accuracy, 

we show that we can approximate conformations that have been observed in laboratory 

experiments, starting from different initial conformations and working in a drastically 

reduced search space. As shown in this work, the accuracy of protein approximations 

using this method is similar to the tolerance of current rigid protein docking programs 

to structural variations in receptor models. 
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Chapter 1. 

Introduction 

1.1. Protein Modeling and Pharmaceutical Drug Design 

The three-dimensional structures of protein and nucleic acid molecules are 

being determined at increasingly faster rates by X-ray crystallography and Nuclear 

Magnetic Resonance. These large molecules play a role in almost all biological 

processes either directly, or indirectly by acting as regulators. As a result, 

biomacromolecules are key targets for drug design. The rapid generation of quality lead 

compounds is a major hurdle in the design of therapeutics, so that accurate automated 

procedures would be of tremendous value to the pharmaceutical and other 

biotechnology companies. However, designing a drug based on the knowledge of the 

target receptor structure as determined by current experimental techniques is a process 

prone to error. The two major reasons responsible for failures are imperfect energy 

models when scoring potential ligand/receptor complexes (Muegge and Rarey 2001; 

Halperin, Ma et al. 2002; Shoichet, McGovern et al. 2002), and the inability of current 

methods to predict conformational changes that occur during the binding process not 

only for the ligand, but also for the receptor (Carlson 2002; Teodoro and Kavraki 

2003). Although the latter problem has been partially solved by incorporating ligand 

flexibility in search methods, predicting receptor structural rearrangements is a very 

complex problem which has not been solved. The focus of the work reported in this 
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dissertation is to develop a method which can account for receptor conformational 

changes that occur during the binding process. 

1.2. Induced Fit Binding 

 Induced fit binding is the process by which both receptor and ligand change 

their conformation from the native form in solution to a new minimum energy 

conformation which takes into account the interaction of the two molecules. Because 

induced fit is a common occurrence in biological systems, in order to be able to 

accurately predict docked conformations between a protein and a ligand it is often 

necessary to model this effect (Murray, Baxter et al. 1999). Taking into account the 

receptor flexibility in structural-based drug design is a natural step in the evolution of 

this field and can lead to new classes of drugs which can be effective with lower 

dosages and with fewer side effects (Kaul, Cinti et al. 1999). From an industrial point of 

view the development of new classes of drugs is also important because it reduces the 

probability of intellectual property conflicts with previous patents. 

 Induced fit conformational changes have been observed experimentally for a 

large number of systems. A few examples are thymidylate synthase (Weichsel and 

Montfort 1995), chaperonin GroEL (Fenton, Kashi et al. 1994), cyclooxygenase-2 

(Luong, Miller et al. 1996), lipoprotein (a) (Fless, Furbee et al. 1996), thrombin 

(Banner and Hadvary 1991), cytochrome c peroxidase (Cao, Musah et al. 1998), 

phosphofructokinase (Auzat, Gawlita et al. 1995), dihydrofolate reductase (Bystroff and 

Kraut 1991), HIV-1 protease (Appelt 1993), aldose reductase, maltose binding protein 
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(Spurlino, Lu et al. 1991; Sharff, Rodseth et al. 1992), and many others. For this study 

we decided to use the last four proteins as models systems. For more information on 

these proteins and their conformational changes upon binding see Appendix A. 

1.3. The Curse of Dimensionality 

Current docking programs used commonly in academic and industrial settings 

can account for the flexibility of the ligand during induced fit binding. This is carried 

out by modeling the degrees of freedom of the ligand explicitly. The degrees of 

freedom can be represented by the Cartesian coordinates of every atom in the ligand 

molecule. The resulting search space has (3 × N) + 6 degrees of freedom, where N is 

the number of atoms in the ligand and the extra 6 six degrees of freedom account for 

rotation and translation of the ligand relative to the receptor. The dimensionality of the 

problem can be further simplified by considering that bond angles and bond lengths are 

fixed. In this case the flexibility of the ligand can be modeled exclusively with torsions 

around single bonds. As a result the total number of internal degrees of freedom that 

need to be modeled for a traditional ligand is approximately 10 to 20. Although high, 

the dimension of the search space is within the capabilities of modern optimization 

methods such as genetic algorithms (for more information see Appendix C.). 

 Including the receptor flexibility in current docking programs by modeling the 

protein in the same way as the ligand is currently impossible. Instead of 10 to 20 

degrees of freedom, the search space would be composed of hundreds or even 

thousands of degrees of freedom. The dimensionality of such a search space is well 
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beyond the capabilities of current computational methods. Given the impossibility of 

modeling the receptor using the same methods as the ligand it is imperative to find 

alternative docking methods that can be used in structure-based drug design.

1.4. About This Project 

In this project we propose a method to reduce the dimensionality of the protein 

flexibility space that can be applied to modeling conformational rearrangements such as 

induced fit changes upon ligand binding. Unlike other current methods which reduce 

the dimensionality of the search space by considering only a few degrees of freedom in 

a very limited region of the receptor, our method is able to consider the flexibility of the 

protein as a whole. The method described in this work is based on the calculation of a 

small set of collective degrees of freedom that account for most of the conformational 

variance of the protein. 

This work is organized as follows. In Chapter 2 we review current protein 

flexibility models which can be used in the context of structure-based drug design. In 

Chapter 3 we carry out a quantitative assessment of the tolerance of current rigid-

protein / flexible ligand docking methods to receptor conformational changes. Chapter 

4 describes how to obtain a reduced set of collective degrees of freedom that explain 

protein flexibility using principal components analysis. The method is applied to three 

different model proteins: HIV-1 protease, aldose reductase and maltose binding protein. 

Finally in Chapter 5 we explore three different methods of incorporating the 

information obtained about protein flexibility in structure-based drug design. 
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Chapter 2. 

Background - Protein Flexibility Models 

in Structure-Based Drug Design 

2.1. Introduction 

The ability to predict the bound conformations and interaction energy between 

small organic molecules and biological receptors, such as proteins and DNA, is of 

extreme physiological and pharmacological importance. Hence, there has been a 

considerable effort from both academia and industry to develop computational methods 

that can be used to determine the affinity with which a ligand will bind a target 

receptor. These methods usually include docking algorithms that compute the three 

dimensional structure of the complex as would it be determined experimentally using 

X-ray crystallography or Nuclear Magnetic Resonance (NMR) methods. Docking 

entails determining not only the identity and three dimensional structure of the bound 

ligand, but also how the binding process affects the conformation of the receptor. Here 

we review the different receptor flexibility representations that have been proposed to 

study receptor conformational changes in the context of structure based drug design. 

A central paradigm which was used in the development of the first docking 

programs was the lock-and-key model first described by Fischer (Fischer 1894). In this 

model the three dimensional structure of the receptor and the ligand complement each 

other in the same way that a lock complements a key. According to this model, one 
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could find a good drug candidate by searching a database of small molecules for one 

that complemented the three dimensional structure of a given receptor. This rigid 

matching was supported by several studies of complexes of proteolytic enzymes with 

small protein inhibitors (Blow 1976; Huber and Bode 1978; Hubbard, Campbell et al. 

1991) and from the first example of an antibody-protein complex (Amit, Mariuzza et al. 

1986). However, subsequent work has confirmed that the lock-and-key model is not the 

most correct description for ligand binding. A more accurate view of this process was 

first presented by Koshland (Koshland 1958) in the induced fit model. In this model the 

three dimensional structure of the ligand and the receptor adapt to each other during the 

binding process. It is important to note that not only the structure of the ligand but also 

the structure of the receptor changes during the binding process. This occurs because  

the introduction of a ligand modifies the chemical and structural environment of the 

receptor. As a result, the unbound protein conformational substates, corresponding to 

the low energy regions of the protein energy landscape, are likely to change. The 

induced fit model is supported by multiple observations in many different proteins 

including streptavidin (Weber, Ohlendorf et al. 1989), HIV-1 protease (Wlodawer and 

Vondrasek 1998), DHFR (Bystroff and Kraut 1991), aldose reductase (Wilson, Tarle et 

al. 1993). The qualitative and quantitative effects of ligand-induced changes in proteins 

have been described previously (Betts and Sternberg 1999; Murray, Baxter et al. 1999; 

Najmanovich, Kuttner et al. 2000; Zhao, Goodsell et al. 2001; Fradera, Cruz et al. 

2002) and explain the ability of a protein to bind multiple drugs with considerably 
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different three dimensional shapes (Wlodawer and Vondrasek 1998; Vazquez-Laslop, 

Zheleznova et al. 2000). 

A more modern, but not contradictory, model for protein/ligand binding 

considers the binding process as a selection of a particular receptor conformation from 

an ensemble of metastable states (Ma, Kumar et al. 1999; Ma, Wolfson et al. 2001; 

Bursavich and Rich 2002; Ma, Shatsky et al. 2002). The protein exists as a family of 

similar conformations in a hierarchical energy landscape (Verkhivker, Bouzida et al. 

2002). Successful binding shifts the dynamic population equilibrium in favor of the 

bound receptor conformation. This model of ligand binding suggests that for the design 

of novel inhibitors we may need to explore receptor conformations beyond the narrow 

scope of the conformational ensemble presently determined using experimental 

methods. This is important for drug design because it clearly illustrates the need to 

consider protein flexibility and the existence of multiple receptor conformations. It also 

provides a justification for higher affinity inhibitors that do not mimic substrates at their 

transition state. Additionally, if a protein exists in a population of states as discussed in 

(Carlson and McCammon 2000; Ma, Shatsky et al. 2002) then one could either design a 

moderate affinity ligand for a highly populated conformer (lower energy) or a high 

affinity ligand for a less populated conformer (higher energy). 

Although it has been clearly established that a protein is able to undergo 

conformational changes during the binding process, most docking studies consider the 

protein as a rigid structure. The reason for this crude approximation is the extraordinary 

increase in computational complexity that is required to include the degrees of freedom 
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of a protein in a modeling study. Pioneer efforts in the docking area (Holtje and Kier 

1974; Kier and Aldrich 1974) were limited not only in methodology but also in 

computational capability. In the 1980s Kuntz and coworkers developed the program 

DOCK (Kuntz, Blaney et al. 1982) which made structure-based drug design a staple of 

current pharmaceutical research methods. Currently available docking software 

includes improved versions of the original DOCK(Ewing and Kuntz 1997), FlexX 

(Rarey, Kramer et al. 1996) and Autodock (Morris, Goodsell et al. 1998), among many 

others, to computationally predict the spatial conformation and affinity of bound 

complexes between a flexible ligand and a rigid receptor. These programs use different 

search methods and scoring functions. A review of these is beyond the scope of this 

chapter. For recent reviews on docking methods and scoring functions see (Gane and 

Dean 2000; Klebe 2000; Muegge and Rarey 2001; Halperin, Ma et al. 2002; Shoichet, 

McGovern et al. 2002).

The three dimensional conformation of a molecule can be represented by the 

values corresponding to its degrees of freedom. These are usually the Cartesian 

coordinates of its individual atoms or alternatively the values for its internal degrees of 

freedom. The latter are bond lengths, bond angles and dihedral angles (i.e., torsions 

around single bonds). A common approximation when modeling organic molecules is 

to consider that bond lengths and bond angles are constant and only dihedral angles are 

free to change. Even when using this approximation, a protein can have thousands of 

degrees of freedom whereas a small organic molecule can be usually modeled using 

only five to twenty degrees of freedom. In the last decade, with the advent of improved 
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computational capabilities, researchers have been trying to solve the high dimensional 

problem of modeling protein flexibility in docking applications. The effect of protein 

flexibility on structure based drug design has been reviewed by Carlson et al. (Carlson 

and McCammon 2000; Carlson 2002; Carlson 2002). 

There is currently no computationally efficient docking method that is able to 

screen a large database of potential ligands against a target receptor while considering 

the full flexibility of both ligand and receptor. In order for this process to become 

efficient, it is necessary to find a representation for protein flexibility that avoids the 

direct search of a solution space comprised of thousands of degrees of freedom. Here 

we review the different representations that have been used to incorporate protein 

flexibility in the modeling of protein/ligand interactions. A common theme behind all 

these approaches is that the accuracy of the results is usually directly proportional to the 

computational complexity of the representation. We tried to group the different types of 

flexibility representations models into categories that illustrate some of the key ideas 

that have been presented in the literature in recent years. However it is important to 

note that the boundaries between these categories are not rigid and in fact several of the 

publications referenced below could easily fall in more than one category. 

2.2. Flexibility Representations 

2.2.1. Soft Receptors 

Perhaps the simplest solution to represent some degree of receptor flexibility in 

docking applications is the use of soft receptors. Soft receptors can be easily generated 
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by relaxing the high energy penalty that the system incurs when an atom in the ligand 

overlaps an atom in the receptor structure. By reducing the van der Waals contributions 

to the total energy score the receptor is in practice made softer, thus allowing, for 

example, a larger ligand to fit in a binding site determined experimentally for a smaller 

molecule (see Figure 2.1.). The rationale behind this approach is that the receptor 

structure has some inherent flexibility which allows it to adapt to slightly differently 

shaped ligands by resorting to small variations in the orientation of binding site chains 

and backbone positions. If the change in the receptor conformation is small enough, it is 

assumed that the receptor is capable of such a conformational change, given its large 

number of degrees of freedom, even though the conformational change itself is not 

modeled explicitly. It is also assumed that the change in protein conformation does not 

incur a sufficiently high energetic penalty to offset the improved interaction energy 

between the ligand and the receptor. The main advantage of using soft receptors is ease 

of implementation (docking algorithms stay unchanged) and speed (the cost of 

evaluating the scoring function is the same as for the rigid case). 

 The first use of a soft docking approach was by Jiang et al. (Jiang and Kim 

1991). Their method consisted of constructing a three dimensional cube representation 

of the molecular volumes and surfaces. These were matched geometrically in a first 

phase. In a second phase they were scored in accordance to the favorable energetic 

interactions in the buried surface areas. Schnecke et al. (Schnecke, Swanson et al. 

1998) also allowed for some tolerance when calculating van der Waals overlaps 

between atoms. 
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Figure 2.1 – a) Three dimensional van der Waals representation of a target receptor. b)

Close up image of a section of the binding site. For the purposes of rigid protein docking, 

the receptor is commonly described by the union of the volumes occupied by its atoms. 

The steric collision of any atom of the candidate ligand with the atoms of the receptor 

will result in a high energetic penalty. c) Same section of the binding site as shown in b) 

but with reduced radii for the atoms in the receptor. This type of soft representation 

allows ligand atoms to enter the shaded area without incurring a high energetic penalty. 
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 Another use of soft docking models is to improve convergence during energy 

minimization of the complex by avoiding local minima. Apostolakis et al. (Apostolakis, 

Pluckthun et al. 1998) developed a docking approach that is based on a combination of 

Monte Carlo and shifted nonbonded interactions minimization. In the initial stages of 

the conformational search the ligand is allowed to overlap with the receptor and 

nonbonded energy terms are modified to avoid high energy gradients. During the 

course of the minimization the interactions are then gradually restored to their original 

values simulating a ligand that is gradually exposed to the field of the receptor. This 

allows initial ligand/receptor conformations, which due to steric clashes would result in 

a very high energy penalty, to slowly adapt to each other in a complementary 

conformation without overlaps. One potential pitfall of this approach is the possibility 

that the ligand may become interlocked with the protein, leading to failure of the 

docking procedure to arrive at the minimal energy configuration. 

Although the use of soft receptors presents a number of advantages such as ease 

of implementation and computation speed, it also makes use of conformational and 

energetic assumptions that are difficult to verify. This can easily result in errors, 

especially if the soft region is made excessively large to account for larger 

conformational changes on the part of the receptor. 

2.2.2. Selection of Specific Degrees of Freedom 

In order to reduce the complexity of modeling the very large dimensional space 

representing the full flexibility of the protein, it is possible to obtain an approximate 

solution by selecting only a few degrees of freedom to model explicitly. The degrees of 
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freedom chosen usually correspond to rotations around single bonds (see Figure 2.2). 

The reason for this choice is that these degrees of freedom are usually considered the 

natural degrees of freedom in molecules. Rotations around bonds lead to deviations 

from ideal geometry that result in a small energy penalty when compared to deviations 

from ideality in bond lengths and bond angles. This assumption is in good agreement 

with current modeling force fields such as CHARMM (MacKerell, Bashford et al. 

1998) and AMBER (Cornell, Cieplak et al. 1995). Choosing which torsional degrees of 

freedom to model is usually the most difficult part of this method because it requires a 

considerable amount of a priori knowledge of alternative binding modes for a given 

receptor. This knowledge is usually a result of the availability of experimental 

structures obtained under different conditions or using different ligands. If multiple 

experimental structures are not available some insight can be obtained from simulation 

methods such as Monte Carlo (MC) or molecular dynamics (MD). The torsions chosen 

are usually rotations of aminoacid side chains in the binding site of the receptor protein. 

It is also common to further reduce the search space by using rotamer libraries for the 

aminoacid side chains (Tuffery, Etchebest et al. 1991; Lovell, Word et al. 2000; 

Dunbrack 2002). 
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Figure 2.2 – Stick representation of the same binding site section as shown in Figure 2.1. 

In order to approximate the flexibility of the receptor it is possible to carefully select a 

few degrees of freedom. These are usually select torsional angles of sidechains in the 

binding site that have been determined to be critical in the induced fit effect for a specific 

receptor. In this example the selected torsional angles are represented by arrows. 
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 The first application of using select degrees of freedom to model receptor 

flexibility was carried out by Leach (Leach 1994). This work made use of the Dead End 

Elimination (DEE) (Desmet, DeMaeyer et al. 1992) and the A* algorithm (Hart, N.J. et 

al. 1968) to explore the conformational space for the degrees of freedom for both ligand 

and receptor. The DEE states that a rotamer r of residue i (ir) is incompatible with the 

global energy minimum structure if it satisfies the following inequality: 
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E ,  are the interaction energies between rotamer conformations ir
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energy between rotamer r of residue i with all permitted rotamers s of residue j,
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s
,max is the corresponding maximum value for rotamer it. The A* (pronounced 

"A star") algorithm is a well known and well studied best-first search algorithm that 

works by expansion of graph nodes, always expanding the current fringe node that 

seems to be along the best path from the start node to the goal node. Besides using these 

two methods Leach also introduced an energy threshold to the global minimum and 

returned all structures under this threshold as potential binding candidates. The purpose 

of the threshold is to take into account the fact that the true global energy minimum of 

the bound complex does not necessarily correspond to that of the force field. This work 

was later extended by Leach and Lemon (Leach and Lemon 1998) to explore the 

conformational space of whole proteins. Schaffer et al. (Schaffer and Verkhivker 1998) 

also used DEE to perform flexible docking of two HIV-1 protease inhibitors with 



16

mutants of this protein. The DEE algorithm was applied using a rotamer library to 

perform discrete optimization of all possible combinations of side chain conformations 

in the binding site. The best solutions were later optimized in conjunction with the 

ligand using a Monte Carlo simulated annealing technique. This two step method leads 

to a solution that is not restricted to the dihedral values present in the rotamer library 

and is also of lower energy. More recently Althaus et al. (Althaus, Kohlbacher et al. 

2002) also used two alternative combinatorial optimization methods to solve the side 

chain conformation problem. The first method consists of a heuristic multi-greedy 

approach, which is faster but does not necessarily produce an optimal solution. The 

second method is able to find the global minimum energy conformation and is based on 

a branch-and-cut algorithm and integer linear programming. 

 In the program GOLD, Jones et al. (Jones, Willett et al. 1997) use a genetic 

algorithm (GA) to dock a flexible ligand to a semi-flexible protein. GAs are an 

optimization method that derive their behavior from a metaphor of the process of 

evolution. A solution to a problem is encoded in a chromosome and a fitness score is 

assigned to it based on the relative merit of the solution. A population of chromosomes 

then goes through a process of evolution in which only the fittest solutions “survive”. 

This program takes into account not only the position and conformation of the ligand 

but also the hydrogen bonding network in the binding site. This was achieved by 

encoding orientation information for donor hydrogen atoms and acceptors in the GA 

chromosome. This type of conformational information is very important because if the 

starting point for a docking study is a rigid crystallographic structure, the orientations of 
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hydroxyl groups will be undetermined. Being able to model these orientations explicitly 

removes any bias that might result from positioning hydroxyl groups based upon a 

known ligand. One limitation of this work is that the binding site still remains 

essentially rigid because protein conformational changes are limited to a few terminal 

bonds. This program performed very well for hydrophilic ligands but encountered some 

difficulties when trying to dock hydrophobic ligands due to the reduced contribution of 

hydrogen bonding to the binding process. 

 In SPECITOPE Schnecke et al. (Schnecke, Swanson et al. 1998) also make use 

of side chain rotations in the late stages of docking to remove steric overlaps between 

the protein side chains and the ligand. If an overlap clash is detected, the program 

attempts to remove it by rotating the side chain through the minimal angle that resolves 

the clash. The single bond closest to the bumping atoms in the side chain is used first to 

resolve the overlap. If a bump free conformation cannot be generated with this rotation, 

the next rotatable bond closer to the ligand backbone is rotated. This procedure will 

miss potential combinations of side chain conformations that do not overlap with the 

ligand and is not capable of finding the minimum energy conformation. Nevertheless, it 

will successfully resolve many cases of overlap. 

 Anderson et al. (Anderson, O'Neil et al. 2001) introduced the algorithm 

SOFTSPOTS that addresses the problem of knowing which rotational degrees of 

freedom should be selected to represent receptor flexibility. Using a single protein 

structure, this algorithm is capable of identifying regions of high flexibility. The results 

were combined with a second algorithm named PLASTIC that provides a collection of 
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possible conformations based on rotamer libraries effectively reducing the bias caused 

by structures of proteins co-crystallized with inhibitors. More recently, Kayrys et al.

(Kairys and Gilson 2002) have improved the Mining Minima optimizer method, first 

described by David et al. (David, Luo et al. 2001), to include select side chain degrees 

of freedom in the docking simulation of several proteins and ligands. 

 A common theme among the work described in this section is that receptor side 

chain conformations are modeled using torsional degrees of freedom. In order to make 

the calculation of interaction energies more efficient it would be desirable to work with 

a force field that is also described in terms of internal coordinates to avoid repeated 

conversion between two coordinate systems. Use of internal coordinate force fields also 

leads to more efficient convergence of energy optimizations. Abagyan et al. described a 

method to carry out flexible protein-ligand docking by global energy optimization in 

internal coordinates (Totrov and Abagyan 1997) and more recently described a method 

to accurately "project" a Cartesian force field onto an internal coordinate molecular 

model with fixed-bond geometry (Katritch, Totrov et al. 2003). 

2.2.3. Multiple Receptor Structures 

One possible way to represent a flexible receptor for drug design applications is 

the use of multiple static receptor structures (see Figure 2.3). This concept is supported 

by the currently accepted model that proteins in solution do not exist in a single 

minimum energy static conformation but are in fact constantly jumping between low 

energy conformational substates (Noguti and Go 1989; Frauenfelder, Sligar et al. 1991; 

Andrews, Romo et al. 1998; Kitao, Hayward et al. 1998). In this way the best 
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description for a protein structure is that of a conformational ensemble (Bursavich and 

Rich 2002; Rich, Bursavich et al. 2002) of slightly different protein structures 

coexisting in a low energy region of the potential energy surface. Moreover the binding 

process can be thought of as not exactly an induced fit model as first described by 

Koshland (Koshland 1958) but more like a selection of a particular substate from the 

conformational ensemble that best complements the shape of a specific ligand (Ma, 

Kumar et al. 1999). 

The use of multiple static conformations for docking gives rise to two critical 

questions. The first question is “How can we obtain a representative subset of the 

conformational ensemble typical of a given receptor?” Currently, the three dimensional 

structure of macromolecules can be determined experimentally using X-ray 

crystallography or NMR, or generated via computational methods such as Monte Carlo 

or molecular dynamics simulations. Simulations typically use as a starting point a 

structure determined by one of the experimental methods. Ideally we would like to use 

a sampling that provides the most extensive coverage of the structure space. 

Comparisons between traditional molecular simulations and experimental techniques 

(Clarage, Romo et al. 1995; Philippopoulos and Lim 1999) indicate that X-ray 

crystallography and NMR structures seem to provide better coverage. However this 

balance can potentially change due to advances in computational methods (Karplus and 

McCammon 2002). Another limitation in choosing data sources is availability. 

Although experimental data is preferable, the monetary and time cost of determining 

multiple structures experimentally is significantly higher than obtaining the same 
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amount of data computationally. The second critical question is “What is the best way 

of combining this large amount of structural information for a docking study?”. This 

question also remains open. Current approaches use diverse ways of combining 

multiple structures as discussed below. 

The first use of multiple structures for a drug design applications was by Pang 

and Kozikowski (Pang and Kozikowski 1994) to study the binding of huperzine A 

(HA) to acetylcholinesterase (AChE). In this study the authors ran a short molecular 

dynamics simulation (40 ps) of AChE from which they extracted 69 conformations that 

were docked to HA using rigid docking. This study successfully predicted that HA 

binds to the bottom of the binding cavity of AChE (the gorge). More recently, other 

studies (Kua, Zhang et al. 2002; Lin, Perryman et al. 2002) have exploited similar 

approaches but used a larger number of structures, longer molecular dynamics 

sampling, and more accurate simulation conditions. Instead of resorting to 

computational methods to derive structural data Knegtel et al. (Knegtel, Kuntz et al. 

1997) used a family of structures from an NMR structural determination or, as an 

alternative, several crystal structures of the same protein system. In that study the 

authors combined the different structures into a single interaction energy grid to be used 

for rigid receptor docking by the DOCK program. Interaction energy grids are 

calculated by placing a probe atom at discrete points in the space around a target 

protein and assigning to the grid point the value of the interaction energy between the 

probe and protein. This grid is then utilized as a fast lookup table for interaction energy 

calculations, effectively reducing the cost of computation from quadratic to linear. The 
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averaged grids were constructed using energy-weighted and geometry-weighted 

averaging methods. The main limitation of these averaging approaches is that they can 

lead to loss of geometric accuracy. The binding energies computed from the composite 

grid are also less favorable than for individual grids for each protein in the ensemble. In 

the case of geometry-weighted averaging, the binding site can become too permissive 

in terms of the size of the ligand that it can accommodate. Sudbeck et al. (Sudbeck, 

Mao et al. 1998) superimposed the crystal structures of nine inhibitor complexes of 

HIV reverse transcriptase to generate a composite binding site that summarized its 

unique critical features. The overlaid coordinates of the nine different inhibitors were 

used to generate a combined molecular surface defining an enlarged binding pocket that 

represented the plasticity of the receptor. The combined binding pocket was used to 

verify the results obtained from the docking of small molecules to a single structure of 

reverse transcriptase through a conjugate gradient minimization method for the ligand 

and all residues within 5 Å. This study resulted in the development of two new 

inhibitors. Multiple crystal structures of HIV-1 protease were also used by Bouzida et

al. (Bouzida, Rejto et al. 1999) to account for receptor flexibility. Broughton et al.

(Broughton 2000) used different conformation snapshots from a short molecular 

dynamics simulation of dihydrofolate reductase to generate interactions grids that were 

also combined into a single grid by means of a weighted average method. Before the 

calculation of the grids, the structures were superimposed using the bound inhibitors as 

a reference. 
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Figure 2.3 – Superposition of multiple conformers of the same binding site section as 

shown in Figure 2.1. As an alternative to considering the target protein as a single three 

dimensional structure, it is possible to combine information from multiple protein 

conformations in a drug design effort. These can be either considered individually as 

rigid representatives of the conformational ensemble or can be combined into a single 

representation that preserves the most relevant structural information.  
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As mentioned earlier one of the methods of combining multiple receptor 

structures is to create an average grid for the protein/ligand interaction potential 

(Knegtel, Kuntz et al. 1997). Osterberg et al. (Osterberg, Morris et al. 2002) analyzed 

this problem in depth by using HIV-1 protease as a model system and comparing four 

different grid averaging methods. The fist two naïve methods consisted of a mean grid 

that takes a simple point-by-point average across all the grids, and a minimum grid that 

takes the minimum value across all the grids. Both methods performed poorly. The 

third approach is similar to that described by Knegtel et al. (Knegtel, Kuntz et al. 1997) 

and consists of a weighted averaging scheme. In this case if one or more of the grids 

contain a favorable, negative value, their weights will dominate the average. On the 

other hand, if all the grids contain unfavorable positive values, all will have identical 

small weights resulting in an unfavorable region representing all grids. The fourth 

averaging scheme is similar to the previous one but uses a Boltzmann assumption to 

calculate the weight based on the interaction energy. The last two averaging schemes 

were able to efficiently represent multiple structures in a single grid and the docking 

results were satisfactory. However, as the authors point, out this method for 

incorporation of conformational flexibility can introduce potentially dangerous artifacts 

such as positive interaction regions for mutually exclusive solutions. 

A different way of considering protein flexibility as represented in interaction 

grids for multiple static structures is GRID/CPCA (Consensus Principal Component 

Analysis). This method, introduced by Kastenholz et al. (Kastenholz, Pastor et al. 2000) 

in the study of serine proteases, is an extension of GRID/PCA (Pastor and Cruciani 
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1995), and can be used to identify selectivity features for a receptor. One of the main 

advantages of this method over its predecessor is that it allows the inclusion of more 

that two structures in the PCA calculation. Moreover, when several structures are used, 

it allows for some averaging of individual structures, reducing differences that might be 

present due to experimental variations but are not relevant to the specificity features of 

the receptors. 

In the program FlexE, Claussen et al. (Claussen, Buning et al. 2001) introduced 

a new method of combining multiple receptor structures to represent a flexible binding 

site. The algorithm starts by superimposing the set of conformations available for a 

given receptor and merging similar parts of the structures. Dissimilar substructures are 

treated as independent alternatives and FlexE selects the combination of substructures 

that best complements conformations of the ligand with respect to the scoring function. 

In practice, this results in the generation of alternative receptor conformations that were 

not present in the initial set but may constitute valid docking targets. 

More recently Moreno and León (Moreno and Leon 2002) introduced a new 

receptor representation that allows the use of an ensemble of protein structures as input 

to DOCK instead of a single rigid structure. In this approach, an ensemble of 

protein/inhibitor complex structures is used to construct a set of templates of attached 

points (one for each type of amino acid) located in positions suitable for interactions 

with ligand atoms. The combination of templates gives a description of a flexible 

binding site. The authors propose the method of attached points as an alternative to 
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SPHGEN (Bolin, Filman et al. 1982; DesJarlais, Sheridan et al. 1988) or SURFSPH 

(Oshiro and Kuntz 1998) to generate a binding site descriptor. 

Multiple protein structures can be used not only to generate flexible receptor 

representations for docking purposes, but also to generate pharmacophores. A 

pharmacophore is a template for the desired ligand. The pharmacophore is represented 

by a set of features that an effective ligand should possess and a set of spatial 

constraints among the features. The features can be specific atoms, positive or negative 

charges, hydrophobic or hydrophilic centers, hydrogen bond donors or acceptors, and 

others. The spatial arrangement of the features represents the relative 3D placements of 

these features in the docked conformation of the ligand. Carlson et al. introduced the 

concept of a dynamic pharmacophore by combining sets of structures derived by either 

X-ray crystallography (Carlson, Masukawa et al. 1999) or snapshots of a molecular 

dynamics simulation (Carlson, Masukawa et al. 2000). Potential sites of interest in the 

receptor binding site are determined by running a multi-unit Monte Carlo minimization 

using probe molecules for the different features of interest. The results of these 

simulations for each conformer are then overlaid. This procedure reveals conserved 

binding regions that are highly occupied during the molecular dynamics simulation 

despite the flexibility of the receptor. The conserved features define the dynamic 

pharmacophore. Studies similar to dynamic pharmacophore identification were 

performed by Stultz and Karplus (Stultz and Karplus 1999) using a combination of the 

Multiple Copy Simultaneous Search (MCSS) and Locally Enhanced Sampling (LES) 

methods (Roitberg and Elber 1991). Their protocol uses quenched molecular dynamics 
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to identify energetically favorable positions and orientations of small functional groups 

in a flexible binding site. In this method multiple copies of the functional groups are 

distributed in the binding site and quenched to find energy minima. These functional 

groups can later be used as building blocks for larger ligands. 

One of the main advantages of using multiple structures instead of using a 

selection of degrees of freedom to represent protein flexibility is that the flexible region 

is not limited to a specific small region of the protein. Multiple structures allow the 

consideration of the full flexibility of the protein without the exponential blow up in 

terms of computational cost that would derive from including all the degrees of 

freedom of the protein. On the other hand, flexibility is modeled implicitly and as such 

only a small fraction of the conformational space of the receptor is represented. In 

addition, the method by which the multiple receptor structures are combined has a 

drastic influence on the possible results of the docking computation. 

2.2.4. Molecular Simulations 

 To simulate the binding process with as much detail as possible and avoid some 

of the limitations of previous flexibility models one can use force field based atomistic 

simulation methods such as Monte Carlo or molecular dynamics (see Figure 2.4.). 

Whereas molecular dynamics applies the laws of classical mechanics to compute the 

motion of the particles in a molecular system, Monte Carlo methods are so called 

because they are based on a random sampling of the conformational space. The main 

advantage of Monte Carlo or molecular dynamics flexibility representations in docking 

studies is that they are very accurate and can model explicitly all degrees of freedom of 
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the system including the solvent if necessary. Unfortunately, the high level of accuracy 

in the modeling process comes with a prohibitive computational cost. For example, in 

the case of molecular dynamics, state of the art protein simulations can only simulate 

periods ranging from 10 to 100 ns, even when using large parallel computers or 

clusters. Given that diffusion and binding of ligands takes place over a longer time 

span, it is clear that these simulations techniques cannot be used as a general method to 

screen large databases of compounds in the near future. It is however possible to carry 

out approximations that reduce the computational expense and lead to insights that 

would be impossible to gain using less flexible receptor representations. The cost of 

carrying out the computational approximations is usually a loss in accuracy. 
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Figure 2.4 – Molecular simulations can give a description of the full protein flexibility as 

it interacts with a ligand. Molecular dynamics applies the laws of classical mechanics to 

compute the motion of particles in a molecular system. Alternatively, the different 

conformational snapshots obtained at times t0, t1, etc., can be used as multiple protein 

structures representing the conformational ensemble. 
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 In order to address the time sampling limitations of traditional molecular 

dynamics Di Nola et al. (Di Nola, Roccatano et al. 1994) used a modified temperature 

coupling scheme to perform the docking of phosphocholine onto immunoglobulin 

McPC603. Instead of coupling the whole system to the same temperature bath, Di Nola 

used a regular coupling temperature to the internal degrees of freedom of the ligand and 

a very high temperature (1300-1700 K) for the translational modes. In practice, this 

allows the ligand to sample the surface of a protein receptor much faster and without 

disturbing internal motions. This method was extended later by Mangoni et al.

(Mangoni, Roccatano et al. 1999) to also include the flexibility of the receptor, which 

was also coupled to the lower temperature bath (300 K). In order to further reduce the 

computational cost of the simulation, the protein simulation was restricted to a sphere 

of 20 Å around the chain oxygen of the phosphocholine molecule in the 

crystallographic position. The remaining part of the protein was kept rigid. The same 

approach of restricting the full molecular simulation to the vicinity of the binding site 

was used by Luty et al. (Luty, Wasserman et al. 1995) to simulate the docking of 

benzamidine to trypsin and by Wasserman et al. (Wasserman and Hodge 1996)  to 

simulate the docking of  L-leucine hydroxamic acid to thermolysin. Given and Gilson 

(Given and Gilson 1998) also restricted flexibility to the binding site area of HIV-1 

protease within the context of a hierarchical docking protocol. In this method 

conformations are evolved in stages, with the lowest energy conformations from one 

stage serving as starting points for the next. The focus of this study was not to develop a 
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computationally efficient method but rather generate a picture of the ligand-binding 

energy surface with different energy functions. 

A different approach to enhance the sampling rate of force field based 

simulations methods is to smooth the potential energy surface in order to increase the 

rate of transition between metastable conformations. Nakajima et al. (Nakajima, Higoa 

et al. 1997; Nakajima, Nakamura et al. 1997) used the method of multicanonical 

molecular dynamics simulation based on the work of Berg et al. (Berg and Neuhaus 

1992) to simulate the binding of a short proline-rich peptide to a Src homology 3 (SH3) 

domain. In this method the simulation is carried out in a deformed energy surface 

characterized by a flatter energy distribution resulting in much faster sampling of the 

conformational space of the ligand and the binding site of SH3. Pak and Wang (Pak and 

Wang 2000) applied the Tsallis transformation to the non bonded interaction potential 

of the CHARMM force field and ran dynamics simulations with infrequent q-jumping 

and q-relaxation between the normal and the smooth energy surface. By combining 

potential smoothing and restriction of the flexibility of the receptor to aminoacid side 

chains in the binding site, it was possible to successfully simulate the formation of 

streptavidin/biotin and protein kinase C/phorbol-13-acetate complexes. More recently, 

Zhu et al. (Zhu, Fan et al. 2001) introduced the program F-DycoBlock that performs the 

docking of a flexible ligand to a flexible receptor using multiple-copy stochastic 

molecular dynamics. In this method several copies of the ligand molecule are simulated 

simultaneously. These copies are constructed in a special way because they do not 

interact with each other. The protein moves in the mean field of all ligand copies. In 
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this study the authors also used four different types of receptor flexibility: all-atom 

restrained, backbone restrained, intramolecular hydrogen-bond restrained and active-

site flexible. 

The alternative to the use of molecular dynamics is the use of Monte Carlo 

based methods. In (Caflisch, Fischer et al. 1997) Caflisch et al. extended the Monte 

Carlo minimization approach to take into account receptor flexibility by the use of a 

flexible enzyme binding site whose side chains are submitted to random perturbations. 

This work used the Metropolis Monte Carlo method for global optimization, combined 

with a conjugate gradient minimization scheme for local optimization. Solute-solvent 

energies were calculated by solving the finite-difference linearized Poisson-Boltzmann 

equation. Trosset and Scheraga developed the PRODOCK package for docking 

(Trosset and Scheraga 1999). The global optimization method used in this tool is the 

scaled collective variables Monte Carlo method developed by Noguti and Go (Noguti 

and Go 1985) with energy minimization after each Monte Carlo step. The minimization 

step was greatly improved by the use of a grid based energy evaluation technique using 

Bézier splines (Trosset and Scheraga 1998; Trosset and Scheraga 1999) and the use of 

collective degrees of freedom. One of the main problems with conventional simulation 

methods is the propensity for the system to get trapped in local minima, leading to a 

computationally inefficient sampling of the energy landscape. In order to minimize this 

problem, Verkhivker et al. (Verkhivker, Rejto et al. 2001) made use of parallel 

simulated tempering dynamics to investigate the specificity of binding and mechanisms 

of inhibitor resistance in HIV-1 protease. Parallel tempering is a replica-exchange 
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Monte Carlo method that simulates several copies of the protein simultaneously using 

different temperatures and periodically exchanges conformations at neighboring 

temperatures. This process enhances conformational sampling by facilitating escape 

from local minima. 

An innovative approach to predicting the binding conformation of a flexible 

ligand in a flexible binding pocket by combining the simulated annealing and the 

crystallographic refinement search methods was recently introduced by Ota and Agard 

(Ota and Agard 2001). This scheme starts by using a shrunken ligand for which the 

bond lengths and the non bonded interactions have been greatly reduced. The ligand is 

then grown in the binding site using a simulated annealing protocol to search for a 

bound conformation. This procedure is repeated several times and a pseudo electron 

density map is calculated by averaging amplitudes and phases calculated from each 

structure. The final bound conformation is determined by conventional crystallographic 

refinement using the calculated structure factors. This method has the advantages of 

being able to model individual water molecules relevant to the binding configuration 

and providing a series of crystallographic measures, such as B-factors, that facilitate the 

comparison with X-ray crystallographic data. Unfortunately, due to the high 

computational cost, this technique is not suitable for large scale database screening but 

could be useful in the late stages of a docking study. 

2.2.5 Collective Degrees of Freedom 

An alternative representation for protein flexibility is the use of collective 

degrees of freedom. This approach enables the representation of full protein flexibility, 
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including loops and domains, without a dramatic increase in computational cost. 

Collective degrees of freedom are not native degrees of freedom of molecules. Instead 

they consist of global protein motions that result from a simultaneous change of all or 

part of the native degrees of freedom of the receptor. 

Collective degrees of freedom can be determined using different methods. One 

method is the calculation of normal modes for the receptor (Levy and Karplus 1979; 

Go, Noguti et al. 1983; Levitt, Sander et al. 1985). Normal modes are simple harmonic 

oscillations about a local energy minimum, which depends on the structure of the 

receptor and the energy function. For a purely harmonic energy function, any motion 

can be exactly expressed as a superposition of normal modes. In proteins, the lowest 

frequency modes correspond to delocalized motions, in which a large number of atoms 

oscillate with considerable amplitude. The highest frequency motions are more 

localized such as the stretching of bonds. By assuming that the protein is at an energy 

minimum, we can represent its flexibility by using the low frequency normal modes as 

degrees of freedom for the system. Zacharias and Sklenar (Zacharias and Sklenar 1999) 

applied a method similar to normal mode analysis to derive a series of harmonic modes 

that were used to account for receptor flexibility in the binding of a small ligand to 

DNA. This in practice reduced the number of degrees of freedom of the DNA molecule 

from 822 (3 × 276 atoms – 6) to between 5 and 40. Keseru and Kolossvary also used a 

normal mode based model (Kolossvary and Guida 1999; Kolossvary and Keseru 2001) 

to study inhibitor binding to HIV integrase (Keseru and Kolossvary 2001). 
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Figure 2.5 – Representation of a collective degree of freedom for HIV-1 protease. Full 

protein flexibility can be represented in a low dimensional space using collective degrees 

of freedom. One method to obtain these is Principal Component Analysis. Principal 

components correspond to a concerted motion of the protein. The first principal 

component for HIV-1 protease is indicated by the arrows (top). By following this 

collective degree of freedom it is possible to generate alternative conformations for the 

receptor (bottom). 



35

An alternative method of calculating collective degrees of freedom for 

macromolecules is the use of dimensional reduction methods. The most commonly used 

dimensional reduction method for the study of protein motions is principal component 

analysis (PCA). This method was first applied by Garcia (Garcia 1992) in order to 

identify high-amplitude modes of fluctuations in macromolecular dynamics 

simulations. It has also been used to identify and study protein conformational substates 

(Romo, Clarage et al. 1995; Caves, Evanseck et al. 1998; Kitao and Go 1999), as a 

possible method to extend the timescale of molecular dynamics simulations (Amadei, 

Linssen et al. 1993; Amadei, Linssen et al. 1996; Abseher and Nilges 2000) and as a 

method to perform conformational sampling (de Groot, Amadei et al. 1996; de Groot, 

Amadei et al. 1996; Abseher and Nilges 2000). In Chapter 4, we present a protocol 

(Teodoro, Phillips et al. 2003) based on PCA to derive a reduced basis representation of 

protein flexibility that can be used to decrease the complexity of modeling 

protein/ligand interactions. The most significant principal components have a direct 

physical interpretation. They correspond to a concerted motion of the protein where all 

the atoms move in specific spatial directions and with fixed ratios in overall 

displacement. An example is provided in Figure 2.5,. where the directions and ratios are 

indicated by the direction and size of the arrows, respectively. By considering only the 

most significant principal components as the valuable degrees of freedom of the 

system, it is possible to cut down an initial search space of thousands of degrees of 

freedom to less than fifty. This is achievable because the fifty most significant principal 

components usually account for 80-90% of the overall conformational variance of the 
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system. The PCA approach avoids some of the limitations of normal modes such as 

deficient solvent modeling and existence of multiple energy minima during a large 

motion. The last limitation contradicts the initial assumption of a single well energy 

potential.

An alternative representation of receptor flexibility that uses a concept similar to 

collective degrees of freedom, is based on the concept of molecular hinges (Sandak, 

Nussinov et al. 1995; Sandak, Nussinov et al. 1998; Sandak, Wolfson et al. 1998). This 

research is based on methods from the fields of computer vision and robotics. The 

hinge-bending approach was originally used to model flexibility of the ligand, but the 

roles of the ligand and the protein can be swapped since the mathematical problem is 

symmetrical. Hinges are articulation points placed at specific locations in the protein 

that allow for relative movement of domains or substructural parts. A few simultaneous 

hinges can be modeled. These hinge points do not correspond to single degrees of 

freedom of the original model but are instead articulations that are allowed to rotate in 

three dimensions, implicitly representing rotations about consecutive or nearby bonds. 

The ligand is also considered flexible and the search for a docking conformation is done 

simultaneously, mimicking the induced fit process. Like pliers closing on a screw, the 

receptor adapts its shape to that of the ligand. This method does not model 

conformational changes for sidechains explicitly. However, it models large 

conformational changes efficiently and can be easily combined with some of the 

methods described above in order to model conformational changes for specific areas of 

the receptor at an atomistic level. One of the main problems of the molecular hinges 
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approach is determining the location of the hinges. Recently, Jacobs et al. (Jacobs, 

Rader et al. 2001) introduced a flexibility prediction algorithm based on graph theory 

which can help solve this problem. The algorithm computes a constraint network for the 

protein defined by the bonds (covalent and hydrogen) and salt bridges and identifies all 

the rigid and flexible substructures in the protein, including overconstrained regions and 

underconstrained or flexible regions. 

Using collective degrees of freedom as a flexibility representation has a number 

of advantages and disadvantages. One advantage is that protein flexibility is not limited 

to a specific small region of the protein as was the case when using only select degrees 

of freedom. Furthermore, because only a few independent degrees of freedom are used 

in the optimization procedure, the computational cost is similar to using only select 

degrees of freedom and is much less than the cost of techniques that consider all 

degrees of freedom, such as traditional molecular dynamics or Monte Carlo. On the 

other hand, the degrees of freedom that are searched during the drug design procedure 

are not the native degrees of freedom of the protein, but collective modes of motion that 

try to account for most of the variance observed during protein motion. This may result 

in a loss of accuracy and difficulty in obtaining exact solutions. For example, there may 

not exist a combination of values for the reduced basis formed by the most significant 

collective degrees of freedom that results in the exact placement of all binding site 

sidechains, as observed in an experimentally determined structure. However, this is 

probably a minor problem since exact solutions are rarely obtained using other 

methods, either. As shown in (Teodoro, Phillips et al. 2003) and Chapter 5, it is 
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possible to obtain very good approximations using only a small number of collective 

degrees of freedom. Furthermore, in order to avoid high energy penalties that might 

result from van der Waals clashes, it is possible to combine collective modes of motion 

with either a soft receptor representation or with a post-processing minimization 

procedure.

2.3. Summary 

The problem of incorporating receptor flexibility in routine in silico screening 

of databases of small chemical compounds for the purposes of structure based drug 

design is still an unsolved problem. The main reason behind this difficulty is the large 

number of degrees of freedom that have to be considered to represent receptor 

flexibility. In this chapter we reviewed protein flexibility models that have been 

developed to limit the number of additional search parameters. These models can be 

roughly divided into five different categories. These are a) use of soft receptors which 

relax energetic penalties due to steric clashes, b) selection of a few critical degrees of 

freedom in the receptor binding site, c) use of multiple receptor structures either 

individually or by combining them using an averaging scheme, d) use of modified 

molecular simulation methods, and e) use of collective degrees of freedom as a new 

basis of representation for protein flexibility. All these flexible receptor models strive to 

balance an improvement in the accuracy of the binding predictions with an increase in 

computational cost.  
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Chapter 3. 

Tolerance Assessment of Rigid-Protein Docking Methods 

 to Induced Fit Effects 

3.1. Introduction 

A major advance in pharmaceutical drug discovery has been the ability to 

computationally determine the three dimensional conformation of the complex formed 

between a small ligand and a large biomacromolecule (Kuntz, Blaney et al. 1982). This 

procedure, known as docking, led to a novel method for developing drugs. Instead of 

physically screening millions of chemical compounds in the laboratory in search of 

pharmacological activity, it was now possible to carry out the same tests in silico at a 

fraction of the initial cost. Using the new method, large databases of chemically diverse 

small molecules are screened to determine which are able to bind effectively to a target 

receptor. The best candidates are then later optimized using both computational and 

experimental methods to produce drug candidates that must undergo further laboratory 

and clinical trials before final approval. During the last two decades we have seen the 

emergence of different algorithms and software packages for docking. For recent 

reviews on docking methods see (Muegge and Rarey 2001; Halperin, Ma et al. 2002). 

However, the development of docking methods is still a work in progress and these 

software packages will often fail to predict the three dimensional structures and 

affinities of the bound complexes. The most common reasons for failure are 
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oversimplified energy models, poor solvent modeling and lack of representation for 

receptor flexibility. In Chapter 3 we will focus on the last problem and perform a 

quantitative assessment of the consequences of modeling the receptor as a rigid 

structure.

Due to computational limitations, the first generation of docking programs 

followed the lock-and-key model first described by Fischer (Fischer 1894). In this 

model the three dimensional structure of the receptor and the ligand complement each 

other in the same way that a lock complements a key. The role of the docking programs 

was to find the best geometric and chemical match between two rigid structures. 

Unfortunately, the lock-and-key model is a crude approximation of the binding process 

which is better described by an induced-fit process (Koshland 1958) in which the three 

dimensional structure of the ligand and the receptor adapt to each other during binding. 

To partially address this limitation, the second generation of docking programs modeled 

some of the induced-fit effect by considering a flexible ligand binding to a rigid 

receptor. This is a reasonable approximation because the ligand is usually the more 

flexible of the two molecules. Furthermore, ligand flexibility can be usually modeled 

using only 5 to 15 degrees of freedom, whereas the full flexibility of a large 

biomacromolecule can require the inclusion of more than 1000 degrees of freedom 

(Teodoro, Phillips et al. 2001). Although, such a level of complexity is currently 

computationally intractable a number of approximations have been proposed to 

overcome this problem and are being used to develop a third generation of docking 

programs which are able to model the flexibility of both the ligand and the receptor. For 
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an extensive review of current protein flexibility for structure-based drug design see 

Chapter 2. 

Although we are now starting to see the emergence of the third generation of 

docking programs, second generation programs are still the most used in both academia 

and industry settings. In practice, second generation programs are still computationally 

more efficient than those that try to account for protein flexibility. Given the 

widespread use and availability of second generation programs we decided to 

quantitatively evaluate the extent to which the rigid-receptor/flexible-ligand docking 

model can be used effectively. For this purpose we selected two commonly used 

docking programs, Autodock (Morris, Goodsell et al. 1998), and DOCK (Ewing and 

Kuntz 1997), and three protein models for which protein flexibility has been shown to 

play a critical role during the binding process, HIV-1 protease (Wlodawer and 

Vondrasek 1998), dihydrofolate reductase (DHFR) (Bystroff and Kraut 1991) and 

aldose reductase (Wilson, Tarle et al. 1993). We used both docking programs to 

determine if accurate docking results could be obtained for increasingly different 

binding site conformations from the ones determined experimentally using X-ray 

crystallography. Our work extends an earlier investigation by Murray et al (Murray, 

Baxter et al. 1999) in which the authors tested whether the assumption of a rigid 

enzyme compromises the accuracy of docking results. That test was carried out using 

all-pairs docking for a series of three proteins. Murray et al determined that that the 

assumption of a rigid active site can lead to errors in identification of the correct 
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binding mode and the assessment of binding affinity but did not quantitatively 

determine to what extent current programs are able to deal with receptor model errors.  

In the present work we try to address the following question: “What is the level 

of similarity necessary between a receptor structural model and the actual experimental 

structure to obtain useful results using second generation docking programs?”. This is 

an important question because in practical docking applications the receptor model is 

often an approximation of the real three dimensional conformation of the receptor when 

bound with the small molecule used for the docking trial. The measure of receptor 

similarity used in this work is the Root Mean Square Deviation (RMSD) for the atoms 

that constitute the binding site of the different protein models. Our objective in this 

work is not to evaluate the efficacy of different docking programs in dealing with the 

flexible receptor problem. Our main objectives are to quantify the limitations of second 

generation docking programs and to understand the range of problems that should be 

addressed by third generation programs. 

3.2. Materials and Methods 

3.2.1. Model Systems 

The coordinates for the model systems used in this study were all determined 

using X-ray crystallography and obtained from the Protein Data Bank (PDB) (Berman, 

Westbrook et al. 2000). The PDB codes are 1HVR (Lam, Jadhav et al. 1994) (HIV-1 

protease complex with Xk263 of Dupont Merck), 4DFR (Bolin, Filman et al. 1982) 
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(dihydrofolate reductase complex with methotrexate), and 1AH3 (Urzhumtsev, Tete-

Favier et al. 1997) (aldose reductase complex with tolrestat). 

3.2.2. Conformational Sampling 

Conformational sampling of the receptor structures was obtained using a simple 

molecular dynamics based method. Molecular dynamics has been often used as a 

method to model the conformational flexibility of the receptor during binding processes 

(Di Nola, Roccatano et al. 1994; Luty, Wasserman et al. 1995; Wasserman and Hodge 

1996; Mangoni, Roccatano et al. 1999; Pak and Wang 2000). In this study we used high 

temperature molecular dynamics (Bruccoleri and Karplus 1990). The advantages of this 

technique are its simplicity and high computational efficiency. In contrast to earlier 

studies, the objective of the molecular dynamics step is not to exhaustively explore the 

conformational space of the protein as it binds to a ligand. We used molecular 

dynamics in order to obtain a small set of alternative protein conformations that 

represented different levels of similarity from the original X-ray structure. Simulations 

were carried out using the NAMD2 program (Kalé, Skeel et al. 1999) and the 

CHARMM forcefield (MacKerell, Bashford et al. 1998). The receptor structures were 

prepared by removing ligands (Xk263, methotrexate, and tolrestat) and water 

molecules. After an initial minimization using a conjugate gradient method, the 

receptor structures were simulated at a temperature of 800K for 50ps using a 1fs 

integration timestep. Non-bonded interactions were truncated at distances larger than 

12Å. To avoid a discontinuity in the non-bonded potential at the cutoff distance a 

switching function was used starting at 9Å. Conformational snapshots were written to 
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disk every 100fs. The high temperature simulation was run 20 times for each system 

using different random seeds for initial velocity assignment to improve the 

conformational sampling. The conformational snapshots for the 20 simulations were 

combined into a single large pool and were superimposed on the original crystal 

structure using a least squares procedure (Kabsch 1976).  

Although the whole protein was simulated using molecular dynamics, we 

restricted the analysis of the results to the residues that constitute the binding site region 

of the three proteins. The reason is that conformational changes at the level of the 

binding site play the most significant role in determining the results of docking. The 

residues were chosen by visual inspection of the experimental bound conformations. 

The residues considered for each protein are shown in Table 3.1. 

Protein Residues included in RMSD calculation 

HIV-1 Protease 

(PDB code: 1HVR) 

8, 23, 25, 27-32 , 47-50, 80-84 

 (monomers A and B) 

Dihydrofolate Reductase 

(PDB code: 4DFR) 

5, 7, 27, 28, 31, 32, 46, 49, 50, 52, 54, 57, 94 

Aldose Reductase 

(PDB code: 1AH3) 

20, 47, 48, 79, 110, 111, 113, 115, 122, 130, 219, 298, 300, 

302, 303 

Table 3.1 – Residue numbers included in binding site RMSD calculation. 

 From the pool obtained using molecular dynamics we formed 10 groups of 10 

structures, such that structures in the same group had similar RMSD to the X-ray 

structure. The RMSD groups considered were from 0.1Å to 1.9Å in steps of 0.2Å. 
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Figure 3.1 illustrates the conformational variation present in the different RMSD groups 

for HIV-1 protease. The selected RMSD range of conformational variation was in 

accordance to what was observed in many cases for proteins deposited in the PDB 

(Berman, Westbrook et al. 2000). It is common for proteins to differ by as much as 2Å 

RMSD between their bound and unbound forms or even when bound to different 

ligands. In some cases, such as the protein calmodulin, conformational changes upon 

binding are much larger than 2Å. We decided not to include such large conformational 

changes in our study since they are usually beyond what can be tackled using second 

generation docking program. 
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Figure 3.1 - Conformational sampling of binding site conformations. a) The 

experimentally determined structure of the model proteins (HIV-1 protease shown) was 

used as a starting point for a high temperature molecular dynamics simulation. The entire 

protein backbone is shown in blue and the residues defining the shape of the binding site 

are highlighted in yellow. In b) we show a magnified view of the binding site displaying 

only the residues used for the RMSD calculations. c) The multiple conformational 

snapshots resulting from the sampling simulations were sorted and grouped according to 

the RMSD to the original experimental structure. In c) we show the superposition of 10 

representative structures for eight different similarity groups. Structures from these 

groups were subsequently used for docking as representatives of different levels of 

conformational flexibility. 
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3.2.3. Autodock 

Ligand and protein input files were prepared as suggested in the Autodock 

manual. Ligand atom coordinates were obtained from the original PDB files. Hydrogen 

atom coordinates and Gasteiger-Marsili (Gasteiger and Marsili 1980) charges for all 

ligand atoms were calculated using SYBYL V6.8 (Tripos Associates, St Louis, MO). In 

order to test the effects of ligand flexibility on the docking results ligand input files 

were prepared for different degrees of conformational flexibility. Xk263 was modeled 

using 0, 4, and 10 degrees of freedom. Methotrexate was modeled using 0, 4, and 12 

degrees of freedom. Tolrestat was modeled using 0 and 6 degrees of freedom. The 

bonds which were defined to be rotatable on the different levels of flexibility are 

illustrated in Figure 3.2. In the case where 0 degrees of freedom were used to model the 

flexibility of the ligand (i.e., rigid ligand), the ligand conformation was taken directly 

from the original X-ray structure. 

 Protein atom coordinates were obtained from the snapshots of the molecular 

dynamics simulations. All hydrogen atoms were removed from the protein. SYBYL 

was then used to re-add polar hydrogens and to assign Kollman united-atom partial 

charges to the protein. Atomic solvation parameters and fragmental volumes were 

assigned to the protein atoms using ADDSOL. The resulting structures were used to 

calculate interaction energy grid maps using AutoGrid. Grids were calculated for an 

axis aligned cube of side 22.5Å centered on the geometric center of the ligand in the 

original crystal structure. Grid spacing was 0.375Å. Default AutoGrid values were used 

for the remaining parameters. The resulting grids and the ligand files were used as input 
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for Autodock V3.0.5. Docking was carried out using the Lamarckian Genetic 

Algorithm (LGA) search method. The following values were used for the genetic 

algorithm parameters: the number of individuals in population was 50;   the maximum 

number of energy evaluations was 1500000; the maximum number of generations was 

27000; the elitism was 1; the rate of gene mutation was 0.02; the rate of crossover was 

0.80; the number of generations for picking worst individual was 10; the mean of 

Cauchy distribution for gene mutation was 0; the variance of Cauchy distribution for 

gene mutation was 1. Local search was carried out using the pseudo Solis and Wets 

local optimizer using the following parameter values: the maximum number of 

iterations per local search was 300; the probability of performing local search on an 

individual in the population was 0.06; the maximum number of consecutive successes 

or failures before doubling or halving the local search step size, , was 4, in both cases; 

and the lower bound on , the termination criterion for the local search, was 0.01. The 

search for a docked conformation was repeated 10 times for each initial protein 

conformation. The results reported refer to the conformation with the lowest interaction 

energy score as reported by Autodock. RMSD values reported are from the ligand 

coordinates in the lowest energy conformation using as reference the crystallographic 

coordinates of the ligand. 
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Figure 3.2 - Ligands and degrees of freedom used in docking. For the case of rigid ligand 

docking all torsional degrees of freedom were set to the values found in the experimental 

structure. For the case of flexible ligand docking the arrows indicate the torsional degrees 

of freedom allowed to vary during the flexible ligand conformational search. In cases a) 

and b) where more than one level of conformational flexibility was explored, the bonds 

labeled with the single arrows indicate the degrees of freedom searched in the least 

flexible model and the bonds labeled with double arrows indicate the degrees of freedom 

that were added for the most flexible model. 
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3.2.4. Dock 

Ligand and protein input files were prepared in the same manner was described 

above for Autodock with the exception that all hydrogens were added to the protein 

representation as required by DOCK. Spheres characterizing the binding site were 

generated using the program SPHGEN as described in (Kuntz, Blaney et al. 1982) and 

edited in order to remove spheres far from the binding site. Interaction energy scoring 

grids were generated using the program GRID. The grid size and positions were 

calculated such that they would enclose the cluster of spheres representing the binding 

site. An extra margin of 5Å in all directions was added to the grid sizes. The size of the 

grids computed was variable but was approximately the size of the grids computed for 

scoring in Autodock. Grid spacing was 0.300Å. Default GRID values were used for the 

remaining parameters. The resulting grids and the ligand files were used as input for 

DOCK V4.0. The following values were used for the DOCK parameters: the maximum 

number of orientations tried was 10,000 using automated matching and a matching 

tolerance of 0.25Å. Default values were used for the remaining docking parameters. 

Torsion minimization was used in the case of flexible ligand models. One cycle of 

minimization was also used to adjust the orientation and conformation of the ligand and 

improve its interaction energy score. The minimization used a maximum of 100 steps, 

an initial translation step of 0.5Å, an initial rotation step of 0.1 degrees, and an initial 

torsion step of 10 degrees. The reported results refer to the conformation with the 

lowest interaction energy score as reported by DOCK. 
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3.3. Results and Discussion 

The original experimentally determined conformation and the derived structures 

obtained using high temperature molecular dynamics were used as input for the docking 

programs Autodock and DOCK. This corresponded to 101 alternative receptor 

conformations considered for each of the proteins. Alternative levels of ligand 

flexibility were also tested. The results for the docking experiments are shown in 

Figures 3.3 through 3.5. Each of the plots contains the following information. The axis 

of abscissas represents the different conformational variation groups. The 100 

computationally generated protein conformations are grouped in 10 sets according to 

the RMSD values of non-hydrogen atoms of residues that constitute the binding site 

using as a reference the crystal structure. On the right axis of ordinates and shown in 

open circles connected by lines is the average interaction energy score for each 

conformational group. On the left axis of ordinates and shown using filled rhombs are 

the ligand RMSD values for the lowest energy docked solution using as a reference the 

position of the ligand in the crystal structure. The circle and the cross over the left axis 

of ordinates indicate the interaction energy score and ligand RMSD using the 

experimental receptor conformation, respectively. Theoretically, if docking programs 

were able to reproduce exactly experimental ligand bound conformations the ligand 

RMSD value should be 0.0Å. Due to errors and approximations present in interaction 

energy scoring functions the conformation corresponding to the global minimum of the 

scoring function never matches exactly the conformation determined experimentally. 

Nevertheless, this value is usually very close to the experimental value. The ligand 
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RMSD values we obtained for docking with the crystal structure of HIV-1 protease, 

DHFR, and aldose reductase using Autodock are 0.36Å, 0.60Å, and 0.69Å respectively. 

The same values using the DOCK program are 0.25Å, 0.69Å, and 0.53Å. These 

numbers provide a baseline for what are the best results that can be expected using the 

above model systems. In this study we considered that any result better than 1.5Å 

corresponds to the correct docked orientation. This value is similar to values chosen for 

other docking studies(Rarey, Kramer et al. 1996; Jones, Willett et al. 1997; Paul and 

Rognan 2002). Furthermore, in order to avoid any bias we did not select the solution 

with lowest ligand RMSD as the best solution from each docking run. The best solution 

selected was the one with the lowest interaction energy value. 

 Figure 3.3 shows the results obtained for both rigid and flexible ligand models 

using the Autodock program. The rationale for testing the effects of ligand flexibility in 

conjunction with receptor flexibility was to assess to what extent a flexible ligand 

model would compensate for changes in the receptor. For example, conformational 

changes in the receptor could be such that the original three dimensional shape of the 

ligand could not fit into the binding site cavity without leading to steric clashes 

resulting in a high energetic penalty. However, a flexible ligand might still lead to a 

good three dimensional shape complementarity by changing its internal degrees of 

freedom by a small amount in order to adapt to the new receptor shape. We also used 

the rigid ligand model to compare whether it would be more adversely affected by 

changes in the receptor. Furthermore, the use of multiple low energy ligand conformers 

to represent a ligand in a rigid-protein/rigid-ligand virtual screening effort is still a 
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common practice. Such approach reduces the dimensionality of the conformational 

space that needs to be explored in the search for the minimum energy docked 

conformation. In practice we observed only small differences in the results between the 

rigid and moderately flexible (4 to 6 degrees of freedom) ligand models. This is due 

mainly to the fact that the conformation of the ligand used for the rigid docking was 

taken directly from the crystal structure. As such, the values for its torsional degrees of 

freedom are already at its optimum values which facilitated the docking search. When a 

flexible ligand was used the conformational search ended up with a very similar 

solution to the rigid ligand conformation. This type of result was independent of the 

docking program used as can be seen from Figure 3.5. Another observation common to 

all protein systems is that correct docked solutions show an increase in average ligand 

RMSD for more flexible ligand models. This is not an indication that the docking 

solution is worse.  It is caused by small differences from the crystal structure in the 

values obtained for the internal degrees of freedom which lead to an increase in ligand 

RMSD. The increase in ligand RMSD is particularly noticeable for DHFR. For this 

protein the average ligand RMSD for the 0.1Å receptor RMSD group are 0.59Å, 0.70Å, 

and 1.23Å for the 0, 4, and 12 degrees of freedom models, respectively. However a 

visual inspection of the results clearly indicates that in all solutions the generally 

correct docked conformation was obtained.  
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Figure 3.3-a) – Autodock docking results for HIV-1 protease using a rigid (left column) or a flexible ligand (right column). The

axis of abscissas represents the different conformational variation groups for the protein. Each conformational group contains 10

representative structures. The RMSD values are for the non-hydrogen atom coordinates of the residues that constitute the 

binding site using as a reference the crystal structure. On the right axis of ordinates and shown in open circles in the plot is the 

average interaction energy score for each conformational group. On the left axis of ordinates and shown using filled rhombs are

the ligand RMSD values for the lowest energy docked solution using as a reference the position of the ligand in the crystal 

structure. The cross over the left axis of ordinates indicates the ligand RMSD docking solution using the original receptor 

structure.
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Figure 3.3–b) - Autodock docking results for DHFR using a rigid (left column) or a flexible ligand (right column). The data 

representation is the same as for Figure 3.3-a). 
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Figure 3.3-c) - Autodock docking results for aldose reductase using a rigid (left column) or a flexible ligand (right column). The

data representation is the same as for Figure 3.3-a). 
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In almost all cases where the rigid ligand model could not be fitted in the 

binding site cavity the same occurred for the flexible case. This occurred because the 

change in the receptor shape was such that it drastically affected the three dimensional 

properties of the binding site. An example of such change is a reorientation of a 

sidechain in the center of the binding site of aldose reductase such that the binding 

cavity was approximately divided into two smaller cavities. In these types of situations, 

ligand flexibility is not sufficient to compensate for the receptor changes therefore 

negating the advantages of this model. In addition, we also observed that the increase in 

dimensionality of the search space due to the extra degrees of freedom in the ligand 

sometimes resulted in failure to find the correct ligand conformation even when we 

knew it existed because it was found using the rigid search. This type of behavior is 

evident when we compare the results for the docking of HIV-1 protease and DHFR 

using the moderate (4 torsional degrees of freedom) shown in Figures 3.3-a) and 3.3-b) 

and very flexible ligand models (10 and 12 torsional degrees of freedom, respectively) 

shown in Figure 3.4. In the case of HIV-1 protease the total number of docked solutions 

with ligand RMSD below 1.5Å falls from 73 to 69. This effect is even more noticeable 

for DHFR in which the increase in the search space is larger. In this case the number of 

correct solutions falls from 43 to 35. The main conclusion from these observations 

should not be that using flexible ligand models for docking is a wasted effort. In the 

specific case of the present study we are trying to evaluate only the effects of receptor 

flexibility on docking results. As such we are starting our ligand conformational search 

from the known experimental conformation and, in the case of the flexible model, 
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letting the ligand adapt to changes in the shape of the receptor. The main observation 

from the ligand flexibility results is that, for that case of the receptor/ligand pairs used 

in this study, ligand flexibility did not play a major role in the docking results and the 

advantages obtained from the flexible model are lost by the increase in the search space 

given equal computing time. 

The results obtained for the average lowest energy score for each 

conformational set show the same general behavior for all protein models, docking 

programs and ligand flexibility levels. For very small receptor RMSD, the energy score 

is usually very similar to the score obtained using the original crystal structure (results 

not shown). As the receptor RMSD increases we observe an increase in energy. The 

increase in energy is always initiated even at receptor RMSD levels for which the 

docking results as determined by the ligand RMSD score are still very good. This 

behavior reflects the fact that although the ligand is still located in the correct area of 

the binding site, the interactions it is forming with the protein are not as strong as in the 

crystal structure.  For very large receptor deviations the average interaction energy 

reaches a plateau similar to the ligand RMSD values. This reflects final docked 

orientations for the ligand which bind weakly and are very different from the original. 
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Figure 3.4 - Autodock docking results for HIV-1 protease (left) and DHFR (right) using a very flexible ligand model. The data 

representation is the same as for Figure 3.3-a). 
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Figure 3.5-a) - DOCK docking results for HIV-1 protease using a rigid (left column) or a flexible ligand (right column). The data

representation is the same as for Figure 3.3-a). 
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Figure 3.5-b) - DOCK docking results for DHFR using a rigid (left column) or a flexible ligand (right column). The data 

representation is the same as for Figure 3.3-a). 
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Figure 3.5-c) - DOCK docking results for aldose reductase using a rigid (left column) or a flexible ligand (right column). The 

data representation is the same as for Figure 3.3-a). 
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One of the main motivations for this study was to determine what level of 

receptor similarity is necessary between a structural model and the actual experimental 

structure in order to obtain a correct docking result. This type of information is valuable 

because it is common practice in virtual screening to use as a target, a receptor 

structural model that differs from what would be the actual experimental structure 

bound to the ligand being tested. This receptor model can originate from an 

experimental structure of a complex with another ligand or from a homology model. 

The results we obtained are clearly protein dependent. Using the Autodock program we 

can observe from Figure 3.3 that, whereas for HIV-1 protease all structures in the 

conformational sets with receptor RMSD lower than 1.0Å are able to correctly dock 

rigid models of XK263, for aldose reductase there are 14 structural models that fail to 

find the correct docked conformation for a rigid model of tolrestat. Using a flexible 

model of tolrestat there are 20 failed dockings. From the plots in Figure 3.3 we can 

derive that HIV-1 protease docking seems to be very tolerant of variations in the 

conformation of the receptor. In fact almost all of the docking experiments with 

receptor models for which the RMSD to the crystal structure is less than 1.2Å result in 

correct docking results. In the case of aldose reductase this number drops to 0.6Å. 

DHFR results are similar to HIV-1 protease, but there is a larger difference depending 

on the level of flexibility of the ligand model. Whereas most results below 1.4Å 

receptor RMSD find ligand conformations similar to the one observed in the 

experimental structure in the rigid ligand case, this threshold drops to approximately 

0.8Å in the flexible case. The results using DOCK (Figure 3.4) for HIV-1 protease and 
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for aldose reductase show a similar behavior although with different threshold values. 

HIV-1 protease and aldose reductase show correct results up to 0.8Å and 0.4Å receptor 

RMSD respectively. On the other hand the results seem to be minimally affected by the 

presence of ligand flexibility. These types of differences between docking programs are 

not significant and are fairly dependent on the input parameter values chosen to run the 

program. Due to the fact that there we were not trying to compare docking programs we 

decided to use the recommended parameters by the authors of these programs. The 

largest difference in results between Autodock and DOCK was for DHFR. In this case 

there are several positive results for receptor conformations as different as 1.5Å but 

there are also several docking failures for values as low as 0.3Å. The worse results are 

due to some difficulty in the DOCK scoring function in identifying the correct docked 

conformation as the one with lowest interaction energy. For the case of DHFR it was 

common to find the correct docked conformation as a lower ranking conformation in 

terms of energy score. Autodock and DOCK use very different scoring functions and as 

such it is not surprising to see cases in which one of the scoring functions works better 

than other for a particular protein system. Energy scoring functions are probably the 

most critical part of a docking system and problems like these are common. For recent 

reviews on this topic see (Tame 1999; Gohlke and Klebe 2001; Muegge and Rarey 

2001; Halperin, Ma et al. 2002). 

The results obtained in the present study clearly indicate that the effectiveness 

of second generation docking programs in dealing with receptor flexibility is protein 

dependent. This provides further insight into why structure-based drug design efforts 
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have encountered mixed results when applied to the development of new 

pharmaceutical drugs. If the working receptor model conformation is fairly similar 

(approximately less than 0.5Å RMSD) to the actual conformation of the receptor when 

bound to the specific drug being screened, then second generation docking programs 

are a very effective discovery tool. However, as the errors in the receptor model 

increase, the chances to obtain correct results will be reduced by different amounts 

depending on the protein. The fact that HIV-1 protease seems to be a particular tolerant 

system to the receptor conformation may explain the success in developing drugs for 

this protein using structure-based drug design methods (Wlodawer and Vondrasek 

1998). Although defining an exact set of rules that could determine how docking results 

would be affected by errors in the conformation of the receptor would contitute 

valuable information, such a set cannot be derived using exclusively the results of this 

study. The effects will depend on the specific protein, ligand, and docking program and 

deriving these exact rules would require a very large computing effort using a large 

number of model systems and a comprehensive statistical analysis. Nevertheless, even 

using a limited number of receptor models such as in this study it is possible to observe 

that proteins with large binding sites that form several favorable contacts with large 

ligands, such as HIV-1 protease, are less affected by variations in receptor shape. The 

absolute values for the interaction energies for the different proteins are a good 

indicator of the tolerance for conformational variation in the receptor. Another way of 

interpreting this result is to consider that receptor/ligand pairs that bind with high 

affinity correspond to deep wells in the interaction energy landscape of the docking 
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search space. Variations at the level of the receptor correspond in practice to a 

smoothing of this space. If the energy well is not very deep in relation to the rest of the 

space then smoothing of the interaction energy function will quickly result in the 

occurrence of a lot of incorrect docked solutions. This type of behavior was observed 

when docking DHFR to methotrexate using DOCK. This study also showed that 

although receptor conformational differences below approximately 0.5Å RMSD do not 

pose a problem, differences above 1.5Å RMSD are unlikely to be well modeled using 

second generation programs.  

3.4. Summary 

In this chapter we assessed the level of similarity necessary between a receptor 

structural model and the actual experimental structure to obtain correct docking results 

using two current docking packages. The programs used are second generation 

programs that follow the rigid protein/flexible ligand model. This information is 

important due to the widespread use of this type of docking software in pharmaceutical 

structure-based drug design. Moreover, it is common in virtual screening to use 

receptor models that originate from an experimental structure of the unligated receptor 

or from a complex with another ligand. These experimentally determined receptor 

models, as well as those derived computationally using methods such as homology 

modeling, contain variations from the actual docked conformation which can easily be 

as large as 2.0Å RMSD. Our results show that the effectiveness of DOCK and 

Autodock in addressing this problem is protein dependent. However, we observed that 
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independently of the protein system, receptor errors below approximately 0.5Å RMSD 

do not pose a problem, whereas errors above 1.5Å RMSD will likely result in docking 

failures. 
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Chapter 4. 

Calculation of Protein Collective Modes of Motion Using 

Dimensional Reduction Methods 

4.1. Introduction 

The functions of proteins can be as varied as enzymatic catalysis, mechanical 

support, immune protection and generation and transmission of nerve impulses among 

many others. Today there is a large body of knowledge available on protein structure 

and function as a result of several decades of intense research by scientists worldwide. 

This information is expected to grow at an even faster pace in the coming years due to 

new efforts in large-scale proteomics and structural genomics projects. In order to make 

the best use of the exponential increase in the amount of data available, it is imperative 

that we develop automated methods for extracting relevant information from large 

amounts of protein structural data. The focus of this chapter is on how to obtain a 

reduced representation of protein flexibility from raw protein structural data.  

Current structural biology experimental methods are restricted in the amount of 

information they can provide regarding protein motions because they were designed 

mainly to determine the three-dimensional static representation of a molecule. The two 

most common methods in use today are protein X-ray crystallography (Rhodes 1993) 

and nuclear magnetic resonance (NMR) (Wüthrich 1986). The output of these 

techniques is a set of {x, y, z} coordinate values for each atom in a protein. Neither of 
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these methods is able to provide us with a full description, at atomic resolution, of the 

structural changes that proteins undergo in a timescale relevant to their function. Such 

information would be ideal to understand and model proteins. The alternative to 

experimental methods is to use computational methods based on classical (Brooks, 

Montgomery et al. 1988) or quantum mechanics (Gogonea, Suarez et al. 2001) to 

approximate protein flexibility. However these computations are prohibitively 

expensive and are not suitable for potential target applications such as the ones 

described in the previous paragraph. One of the reasons why the above computational 

methods are expensive is that they try to simulate all possible motions of the protein 

based on physical laws. For the case of molecular dynamics, the timestep for the 

numerical integration of such simulations needs to be small (in the order of 

femtoseconds), while relevant motions occur in a much longer timescale (microseconds 

to milliseconds). It is unrealistic to expect that one could routinely use molecular 

dynamics or quantum mechanics methods to simulate large conformational 

rearrangements of molecules. A medium sized protein can have as many as several 

thousand atoms and each atom can move along three degrees of freedom. Even when 

considering more restricted versions of protein flexibility that take into account only 

internal torsional degrees of freedom, or restrict the degrees of freedom to take only a 

set of discrete values, exploring the conformational space of these proteins is still a 

formidable combinatorial search problem (Finn and Kavraki 1999).  

The method presented in this chapter addresses the high-dimensionality problem 

by transforming the basis of representation of molecular motion. Whereas in the 
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standard representation all degrees of freedom (the {x, y, z} values for each atom) of 

the molecule were of equal importance, in the new representation the new degrees of 

freedom will be linear combinations of the original variables in such way that some 

degrees of freedom are significantly more representative of protein flexibility than 

others. As a result, we can approximate the total molecular flexibility by truncating the 

new basis of representation and considering only the most significant degrees of 

freedom. The remaining degrees of freedom can be disregarded resulting in only a 

small inaccuracy in the molecular representation. Transformed degrees of freedom will 

no longer be single atom movements along the Cartesian axes but collective motions 

affecting the entire configuration of the protein. The main tradeoff of this method is that 

there is some loss of information due to truncation (of the new basis) but this factor is 

outweighed by the ability to effectively model protein flexibility in a subspace of 

largely reduced dimensionality. We also show that results are acceptable, consistent 

with experimental laboratory results, and help shed light on the mechanisms of 

biomolecular processes. 

4.2. Background 

4.2.1. Dimensional Reduction Methods 

Dimensionality reduction techniques aim to determine the underlying true 

dimensionality of a discrete sampling X of an n-dimensional space. That is, if X is 

embedded in a subspace of dimensionality m, where m<n, then we can find a mapping 

F:X Y such that Y B and B is an m-dimensional manifold. Dimensionality reduction 
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methods can be divided into two types: linear and non-linear. The two most commonly 

used linear methods to find such mappings are Multi-Dimensional Scaling (MDS) and 

Principal Component Analysis (PCA). 

MDS encompasses a variety of multivariate data analysis techniques that were 

originally developed in mathematical psychology (Shepard 1962; Kruskal 1964) to 

search for a low-dimensional representation of high-dimensional data. The search is 

carried out such that the distances between the objects in the lower dimensional space 

match as well as possible, under some similarity measure between points in the original 

high-dimensional space. 

PCA is a widely used technique for dimensionality reduction. This method, 

which was first proposed by Pearson (Pearson 1901) and further developed by 

Hotelling (Hotelling 1933), involves a mathematical procedure that transforms the 

original high-dimensional set of (possibly) correlated variables into a reduced set of 

uncorrelated variables called principal components. These are linear combinations of 

the original values in which the first principal component accounts for most of the 

variance in the original data, and each subsequent component accounts for as much of 

the remaining variance as possible. Note that if the similarity measure of MDS 

corresponds to the Euclidean distances then the results of MDS are equivalent to PCA. 

The MDS and PCA dimensionality reduction methods are fast to compute, simple to 

implement, and since their optimizations do not involve local minima, they are 

guaranteed to discover the dimensionality of a discrete sample of data on a linear 

subspace of the original space.  
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One of the limitations of methods such as MDS and PCA is that their 

effectiveness is restricted by the fact that they are globally linear methods. As a result, 

if the original data is inherently non-linear these methods will represent the true 

reduced manifold in a subspace of higher dimension than necessary in order to cover 

non-linearity. This problem is likely to occur with protein motion data (Garcia 1992). 

To overcome this limitation several methods for non-linear dimensionality reduction 

have been proposed in recent years. Among these are principal curves (Hastie and 

Stuetzle 1989; Tibshirani 1992), multi-layer auto-associative neural networks (Kramer 

1991), local PCA (Kambhatla and Leen 1997; Meinicke and Ritter 1999), mixtures of 

principal components formulated within a maximum-likelihood framework (Tipping 

and Bishop 1999), generative topographic mapping (Bishop, Svensen et al. 1998), and 

genetic algorithms (Raymer, Punch et al. 2000). More recently Tenenbaum et al

proposed the isomap method (Tenenbaum, de Silva et al. 2000) and Roweis and Saul 

proposed the locally linear embedding method (Roweis and Saul 2000). The main 

advantage of the last two methods is that the optimization procedure used to find the 

low-dimensional embedding of the data does not involve local minima. In general the 

main disadvantages of non-linear versus linear dimensionality reduction methods are 

increased computational cost, difficulty of implementation, and problematic 

convergence. The development of new methods for dimensionality reduction is an 

active research area. 
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4.2.2. Collective Coordinate Representation of Protein Dynamics 

The application of dimensionality reduction methods, namely PCA, to macromolecular 

structural data was first described by Garcia in order to identify high-amplitude modes 

of fluctuations in macromolecular dynamics simulations (Garcia 1992). It as also been 

used to identify and study protein conformational substates (Romo, Clarage et al. 1995; 

Caves, Evanseck et al. 1998; Kitao and Go 1999), to identify domain motions 

(Chillemi, Falconi et al. 1997), as a possible method to extend the timescale of 

molecular dynamics simulations (Amadei, Linssen et al. 1993; Amadei, Linssen et al. 

1996), and as a method to perform conformational sampling (de Groot, Amadei et al. 

1996; de Groot, Amadei et al. 1996). The validity of the method has also been 

established by comparison with laboratory experimentally derived data (van Aalten, 

Conn et al. 1997; de Groot, Hayward et al. 1998). As a substitute to the use of direct 

coordinate information for the computation of the principal components it is also 

possible to use this method with atomic distances information (Abseher and Nilges 

1998). An alternative approach to determine collective modes for proteins uses normal 

mode analysis (Levy and Karplus 1979; Go, Noguti et al. 1983; Levitt, Sander et al. 

1985; Case 1994) and can also serve as a basis for modeling the flexibility of large 

molecules (Kolossvary and Guida 1999; Zacharias and Sklenar 1999; Keseru and 

Kolossvary 2001; Kolossvary and Keseru 2001). Normal mode analysis is a direct way 

to analyze vibrational motions. To determine the vibrational motions of a molecular 

system, the eigenvalues and the eigenvectors of a mass weighted matrix of the second 

derivatives of the potential function are computed. The eigenvectors correspond to 
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collective motions of the molecule and the eigenvalues are proportional to the squares 

of the vibrational frequencies. Direct comparisons of PCA and normal modes based 

methods have been published (Hayward, Kitao et al. 1997; van Aalten, de Groot et al. 

1997). The PCA approach described in this chapter avoids some of the limitations of 

normal modes such as lack of solvent modeling, assumption that the potential energy 

varies quadratically, and existence of multiple energy minima during large 

conformational transitions. In contrast to previously published work, we focus on the 

interpretation of the principal components as biologically relevant motions and on how 

combinations of a reduced number of these motions can approximate alternative 

conformations of the protein. More recently other collective coordinate models such as 

the Gaussian network (Bahar, Erman et al. 1999), the “Jumping-Among- Minima” 

(Kitao, Hayward et al. 1998), and space warping (Jaqaman and Ortoleva 2002) have 

been applied to the study of proteins and DNA. For general reviews on the use of 

collective coordinate representations to model biomacromolecules see (Hayward and 

Go 1995; Kitao and Go 1999; Lafontaine and Lavery 1999). 

4.3. Methods 

4.3.1. Molecular Dynamics Data 

Molecular dynamics simulations were carried out using similar protocols for all 

model systems. The protocol for HIV-1 protease will be described in detail and specific 

differences will be shown in parentheses. The HIV-1 protease simulation was computed 

using the program NAMD2 (Kalé, Skeel et al. 1999) and the Charmm22 parameter set 
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(MacKerell, Bashford et al. 1998). The starting coordinates for HIV-1 protease used in 

the simulations originated from the crystal structure published by Miller and 

collaborators (Miller, Schneider et al. 1989) with Protein Data Bank (Berman, 

Westbrook et al. 2000) code 4HVP (1AH4 for aldose reductase and 1JW4 for maltose 

binding protein). The ligand (N-Acetyl-Thr-Ile-Nle- (CH2-NH)-Nle-Gln-Arg amide) 

coordinates were removed from the structure but crystallographically observed waters 

were kept. Information about hydrogen atom positions was added using the HBUILD 

module of the program XPLOR v3.851 (Brünger 1992). 

The model was hydrated by inserting the protein in an equilibrated periodic 

boundary cell of dimensions 77.625×62.100×62.100 Å
3
 (77.625×77.625×77.625 for 

aldose reductase and 93.150×77.625×62.100 for maltose binding protein) containing 

10,000 water molecules represented by the TIP3 water model box (15625 for aldose 

reductase and 15000 for maltose binding protein). The water boxes were generated by 

replicating along the Cartesian axes a previously equilibrated water box of size 

15.525×15.525×15.525Å
3
 containing 125 water molecules. The small box was 

replicated as many times as needed in order to reach the final cell dimensions. The 

protein was inserted in the center of the box with its longest axis aligned with the 

longest axis of the water box. Every atom in the protein was checked for collisions 

against the water oxygen atoms in the water molecules and in case of collision 

(threshold distance = 2.3 Å) the water molecule was removed. This resulted in the 

removal of 1184 water molecules from the box (1981 for aldose reductase and 2561 for 

maltose binding protein). The presence of solvent is necessary in order to simulate the 
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protein in conditions as similar as possible to its natural environment. Although it was 

common in the early days of protein simulation to carry out molecular dynamics 

simulations of proteins in vacuum, this was done solely to avoid the increased 

computation of simulating explicitly solvent motion. Modern versions of popular 

forcefields such as Charmm (MacKerell, Bashford et al. 1998) and Amber (Cornell, 

Cieplak et al. 1995) were parameterized in such a way that explicit solvent models must 

be used in order to achieve the most accurate results. The use of explicit solvent is 

particularly important in the context of the present work, where ultimate objective of 

running the simulations is to determine a representation for the flexibility of the protein 

using collective modes of motion. Hayward and coworkers (Hayward, Kitao et al. 

1993) have studied the effects of solvent on the collective motions of globular proteins 

and determined that its presence is important for the accurate computation of collective 

modes.

The charges on the resulting model were balanced by substituting 24 chloride 

and 18 sodium ions for 42 randomly selected waters in the model (31 Cl
-
 / 30 Na

+
 for 

aldose reductase and 51 Cl
-
 / 43 Na

+
 for maltose binding protein). The introduction of 

salt ions is necessary to maintain a stable protein structure (Ibragimova and Wade 

1998) and avoid certain simulation artifacts such as unnaturally strong interactions 

between aminoacid side chains (Pfeiffer, Fushman et al. 1999). The charge distribution 

on the model was equilibrated in a process analogous to quenched minimization. The 

first step after introduction of the ions was to carry out 500 steps of conjugate gradient 

minimization to remove any steric clashes between the protein, solvent atoms, and salt 
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ions. The minimization was carried out using fixed coordinates for the protein atoms in 

order to avoid artificial deformations in the initial protein model due to the ad-hoc 

placement of solvent atoms. Using again fixed coordinates for the protein atoms we 

heated the system to 1000K and simulated the solvent motion for 50 ps of simulation. 

This step was designed to redistribute the positions of the salt ions in the water box. 

The solvent was then gradually cooled to 300K during 40 ps and then simulated for 

another 30 ps at this temperature. This method of assigning positions to counter ions is 

different from what is usually described in the literature. The usual method calculates 

the electrostatic field around the protein and places counter ions at maxima and minima 

of potential. The traditional method results in a placement of atoms corresponding to a 

local minimum of the potential interaction energy between the protein and the counter 

ions. The method we used achieves approximately the same results and is less labor 

intensive. 

After equilibration of the solvent, we equilibrated the entire system. The first 

step was to carry out 500 steps of conjugate gradient minimization on all atoms. The 

purpose of this step was to remove any bad contacts between the solvent and the protein 

and also within the protein. This step is always necessary because it is common for 

experimentally determined structures (especially the ones determined at low resolution) 

to exhibit local atomic interactions that are rather unfavorable according to the 

simulation forcefield. If the simulation is started directly from the experimentally 

determined structure it is likely that it would quickly become unstable. The 

minimization is followed by a gradual heating of the system from 0 K to 300K over the 
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period of 40 ps followed by an extra 40 ps of simulation at 300K. The simulation was 

then carried out for a total of 1.4 ns (1.0 ns for aldose reductase and 1.6 ns for maltose 

binding protein). The choice of simulation time was determined according to previously 

published studies (Amadei, Ceruso et al. 1999) that indicate that simulations of a few 

hundreds of picoseconds are in general sufficient to provide a stable and statistically 

reliable definition of the collective modes of motion. The integration timestep for the 

simulation was 2 fs. The ShakeH algorithm (Ryckaert, Ciccotti et al. 1977) was used to 

restrain hydrogen atom positions. A cutoff of 8.5 Å was used for van der Waals 

interactions with a switching function starting at a cutoff of 8.0 Å. Full electrostatic 

interaction were taken into account in our simulations by using the particle-mesh Ewald 

method (Darden, York et al. 1993; Essman, Perera et al. 1995). The temperature of the 

system was kept at approximately 300K and the pressure was kept at 1 atm through the 

use of the Berendsen coupling algorithms (Berendsen, Postma et al. 1984). The 

coupling constant used in conjunction with the Berendsen temperature-coupling 

algorithm was 0.10 for the protein atoms and 0.50 for the water atoms. The Berendsen 

pressure compressibility was 0.000049 bar 
-1

, the relaxation time was 500 fs, and the 

number of time steps between applying pressure scaling was 12. Coordinates describing 

the time evolution of the system were written to a file every 100 fs.  

4.3.2. Experimental Data 

For comparison purposes we carried out the dimensional reduction analysis 

using exclusively experimentally derived data. Such analysis is possible for only a few 

model systems. Of the model systems used in this study, HIV-1 protease is the one for 
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which more structures were determined experimentally using X-ray crystallography. 

For this calculation we used 135 structures determined under different experimental 

conditions and bound to different ligands (see Apendix B. for full list of structures). 

Prior to determination of the dimensional reduction calculation all the structures were 

backbone aligned using the structure with PDB code 4HVP as reference. 

4.3.3. Principal Components Analysis and Singular Value Decomposition 

In this chapter we focus our analysis on the application of PCA to protein 

structural data. For our study we chose PCA as the dimensionality reduction technique 

because it is very well established and efficient algorithms with guaranteed 

convergence for its computation are readily available. PCA has the advantage over 

other available methods that the principal components have a direct physical 

interpretation. As explained later, PCA expresses a new basis for protein motion in 

terms of the left singular vectors of the matrix of conformational data. The left singular 

vectors with largest singular values correspond to the principal components. When the 

principal components are mapped back to the protein structure under investigation, they 

relate to actual protein movements also known as modes of motion. It is now possible 

to define a lower dimensional subspace of protein motion spanned by the principal 

components and use these to project the initial high-dimensional data onto this 

subspace. The inverse operation can also be carried out and it is possible to recover the 

high-dimensional space with minimal reconstruction error. By contrast, recovering the 

high-dimensional representation is not readily achievable when using MDS because the 
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definition of the low-dimensional subspace is implicit in the projection and is not 

defined directly by the left singular vectors as is the case for PCA. 

The quality of the dimensionality reduction obtained using PCA can be seen as 

an upper bound on how much we can reduce the representation of conformational 

flexibility in proteins. The reason for this is that PCA is a linear dimensionality 

reduction technique and protein motion is in general non-linear (Garcia 1992). Hence, it 

should be possible to obtain an even lower dimensional representation using non-linear 

methods. However, we wanted to test the overall approach before proceeding to more 

expensive methods. For non-linear methods, the inverse mapping needs to be obtained 

using for example a neural network approach but the feasibility and efficiency of these 

mappings has not been tested so far. There is active research in this area and our work 

will benefit from any progress.  

In PCA, principal components are determined so that the 1
st
 principal 

component PC(1) is a linear combination of the initial variables Aj, with j=1, 2, … , n. 

That is 

PC(1) = w(1)1A1+ w(1)2A2+…+ w(1)nAn ,

where the weights w(1)1, w(1)2, … , w(1)n have been chosen to maximize the ratio of 

variance of PC(1) to the total variation, under the constraint 

n

j 1

2

(1)j 1w .

Other principal components PC(p) are similarly linear combinations of the observed 

variables which are uncorrelated with PC(1), …, PC(p-1), and account for most of the 
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remaining total variation. Although it is possible to determine as many principal 

components as the number of original variables, this method is typically used to 

determine the smallest number of uncorrelated principal components that explain a 

large percentage of the total variation in the data. The exact number of principal 

components chosen is application dependent and constitutes a truncated basis of 

representation. 

The data used as input for PCA was generated using either the molecular 

dynamics simulations described above or experimental data obtained using X-ray 

crystallography. The data is in the form of several conformational vectors 

corresponding to different structural conformations that are sampled during the 

simulation. We will call the vector collection of all vectors the conformational vector 

set. Each conformational vector in the conformational vector set has dimension 3N 

where N is the number of atoms in the protein being studied and is of the form [x1, y1,

z1, x2, y2, z2,…, xN, yN, zN], where [xi, yi, zi] corresponds to Cartesian coordinate 

information for the i
th

 atom. In order to be used for the computation of principal 

components the data must be in the form of atomic displacement vectors. The first step 

in the generation of the atomic displacement vectors is to determine the average protein 

vector for each conformational vector set. This was achieved by first removing the 

translational and rotational degrees of freedom from the considered molecule by doing 

a rigid least squares fit (Kabsch 1976) of all the structures to one of the structures in the 

vector set and then averaging the values for each of the 3N degrees of freedom. The 
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resulting average structure vector is then subtracted from all other structures in the 

conformational vector set to compute the final atomic displacement vectors. 

In this work we use the singular value decomposition (SVD) as an efficient 

computational method to calculate the principal components (Romo 1998). The SVD of 

a matrix, A, is defined as: 

A = U  V
T
,

where U and V are orthonormal matrices and  is a nonnegative diagonal matrix whose 

diagonal elements are the singular values of A. The columns of matrices U and V are 

called the left and right singular vectors, respectively. The square of each singular value 

corresponds to the variance of the data in A along its corresponding left singular vector 

and the trace of  is the total variance in A. For our purposes, matrix A is constructed 

by the column-wise concatenation of all atomic displacement vectors. If there are m 

conformations of size 3N in the vector set, this results in a matrix of size 3N m. The 

left singular vectors of the SVD of A are equivalent to the principal components (Romo 

1998) and will span the space sampled by the original data. The right singular vectors 

are projections of the original data along the principal components. The right singular 

vectors also provide useful molecular information by helping to identify preferred 

protein conformations (Romo, Clarage et al. 1995; Teodoro, Phillips et al. 2000).

Another common nomenclature used in PCA is to refer to the principal 

components as eigenvectors and to the singular values as eigenvalues. The eigenvectors 

are the same as the left singular vectors and the eigenvalues are the square of the 

singular values. These names are used because it is also common to calculate the PCA 
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by determining the eigenvectors and eigenvalues of the covariance matrix of 

conformational data. In the results and discussion section of this chapter we will refer to 

the results of the PCA calculation using the eigenvalues / eigenvectors / right singular 

vectors terminology. 

 The PCA for the molecular dynamics data was calculated at three different 

levels of detail: backbone, binding site, and all-atoms. For the case of the binding site 

calculation only the atoms of residues forming the binding site were used for the 

construction of matrix A. The residues used for each protein were chosen by visual 

inspection and are shown in Figure 4.1 and Table 4.1. 

Protein Residues included in binding site PCA analysis 

HIV-1 Protease 8, 23, 25, 27-32 , 47-50, 80-84 

 (monomers A and B) 

Aldose Reductase 20, 47, 48, 79, 110, 111, 113, 115, 122, 130, 219, 298, 300, 302, 303 

Maltose Binding Protein 12, 14, 15, 44, 62, 63, 65, 66, 111, 153, 154, 155, 156, 230, 340 

Table 4.1 – Residue numbers included in the binding site PCA analysis. 
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Figure 4.1 – Binding site atoms used for PCA. The atoms used for the PCA calculation 

are shown using VDW representation for a) HIV-1 protease, b) aldose reductase, and c) 

maltose binding protein. 
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The SVD of matrix A was computed using two distinct methods. In the initial 

phases of this project we used the built in function SingularValues[] in the 

program Mathematica (Wolfram 1999) to carry out the computation. Unfortunately, 

Mathematica relies on its internal algorithms for memory management and used 

considerably more computer memory than what was theoretically necessary for the 

SVD computation. In practice this limited the use of the Mathematica implementation 

only to the smallest SVD problems in this chapter such as the computation of modes of 

motion for the backbone of HIV-1 protease. In order to address this limitation we wrote 

the program svd. The program svd is written in the language C++ and calculates the 

singular value decomposition for a molecular dynamics trajectory. This program is built 

on top of the optimized Intel BLAS (Basic Linear Algebra Subroutines) library and the 

ARPACK++ library. The BLAS library is a series of optimized functions for 

calculations involving vectors and matrices. ARPACK++ is an object-oriented version 

of the ARPACK package developed by Danny Sorensen at Rice University (Lehoucq, 

Sorensen et al. 1998). ARPACK is a collection of Fortran77 subroutines designed to 

solve large-scale eigenvalue problems. It is based upon an algorithmic variant of the 

Arnoldi process called the Implicitly Restarted Arnoldi Method (Lehoucq and Sorensen 

1996). The package is designed to compute a few eigenvalues and corresponding 

eigenvectors of a general n by n matrix. This also presented another advantage in 

comparison with the built in functions in Mathematica that can only compute the full 

decomposition of the input matrix. An (extremely) optimized program such as svd was 

able to improve the memory requirements for the computation approximately 4 fold and 
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the computation speed by more than an order of magnitude when compared to 

Mathematica. Furthermore the program was parallelized using the pthreads library to 

run in parallel on shared memory multiprocessor machines. This allowed us to achieve 

approximately another 3 fold speedup in computation time on 4 processor machines.  

4.4. Results and Discussion 

4.4.1. Molecular Dynamics 

 Prior to the actual collection of the data that is going to be used for the 

dimensional reduction procedure, it is necessary in all molecular dynamics simulation 

to perform an equilibration of the simulation system. During this period the structure is 

going to assume a slightly different conformation from what was observed in the 

original model determined experimentally by X-ray crystallography. The main reason 

for this effect is probably related to errors and approximations that are common in 

forcefields currently in use for the simulation of biological systems. Some 

approximations, such as the lack of molecular polarization, are necessary in order to 

speed up the simulations and extend them to useful timescales. Another source for the 

RMSD differences to the experimental structure observed after the equilibration period 

may be due to the fact that the protein is being simulated in an environment which is 

significantly different from the one in which the experimental structure was determined. 

Namely, there are no direct contacts with other proteins in the environment and there is 

no addition of any crystallization agents. As such, it is possible that the differences 

observed may be at least partly due to real variations corresponding to different protein 
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environments. A similar argument is often used in part to justify structural differences 

observed when the same protein is determined using both NMR and X-ray 

crystallography. For the purposes of molecular simulation, it is defendable that the 

starting structures should originate from NMR methods given the higher similarity in 

the protein environment. However, for the purposes of this study, we decided to use 

exclusively X-ray crystallography derived data given the much larger amount of data 

available. The RMSD values for the three model systems after the different phases that 

precede the actual simulation of the proteins are show in Table 4.2. 

Protein
HIV-1

Protease 

Aldose

Reductase 

Maltose 

 Binding Protein 

RMSD after minimization (Å) 0.173 0.198 0.220 

RMSD after heating phase (Å) 0.978 0.774 1.012 

RMSD after equilibration (Å) 1.300 0.959 1.283 

Table 4.2 – C-  RMSD values for different phases of the simulation. The X-ray crystal 

structure (4HVP) was used as reference. 

 The deviation level from the original crystal structure after minimization is 

similar for the three proteins. The initial conjugate gradient minimization leads to a 

very small structural change from the initial structure. The values range from 0.173 Å 

for the case of HIV-1 protease to 0.220 Å for maltose binding protein. The structural 

changes correspond mostly to removal of bad contacts, reorientation of charged atoms 

on aminoacid sidechains to form better interactions with other aminoacids and/or the 
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solvent, and a very small variation at the backbone level to adjust the structure to a 

local energy minimum in the forcefield. The step that causes the largest deviations from 

the experimental structure is the heating phase. During this phase the atoms have more 

kinetic energy available, which allows them to escape the local energy minimum that 

was reached during the initial minimization. During this phase the protein system will 

migrate to lower potential energy regions of the conformational state space. During this 

period and also during the equilibration phase the energy of the system has to be kept 

constant through periodic adjustments of atomic velocities. This is done by periodically 

reassigning atomic velocities corresponding to the simulation temperature from a 

Boltzmann distribution. Without this procedure the temperature of the simulation 

system would start to climb uncontrollably and eventually lead to protein denaturation 

or even instability of the numerical integration due to very high atomic displacements 

during each integration timestep. During the equilibration phase, the simulation is run 

in approximately the same conditions as in the production phase. In this step we looked 

for convergence of certain parameters of the simulation such as temperature, pressure, 

and RMSD deviation for the protein. At the end of this phase the values for C-  RMSD 

ranged from 0.959 for aldose reductase to 1.300 to HIV-1 protease. The difference 

between the values observed for aldose reductase in relation to the other two proteins is 

likely due to the fact that this protein is in general significantly less flexible. As such, it 

is also expected that this protein displays the lower RMSD deviations for both 

equilibration and simulation of the model system. 
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Figure 4.2 – -Carbon RMSD progression for the molecular dynamics simulations of the 

three model systems. 
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 The RMS deviations versus the original crystal structure during the production 

part of the simulation are shown in Figure 4.2. The plots show that all proteins are 

stable during the simulation period. The average RMSD values for the first 100 ps of 

simulation are 1.351 Å, 0.948 Å, and 1.405 Å for HIV-1 protease, aldose reductase, and 

maltose binding protein, respectively. The same values for the last 100 ps of simulation 

are 1.837 Å, 1.454 Å, and 1.849 Å. The overall level of conformational variation is 

approximately the same for all protein systems. The change in conformation that is 

observed for proteins is not due to simulation instability and is within the ranges 

normally observed for these types of simulations. 

 The RMSD changes shown in Figure 4.2 during the simulation correspond in 

large part to changes at the level of the binding site. However, this information is not 

clearly observable just by visualizing the output of the simulation. Although, especially 

for the case of HIV-1 protease, it is possible to observe by visualization of the raw data 

a larger flexibility component at the level of the binding site, this is not immediately 

clear for the other two cases. This is the main reason why we decided to use a 

dimensional reduction methodology in the present work. The purpose of this technique 

is to help understand what the most important components of protein flexibility are. In 

addition the PCA method provides us with an abstract and compact flexibility 

representation that enables the use of its results in modeling studies such as structure-

based drug design. 
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4.4.2. Backbone PCA 

 One of the advantages of the dimensional reduction method using PCA is the 

ability to carry out the data analysis at different levels of detail and focusing on 

different parts of the protein. Although an analysis consisting of all the atoms in the 

protein provides us with information regarding all levels of detail, such as backbone or 

binding site, it is also computationally more expensive and often unnecessary. In this 

section we will analyze the results of studying the flexibility of the protein at the 

backbone level. In this computation we included as part of the backbone atoms the N, 

CA, and C atoms. The O, HN, and H were not included because their positions can be 

readily approximated from the other three. Alternatively, we could have chosen to 

represent the backbone using only the CA atoms. The backbone representation chosen 

for this study uses 9 degrees of freedom per aminoacid. As such the total number of 

degrees of freedom is 1782 for HIV-1 protease, 2835 for aldose reductase, and 3330 for 

maltose binding protein. If we had used all the atoms in the proteins these numbers 

would have been 9360, 15732, and 17211, respectively. 
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Figure 4.3 – Eigenvalues (continuous line) and percentage of eigenvalue sum (broken 

line) for the backbone PCA analysis of the molecular dynamics trajectories.
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 The eigenvalues for the PCA analysis of the three protein models are plotted 

using a continuous line in Figure 4.3. The absolute values for the eigenvalues are shown 

on the left axis. The right axis and the broken line indicate the percentage of the 

eigenvalue sum contributed by the eigenvalues with index less than or equal to the 

current index. Only the largest 30 eigenvalues are plotted. All the proteins in this study 

displayed a significant eigenvalue drop with the first few eigenvalues accounting for 

most of the eigenvalue sum. For the case of HIV-1 protease the first, second, and third 

eigenvalues account for 34.8%, 45.2%, and 53.2% of the eigenvalue sum. These 

numbers illustrate the power of the dimensional reduction method. Using only 0.17% of 

the initial number of degrees of freedom in the system, it is possible to account for 

more than half of the variance observed during a molecular simulation for this 

particular system. For the case of aldose reductase the first, second, and third 

eigenvalues account for 25.6%, 35.8%, and 43.4%. The same numbers for maltose 

binding protein are 26.1%, 39.0%, and 48.6%, respectively. These numbers are similar 

to the ones obtained for HIV-1 protease but the differences are relevant. The first aspect 

to note is that the values for aldose reductase are smaller. This can be explained by the 

reduced flexibility of this protein in comparison to the other two. HIV-1 protease and 

especially maltose binding protein undergo large conformational changes upon ligand 

binding (see Appendix A. for details). In contrast, aldose reductase undergoes little or 

almost no conformations changes depending on the ligand. Furthermore, this changes 

happen almost exclusively at the binding site level with the rest of the protein 

remaining almost unchanged. This difference in overall flexibility can be also observed 
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from the absolute values of the eigenvalues. The sums of the first three eigenvalues for 

HIV-1 protease, aldose reductase, and maltose binding protein are 4.09×10
7
, 9.88×10

6
,

and 3.24×10
7
, respectively. Another important difference is the ratio between the first 

eigenvalues for the three systems. Whereas for HIV-1 protease, the first eigenvalue 

clearly dominates the eigenvalue spectrum, for the other proteins there is a more 

gradual drop in eigenvalues. The ratios between the first and second eigenvalues for 

HIV-1 protease, aldose reductase, and maltose binding protein are 3.35, 2.50, and 2.02, 

respectively. These values are of great importance when later we examine the motions 

corresponding to these eigenvalues. On one hand, due to the large dominance of the 

first eigenvalue, the first eigenvector for HIV-1 protease can represent a good 

approximation to a relevant biological motion for this protein. On the other hand, the 

small difference in first and second eigenvalues for maltose binding protein precludes 

the interpretation of the first mode of motion for this protein without consideration of 

the second. 
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Figure 4.4 – First mode of motion for the backbone of HIV-1 protease. The backbone is 

colored from red to blue as a function of the residue number. a) Stereoview of the 

mapping of the first eigenvector on the C-  atoms. The directions of motions are 

indicated by purple arrows. b) Changes in conformation corresponding to a motion in 

both directions along the first mode of motion starting from the experimental structure 

(center).
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 In the dimensional reduction method using PCA, there is an eigenvector 

corresponding to each eigenvalue. The eigenvalues provide information about the 

number of relevant motions and their relative importance. The eigenvectors can be 

mapped back to the structure of the protein to indicate directions of preferred motion. 

Given a 3N dimensional eigenvector, corresponding to the N atoms in the protein for 

which the PCA analysis was carried out, the motions can be readily visualized by 

partitioning the eigenvector into N Cartesian vectors and mapping each of these to its 

corresponding atom. Figure 4.4 shows the mapping of the first eigenvector to the 

backbone of HIV-1 protease. This corresponds to the first mode of motion. The 

direction of motion is indicated in Figure 4.4 - a) by the Cartesian vectors (purple 

arrows) for each CA atom. The arrows corresponding to the N and C atom motions 

were omitted for clarity. The length of the arrows indicates the relative amount of 

motion for each CA atom. Figure 4.4 - b) shows conformational changes corresponding 

to a motion in both directions along the first mode of motion starting from the 

experimental structure. The motion is exaggerated for illustration purposes. The first 

mode of motion for HIV-1 protease is in excellent accordance to the experimental data 

available for this protein. The motion occurs mostly in the flaps region and clearly 

indicates an opening of the flaps in order to expose the binding site. The motion also 

suggests a transition path between the bound and unbound experimental structures and 

between alternative bound forms (see Appendix A.1.). For example, the structure 

shown on the left side of Figure 4.4 - b) is similar to the unbound conformation of HIV-

1 protease (Wlodawer, Miller et al. 1989) and to other bounds forms such as 1AID 
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(Rutenber, Fauman et al. 1993) shown in Figure A.2. The motion is also in good 

agreement with previous simulation studies using molecular dynamics (Collins, Burt et 

al. 1995). The mapping of the first eigenvector to the protein structure also shows a 

significant amount of motion at the level of the 78-83 loop near the binding site. This 

loop has been shown to undergo significant conformation changes during binding of 

some HIV-1 protease inhibitors (Munshi, Chen et al. 2000). The core of the protein 

stays mostly unchanged according to the first mode of motion. This is also in good 

agreement with the available experimental structures for HIV-1 protease, which show 

much less conformational variation at the core than at the binding site level. 

 The second mode of motion for HIV-1 protease is shown in Figure 4.5. This 

mode is complementary to the first and also explains conformational rearrangements 

that HIV-1 undergoes when binding to different ligands. While the first mode 

corresponds to an opening of the flaps region and therefore a change in binding site 

volume mostly in that direction, the second mode corresponds to a sideways 

constriction of the binding site allowing for variations in the width of the ligand. Unlike 

the first mode, there is less variation in the relative size of the arrows. The motion is not 

restricted to a particular site on the protein but is mostly a change in the relative 

orientation of the two protein monomers leading to a loosening/tightening of the 

binding site (see Figure 4.5 – b) left and right). 
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Figure 4.5 - Second mode of motion for the backbone of HIV-1 protease. a) Stereoview 

of the mapping of the first eigenvector on the C-  atoms. b) Changes in conformation 

corresponding to a motion in both directions along the second mode of motion starting 

from the experimental structure (center). 
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Figure 4.6 - First mode of motion for the backbone of aldose reductase. a) Stereoview of 

the mapping of the first eigenvector on the C-  atoms. b) Changes in conformation 

corresponding to a motion in both directions along the first mode of motion starting from 

the experimental structure (center). Blue arrows indicate the region in the binding site 

where most of change is observed. 
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 The first mode of motion for aldose reductase is shown in Figure 4.6. As can be 

observed from the figure, most of the protein is rigid according to the first mode of 

motion. This is in good accordance with multiple experimental structures available, 

which shown minimal differences between bound and unbound forms. The regions with 

larger change as determined by the first mode of motion are indicated by blue arrows in 

Figure 4.6 – b). These regions include residues 122, 130, 219, 298, 300, 302, and 303. 

The region constitutes a large portion of the binding site (see also Table 4.1 and Figure 

4.1) and is responsible for the opening of the specificity pocket that allows for the 

binding of larger ligands such as tolrestat and zopolrestat (see also Appendix A and 

Figure A.4). This is an interesting observation because whereas in the case of HIV-1 

protease we had used a bound form as a starting structure for the molecular dynamics, 

in the case of aldose reductase we used an unbound form. Nevertheless, the PCA 

analysis was equally capable of capturing conformational rearrangements relevant for 

the induced fit process. This has important implications for the application of PCA to 

structure-based drug design methods since it suggests the possibility of obtaining 

meaningful protein flexibility models independently of the type of structure (bound or 

unbound) used as a starting model. Often only one is initially available. 
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Figure 4.7 - First mode of motion for the backbone of maltose binding protein. a) 

Stereoview of the mapping of the first eigenvector on the C-  atoms. b) Changes in 

conformation corresponding to a motion in both directions along the first mode of motion 

starting from the experimental structure (center). 
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 The first mode of motion for maltose binding protein is shown in Figure 4.7. As 

can be observed from Figure 4.7 – a) the hinge bending motion that characterizes the 

conformational transition between the bound and unbound forms of this protein is not 

clearly observable. Even though there are no intra domain movements in the top and 

bottom domains (top domain shown mostly in red, yellow, and blue on the top of 

Figure 4.7 – a) and bottom domain shown mostly in green at the bottom of the figure) 

which would be indicated by large arrows pointing to mostly different directions within 

the same domain, there is a clear twisting motion of one domain relative to the other 

that leads to a moderate opening/closing of the binding site region (see Figure 4.7 –  b) 

). This result was a clear reminder that modes derived from PCA cannot be interpreted 

by themselves as real modes of protein motion: what they constitute is a reduced 

dimensional basis for representing motions of proteins. Real protein motion may be a 

result of the combination of two or more of the PCA modes. As discussed before, one 

of the main differences between the results of HIV-1 protease and maltose binding 

protein is the ratio between the first and second eigenvectors. While for HIV-1 protease 

there is a clear dominance of the first mode in the eigenvalue spectrum, for maltose 

binding protein there is a much small difference between the first and second modes. 

As a result, it is important for the case of maltose binding protein to also look at the 

mode corresponding to the second largest eigenvalue and determine how a combination 

of the two can result in experimentally observed protein motions. Observation of the 

second mode of motion revealed a particularly interesting result. The second mode also 

consists of a twist of one domain relative to the other but in the opposite direction. The 
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motion is equally accompanied by a moderate opening/closing motion about the hinge 

position near the binding site. The motions are illustrated in Figures 4.8 and 4.9 (note: 

the figures are stereoviews and should be viewed in portrait mode by looking up and 

down to give the illusion of motion). The figures are color coded according to the 

respective collective motion. Red is used for the first mode of motion and blue is used 

for the second. On Figure 4.8 the motion is for the molecule in red and the blue 

structure corresponds to the original conformation. On Figure 4.9 the motion is for the 

molecule in blue using the red conformation as a reference. The first mode corresponds 

to a counterclockwise rotation of the top domain in relation to the bottom domain 

(relative dispositions as shown in the figure) around the axis defined by the red arrows. 

Conversely, the second mode corresponds to a clockwise rotation. Both modes lead to 

simultaneous opening or closing as they twist in opposite directions. By considering the 

two modes in conjunction it is possible to obtain an opening and closing of the binding 

site of maltose binding protein which does not occur in a straight direction but instead 

takes place in a zigzag motion. Given the results of the PCA analysis this is presently 

our model for the biologically relevant motion of this protein. Unfortunately, it is not 

currently possible to experimentally prove or refute this model. 
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Figure 4.8 – Stereoview of the first mode of motion for the backbone of maltose binding protein. The motion shown is for the 

red representation. The blue representation is fixed and is used as a reference for visualization of the motion. The figures and

should be viewed in portrait mode by looking up and down to give the illusion of motion. The center representation corresponds 

to the experimental conformation. The top and bottom views represent alternative conformations for the protein as it moves in 

opposite directions along the first mode of motion. 
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Figure 4.9 -– Stereoview of the second mode of motion for the backbone of maltose binding protein. The motion shown is for 

the blue representation. The red representation is fixed and is used as a reference for visualization of the motion. The figures and 

should be viewed in portrait mode by looking up and down to give the illusion of motion. The center representation corresponds 

to the experimental conformation. The top and bottom views represent alternative conformations for the protein as it moves in 

opposite directions along the second mode of motion.
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 Another useful piece of information that can be obtained by carrying out the 

PCA calculation using the singular value decomposition method is the right singular 

vectors. The right singular vectors correspond to the reduced coordinate representation 

in the new basis defined by the left singular vectors. In other words, it is the reduced set 

of coordinates that represents the original protein motion. For the case of molecular 

dynamics data, the analysis of this set reveals a set of stable conformational substates 

that correspond to local energy minima in the conformational energy landscape of the 

protein. The two and three dimensional plots of the right singular vectors have been 

previously described as “beads-on-a-string”. The beads correspond to low energy 

regions with long residence times and the string connecting the beads corresponds to 

fast transitions between metastable substates. For an extensive discussion on the 

identification and modeling of protein conformational substates see Romo’s thesis 

(Romo 1998). 
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Figure 4.10 – Plot of first three backbone right singular vectors for the 1.4 ns molecular 

dynamics simulation of HIV-1 protease. These correspond to the projection of the 

original molecular dynamics trajectory on the three dominant eigenvectors. Protein 

conformational substates are highlighted using shaded circles and labeled from A to E. 
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 Figure 4.10 shows the plot of first three right singular vectors. These correspond 

to the projection of the original molecular dynamics trajectory on the three dominant 

eigenvectors. The plot shows a three dimensional scatter plot in which consecutive 

points in time are connected by straight lines. In the case of HIV-1 protease 2800 points 

are plotted in Figure 4.10. As a result each straight line connecting two points 

corresponds to 5 ps of simulation. It is possible that if we had used a finer time 

sampling we would observe even more structure in the plots. Such observation would 

be consistent with the current hierarchical view of ensembles of substates in which each 

substate can be further divided into another ensemble of substates corresponding to 

smaller conformational changes. The results show that during the simulation the protein 

does not change its conformation continuously from the beginning to the end of the 

simulation but instead jumps between conformational substates. Protein conformational 

substates are highlighted using shaded circles and labeled from A to E. These 

correspond to the following approximate time periods: A from 0 ps to 150 ps, B from 

150 ps to 325 ps, C from 325 ps to 600 ps, D from 600 ps to 900 ps, and E from 900 ps 

to 1400 ps. The information obtained from the right singular vectors is also relevant for 

structure-based drug design because it can hint at certain protein conformations that are 

more stable in solution and as such should be targeted preferentially in a virtual 

screening study. This kind of approach allows the use of the power of dimensional 

reduction methods to include protein flexibility in the drug design process without a 

large increase in computational expense. This method is going to be explored further in 
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Chapter 5 when we discuss possible uses of the dimensional reduction methodology in 

drug design applications. 

 In order to check if the protein conformational substates correspond in fact to 

similar backbone conformations we also calculated pairwise backbone RMSD values 

for the entire trajectory. If this is the case we should see squares of lower RMSD value 

along the diagonal of the pairwise RMSD matrix. Figure 4.11 shows the backbone 

RMSD matrix for the 1.4 ns molecular dynamics simulation of HIV-1 protease. The 

two axes represent 1400 backbone structures sampled every 10 ps. In this plot we can 

unmistakably verify the existence of the first three conformational substates labeled A, 

B, and C. The distinctions between substates D and E is not as clearly defined. This 

reflects the fact than in Figure 4.10, states D and E are close together in the reduced 

space and there seems to be a lot of interconversion between these. In contrast there is a 

very clear transition between states A and B with a single path (line) connecting the two 

states without any interconversion. The comparison of the two plots suggests that 

analysis of right singular vectors is a better method to identify protein conformational 

substates.
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Figure 4.11 – Backbone RMSD matrix for the 1.4 ns molecular dynamics simulation of 

HIV-1 protease. The two axis represent 1400 backbone structures sampled every 10 ps. 

The RMSD value between two structures is represented off the diagonal at the 

intersection of the respective indices (note: the data on the two side of the diagonal is 

identical). Protein conformational substates identified using Figure 4.10 are labeled from 

A to E.
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Figure 4.12 - Plot of first three backbone right singular vectors for the 1.0 ns molecular 

dynamics simulation of aldose reductase. These correspond to the projection of the 

original molecular dynamics trajectory on the three dominant eigenvectors. Protein 

conformational substates are highlighted using shaded circles and labeled from A to D. 
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Figure 4.13 - Backbone RMSD matrix for the 1.0 ns molecular dynamics simulation of 

aldose reductase. The two axis represent 1000 backbone structures sampled every 10 ps. 

The RMSD value between two structures is represented off the diagonal at the 

intersection of the respective indices (note: the data on the two side of the diagonal is 

identical). Protein conformational substates identified using Figure 4.12 are labeled from 

A to D. 

A

B

C

D



113

 Figure 4.12 shows the three main right singular vectors for the aldose reductase 

trajectory. In this figure we can see a clearly isolated substate A that later migrates to 

state B, which is much closer to the following states C and D. The same kind of 

behavior can also be observed from Figure 4.13 where the conformations in state A are 

markedly different from the three following substates. An alternative interpretation for 

this result is to use the hierarchical model and consider only two substates X and Y. X 

would be composed only of the state A, and Y could be further decomposed in states B, 

C and D. 

 Figure 4.14 shows the three main right singular vectors for the maltose binding 

protein trajectory. The plot visibly isolates three conformational substates labeled A to 

C. However, when we compare this data to the pairwise RMSD plots in Figure 4.15 

these substates cannot be readily identified. This is a case where the right singular 

vectors are clearly more powerful in the identification of conformational substates. 
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Figure 4.14 - Plot of first three backbone right singular vectors for the 1.6 ns molecular 

dynamics simulation of maltose binding protein. These correspond to the projection of 

the original molecular dynamics trajectory on the three dominant eigenvectors. Protein 

conformational substates are highlighted using shaded circles and labeled from A to C. 
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Figure 4.15 - Backbone RMSD matrix for the 1.6 ns molecular dynamics simulation of 

maltose binding protein. The two axis represent 2000 backbone structures sampled every 

8 ps. The RMSD value between two structures is represented off the diagonal at the 

intersection of the respective indices (note: the data on the two side of the diagonal is 

identical). Protein conformational substates identified using Figure 4.14 are labeled from 

A to C. 
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4.4.3. Binding Site PCA 

Changes at the level of the binding site are the most critical in determining the 

binding of a ligand to the receptor protein. In this section we focused the dimensional 

reduction analysis on the residues that constitute the binding site (see Figure 4.1). The 

main advantage from a structure-based drug design point of view in considering only 

the binding site atoms in the PCA calculation is to avoid the inclusion of motions that 

are not relevant for ligand binding in the main modes of motion. If non-relevant atomic 

motions were sufficiently large and well correlated they would mask the results 

pertinent to induced fit effects at the level of the binding site. This problem will be 

addressed in more detail in Chapter 5. A second advantage of using only binding site 

atoms to calculate collective modes of motion for the protein is that, as in the case for 

the backbone analysis, the initial dimension of the problem is already reduced. If we 

consider the Cartesian degrees of freedom for each atom in the binding site, the initial 

number of degrees of freedom is 750 for HIV-1 protease, 426 for aldose reductase, and 

426 for maltose binding protein. 
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Figure 4.16 - Eigenvalues (continuous line) and percentage of eigenvalue sum (broken 

line) for the binding site PCA analysis of the molecular dynamics trajectories. 
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The eigenvalues and eigenvalue sums for the binding site PCA analysis of the 

three protein models are shown in Figure 4.16. As in the case of the backbone analysis, 

all the proteins in this study displayed a significant eigenvalue drop with the first few 

eigenvalues accounting for most of the eigenvalue sum. For the case of HIV-1 protease 

the first, second, and third eigenvalues account for 43.6%, 53.0%, and 58.9% of the 

eigenvalue sum. For the case of aldose reductase the first, second, and third eigenvalues 

account for 27.0%, 38.6%, and 49.4%. The same numbers for maltose binding protein 

are 23.0%, 36.4%, and 47.9%, respectively. In comparison with the backbone analysis 

there is now a greater dominance of the main eigenvectors for the cases of HIV-1 

protease and aldose reductase. The values for maltose binding protein are very similar 

to the ones obtained for the binding site analysis. The larger change in results is for the 

first two proteins because the changes on these proteins were mostly in the binding site 

region. The changes for maltose binding protein are mainly a reorientation of domains. 

In this case, the largest atomic displacements are far from the binding site region. 

For the case of the binding site analysis, the right singular vectors can indicate 

binding site conformations that are stable and should be used as target receptors in drug 

design applications. In comparison with the right singular vectors obtained for the 

backbone analysis, the ones derived from the binding site should display a cleaner 

structure, which is easier to interpret. Figure 4.17 to 4.19 show the right singular vector 

plots for the three proteins. The results for HIV-1 protease shown in Figure 4.17 are 

comparable to the results shown in Figure 4.10. The first two conformational substates 

A and B are common to both backbone and binding site analysis. Conformational 
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substate C includes the backbone conformational substates C, D, and E. This indicates 

that the changes that determined the transitions between these substates are not 

determined by changes in the binding site. The results for aldose reductase shown in 

Figure 4.18 are comparable to the results shown in Figure 4.12 and are similar to the 

results obtained with HIV-1 protease. In this case there are only two major 

conformational substates A and B. Conformational substate B corresponds to merging 

states B, C, and D. The results for maltose binding protein shown in Figure 4.19 also 

show three conformational substates as in Figure 4.14. However the residence time in 

state B is shorter than in the case of the backbone analysis. 



120

Figure 4.17 - Plot of first three binding site right singular vectors for the 1.4 ns molecular 

dynamics simulation of HIV-1 protease. These correspond to the projection of the 

original molecular dynamics trajectory on the three dominant eigenvectors. Protein 

conformational substates are highlighted using shaded circles and labeled from A to C. 
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Figure 4.18 - Plot of first three binding site right singular vectors for the 1.0 ns molecular 

dynamics simulation of aldose reductase. These correspond to the projection of the 

original molecular dynamics trajectory on the three dominant eigenvectors. Protein 

conformational substates are highlighted using shaded circles and labeled A and B. 
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Figure 4.19 - Plot of first three binding site right singular vectors for the 1.6 ns molecular 

dynamics simulation of maltose binding protein. These correspond to the projection of 

the original molecular dynamics trajectory on the three dominant eigenvectors. Protein 

conformational substates are highlighted using shaded circles and labeled from A to C. 
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4.4.4. All-Atoms PCA 

 The final level of detail we tested using the PCA method was to include all the 

atoms in the protein in the calculation. Due to the increase computational requirements 

for this computation it was carried out only for HIV-1 protease. The computation of the 

PCA for all atoms of HIV-1 protease has the following memory requirements. The 

initial data consists of 14,000 data points for 9360 degrees of freedom. Each data point 

is a single precision floating point number (4 bytes on a 32 bit machine). As a result the 

initial data occupies approximately 500 MB (megabyte). This data is used for the 

computation of the covariance matrix of size 9360 by 9360. In order to increase 

numerical stability, the covariance matrix is computed using double precision floating 

point numbers (8 bytes on a 32 bit machine). The covariance matrix has size 

approximately 670 MB. Due to bad memory management, the program Mathematica

uses approximately four times more memory than what is theoretically required. As a 

result, the all-atoms PCA computation is not practical using this program because we 

did not have access to a computer with the required specifications. The use of swap 

space on hard disk to increase the available virtual memory is also not practical due to 

the very high latency of accessing the data from hard disk when compared to physical 

memory or CPU cache. Although using swap space as an alternative solution is 

possible, it increases the computation time by approximately two orders of magnitude. 

By reason of the limitations described above we developed the program svd that can 

efficiently manage memory and carry out the above computation on machines with 

approximately 1 GB (gigabye) of memory. The program is also capable of adapting to 
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smaller physical memory sizes by carrying out matrix computations, such as 

vector/vector multiplications, in blocks.   

 The eigenvalues and eigenvalue sums for the all-atoms PCA analysis of the 

HIV-1 protease is shown in Figure 4.20. As in the case of the backbone and binding site 

analyses, we observed a significant eigenvalue drop, with the first few eigenvalues 

accounting for most of the eigenvalue sum. The first, second, and third eigenvalues 

account for 19.4%, 29.0%, and 36.2% of the eigenvalue sum. The numbers are smaller 

than for the cases of the backbone and binding site analyses but the total number of 

degrees of freedom is also much larger (9360 versus 1782 and 750, respectively). Based 

on visual inspection, the first mode of motion determined for all-atoms is similar to the 

one calculated for the backbone (result not shown). The motion also corresponds to an 

opening/closing of the binding site but with extra information regarding aminoacid 

sidechain positions. 
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Figure 4.20 - Eigenvalues (continuous line) and percentage of eigenvalue sum (broken 

line) for the all-atom PCA analysis of the molecular dynamics trajectory for HIV-1 

protease. 
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4.4.5. PCA analysis of experimental structures 

In order to validate the results obtained from the PCA analysis of the molecular 

dynamics data we performed the same type of mathematical analysis for the 

experimental data obtained using X-ray crystallography. Comparisons done between 

traditional molecular simulations and experimental techniques (Clarage, Romo et al. 

1995; Philippopoulos and Lim 1999) seem to indicate that X-ray crystallography and 

NMR structures provide better coverage of conformational spaces. As such modes 

derived using experimental data should also provide a better representation of protein 

flexibility. Unfortunately, the PCA analysis requires the availability of a large number 

of conformations in order to calculate accurate correlation coefficients between the 

initial degrees of freedom of the protein system. The use of experimental data for the 

purposes of dimensional reduction is therefore limited to a handful of protein systems 

for which there is a large number of experimentally derived structures available. 

Although of limited applicability, this test allows a comparison of the results based on 

computational data to results based purely on experimental data. For this purpose we 

superimposed 134 structures of HIV-1 protease to the structure determined by Miller et

al (Miller, Schneider et al. 1989) (see Apendix B. for full list of structures) and 

extracted the relevant backbone coordinate information to construct matrix A (see 

section 4.3.3). The results obtained for the eigenvalue spectrum are similar to those 

obtained when computationally derived data was used (see Figure 4.3). The first 3 and 

first 20 eigenvalues account for 59% and 85% of the total eigenvalue sum, respectively.  

These values are slightly higher than for the backbone analysis of the molecular 
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dynamics data. The increased dominance of the main modes of motion is probably 

related to the increased conformational space that is sampled in the available 

experimental structures bound to different ligands versus to the simulation of the 

protein without any ligand bound. The main modes of motion were analyzed by visual 

inspection and as expected consisted of collective motions that resulted mainly in 

changes in the binding pocket. 

During the course of this experiment we observed an interesting result. When 

the original protein coordinates were projected on the plane defined by the two 

dominant eigenvectors we observed that the right singular vectors clustered mainly in 

three locations (see Figure 4.21). Our initial hypothesis for this observation was the fact 

that these corresponded to different crystallographic space groups. Out of the 135 

experimental structures used for this study there are 18 in P21, 12 in P21212, 81 in 

P212121, 21 in P61, and 3 in P6122 space groups. All unit cells for each of the space 

groups have approximately the same dimensions. However, the differences in 

crystallization space groups did not correlate with the observed clustering in the 

essential subspace. The clustering appears to be the result of different binding modes to 

different drug classes. This constitutes a positive result because it shows that, at least 

for the case of HIV-1 protease, differences resulting from different crystal packings do 

not have a determinant effect on the results of PCA.  
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Figure 4.21 - Projection of coordinate vectors of 135 experimental HIV-1 protease 

structures on the plane defined by the two dominant eigenvectors of the PCA.  The circles 

indicate clustering of structures in the essential subspace. 
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Although the type of procedure described above using experimental data 

exclusively is more representative of the conformational flexibility of the model protein 

when binding to inhibitors of different shapes, it also has several shortcomings. The 

most important limitation of this approach is that for almost all systems for which 

determining the main modes of protein flexibility would be beneficial there is not 

enough experimental data to calculate an accurate correlation matrix. Due to its clinical 

importance HIV-1 protease is currently a unique case of having a large number of 

experimentally determined structures. Nevertheless, even the use of 135 experimental 

structures is likely to introduce a large error. This problem has been analyzed by Genest 

(Genest 1999) who observed that accurate correlation results could be obtained by 

using approximately 2000 experimental points for 20 atoms. When the number of 

experimental samples decreased, the number of false correlations observed increased. 

In this calculation I used a higher number of atoms (198) and a smaller number of 

experimental points (135). This is also likely to lead to the observation of correlations 

that are not present in reality. A second limitation of using experimental data is that we 

are biasing the conformational space sampled by the main modes of motion to reflect 

only the binding modes that were already determined experimentally. If for example 

there is a new binding mode corresponding to a novel class of drugs, the calculated 

modes of flexibility would likely be of little help in discovering it in an hypothetical 

flexible-protein / flexible-ligand database screening process. A possible method of 

testing for errors in our experimental modes would be to a priori exclude part of our 

experimental data from the dimensional reduction calculations and later check how well 
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the excluded data could be reproduced using the calculated modes of motion. The main 

limitation to this test is again the reduced number of data available for the calculation of 

the covariance matrix. 

In order to determine the similarity between the modes of motion derived from 

molecular dynamics data and the modes derived from experimental data we calculated 

the overlap between the subspaces defined by the most significant principal 

components. Overlap between two subspaces is calculated as the sum of all of the 

squared inner products between all pairs of eigenvectors from both essential subspaces, 

divided by the dimension of that space. When these projections are close to 1.0 for all 

the eigenvectors of the subspace, the subspaces spanned by the two sets of eigenvectors 

are the same. However, even if two subspaces are very similar it may happen that two 

or more eigenvectors in one set are interchanged with respect to the other set resulting 

in values lower than 1.0. In Figure 4.22 we show the cumulative inner products from 

the projection of the molecular dynamics eigenvectors onto the first three eigenvectors 

derived from experimental data. The eigenvectors for both structural sets were 

calculated using C-  data exclusively. As can be observed from the plot there is a 

significant amount of overlap between the subspaces defined by the most significant 

principal components. This result was also confirmed by visual inspection which 

revealed similar motions for the first mode of motion. The results of this plot are similar 

to what was previously observed for other proteins (van Aalten, Conn et al. 1997). In 

this study, the authors compared the collective modes of motion derived from X-ray 

crystallography experimental structures for eight different proteins. The results showed 
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significant overlap between the subspaces defined by the most significant principal 

components. Differences between the modes derived by the different methods are 

probably due to the following factors: 1) Incomplete sampling from the molecular 

dynamics simulation (Clarage, Romo et al. 1995); 2) different protein environments 

(solution vs. crystal); 3) insufficient number of structures used in the calculation of the 

covariance matrix for the X-ray case; 4) limited variability in the ensemble of crystal 

structures.
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Figure 4.22 - Cumulative inner products from the projection of the molecular dynamics

eigenvectors onto the first three eigenvectors derived from experimental data for HIV-1 

protease. 
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 Finally, we compared how the modes derived from molecular dynamics data 

represented the original molecular dynamics data from which they were derived versus 

the experimentally determined structures. This evaluation was carried out by comparing 

how much the right singular vectors deviated from a normal distribution. If the modes 

are a good representation for the data the most significant right singular vectors should 

have a large deviation from a normal distribution whereas the least significant should 

be normally distributed with a very small deviation from the mean. The right singular 

vectors representative of the molecular dynamics data were calculated using the PCA 

method as described previously and the right singular vectors for the experimental data 

were determined by calculating the projection of the coordinate vectors of 135 

experimentally determined structures on the left singular vectors from the molecular 

dynamics backbone PCA. The metric used for comparison was the average deviation 

from the mean. The results for the first 1000 modes are shown in Figure 4.23. The plots 

show that the average deviation from the mean for the main modes is much larger for 

the molecular dynamics data than for the experimental data. For the first mode this 

value is 20.51 for the molecular dynamics data versus 3.15 for the experimental data. 

The plot for the experimental data shows a decay for the average deviation which 

would not happen for a random basis, indicating that there is relevant information for 

HIV-1 protease motion that can be extracted from molecular dynamics data. A more 

detailed view of these results can be obtained from right singular vector histograms. 

Figure 4.24 show histograms for the 1
st
, 2

nd
, 3

rd
, and 1000

th
 right singular vector for the 

molecular dynamics data and the experimental data. It is clear from these plots that the 
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modes are a good representation for the molecular dynamics data but not ideal for the 

experimental data. The molecular dynamics data shows a much larger deviation from 

the mean. In conclusion, the results of this section show that modes of motion derived 

from molecular dynamics represent a valid basis to represent flexibility as observed 

from experimental structures. However, there is still a significant amount of room for 

improvement in the quality of modes. Improvement could result from increased 

accuracy in the computational simulation of biological systems. 
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Figure 4.23 - Average deviation from the mean for the right singular vectors of the experimental and MD data. 
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Figure 4.24 - Histogram analysis comparison of the 1
st
, 2

nd
, 3

rd
, and 1000

th
 right singular 

vectors for the experimental and MD data. 
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4.5. Summary 

In this chapter we show how to use the Principal Component Analysis (PCA) 

method, a dimensionality reduction technique, to transform the original high-

dimensional representation of protein motion into a lower dimensional representation 

that captures the dominant modes of motions of proteins. The method was applied to 

HIV-1 protease, aldose reductase, and maltose binding protein. The conformational 

sampling data used for the PCA calculation was obtained using molecular dynamics 

techniques. For the case of HIV-1 protease, PCA was also computed using data derived 

exclusively from experimental methods and the results compared to the molecular 

dynamics method. One of the advantages of PCA is that it can be carried out at 

different levels of detail by selecting only a particular set of atoms for a protein. Here 

we described and compared the results obtained for the PCA analyses of backbone, 

binding site and all atoms in the protein. The results obtained for the main modes of 

motion correlate well with experimental data available for these proteins. 
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Chapter 5. 

Applications of Collective Modes of Motion to 

Pharmaceutical Drug Design 

5.1. Introduction 

The use of collective modes of motion has been explored previously to include 

protein flexibility information in structure based drug design (Kolossvary and Guida 

1996; Kolossvary and Guida 1999; Zacharias and Sklenar 1999; Kolossvary and Keseru 

2001). This previous work was based on collective modes of motion derived from 

normal mode calculations. The use of normal modes offers some advantages but also a 

number of important limitations. The main advantage of using a normal modes based 

method is speed in computing the collective modes of motion. Whereas the PCA 

approach requires as input conformations obtained from a molecular simulation, which 

can take several days to obtain, the normal modes approach only requires the 

computation of the eigendecomposition of the Hessian. The Hessian is the matrix of 

second derivatives of the potential energy with respect to the mass weighted molecular 

coordinates. However, the normal modes approach assumes that the system moves 

about an energy minimum and that the motion is harmonic. This is clearly not the case 

for induced fit changes occurring at room temperature. In these conditions, the protein 

will likely go through several conformational substates as it transitions from the bound 

to the unbound conformation. As a result, the computation of modes from PCA (also 
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called quasi-harmonic analysis) is in our view a better approximation to include 

collective modes of motion information in modeling induced fit processes. 

In this chapter we discuss several approaches to include collective modes of 

motion information in structure based drug design. In Sections 5.2 and 5.3 we discuss 

indirect methods in which the SVD information is used to generate a set of 

conformational samples that represent the flexibility of the protein. The individual 

structures obtained using this method can later be used in current docking programs that 

take as input the rigid three dimensional shape of the receptor. In Section 5.4 we 

investigate the possibility of using the collective degrees of freedom directly to search 

for alternative protein conformations. 

5.2. Generating Docking Targets Using Collective Modes of Motion for 

Conformational Sampling 

One possible method of applying the information derived from the calculation 

of collective modes of motion to model the flexibility of the protein is to use these to 

efficiently generate a discrete set of conformations that represents alternative protein 

conformations.  The individual protein conformations can then be used with traditional 

rigid-protein / flexible-ligand docking software without modifications to the original 

programs. Protein conformational sampling using collective modes of motion is more 

efficient because it is done along the degrees of freedom that are responsible for most 

of the conformational variance observed during a computational simulation (or 

alternatively in large amount of experimental data). The use of collective modes of 
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motion has been described before as a method to speed up conformational sampling 

using molecular dynamics (Amadei, Linssen et al. 1996; de Groot, Amadei et al. 1996; 

de Groot, Amadei et al. 1996). In this previous application, the modes of motion were 

used as additional constraint forces in the simulation. 

A simple method of generating a discrete conformational sampling is to use a 

reference structure (i.e. experimental structure) and modify it in the direction of a 

collective mode of motion. This type of perturbation is illustrated in Figures 4.4 to 4.7. 

More than one direction can be used for the perturbation and more than one structure 

can be generated along the direction of perturbation. In Figure 5.1 we show an example 

in which we generate seven conformations along the first mode of motion and five 

along the second mode of motion. The modes of motion can also be combined by 

adding or subtracting the corresponding eigenvectors to generate structures along 

directions diagonal to the original main motions. Although naïve, a grid based sampling 

can be very easily generated and used for docking. One drawback of using this method 

is that the structures generated along the modes of motion will display a large increase 

in internal energy due to the deviations from ideal bond and angle geometry. 

Nevertheless, this problem can be easily solved using a short conjugate gradient 

minimization procedure. Our own experiments (results not shown) indicate that a short 

conjugate gradient minimization protocol that takes less than ten seconds to complete 

on a current desktop PC is enough to correct the deviation from ideal geometry and 

restore the internal energy to initial values. 
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Figure 5.1 - A grid of structure representing the protein flexibility can be  generated by sampling along the first two modes of

motion.
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The main problem of using a discrete grid sampling to represent the flexibility 

of the protein is that the size of the set will grow exponentially with the number of 

degrees of freedom used to generate it. Fortunately, there are several factors that limit 

the severity of this problem. The first factor is that it is not necessary to generate a large 

number of structures along each mode. Our studies described in Chapter 2 indicate that 

good docking results can be obtained using current rigid-protein / flexible-ligand 

docking programs even when there is a non-negligible error (0.6Å – 1.2Å RMSD) in 

the receptor model relative to the actual experimental structure of the docked receptor. 

As a result, it is possible to generate a very low sampling along the main modes of 

motion and rely on the error tolerance of the docking programs to compensate for 

intermediate conformations that are skipped due to coarseness of the sampling. In 

addition, it is possible to also modify the docking programs to accommodate for 

additional accuracy errors relative to the docked conformation (Wojciechowski and 

Skolnick 2002). A second factor that facilitates the use of the grid method is that, 

although the problem is larger in size, it can be classified as an embarrassingly parallel 

problem. This class of problems can be solved in a cost effective way by the use of 

clusters of commodity type computers, such as common PC desktops. 

The structures generated using a grid based approach can be used for 

applications other than structure-based drug design in which the objective is to dock a 

small molecule to a large macromolecule. Another potential application of this method 

is to perform the docking of two macromolecules that undergo some level of 

conformational change when they interact. Instead of modeling flexibility explicitly 
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using the collective degrees of freedom, the flexibility of the protein is represented by a 

discrete set of alternative conformations using the grid method. This reduces the 

complexity of taking into account protein flexibility in modeling protein / protein or 

protein / DNA interactions by dividing the problem in a series of simpler problems 

which can be handled using traditional rigid-protein / rigid-protein docking methods. 

The problem of trying to match two rigid 3D shapes is considerably less complex and 

very fast Fourier methods for this purpose are currently available (Ten Eyck, Mandell et 

al. 1995). In order to take into account some inaccuracy in modeling alternative protein 

conformations using such a reduced number of degrees of freedom it is also possible to 

combine Fourier docking methods with other approaches that try to minimize the 

effects of carrying out macromolecular docking using low resolution structures (Vakser 

1995).

5.3. Identification of Protein Conformational Substates as Docking 

Targets

 Proteins in solution do not exist in a single conformation. Instead proteins 

assume a large number of nearly isoenergetic conformations (conformational substates) 

(Noguti and Go 1989; Noguti and Go 1989; Frauenfelder, Sligar et al. 1991). The 

analysis of molecular dynamics simulations of proteins using right singular vectors can 

easily identify a fraction of the available conformational substates (Romo, Clarage et al. 

1995; Troyer and Cohen 1995; Garcia, Blumenfeld et al. 1997; Caves, Evanseck et al. 

1998; Romo 1998). In this section we describe how to generate a discrete set of 
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conformations that best represents the conformational substates observed for a 

molecular dynamics simulation. The set of structures can then be used for rigid-protein 

/ flexible-ligand docking. 

 The right singular vector results for the binding site of HIV-1 protease, aldose 

reductase and maltose binding protein discussed in Section 4.4.3 clearly show that these 

proteins do not move at a fixed velocity in conformational space. Instead they hop 

between stable conformational substates. Using the plots in Figures 4.17 to 4.19 it is 

possible to identify at what times during the simulation the protein resides in a 

particular conformational substate. In order to select a representative structure from 

each of the conformational substates we calculated pairwise root mean square distances 

between individual structures within the same conformational substate. The distance 

metric used was not the Cartesian RMSD. Instead distances were calculated in the 

space defined by the first three modes of motion (Figures 4.17 to 4.19) and the structure 

with the lowest mean root mean square distance to the other members of the substate 

was selected to be its representative. It would also be possible to use the Cartesian 

RMSD as a distance metric to select the representative structure. However such 

computation would be significantly more expensive because it would require the 

computation of a distance in a space with 750 dimensions versus 3.  

 Results for the identification of conformational substate representatives for the 

three model proteins analyzed in Chapter 4 are shown in Figure 5.2 to 5.4. Figure 5.2 

shows the results for HIV-1 protease. The three representative structures corresponding 

to conformational substates A, B and C are colored using red, yellow and green, 
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respectively. The conformations correspond to largely different binding site shapes. The 

red conformation displays the smallest binding site and the green conformation the 

largest. The large differences in binding site volume are consistent with experimentally 

determined structures which show variations in volume larger than 100%. In Figure 

5.2-b) we show a magnified view of the binding site residues show in a). The increase 

in binding site volume is a result of rotations of some of the residue sidechains but is 

mostly due to a coordinated motion at the backbone level. The two conformational 

representatives for aldose reductase are shown in Figure 5.3. In this case the alternative 

conformations represent more localized changes. In Figure 5.3-b) the white arrow 

indicates residue LEU 300. Changes in this residue and its vicinity are responsible for 

most of the opening of the extra cavity that distinguishes the bound conformations with 

sorbinil and tolrestat (for more information see Appendix A.2). This observation 

constitutes a positive result for the applicability of the right singular vectors method. 

Starting from the conformation for one of the ligands it was possible to computationally 

generate a conformation which could be used successfully to screen a different class of 

ligands. Finally, in Figure 5.4 we show three different conformational representatives 

for maltose binding protein. In this case the conformational changes are smaller than in 

the other two cases but may help understand how maltose binding protein changes its 

conformation when binding different maltodextrins and cyclodextrins. 
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Figure 5.2 – Identification of representative conformations for the binding site of HIV-1 

protease. a) Representative conformations for the three conformational substates were 

identified from the right singular vectors of a molecular dynamics simulation (top right, 

see also Figure 4.17). The heavy atom positions for the variable regions are shown in red, 

yellow, and green. The remaining backbone of the protein is shown in white. b) 

Magnified stereoview of the variable binding site region (note: image is rotated 90º 

forward relative to the view in a) ). 
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Figure 5.3 – Identification of representative conformations for the binding site of aldose 

reductase. a) Two conformations were identified using the right singular vectors (top 

right, see also Figure 4.18). b) Magnified stereoview of the variable binding site region. 
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Figure 5.4 - Identification of representative conformations for the binding site of maltose 

binding protein. a) Two conformations were identified using the right singular vectors 

(top right, see also Figure 4.18). b) Magnified stereoview of the variable binding site 

region.



149

 The method described in this section to generate a discrete conformational 

sampling for the flexibility of the protein has advantages and disadvantages relative to 

the grid method described in the previous section. The main advantage is that the 

number of structures generated is much smaller. Furthermore, the structures generated 

are of better quality in the sense that they correspond to low energy regions of the 

potential energy landscape. However, the main disadvantage is that even long 

molecular dynamics simulations only cover a small fraction of the conformational 

landscape (Clarage, Romo et al. 1995). As such, it is likely that the grid method 

provides a better coverage of the available conformational space. 

  An alternative application for the identification of stable conformational 

substates using the information from the right singular vectors is to improve the design 

of dynamic pharmacophore models (Carlson, Masukawa et al. 1999; Carlson, 

Masukawa et al. 2000). The pharmacophore is a three dimensional arrangement of 

molecular features that is present in all (or most) of the active conformations of a set of 

drug molecules that interact with a given receptor. Hence, the pharmacophore can be 

viewed as a geometric invariant of the active conformations of the considered 

molecules. The dynamic pharmacophore model extends this concept by using as a 

receptor model several conformations obtained using a molecular dynamics trajectory. 

The dynamic pharmacophore model is described by binding regions that are conserved 

over many protein conformations. In their work Carlson et al selected conformations 

from the molecular dynamics trajectory at fixed time intervals. Given the “beads-on-a-

string” nature of protein dynamics this is probably not the most effective choice. Fixed 
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time intervals are likely to select more than one structure from each conformational 

substate (leading to wasted effort) or miss a structure from a particular conformational 

substate (leading to lack of coverage of the conformational space). A better alternative 

is to use the right singular vectors to identify protein conformational substates and use 

representative structures in the pharmacophore calculation. 

5.4. Approximating Molecular Conformations Using Low Dimensional 

Representations for Protein Flexibility 

A third method of using the information derived from the calculation of 

collective modes of motion to model the flexibility of the protein is to use these degrees 

of freedom directly in the conformational search for the docked ligand. Such a method 

could be easily included in most current rigid-protein / flexible-ligand docking 

programs by adding degrees of freedom of the protein to the existing search space. For 

example, to add protein flexibility capabilities to Autodock (Morris, Goodsell et al. 

1998) we would only need to extend the information in the chromosome to include the 

new degrees of freedom representing the protein (note: Autodock uses a genetic 

algorithm to search the conformational space of the ligand to find the docked 

conformation (for more details see Appendix C) ). However, if we are to perform the 

conformational search directly by dealing with the degrees of freedom of the protein in 

the same manner as the degrees of freedom of the ligand then two important questions 

arise: “How many degrees of freedom of the protein need to be included in the 
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conformational search?” and “What level of approximation can we obtain using the 

reduced basis of representation?”. In this section we will address these two questions. 

In order to answer the two questions we decided to investigate if using the main 

modes of motion defined by the principal components and an experimental structure 

bound to a particular ligand, we could approximate the structure of HIV-1 protease 

bound to a different ligand. For this experiment we were only concerned with variations 

in the shape of the binding site and used only the PCA results described in Chapter 4 

for this part of the protein. A total of 250 atoms constitute the binding site for HIV-1 

protease, which results in an initial search space of 750 dimensions. As the initial 

reference conformation we chose the same structure we used for the molecular 

dynamics simulation and as a target structure we used a complex with a large non-

peptide inhibitor (Rutenber, Fauman et al. 1993) (PBD access code 1AID). The binding 

site conformations as well as the inhibitors bound to these are considerably different as 

shown in Figure A.2. The root mean square deviation (RMSD) between the two 

proteins is 1.843 Å if we take into account only the atoms that constitute the binding 

site.
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Figure 5.5 - RMSD between a reference (4HVP) and a target structure (1AID) for an 

approximation of the flexibility of the binding site of HIV-1 protease using an increasing 

number of collective modes of motion. The solid line uses the collective modes basis 

determined by the binding site PCA and the broken line uses a random basis defining the 

same space. 
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The next step was to calculate the coordinates of the target structure in the new 

basis. For this we used the definition of the representation basis given by the principal 

components of the molecular dynamics data and we set the origin of the space to be our 

reference structure. The coordinates in each of the dimensions are given by the dot 

product of the atomic displacement vector and the eigenvector defining each dimension. 

The resulting coordinates will be a solution vector of the form [w1, w2, w3, w4, …, w3N].

We can now calculate what would be the RMSD between our target structure and our 

low-dimensional approximation. The approximation corresponds to [w1, 0, 0, 0, …, 0] 

if we consider only the first collective mode, [w1, w2, 0, 0, …, 0] if we consider the first 

two and [w1, w2, w3, w4, …,wk, 0, …, 0] if we consider the first k collective modes. The 

RMSD results for an increasing number of collective modes are shown in Figure 5.5. 

When using the PCA basis we are able to approximate the target structure to an RMSD 

of less than 1 Å using 40 principal components out of a total of 750. By contrast if we 

used an approximation with a random orthonormal basis (Wolfram 1999) defining the 

same space (shown by a broken line in Figure 5.5) we would need more than 650 

principal components to obtain the same accuracy. This shows the strength of our 

method in approximating other conformations of the same protein using a lower 

dimensional search space and validates the effectiveness of the PCA by comparing it 

with an approximation carried out using a random basis. Furthermore, the level of 

approximation achieved is approximately similar to the tolerance level of current 

docking programs as reported in Chapter 2. It is also important to note that the values 

that we obtain for the approximation to the target can be further improved. Currently 
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we are using the projection of the target structure on the new basis to estimate a set of 

coordinates in the reduced space that approximate the target structure. However, the 

optimal approach is to search the low-dimensional space directly to look for the best 

match. In this way we can search for alternative coordinate values along the most 

significant principal components that compensate for the approximation being 

introduced by the dimensional truncation of the representation basis. We are currently 

developing search techniques for the purpose of finding these solutions in the reduced 

space.

 Despite the promising results of the previous experiment it is important to note 

that during the course of our investigation we found two factors which are critical in 

order to obtain good results using the reduced basis representation for protein 

flexibility. The first factor is that the PCA should be restricted to the region of interest. 

For the case of docking applications this would be the binding site region. In Figure 5.6 

we show the results of an approximation experiment equal to the one described in the 

previous paragraph but using the collective modes of motion determined for the all-

atoms PCA instead of the binding site PCA. From the comparison of Figures 5.5 and 

5.6 we can conclude that although the all-basis atoms also provides a better description 

of protein flexibility than a random basis, the approximation is significantly worse that 

for the binding site case. The reason for this is that the all-atoms modes of motion have 

to account for several changes in conformation that are not relevant at the binding site 

level.
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Figure 5.6 - RMSD between a reference (4HVP) and a target structure (1AID) for an 

approximation of the flexibility of the binding site of HIV-1 protease using an increasing 

number of collective modes of motion. The solid line uses the collective modes basis 

determined by all-atoms PCA. 
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Figure 5.7 - RMSD between a reference (4HVP) and a target structure (9HVP) for an 

approximation of the flexibility of the binding site of HIV-1 protease using an increasing 

number of collective modes of motion. The solid line uses the collective modes basis 

determined by binding site PCA. 
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 The second pitfall we discovered when testing the modes of motion derived 

from PCA is that they are useful only when modeling conformational rearrangements 

larger than 1.0Å to 1.2Å. In Figure 5.7 we show an experiment equal to the one 

described for Figure 5.5 but instead of approximating the binding site structure of 1AID 

we used the structure with PDB code 9HVP. The initial difference at the level of the 

binding site for these two structures is 0.9Å RMSD. As can be observed from Figure 

5.7 the inclusion of first main modes of motion does not lead to a sharp increase in the 

level of approximation as was observed in Figures 5.5 and 5.6. On the contrary, the 

approximation increases almost linearly with the number of degrees of freedom used 

for modeling. The linear phase is also present in Figure 5.5 starting at approximately 

0.9Å RMSD as well as in over 100 other conformations with different initial levels of 

approximation for which we tested this procedure (results not shown). The main 

conclusion for all the experiments is that approximately 30-50 main modes of motion 

are sufficient to generate an approximation at the level of 0.9Å RMSD but beyond this 

threshold the main modes of motion provide very little useful information. The 

justification for this result lies in a fundamental limitation of the PCA method. The 

PCA method relies on the accurate computation of motion correlation between pairs of 

atoms.  If there is a large amount of uncorrelated motion present, such as random 

thermal motion, it will mask any smaller amplitude correlated motions present in the 

system and in practice render modes of motion corresponding to very small deviations 

useless. Fortunately, in light of the results reported in Chapter 2 the 1.0Å approximation 

threshold is not a major problem for docking applications. 
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Figure 5.8 - RMSD between a reference (1AH4) and a target structure (1AH3) for an 

approximation of the flexibility of the binding site of aldose reductase using an increasing 

number of collective modes of motion. The solid line uses the collective modes basis 

determined by binding site PCA. 
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Figure 5.9 - Approximation (yellow) of the binding site bound conformation (red) of 

aldose reductase using the unbound conformation (green) as a starting point and 

searching along 40 main modes of collective motion. 
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In order to test the ability to use PCA modes of motion as degrees of freedom 

for modeling proteins other than HIV-1 protease we also applied the testing 

methodology described in this section to aldose reductase. For this we calculated an 

approximation of the form [w1, w2, …, w40, 0, …, 0] as we did for HIV-1 protease 

using the unbound form as the reference structure (no pocket present) and the bound 

structure to tolrestat as our target (pocket is present). The RMSD evolution for the 

binding site residues is shown in Figure 5.8. Figure 5.9 shows the approximation 

(yellow) of the bound conformation (red) using the unbound conformation (green) as a 

starting point and searching along 40 main modes of collective motion. The initial 

difference between the bound and unbound forms is 1.93Å RMSD. Using a 40 degrees 

of freedom approximation we can reduce this value to 1.03Å. From the figure it is clear 

that we can obtain a good approximation on the residues that form the top of the 

specificity pocket with our approximate structure matching almost exactly the 

experimental structure for the bound form. It is important to note that the approximation 

is able to capture not only the movement of aminoacid sidechains, such as the rotation 

of the aromatic ring in PHE 122, but also global displacements caused by a movement 

at the backbone level, such as shown for the backbone of residues 121 to 123. This 

contrasts with complexity reduction methods that consider the important flexibility of 

the protein as being represented only by movements of sidechains and that are unable to 

represent induced fit conformational changes caused by backbone movements. The 

bottom part of the specificity pocket does not show a match of similar quality but still 

shows a trend in the right direction. A good example of this is the change in 
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conformation of LEU 300. In fact the approximated structure already displays the 

specificity pocket and is large enough to accommodate ligands such as tolrestat or 

zopolrestat. 

5.5. Summary 

In this chapter we explore different methods of including the information 

derived from the dimensional reduction of molecular dynamics trajectories to model 

protein flexibility in the context of structure-based drug design. The information can be 

used indirectly to generate a discrete set of conformational samples that represent the 

flexibility of the protein. The sampled conformations can later be used as target 

receptors using traditional rigid-protein / flexible-ligand programs. Two methods are 

described to generate the conformational sampling: one is based on grid sampling along 

the main modes of motion, and the other is based on the identification of a 

representative structure of conformational substates using right singular vectors. 

Alternatively, the modes of motion can be used directly in conjunction with the degrees 

of freedom in the ligand to search for a flexible-protein / flexible-ligand bound 

conformation. Although there is inevitably some loss in accuracy, we show that we can 

obtain conformations that have been observed in laboratory experiments, starting from 

different initial conformations and working in a drastically reduced search space. 
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Chapter 6. 

Conclusions

In this work we showed how to obtain a reduced basis representation of protein 

flexibility. Proteins typically have a few hundreds to a few thousands of degrees of 

freedom. Starting with data obtained from laboratory experiments and/or molecular 

dynamics simulations, we demonstrate that we can compute a new set of degrees of 

freedom that are combinations of the original ones and that can be ranked according to 

significance. Depending on the level of accuracy desired, the k most significant of these 

new degrees of freedom can be used to model the flexibility of the system. We have 

observed, in multiple occasions, that the reduced basis representation retains critical 

information about the directions of preferred motion of the protein.  It can thus be used 

to compute conformational rearrangements of the protein that can further be studied for 

interaction with novel ligands or other proteins. Our work contributes to the better 

understanding of how changes in the conformation of a protein affect its ability to bind 

other molecules and hence its function. We envision that protein databases, such as the 

Protein Data Bank, would be annotated in the future with principal modes of motion for 

proteins allowing rapid and detailed analysis of biomolecular interactions. This 

annotation would allow researchers not only to analyze the static structure of a protein 

but also its motions and relations between structure, motion and function. The process 

of determining collective modes of motion could be automated using the methods 

described in the present work and the information would complement other structural 
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databases such as the Database of Macromolecular Movements (Gerstein and Krebs 

1998).

In this work we used PCA as our dimensionality reduction technique. The 

results obtained are biologically meaningful. Clearly, it is worth investigating the 

application of non-linear dimensionality reduction techniques to the same problem. For 

example local PCA (Kambhatla and Leen 1997), locally linear embedding (Roweis and 

Saul 2000), and multi-layer auto-associative neural networks (Kramer 1991) might be 

able to provide us with the same kind of information as PCA while using an even 

further reduced number of degrees of freedom. The application of these dimensionality 

reduction methods to protein structural data is only practical for modeling if we are able 

to obtain an inverse mapping from the lower to the higher dimensional space. This 

mapping can in principle be obtained using machine learning techniques such as neural 

networks. Carrying out this step efficiently is very difficult and constitutes an open 

research question. Preliminary work in our group indicates that some of the advantages 

obtained by performing a non-linear dimensional reduction are outweighed by an 

increased computational cost and a loss in accuracy due to the approximated inverse 

mapping. Nevertheless, the advantage of reduced complexity in the representation of 

molecular motion may justify the increased computational cost of the non-linear 

dimensionality reduction depending on the application. 

All our work was done using the Cartesian coordinates of atoms in the protein. 

An interesting idea is to perform the dimension reduction in the dihedral and the bond 

angle space of the system. The advantage of this approach is that the initial 
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dimensionality of the problem is reduced because given certain constraints fewer 

parameters are necessary to uniquely define a protein structure. The first constraint is 

that bond lengths are fixed. At a second level of approximation, bond angles between 

three consecutively bonded atoms can also be considered fixed. As such, it is possible 

to represent a molecular conformation using only the set of dihedral angles 

corresponding to torsions around single bonds. The dimensionality of this space is in 

practice approximately almost an order of magnitude smaller than the Cartesian 

representation. Initial experiments showed that a dihedral angle-based analysis of 

conformational data is very sensitive to noise and prone to error. We are currently 

investigating this problem and improving the general methodology in order to apply the 

methods described in this work to a dihedral angle representation. Last but not least, we 

investigate how to effectively explore conformational flexibility of a protein in the 

reduced basis representation to make approximate but fairly accurate predictions for 

protein-protein and protein-ligand interactions. This work could be used to predict 

complex effects such as the induced fit effect during ligand binding in a drug design 

study in a computationally efficient manner. 
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Appendix A. 

Protein Model Systems 

A.1. HIV-1 Protease 

HIV-1 protease is a homodimeric aspartyl protease with each subunit containing 

99 residues. This protein is encoded in the 5’ end of the pol gene and is expressed as 

part of the gag-pol polyprotein. HIV-1 protease plays a vital role in the maturation of 

the HIV-1 virus by targeting amino acid sequences in the gag and gag-pol polyproteins 

(Kramer, Schaber et al. 1986; Graves, Lim et al. 1988; Kohl, Emini et al. 1988; Le 

Grice, Mills et al. 1988). Cleavage of these polyproteins produces proteins that 

contribute to the structure of the virion, RNA packaging, and condensation of the 

nucleoprotein core. In 1988, Le Grice et al (Le Grice, Mills et al. 1988) carried out a 

study in which they demonstrated that proviral DNA lacking functional protease 

produces immature, noninfectious viral particles. This finding initiated a large 

concerted effort by the scientific community, from both academia and industry, to 

develop a small molecule capable of inhibiting proteolytic activity and stop the 

progression of HIV infection. This research effort marked the start of a new era in 

which protein structural information and knowledge of energetic interactions at an 

atomic level led to the discovery of a series of efficient HIV-1 protease inhibitors 

(Flexner 1998; Wlodawer and Vondrasek 1998). This new method of drug discovery is 

currently known as rational structure-based drug design. 
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Figure A.1 - 3D structure of HIV-1 protease  homodimer complexed with an inhibitor. 

On the a) top view  and  b) side view  the -hairpin flaps wrapping around the ligand are 

shown. c) in a space filling view the tight fit of the ligand in the binding site is shown 

indicating the need for a protein motion to allow for ligand entry and exit. 
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The active site of HIV-1 protease is formed by the homodimer interface and is 

capped by two identical -hairpin loops from each monomer, which are referred usually 

as flaps (residues 46-56 and 146-156). The structure of HIV-1 protease complexed with 

an inhibitor (Miller, Schneider et al. 1989) is shown in Figure A.1. The active site 

structure for the bound form is significantly different from the structure of the unbound 

conformation (Wlodawer, Miller et al. 1989). In the bound state the flaps adopt a closed 

conformation acting as clamps on the bound inhibitors or substrates, whereas in the 

unbound conformation the flaps are more open. During the binding process the 

“handedness” of the flaps changes and the positions of the tips of the flaps can vary by 

as much as 7Å. This constitutes evidence of the importance of large-scale structural 

rearrangements during the protein-ligand binding process in HIV-1 protease. Further 

evidence for the importance of flap flexibility comes from experimental observations 

linking mutations in flap residues to resistance against HIV-1 protease inhibitors (Ho, 

Toyoshima et al. 1994; Kaplan, Michael et al. 1994). 

In this study we used HIV-1 protease as a primary model system to study ligand 

binding dependent conformational changes. This choice was determined by the 

following factors: 

There is conclusive evidence that large-scale protein motions play a determinant 

role in ligand binding to HIV-1 protease (Freedberg, Wang et al. 1998; Piana, 

Carloni et al. 2002) and in the development of dug resistance (Rose, Craik et al. 

1998; Scott and Schiffer 2000; Cecconi, Micheletti et al. 2001). 
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HIV-1 protease as been extensively used as a model in computational studies. These 

studies included flap opening dynamics, protein-ligand complex dynamic 

flexibility, combined quantum/classical molecular dynamics studies, reaction path 

free energy calculations (Collins, Burt et al. 1995; Liu, Muller-Plathe et al. 1996; 

Luo, Kato et al. 1998; Rick, Erickson et al. 1998; Rick, Topol et al. 1998; 

Ringhofer, Kallen et al. 1999; Piana and Carloni 2000). 

There is extensive information on the mechanism and kinetics of HIV-1 protease 

(Silva, Cachau et al. 1996; Flexner 1998; Todd and Freire 1999). 

There are close to two hundred structures of HIV-1 protease bound to different 

ligands available in the Protein Data Bank (Berman, Westbrook et al. 2000). This 

variety serves as an excellent demonstration of protein plasticity in its optimal 

adaptation to a flexible ligand (see Figure A.2). Furthermore, it allowed for 

collective modes of motion to be calculated directly, based on the structural 

variations observed experimentally. 

Finding more efficient HIV-1 protease inhibitors is of extreme importance, since 

currently available drugs require a combination therapy to avoid the development of 

viral resistance and must be taken in very high dosages leading to serious side 

effects (Flexner 1998; Molla, Granneman et al. 1998; Kaul, Cinti et al. 1999). 
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Figure A.2 – Alternative conformations for HIV-1 protease. Tube representation of HIV-1 protease (PDB access codes 4HVP 

and 1AID) bound to different inhibitors represented by spheres. The plasticity of the binding site of the protein allows the 

protease to change its shape in order to accommodate ligands with widely different shapes and volumes. 
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A.2. Aldose Reductase 

 Aldose reductase is a member of the aldo-keto reductase superfamily and is 

responsible for the first step of the polyol metabolic pathway to catalyze the reduction 

of glucose to sorbitol. This reaction uses nicotinamide adenine dinucleotide phosphate 

(NADPH) as a cofactor. Sorbitol is subsequently transformed to fructose by sorbitol 

dehydrogenase using a NAD+-dependent oxidation. Aldose reductase is of great 

pharmacological interest due to its role in the development of complications associated 

with diabetes mellitus (Oates and Mylari 1999). Namely, the development of 

retinophaties, cataracts and glaucoma is believed to be due to the osmotic effect caused 

by an increase in the concentration of sorbitol in the eye (Kinoshita and Nishimura 

1988). Moreover, complications such as neuropathy and nephropathy are also caused 

by the increase flux of glucose in the polyol pathway (Dunlop 2000). The development 

of inhibitors for aldose reductase has been a goal in the pharmaceutical research field 

for over 25 years. Some inhibitors, such as epalrestat, have shown positive results in the 

treatment of diabetic complications. This drug is currently approved and marketed in 

Japan for treatment of neuropathy associated with diabetes. Unfortunately, several 

inhibitors such as tolrestat and sorbinil that showed some promise in laboratory and 

clinical trials have been discarded due to problems associated with efficacy and safety 

of these drugs. Efforts are still underway to find better inhibitors for aldose reductase 

that display fewer side effects. 
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Figure A.3 – Superposition of the unbound (green) and bound (red) forms of aldose 

reductase. The cofactor NADPH is shown using the orange sphere model.  Unlike the 

other protein models used in the present study, the conformational differences at the 

backbone level are very small. However, the main changes occur in the binding site 

region (indicated by B) and play a critical role in determining the binding to inhibitors of 

different shapes. 
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 Aldose reductase has a molecular weight of approximately 36 KDa. Analysis of 

the crystal structure of human aldose reductase (Borhani, Harter et al. 1992; Wilson, 

Bohren et al. 1992) shows that this protein belongs to the family of ( / )8 folding 

proteins (see Figure A.3). The structure contains eight parallel -strands forming the 

core of the barrel with each -strand alternating with an anti-parallel -helix. NADPH 

binds at the carboxy-terminus of the enzyme in an extended conformation, making a 

total of nineteen hydrogen bonds and three salt links with amino acid residues 

composing the cofactor binding site. 

One of the problems in developing new inhibitors for aldose reductase is that, 

just like in the case of the other proteins in this study, this enzyme has the capacity to 

adjust the shape of its binding site depending on the ligand it binds to. As such, a 

simple small-molecule database screen for potential ligands will miss many potential 

drug leads if it does not include the protein flexibility in the search process. Several 

experimental structures of aldose reductase have been solved using X-ray 

crystallography when bound to different ligands as well as in the unbound form (Figure 

A.3). It was observed that with some inhibitors such as sorbinil (Urzhumtsev, Tete-

Favier et al. 1997), the structure is almost identical to the unbound form. For other 

inhibitors, such as the tolrestat (Urzhumtsev, Tete-Favier et al. 1997) and zopolrestat 

(Wilson, Tarle et al. 1993), there is a formation of a specificity pocket resulting in 

significantly different binding site configurations. This conformational change is shown 

in A.4 where we compare the shape of the binding site for the unbound form of the 

enzyme to the bound form with tolrestat. In the unbound form shown on the left of A.4 
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there are two groups of aminoacids (represented by ball-and-stick models) that come 

together to close the specificity pocket. In the presence of tolrestat (represented on the 

right by a van der Waals sphere model) the aminoacids at the top and bottom of the 

binding site are separated and open the specificity cavity. The movement is caused by 

both side chain and small backbone rearrangements.  
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Figure A.4 – Binding site comparison for the unbound and bound forms of aldose 

reductase. The unbound form of aldose reductase is shown on the left and the bound form 

is shown on the right. The bottom figures zoom in the corresponding top figures to show 

aminoacids whose rearrangements open a pocket that make the binding possible. The 

cofactor NADPH is shown in orange. 
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A.3. Dihydrofolate Reductase 

Dihydrofolate reductase (DHFR) catalyzes the NADPH-dependent reduction of  

folate to 7,8-dihydrofolate (DHF) and DHF to 5,6,7,8-tetrahydrofolate (THF). In this 

reaction NADPH is converted to NADP+ and in this process DHFR adds two 

hydrogens to DHF to create THF. The main biological function of DHFR is to maintain 

the intracellular concentrations of THF. This molecule is of extreme biochemical 

importance for living organisms because is essential for the biosynthesis of pyrimidines 

and purines as well as several amino acids. THF is also a cofactor in a number of one-

carbon metabolism processes. Due to its critical role, DHFR has been one of the main 

targets for structure based drug design. Drugs targeting this protein are used in cancer 

chemotherapy by inhibiting DNA synthesis in rapidly dividing cancerous cells 

(Huennekens 1994). The first drug used for cancer chemotherapy was aminopterin. 

This drug binds to DHFR a thousand times more tightly than folate, therefore blocking 

the function of the protein. Nowadays, drugs such as methotrexate are most commonly 

used due to their tighter binding and better clinical characteristics. Additionally, 

researchers were able to take advantage of small structural differences present in DHFR 

from different species to developed potent antibacterial drugs (Roth and Stammers 

1992).  For example, the drug trimethoprim only binds very tightly to the bacterial 

enzyme. 
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Figure A.5 -  Three dimensional structure of DHFR. a) The structure is mostly constituted 

of -sheet secondary structure (yellow) and five -helices (magenta). The position of the 

large binding site is indicated by the position of the ligands NADPH (green) and folate 

(red). The two molecules are positioned to facilitate the transfer of hydrogen atoms from 

NADPH to the folate. b) The surface representation of the protein shows the shape of the 

binding site and how the catalytic site is protected from the solvent. 
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DHFR is a monomeric protein with a relatively low molecular weight of 

approximately 20 kDa. The structure of DHFR consists of 159 amino acid residues 

which are mostly in a parallel -sheet conformation.  Figure A.5 shows DHFR with -

helices in magenta and beta strands in yellow. The enzyme has a long binding site that 

binds NADPH at one end and folate at the other. The two molecules are positioned in 

such a way that transfer of hydrogen atoms from NADPH to the folate is facilitated. 

This protein was chosen for this study due to its importance as a clinical target 

and because it is known to undergo important conformational changes during the 

binding and release of its substrates. NMR and kinetic studies have shown that DHFR 

exists in two different unbound conformations (Schweitzer, Dicker et al. 1990; Feeney 

2000). The comparison of experimental structures for the bound and unbound forms has 

revealed structural differences (Cody, Galitsky et al. 1999). Recent computer 

simulations have also shown that protein flexibility and loop motions were essential to 

ligand binding, catalysis and release. Figure A.6 shows six different conformations 

determined experimentally (Sawaya and Kraut 1997) using isomorphous crystal 

structures for the catalytic cycle of DHFR. The conformations shown correspond to the 

five detectable kinetic intermediates and to the transition state. These are the 

holoenzyme, Michaelis complex, ternary product complex, tetrahydrofolate (THF) 

binary complex, THF•NADPH complex and methotrexate-NADPH complex. Ligands 

are shown for one of the structures to indentify the binding site. Arrows indicated the 

regions near the binding site which display the largest amount of variation. 
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Figure A.6 – Conformational changes during the catalytic cycle of DHFR. The

conformations shown in tube representation correspond to the five detectable kinetic 

intermediates and to the transition state. The location of the binding site is indicated by 

the VDW representation  of NADPH (green) and folate (red). Yellow arrows indicated 

the regions near the binding site that display the largest amount of variation. 
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A.4. Maltose Binding Protein 

Maltose binding protein exists in the periplasm of Gram-negative bacteria, plays 

a fundamental role in active transport and also serves as a receptor for chemotaxis. This 

protein is able to bind maltose, other linear maltodextrins, and cyclodextrins with high 

affinity, but it binds glucose with low affinity. These maltooligosaccharides traverse the 

outer bacterial membrane through specific channels (maltoporin LamB) and bind to 

maltose binding protein. The bound protein then interacts with several components of 

the cytoplasmatic membrane (MalF, MalG and two molecules of MalK) and initiates 

the active transport of nutrients across the membrane by hydrolyzing ATP. 

The three-dimensional structures of MBP, both bound (Spurlino, Lu et al. 1991) 

and unbound (Sharff, Rodseth et al. 1992) to maltose, have been determined by X-ray 

crystallography to 1.8 and 2.3 Å respectively. Maltose binding protein (shown in 

Figures A.7 and A.8) is a monomeric protein with a molecular weight of 40.6 kDa. The 

structure of this protein consists of two different globular domains that are separated by 

a large cleft that forms the binding site. Upon ligand binding, the cleft region acts as an 

hinge by bringing the two domains close together. The conformational change of 

maltose binding protein upon addition of maltose has been detected in solution using 

different experimental methods such as fluorescence (Szmelcman, Schwartz et al. 1976; 

Hall, Gehring et al. 1997), electron paramagnetic resonance (Hall, Thorgeirsson et al. 

1997), small-angle X-rayscattering (Shilton, Flocco et al. 1996), and NMR (Gehring, 

Zhang et al. 1998). The large conformational rearrangement corresponds almost 

exclusively to changes in the binding site region. The overall structures of the globular 
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domains stay mostly unchanged. This can be observed in Figure A.7 where the 

structures of the bound and unbound forms are shown superimposed. The domain 

displayed on the bottom was used for fitting using a least squares procedure. The 

conformational rearrangement upon binding for this protein is the largest of all the 

proteins used as models in this work. As shown in Figure A.7 the atomic displacements 

for the residues shown at the top of the structure are approximately 15Å.  In the 

unbound form of this protein the binding cleft is exposed to the solvent. Due to the 

large conformational rearrangement the ligand is engulfed in a tight binding cavity. 

This dramatic change in solvent exposure of the binding site region is clearly visible in 

Figure A.8. The binding motion in maltose binding protein is a critical part of its 

function. Current models for the function of this protein (Duan, Hall et al. 2001) 

postulate that the closed form of the protein is preferentially recognized by the 

membrane components responsible for transport and chemotaxis functions. 

Although this protein has not been used as a target for structure-based drug 

design we decided to include maltose binding protein in this study in order to test the 

dimensional reduction method with larger proteins that undergo large conformational 

rearrangements. 
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Figure A.7 – a) Front and b) side stereoviews of maltose binding protein. The bound form 

is shown in red and the unbound form in green. The position of the ligand for the bound 

structure is shown using the sphere model (white). When the protein binds the ligand the 

structure bends around an hinge point situated approximately in the center of the protein. 
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Figure A.8 – Surface representation for the a) bound and b) unbound forms of maltose 

binding protein (the ligand is shown in the unbound form for comparison purposes). After 

binding maltose the two domains close around a hinge in the center of the protein and 

change the solvent exposure of the binding site. 
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Appendix B. 

HIV-1 Protease Structures 

System 
PDB

File

HIVdb 

File

Company or 

Laboratory 
Year Inhibitor (Type) 

 (ARV2/SF2 isolate) 

unliganded 
3hvp hiv2nci

ABL-BRP, NCI 

Frederick 
1989 N/A 

 (HXB2 isolate) 

unliganded 
3phv hiv1bcl

Birkbeck College, 

Laboratory of 

Molecular Biology, 

London 

1989 N/A 

 (synthetic enzyme) 

with inhibitor 

MVT101 

4hvp hiv3nci
ABL-BRP, NCI 

Frederick 
1989 

MVT101 (Reduced 

amide isostere) 

 (BH10 isolate) with 

inhibitor A74704 
9hvp hiv1abb

Abbott Laboratories 

Dept. of CAMD 
1990 

A74704 

(hydroxyethylene 

isostere) 

 (synthetic enzyme) 

with inhibitor JG365 
7hvp hiv4nci

ABL-BRP, NCI 

Frederick 
1990 

JG365 

(hydroxyethylamine 

isostere) 

 (NY5 isolate) with 

acetyl-pepstatin
5hvp hiv2msd

Merck Sharp and 

Dohme Res. Lab 
1990 (Statine izostere) 

 (NY5 isolate) with 

pseudo C2 - 

symmetry inhibitor 

L-700,417 

4phv hiv3msd
Merck Sharp and 

Dohme Res. Lab 
1991 

L-700,417 

(hydroxyethylene 

isostere) 

 (synthetic enzyme) 

with inhibitor U-

85548E 

8hvp hiv7nci
ABL-BRP, NCI 

Frederick 
1991 

U-85548E 

(hydroxyethylene 

isostere) 

 (BRU isolate) 

unliganded 
1hhp hiv1pip Institut Pasteur,  Paris 1991 N/A 

 (BH10 isolate) with 

inhibitor SKF 

108738 

1hef hiv1skb
SmithKline Beecham 

Pharmaceuticals 
1992 

SKF 108738 

(hydroxyethylene 

isostere) 
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System 
PDB

File

HIVdb 

File

Company or 

Laboratory 
Year Inhibitor (Type) 

 (BH10 isolate) with 

inhibitor SKF 

107457 

1heg hiv2skb
SmithKline Beecham 

Pharmaceuticalss 
1992 

SKF 107457 

(hydroxyethylene 

isostere) 

 (BH10 isolate) with 

hydroxyethylene 

inhibitor 

1aaq hiv3skb
SmithKline Beecham 

Pharmaceuticalss 
1992 

(hydroxyethylene 

isostere) 

 (isolate unknown) 

with 

dihydroxyethylene 

inhibitor U75875 

1hiv hiv8nci
ABL-BRP, NCI 

Frederick 
1992 

U75875 

(dihydroxyethylene 

isostere) 

 (BH10 isolate) with 

C2 - symmetric 

phosphinate 

inhibitor 

1hos hiv4skb
SmithKline Beecham 

Pharmaceuticalss 
1993 

SB204144 (perfectly 

symmetrical 

phosphinate inhibitor) 

 (BH10 isolate) with 

penicillin - derived 

C2 - symmetric 

inhibitor 

1hte hiv1glx
Glaxo Group 

Research Limited 
1993 

GR123976 (penicillin-

derived C2-symmetric 

inhibitor) 

 (BH10 isolate) with 

penicillin - derived 

C2 - symmetric 

inhibitor 

1htf hiv2glx
Glaxo Group 

Research Limited 
1993 

GR126045 (penicillin-

derived C2-symmetric 

inhibitor) 

 (BH10 isolate) with 

inhibitor SB206343 
1hps hiv6skb

SmithKline Beecham 

Pharmaceuticalss 
1994 

SB 206343 

(hydroxyethylene 

isostere) 

 (NY5 isolate) with 

inhibitor L-735,524 

(MK639) 

[CRIXIVAN 

(Indinavir)]

1hsg hiv4msd  Merck & Co., Inc. 1994 

L-735,524; MK-639, 

Indinavir,Crixivan 

(hydroxyethylene 

isostere) 

 (BH10 isolate) with 

inhibitor SB 203386 
1sbg hiv7skb

SmithKline Beecham 

Pharmaceuticalss 
1994 

SB 203386 

(hydroxyethylene 

isostere) 
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System 
PDB

File

HIVdb 

File

Company or 

Laboratory 
Year Inhibitor (Type) 

 (BH10 isolate) with 

C2 - symmetry - 

based diol inhibitor 

A77003(R,S) 

1hvi hiv9nci SAIC, NCI Frederick 1994 
A77003 (C2 symmetry-

based diol isostere) 

 (BH10 isolate) with 

C2 - symmetry - 

based diol inhibitor 

A78791(S,-) 

1hvj hiv10nci SAIC, NCI Frederick 1994 
A78791(C2 symmetry-

based diol isostere) 

 (BH10 isolate) with 

C2 - symmetry - 

based diol inhibitor 

A76928(S,S) 

1hvk hiv11nci SAIC, NCI Frederick 1994 
A76928(C2 symmetry-

based diol isostere) 

 (BH10 isolate) with 

C2 - symmetry - 

based diol inhibitor 

A76889(R,R) 

1hvl hiv12nci SAIC, NCI Frederick 1994 
A76889(C2 symmetry-

based diol isostere) 

 (BH10 isolate) with 

penicillin - derived 

inhibitor GR137615 

1htg hiv3glx
Glaxo Group 

Research Limited 
1994 

GR137615 (penicillin-

derived inhibitor) 

 (LAI isolate) with 

inhibitor A76928 
1hvc hiv13nci SAIC, NCI Frederick 1994 

A76928 (C2 symmetry-

based diol isostere 

(S,S)) 

 (BH5 isolate) with 

nonpeptide cyclic 

ureas as inhibitor 

XK263 

1hvr hiv1dpm

DuPont Merck 

Pharmaceuticals 

Company 

1994 
XK263 (nonpeptidic 

ureas inhibitor) 

 (BH10 isolate) with 

inhibitor SB203238 
1hbv hiv8skb

SmithKline Beecham 

Pharmaceuticalss 
1995 

SB203238 (reduced 

amide isostere) 

 (BRU isolate) with 

inhibitor CGP 53820 
1hih hiv1cgp

Ciba-Geigy 

Pharmaceuticals Ltd. 
1995 

CGP53820 

(hydroxyethylene 

isostere) 
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System 
PDB

File

HIVdb 

File

Company or 

Laboratory 
Year Inhibitor (Type) 

 (BRU isolate) with 

inhibitor VX-

478,Amprenavir 

1hpv hiv1vpi

Vertex 

Pharmaceuticalss 

Incorporated 

1995 

VX-478;141W94; 

Amprenavir; 

Agenerase® 

(hydroxyethylene 

isostere,amino 

sulfonamide inhibitor) 

 (BH5 isolate) V82A 

mutant with 

inhibitor A77003 

1hvs hiv14nci SAIC, NCI Frederick 1995 

A77003 (C2 symmetry-

based diol isostere 

(R,S)) 

 (BRU isolate) with 

allophenylnorstatine 

inhibitor KNI - 272 

1hpx hiv15nci SAIC, NCI Frederick 1995 

KNI-272 

(allophenylnorstatine 

analog)

 (ARV2/SF2 isolate) 

with cyclic peptide 

inhibitor 

1cpi hiv1uba

University of 

Queensland, 

Australia 

1995 
(cyclic peptidomimetic 

inhibitor) 

 (BH5 isolate) 

complex with 

inhibitor U095438 

1upj hiv5ulk
Upjohn Company, 

Kalamazoo 
1995 

U095438 

(carboxamide-

containing 4- 

hydroxycoumarin 

inhibitor) 

 (BH5 isolate) 

complex with 

inhibitor U100313 

2upj hiv6ulk
Upjohn Company, 

Kalamazoo 
1995 

U100313 (4-hydroxy-2-

pyrones inhibitor) 

 (unknown isolate) 

with a 

difluoroketone 

containing inhibitor 

A79285 

1dif hiv16nci SAIC, NCI Frederick 1996 
A79285 (difluoroketone 

isostere) 

 (HXB2 isolate) with 

DMP323, a novel 

cyclic urea - type 

inhibitor (mutation 

C95A) 

1bve hiv1nid NIDR Bethesda,MD 1996 
DMP323 (urea-type 

inhibitor) 

 (HXB2 isolate) with 

DMP323, a novel 

cyclic urea - type 

inhibitor (mutation 

C95A) 

1bvg hiv2nid NIDR Bethesda,MD 1996 
DMP323 (urea-type 

inhibitor) 
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System 
PDB

File

HIVdb 

File

Company or 

Laboratory 
Year Inhibitor (Type) 

 (PV22 isolate) 

mutant (V82D) with 

U89360E, a peptidic 

inhibitor 

1gnm hiv1uoc
University of 

Oklahoma 
1996 

U89360E (peptidic 

inhibitor) 

 (PV22 isolate) 

mutant (V82N) with 

U89360E, a peptidic 

inhibitor 

1gnn hiv2uoc
University of 

Oklahoma 
1996 

U89360E (peptidic 

inhibitor) 

 (PV22 isolate) wild 

type with U89360E, 

a peptidic inhibitor 

1gno hiv3uoc
University of 

Oklahoma 
1996 

U89360E (peptidic 

inhibitor) 

 (ARV2/SF2 isolate) 

(mutant) complexed 

with a cyclic Phe - 

Ile - Val 

peptidomimetic 

inhibitor 

1mtr hiv2uba

University of 

Queensland, 

Australia 

1996 

Phe-Ile-Val (cyclic 

peptidomimetic 

inhibitor) 

 (Z2 isolate) dimer 

complex with 

inhibitor A-98881 

1pro hiv2abb
Abbott Laboratories 

Dept. of CAMD 
1996 

A-98881 (urea-type 

inhibitor) 

 (HXB-3 isolate) 

complex with 

inhibitor RO 31-

8959 [INVIRASE 

(saquinavir)]

1hxb hiv1hlr Hoffmann-La Roche 1996 

RO 31-8959, 

saquinavir;Invirase® ; 

Fortovase®; 

hydroxyethylamine 

isostere 

 (HXB-2 isolate) 

complex with 

inhibitor BMS-

182193 

1odw hiv17nci
ABL-BRP, NCI 

Frederick 
1996 

BMS-182193 

aminodiol isostere 

 (HXB-2 isolate) 

mutant A71T, V82A 

with inhibitor BMS-

182193 

1odx hiv18nci
ABL-BRP, NCI 

Frederick 
1996 

BMS-182193 

aminodiol isostere 

 (SF-2 strain) mutant 

Q7K with peptide 

product 

1ytg  hiv2ucs  

University of 

CaliforniaSan 

Francisco 

1996  peptide product  
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System 
PDB

File

HIVdb 

File

Company or 

Laboratory 
Year Inhibitor (Type) 

 (SF-2 strain) mutant 

Q7K with peptide 

product 

1yth  hiv3ucs  

University of 

CaliforniaSan 

Francisco 

1996  peptide product  

 (BH102 isolate) 

with inhibitor 

DMP450 

1dmp hiv14dpm

DuPont Merck  

Pharmaceuticals 

Company 

1996 DMP 450 

 (BH10 isolate) with 

cyclic sulfoamide 

inhibitor AHA006 

1ajv hiv1upp
Uppsala University, 

Sweden 
1997 

AHA006 cyclic 

sulfoamide 

 (BH10 isolate) with 

cyclic sulfoamide 

inhibitor AHA001 

1ajx hiv2upp
Uppsala University, 

Sweden 
1997 

AHA001 cyclic urea 

inhibitor 

 (SF1 isolate) with a 

nonpeptide inhibitor 

THK

1aid hiv6ucd

University of 

California San 

Francisco 

1997 
THK nonpeptidic 

inhibitor 

with inhibitor A-

84538,ABT-538 

[NORVIR 

(Ritonavir)]

1hxw hiv3abb Abbott Laboratories 1997 A-84538,ABT-538 

 (BH102 strain) 

I84V mutations with 

inhibitor DMP450 

1mer hiv6dpm

DuPont Merck 

Pharmaceuticals 

Company 

1997 DMP-450 

 (BH102 strain) 

I84V mutations with 

inhibitor DMP323 

1mes hiv7dpm

DuPont Merck 

Pharmaceuticals 

Company 

1997 DMP-323 

 (BH102 strain) 

V82F mutations 

with inhibitor 

DMP323 

1met hiv8dpm

DuPont Merck 

Pharmaceuticals 

Company 

1997 DMP-323 

 (BH102 strain) 

V82F,I84V 

mutations with 

inhibitor DMP323 

1meu hiv9dpm

DuPont Merck 

Pharmaceuticals 

Company 

1997 DMP-323 
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System 
PDB

File

HIVdb 

File

Company or 

Laboratory 
Year Inhibitor (Type) 

 (BH102 strain)  

with cyclic urea 

amide  inhibitor  

1qbr hiv15dpm

DuPont Merck 

Pharmaceuticals 

Company 

1997 
cyclic urea amide 

inhibitor 

 (BH102 strain)  

with cyclic urea 

amide  inhibitor 

1qbs hiv16dpm

DuPont Merck 

Pharmaceuticals 

Company 

1997 
cyclic urea amide 

inhibitor 

 (BH102 strain)  

with cyclic urea 

amide  inhibitor 

1qbt hiv17dpm

DuPont Merck 

Pharmaceuticals 

Company 

1997 
cyclic urea amide 

inhibitor 

 (BH102 strain)  

with cyclic urea 

amide  inhibitor 

1qbu hiv18dpm

DuPont Merck 

Pharmaceuticals 

Company 

1997 
cyclic urea amide 

inhibitor 

 (SF2 strain)  with a 

nonpeptide  inhibitor 
2aid hiv7ucs

University of 

California San 

Francisco 

1997 nonpeptide  inhibitor 

 (SF strain)  Q7K 

mutant with an 

aminimide peptide 

isostere inhibitor 

3aid hiv8ucs

University of 

California San 

Francisco 

1997 
aminimide peptide 

isostere inhibitor 

 (isolate unknown) 

complexed with AG-

1343[Viracept 

(Nelfinavir)]

1ohr hiv19aug
Agouron 

Pharmaceuticals 
1997  Nelfinavir Mesylate 

 (HXB2 isolate) with 

a hydrophylic 

tripeptide inhibitor 

Glu-Asp-Leu 

1a30 hiv1nih
National Institute of 

Health Bethesda 
1998 

GLU-ASP-LEU 

hydrophylic tripeptide 

inhibitorderived from 

the  transframe region 

of Gag-Pol 

G48H mutant with 

inhibitor U-89360E 
1a9m hiv4uoc

University of 

Oklahoma 
1998 U-89360E 

 (K7Q, I33L,I63L 

mutant) with an 

analog of the 

conserved Ca-P2 

substrate

1a8k hiv1tju

Thomas Jefferson 

University 

Philadelphia 

1998  N/A 
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System 
PDB

File

HIVdb 

File

Company or 

Laboratory 
Year Inhibitor (Type) 

T31S, V32I, L33V, 

E34A, E35G, M36I, 

S37E mutations with 

inhibitor SB203386  

1bdl hiv10skb
SmithKline Beecham 

Pharmaceuticalss 
1998 SB203386 

T31S, V32I, L33V, 

E34A, E35G, M36I, 

S37E, I47V,V82I 

mutations with 

inhibitor SB203386 

1bdq hiv11skb
SmithKline Beecham 

Pharmaceuticalss 
1998 SB203386 

T31S, L33V, E34T, 

E35G, M36I, S37E 

mutations with 

inhibitor  SB203386 

1bdr hiv12skb
SmithKline Beecham 

Pharmaceuticalss 
1998 SB203386 

 (BH102 strain) 

I82F, C95A 

mutations with 

inhibitor SD146 

1bv7 hiv10dpm

DuPont Merck 

Pharmaceuticals 

Company 

1998 SD146 

 (BH102 strain) 

I84V,C95A 

mutations with 

inhibitor XV638 

(cyclic urea 

inhibitor) 

1bv9 hiv11dpm

DuPont Merck 

Pharmaceuticals 

Company 

1998 XV638 

 V82F, I84V 

mutations with 

inhibitor XV638 

(cyclic urea 

inhibitor) 

1bwa hiv12dpm

DuPont Merck 

Pharmaceuticals 

Company 

1998 XV638 

 (BH102 strain) 

V82F, I84V 

mutations with 

inhibitor SD146 

1bwb hiv13dpm

DuPont 

MerckPharmaceutical

sCompany 

1998 SD146 

A28S mutant, with 

inhibitor  U89360E  
1axa hiv5uoc

University of 

Oklahoma 
1999 U89360E  

 (BH102 strain)  

with inhibitor Q8261 
1hvh hiv19dpm

DuPont Merck 

Pharmaceuticals 

Company 

1999 

Q8261, Nonpeptide 

Cyclic

Cyanoguanidines 
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System 
PDB

File

HIVdb 

File

Company or 

Laboratory 
Year Inhibitor (Type) 

 (BH102 strain)  

with inhibitor 

XK216 

1hwr hiv20dpm

DuPont Merck 

Pharmaceuticals 

Company 

1999 XK216 

 (HXB2 isolate)  

with inhibitor LP-

130 

1ody hiv20nci
ABL-BRP, NCI 

Frederick 
1999 LP-130 

 (NY5 isolate) with 

inhibitor L-738,317 
2bpv hiv12msd

Merck Sharp and 

Dohme Res. Lab 
1999 L-738,317 

 (NY5 isolate) with 

inhibitor L-738,317 
2bpw hiv13msd

Merck Sharp and 

Dohme Res. Lab 
1999 L-738,317 

 (NY5 isolate) with 

inhibitor L-735,524 
2bpx hiv14msd

Merck Sharp and 

Dohme Res. Lab 
1999 

L-735,524,MK-

639,Indinavir,Crixivan 

 (NY5 isolate) with 

inhibitor L-739,622 
2bpy hiv15msd

Merck Sharp and 

Dohme Res. Lab 
1999 L-739,622 

 (NY5 isolate) with 

inhibitor L-739,622 
2bpz hiv16msd

Merck Sharp and 

Dohme Res. Lab 
1999 L-739,622 

 (synthetic construct 

SF isolate) with 

macrocyclic

peptidomimetic 

inhibitor 

1d4k hiv3uba
University of 

Queensland,Australia 
1999  PI9  

 (synthetic construct 

SF isolate) mutant 

with macrocyclic 

peptidomimetic 

inhibitor 

1d4l hiv4uba
University of 

Queensland,Australia 
1999  PI9  

V82F/I84V Double 

Mutant/Tipranavir 

Complex 

1d4s hiv23ulk 
Upjohn Company, 

Kalamazoo 
1999  

U-140690; PNU-

140690;Tipranavir  

Q7K, L33I, L63I 

Triple 

Mutant/Tipranavir 

Complex 

1d4y hiv24ulk 
Upjohn Company, 

Kalamazoo 
1999  

U-140690; PNU-

140690;Tipranavir  
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System 
PDB

File

HIVdb 

File

Company or 

Laboratory 
Year Inhibitor (Type) 

 (isolate unknown) 

with inhibitor RO31-

8558 

N/A hiv2hlr Hoffmann-La Roche 1991 

RO31-8558 

hydroxyethylamine 

isostere 

 (isolate unknown) 

with inhibitor 

AG1001 

N/A hiv1aug
Agouron 

Pharmaceuticals 
1991 AG1001 

 (isolate unknown) 

with inhibitor 

AG1002 

N/A hiv2aug
Agouron 

Pharmaceuticals 
1991 AG1002 

 (isolate unknown) 

with inhibitor 

AG1004 

N/A hiv3aug
Agouron 

Pharmaceuticals 
1991 AG1004 

 (isolate unknown) 

with inhibitor 

LILLY765 

N/A hiv1lll Lilly Pharmaceuticals 1991 LILLY765 

 (isolate unknown) 

with inhibitor I-

BMS-01 

N/A hiv1bms Bristol-Myers Squibb 1993 I-BMS-01 

 (isolate unknown) 

with inhibitor I-

BMS-02 

N/A hiv2bms Bristol-Myers Squibb 1993 I-BMS-02 

mutant C95A 

(BH102 isolate) with 

inhibitor DMP323 

N/A hiv2dpm

DuPont Merck 

Pharmaceuticals 

Company 

1996 
DMP323 urea based 

inhibitor 

mutant C95A 

(BH102 isolate) with 

inhibitor Q8467 

N/A hiv3dpm

DuPont Merck 

Pharmaceuticals 

Company 

1997 
Q8467 cyclic urea amid 

inhibitor 

mutant C95A 

(BH102 isolate) with 

inhibitor XV638 

N/A hiv4dpm

DuPont Merck 

Pharmaceuticals 

Company 

1997 
XV638 cyclic urea 

amid inhibitor 

mutant C95A 

(BH102 isolate) with 

inhibitor SD146 

N/A hiv5dpm

DuPont Merck 

Pharmaceuticals 

Company 

1997 
SD146 cyclic urea amid 

inhibitor 
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System 
PDB

File

HIVdb 

File

Company or 

Laboratory 
Year Inhibitor (Type) 

 (isolate unknown) 

with inhibitor 
N/A hiv4glx

Glaxo Group 

Research Limited 
1991 GR-XXXX 

 (ROD isolate) with 

inhibitor L-689,502 
N/A hiv7msd

Merck Sharp and 

Dohme Res. Lab 
1992 L-689,502 

 (BH-10 isolate) 

with inhibitor MDL 

104,168 

N/A hiv1mmd MMDRI,  France 1993 

MDL 104,168 

difluorostatone 

inhibitor 

 (BH-10 isolate) 

with inhibitor MDL 

73,669 

N/A hiv2mmd MMDRI, France 1993 

MDL 73,669 

difluorostatone 

inhibitor 

 (BH-10 isolate) 

with inhibitor MDL 

73,730 

N/A hiv3mmd MMDRI, France 1993 

MDL 73,730 

difluorostatone 

inhibitor 

 (BH-10 isolate) 

with inhibitor MDL 

73,881 

N/A hiv4mmd MMDRI, France 1993 

MDL 73,881 

difluorostatone 

inhibitor 

 (BH-10 isolate) 

with inhibitor MDL 

73,915 

N/A hiv5mmd MMDRI, France 1993 

MDL 73,915 

difluorostatone 

inhibitor 

(BH-10 isolate) with 

inhibitor MDL 

74,538 

N/A hiv6mmd MMDRI, France 1993 

MDL 

74,538difluorostatone 

inhibitor 

(BH-10 isolate) with 

inhibitor MDL 

75,635 

N/A hiv7mmd MMDRI, France 1993 

MDL 

75,635difluorostatone 

inhibitor 

(BH-10 isolate) with 

inhibitor MDL 

75,305 

N/A hiv8mmd MMDRI, France 1993 

MDL 

75,305difluorostatone 

inhibitor 

 (BH-10 isolate) 

with inhibitor 

AHA004 

N/A hiv3upp
Uppsala University, 

Sweden 
1997 

AHA004 cyclic urea 

inhibitor 

 (BH-10 isolate) 

with inhibitor 

AHA009 

N/A hiv4upp
Uppsala University, 

Sweden 
1997 

AHA009 sulfoamide 

inhibitor 
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System 
PDB

File

HIVdb 

File

Company or 

Laboratory 
Year Inhibitor (Type) 

 (BH5 isolate) with 

inhibitor U101935 
7upj hiv11ulk

Upjohn Company, 

Kalamazoo 
1997 U101935 

 (triple mutant 

Q7K/L33I/L63I) 

with inhibitor 

U103265 

1hpo hiv12ulk
Upjohn Company, 

Kalamazoo 
1997 U103265 

 (isolate unknown) 

with inhibitor L-

738816 

N/A hiv8msd
Merck Sharp and 

Dohme Res. Lab 
1997 L-738,816 

 (isolate unknown) 

with inhibitor L-

739622 

N/A hiv9msd
Merck Sharp and 

Dohme Res. Lab 
1997 L-739,622 

 (isolate unknown) 

with inhibitor L-

771786 

N/A hiv10msd
Merck Sharp and 

Dohme Res. Lab 
1997 L-771,786 

 (isolate unknown) 

with inhibitor 

AP248 

N/A hiv11msd
Merck Sharp and 

Dohme Res.Lab 
1997 AP248 

 (isolate unknown) 

with cyclopropan 

peptidomimetic 

inhibitor 

N/A hiv19nci SAIC, NCI Frederick 1998 

cyclopropan

peptidomimetic 

inhibitor 

   with inhibitor 

U104661 
N/A hiv18ulk

Upjohn Company, 

Kalamazoo 
1998 U104661 

   with inhibitor 

U101935 
N/A hiv19ulk

Upjohn Company, 

Kalamazoo 
1998 U101935 

  with inhibitor 

U101935 
N/A hiv20ulk

Upjohn Company, 

Kalamazoo 
1998 U101935 

 (triple mutant 

Q7K/L33I/L63I) 

with inhibitor 

U103695 

N/A hiv21ulk
Upjohn Company, 

Kalamazoo 
1998 U103695 
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System 
PDB

File

HIVdb 

File

Company or 

Laboratory 
Year Inhibitor (Type) 

 (triple mutant 

Q7K/L33I/L63I) 

with inhibitor 

U102812 

N/A hiv22ulk
Upjohn Company, 

Kalamazoo 
1998 U102812 

 (isolate unknown) 

with inhibitor 

AG1174 

N/A hiv5aug
Agouron 

Pharmaceuticals 
1999 AG1174 

 (isolate unknown) 

with inhibitor 

AG1204 

N/A hiv6aug
Agouron 

Pharmaceuticals 
1999 AG1204 

 (isolate unknown) 

with inhibitor 

AG1216 

N/A hiv7aug
Agouron 

Pharmaceuticals 
1999 AG1216 

 (isolate unknown) 

with inhibitor 

AG1220 

N/A hiv8aug
Agouron 

Pharmaceuticals 
1999 AG1220 

 (isolate unknown) 

with inhibitor 

AG1221 

N/A hiv9aug
Agouron 

Pharmaceuticals 
1999 AG1221 

 (isolate unknown) 

with inhibitor 

AG1225 

N/A hiv10aug
Agouron 

Pharmaceuticals 
1999 AG1225 

 (isolate unknown) 

with inhibitor 

AG1232 

N/A hiv11aug
Agouron 

Pharmaceuticals 
1999 AG1232 

 (isolate unknown) 

with inhibitor 

AG1235 

N/A hiv12aug
Agouron 

Pharmaceuticals 
1999 AG1235 

 (isolate unknown) 

with inhibitor 

AG1240 

N/A hiv13aug
Agouron 

Pharmaceuticals 
1999 AG1240 

 (isolate unknown) 

with inhibitor 

AG1254 

N/A hiv14aug
Agouron 

Pharmaceuticals 
1999 AG1254 
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System 
PDB

File

HIVdb 

File

Company or 

Laboratory 
Year Inhibitor (Type) 

 (isolate unknown) 

with inhibitor 

AG1256 

N/A hiv15aug
Agouron 

Pharmaceuticals 
1999 AG1256 

 (isolate unknown) 

with inhibitor 

AG1274 

N/A hiv16aug
Agouron 

Pharmaceuticals 
1999 AG1274 

 (isolate unknown) 

with inhibitor 

AG1276 

N/A hiv17aug
Agouron 

Pharmaceuticals 
1999 AG1276 

 (isolate unknown) 

with inhibitor 

AG1284 

N/A hiv18aug
Agouron 

Pharmaceuticals 
1999 AG1284 

Table B.1. – HIV-1 protease structures used for the PCA analysis (note: Data was 

obtained from the HIV Protease Database (http://srdata.nist.gov/hivdb/) ). 
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Appendix C. 

Molecular Modeling and Rigid Protein Docking 

C.1. Molecular Modeling 

A molecule is characterized by a pair (A; B), in which A represents a collection 

of atoms, and B represents a collection of bonds between pairs of atoms. Information 

used for kinematic and energy computations is associated with each of the atoms and 

bonds. Each atom carries standard information, such as its van der Waals radius. Three 

pieces of information are associated with each bond: (i) bond length, is the distance 

between atom centers; (ii) bond angle, is the angle between two consecutive bonds; (iii) 

whether the bond is rotatable or not. Since bond lengths and angles do not change 

significantly, it is common practice to consider them fixed. Thus the degrees of 

freedom of the molecule arise from the rotatable bonds. The three dimensional 

embedding of a molecule defined when we assign values to its rotatable bonds is called 

the conformation of the molecule. Ligands typically have 3-15 rotatable bonds, while 

receptors have 1,000-2,000 rotatable bonds. The dimension of the combined search 

space makes the docking problem computationally intractable. 

One key aspect of molecular modeling is calculating the energy of 

conformations and interactions. This energy can be calculated with a wide range of 

methods ranging from quantum mechanics to purely empirical energy functions. The 

accuracy of these functions is usually proportional to its computational expense and 
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choosing the correct energy calculation method is highly dependent on the application. 

Computation times for different methods can range from a few milliseconds on a 

workstation to several days on a supercomputer. 

In the context of docking, energy evaluations are usually carried out with the 

help of a scoring function and developing these is a major challenge facing structure 

based drug design (Vieth, Hirst et al. 1998; Muegge and Rarey 2001; Halperin, Ma et 

al. 2002). No matter how efficient and accurate the geometric modeling of the binding 

process is, without good scoring functions it is impossible to obtain correct solutions. 

The two main characteristics of a good scoring function are selectivity and efficiency. 

Selectivity enables the function to distinguish between correctly and incorrectly docked 

structures and efficiency enables the docking program to run in a reasonable amount of 

time. 

A large number of current scoring functions are based on forcefields that were 

initially designed to simulate the function of proteins (Cornell, Cieplak et al. 1995; 

MacKerell, Bashford et al. 1998). A forcefield is an empirical fit to the potential energy 

surface in which the protein exists and is obtained by establishing a model with a 

combination of bonded terms (bond distances, bond angles, torsional angles, etc.) and 

non-bonded terms (van der Waals and electrostatic). The relative contributions of these 

terms are adjusted for the different types of atoms in the simulated molecule by 

adjusting a series of empirical parameters. Some scoring functions used in molecular 

docking have been adapted to include terms such as solvation and entropy (Morris, 
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Goodsell et al. 1998). A separate approach is to use statistical scoring functions that are 

derived using experimental data (Muegge and Martin 1999). 

C.2. Rigid Protein Docking  

Most of the docking methods used at the present moment in academic and 

industrial research assume a rigid protein. To illustrate the methodology used by these 

methods we will briefly discuss three of the most common programs used for docking: 

Autodock (Morris, Goodsell et al. 1998), Dock (Ewing and Kuntz 1997) and FlexX 

(Kramer, Rarey et al. 1999). 

Autodock uses a kinematic model for the ligand based on rotations around 

single bonds. The ligand begins the search process randomly outside the binding site 

and by exploring the values for translations, rotations and its internal degrees of 

freedom, it will eventually reach the bound conformation. Distinction between good 

and bad docked conformations is carried out by the scoring function. Autodock is able 

to use Monte Carlo methods or simulated annealing (SA) in the search process and in 

its last version introduced the ability to use genetic algorithms (GA). The routine 

implemented in the recent release is a Lamarkian genetic algorithm (LGA), in which a 

traditional GA is used for global search and is combined with a Solis and Wets local 

search procedure. Morris et al show that the new LGA is able to handle ligands with a 

larger number of degrees of freedom than SA or traditional GA. 

FlexX and Dock both use an incremental construction algorithm which attempts 

to reconstruct the bound ligand by first placing a rigid anchor in the binding site and 
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later using a greedy algorithm to add fragments and complete the ligand structure. 

Although these programs are more efficient than Autodock in the sense that they 

require fewer energy evaluations there exist some tradeoffs. One of main problems is 

that it is not trivial to choose the anchor fragment and its choice will determine what 

solutions can be obtained. Also the greedy algorithm propagates errors resulting from 

initial bad choices that lead to missing final conformations of lower energy. 

In order to solve the docking problem conformation methods using standard robotics 

techniques such as probabilistic roadmap planning have been recently described
[8,9]

. In 

addition to being successful in finding the correct docking conformation these methods 

are useful in identifying possible binding sites and in providing a computational 

efficient description of the dynamics of ligand binding. 



201

References 

Abseher, R. and Nilges, M. (1998). "Are there non-trivial dynamic cross-correlations in 

proteins?" Journal of Molecular Biology 279(4): 911-20. 

Abseher, R. and Nilges, M. (2000). "Efficient sampling in collective coordinate space." 

Proteins: Structure, Function, and Genetics 39(1): 82-8. 

Althaus, E., Kohlbacher, O., Lenhof, H. P. and Muller, P. (2002). "A combinatorial 

approach to protein docking with flexible side chains." Journal of 

Computational Biology 9(4): 597-612. 

Amadei, A., Ceruso, M. A. and Di Nola, A. (1999). "On the convergence of the 

conformational coordinates basis set obtained by the essential dynamics analysis 

of proteins' molecular dynamics simulations." Proteins: Structure, Function, and 

Genetics 36(4): 419-24. 

Amadei, A., Linssen, A. B. and Berendsen, H. J. (1993). "Essential dynamics of 

proteins." Proteins: Structure, Function, and Genetics 17(4): 412-25. 



202

Amadei, A., Linssen, A. B., de Groot, B. L., van Aalten, D. M. and Berendsen, H. J. 

(1996). "An efficient method for sampling the essential subspace of proteins." 

Journal of Biomolecular Structure and Dynamics 13(4): 615-25. 

Amit, A. G., Mariuzza, R. A., Phillips, S. E. and Poljak, R. J. (1986). "Three-

dimensional structure of an antigen-antibody complex at 2.8 A resolution." 

Science 233(4765): 747-53. 

Anderson, A. C., O'Neil, R. H., Surti, T. S. and Stroud, R. M. (2001). "Approaches to 

solving the rigid receptor problem by identifying a minimal set of flexible 

residues during ligand docking." Chemical Biology 8(5): 445-57. 

Andrews, B. K., Romo, T., Clarage, J. B., Pettitt, B. M. and Phillips, G. N., Jr. (1998). 

"Characterizing global substates of myoglobin." Structure 6(5): 587-94. 

Apostolakis, J., Pluckthun, A. and Caflisch, A. (1998). "Docking small ligands in 

flexible binding sites." Journal of Computational Chemistry 19(1): 21-37. 

Appelt, K. (1993). "Crystal structures of HIV-1 protease-inhibitor complexes." 

Perspectives in Drug Discovery and Design 1: 23–48. 



203

Auzat, I., Gawlita, E. and Garel, J. R. (1995). "Slow ligand-induced transitions in the 

allosteric phosphofructokinase from Escherichia coli." Journal of Molecular 

Biology 249(2): 478-92. 

Bahar, I., Erman, B., Jernigan, R. L., Atilgan, A. R. and Covell, D. G. (1999). 

"Collective motions in HIV-1 reverse transcriptase: examination of flexibility 

and enzyme function." Journal of Molecular Biology 285(3): 1023-37. 

Banner, D. W. and Hadvary, P. (1991). "Crystallographic analysis at 3.0-A resolution 

of the binding to human thrombin of four active site-directed inhibitors." 

Journal of Biological Chemistry 266(30): 20085-93. 

Berendsen, H. J. C., Postma, J. P. M., van Gunsteren, W. F., DiNola, A. and Haak, J. R. 

(1984). "Molecular dynamics with coupling to an external bath." Journal of 

Chemical Physics 81(8): 3684-3690. 

Berg, B. A. and Neuhaus, T. (1992). "Multicanonical ensemble:  A new approach to 

simulate first-order phase transitions." Physical Review Letters 68: 9-12. 

Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., 

Shindyalov, I. N. and Bourne, P. E. (2000). "The Protein Data Bank." Nucleic 

Acids Research 28(1): 235-242. 



204

Betts, M. J. and Sternberg, M. J. (1999). "An analysis of conformational changes on 

protein-protein association: implications for predictive docking." Protein 

Engineering 12(4): 271-83. 

Bishop, C. M., Svensen, M. and Williams, C. K. (1998). "GTM:the Generative 

Topographic Mapping." Neural Computation 10(1): 215 -234. 

Blow, D. M. (1976). "Structure and Mechanism of Chymotrypsin." Accounts Chemical 

Research 9: 145-152. 

Bolin, J. T., Filman, D. J., Matthews, D. A., Hamlin, R. C. and Kraut, J. (1982). 

"Crystal structures of Escherichia coli and Lactobacillus casei dihydrofolate 

reductase refined at 1.7 A resolution. I. General features and binding of 

methotrexate." Journal of Biological Chemistry 257(22): 13650-62. 

Borhani, D. W., Harter, T. M. and Petrash, J. M. (1992). "The crystal structure of the 

aldose reductase.NADPH binary complex." Journal of Biological Chemistry

267(34): 24841-7. 

Bouzida, D., Rejto, P. A., Arthurs, S., Colson, A. B., Freer, S. T., Gehlhaar, D. K., 

Larson, V., Luty, B. A., Rose, P. W. and Verkhivker, G. M. (1999). "Computer 

simulations of ligand-protein binding with ensembles of protein conformations: 



205

A Monte Carlo study of HIV-1 protease binding energy landscapes." 

International Journal of Quantum Chemistry 72: 73-84. 

Brooks, C. L. I., Montgomery, B. and Karplus, M. (1988). Proteins : A Theoretical 

Perspective of Dynamics, Structure and Thermodynamics. New York, John 

Wiley & Sons. 

Broughton, H. B. (2000). "A method for including protein flexibility in protein-ligand 

docking: improving tools for database mining and virtual screening." Journal of 

Molecular Graphics and Modeling 18(3): 247-57, 302-4. 

Bruccoleri, R. E. and Karplus, M. (1990). "Conformational sampling using high-

temperature molecular dynamics." Biopolymers 29(14): 1847-62. 

Brünger, A. T. (1992). X-PLOR Version 3.1:  A system for  X-ray crystallography and 

NMR. New Haven, Yale University Press. 

Bursavich, M. G. and Rich, D. H. (2002). "Designing non-peptide peptidomimetics in 

the 21st century: inhibitors targeting conformational ensembles." Journal of 

Medicinal Chemistry 45(3): 541-58. 



206

Bystroff, C. and Kraut, J. (1991). "Crystal structure of unliganded Escherichia coli 

dihydrofolate reductase. Ligand-induced conformational changes and 

cooperativity in binding." Biochemistry 30(8): 2227-39. 

Caflisch, A., Fischer, S. and Karplus, M. (1997). "Docking by Monte Carlo 

Minimization with a Solvation Correction: Application to an FKBP-Substrate 

Complex." Journal of Computational Chemistry 18(6): 723-743. 

Cao, Y., Musah, R. A., Wilcox, S. K., Goodin, D. B. and McRee, D. E. (1998). "Protein 

conformer selection by ligand binding observed with crystallography." Protein 

Science 7(1): 72-8. 

Carlson, H. A. (2002). "Protein flexibility and drug design: how to hit a moving target." 

Current Opinion in Chemical Biology 6(4): 447-52. 

Carlson, H. A. (2002). "Protein Flexibility is an Important Component of Structure-

Based Drug Discovery." Current Pharmaceutical Design 8(17): 1571-8. 

Carlson, H. A., Masukawa, K. M. and McCammon, J. A. (1999). "Method for Including 

the Dynamic Fluctuations of a Protein in Computer-Aided Drug Design." 

Journal of Chemical Information and Computer Science 103: 10213-10219. 



207

Carlson, H. A., Masukawa, K. M., Rubins, K., Bushman, F. D., Jorgensen, W. L., Lins, 

R. D., Briggs, J. M. and McCammon, J. A. (2000). "Developing a dynamic 

pharmacophore model for HIV-1 integrase." Journal of Medicinal Chemistry

43(11): 2100-14. 

Carlson, H. A. and McCammon, J. A. (2000). "Accommodating protein flexibility in 

computational drug design." Molecular Pharmacology 57(2): 213-8. 

Case, D. A. (1994). "Normal Mode Analysis of Protein Dynamics." Current Opinion in 

Structural Biology 4: 285-290. 

Caves, L. S., Evanseck, J. D. and Karplus, M. (1998). "Locally accessible 

conformations of proteins: multiple molecular dynamics simulations of 

crambin." Protein Science 7(3): 649-66. 

Cecconi, F., Micheletti, C., Carloni, P. and Maritan, A. (2001). "Molecular dynamics 

studies on HIV-1 protease drug resistance and folding pathways." Proteins: 

Structure, Function, and Genetics 43(4): 365-72. 

Chillemi, G., Falconi, M., Amadei, A., Zimatore, G., Desideri, A. and Di Nola, A. 

(1997). "The essential dynamics of Cu, Zn superoxide dismutase: suggestion of 

intersubunit communication." Biophysical Journal 73(2): 1007-18. 



208

Clarage, J. B., Romo, T., Andrews, B. K., Pettitt, B. M. and Phillips, G. N., Jr. (1995). 

"A sampling problem in molecular dynamics simulations of macromolecules." 

Proceedings of the National Academy of Sciences USA 92(8): 3288-92. 

Claussen, H., Buning, C., Rarey, M. and Lengauer, T. (2001). "FlexE: efficient 

molecular docking considering protein structure variations." Journal of 

Molecular Biology 308(2): 377-95. 

Cody, V., Galitsky, N., Rak, D., Luft, J. R., Pangborn, W. and Queener, S. F. (1999). 

"Ligand-induced conformational changes in the crystal structures of 

Pneumocystis carinii dihydrofolate reductase complexes with folate and 

NADP+." Biochemistry 38(14): 4303-12. 

Collins, J. R., Burt, S. K. and Erickson, J. W. (1995). "Flap opening in HIV-1 protease 

simulated by 'activated' molecular dynamics." Nature Structural Biology 2(4):

334-8.

Cornell, W. D., Cieplak, P., Bayly, C. I., Gould, I. R., Merz, K. M., Ferguson, D. M., 

Spellmeyer, D. C., Fox, T., Caldwell, J. W. and Kollman, P. A. (1995). "A 

second generation force field for the simulation of proteins and nucleic acids." 

Journal of the American Chemical Society 117: 5179-5197. 



209

Darden, T. A., York, D. and Pedersen, L. (1993). "Particle Mesh Ewald: An N log(N) 

method for Ewald sums in large  systems." Journal of Chemical Physics 98:

10089.

David, L., Luo, R. and Gilson, M. K. (2001). "Ligand-receptor docking with the Mining 

Minima optimizer." Journal of Computer Aided Molecular Design 15(2): 157-

71.

de Groot, B. L., Amadei, A., Scheek, R. M., van Nuland, N. A. and Berendsen, H. J. 

(1996). "An extended sampling of the configurational space of HPr from E. 

coli." Proteins: Structure, Function, and Genetics 26(3): 314-22. 

de Groot, B. L., Amadei, A., van Aalten, D. M. and Berendsen, H. J. (1996). "Toward 

an exhaustive sampling of the configurational spaces of the two forms of the 

peptide hormone guanylin." Journal of Biomolecular Structure and Dynamics

13(5): 741-51. 

de Groot, B. L., Hayward, S., van Aalten, D. M., Amadei, A. and Berendsen, H. J. 

(1998). "Domain motions in bacteriophage T4 lysozyme: a comparison between 

molecular dynamics and crystallographic data." Proteins: Structure, Function, 

and Genetics 31(2): 116-27. 



210

DesJarlais, R. L., Sheridan, R. P., Seibel, G. L., Dixon, J. S., Kuntz, I. D. and 

Venkataraghavan, R. (1988). "Using shape complementarity as an initial screen 

in designing ligands for a receptor binding site of known three-dimensional 

structure." Journal of Medicinal Chemistry 31(4): 722-9. 

Desmet, J., DeMaeyer, M., Hazes, B. and Lasters, I. (1992). "The dead-end elimination 

theorem and its use in protein side-chain positioning." Nature 356: 539-542. 

Di Nola, A., Roccatano, D. and Berendsen, H. J. (1994). "Molecular dynamics 

simulation of the docking of substrates to proteins." Proteins: Structure, 

Function, and Genetics 19(3): 174-82. 

Duan, X., Hall, J. A., Nikaido, H. and Quiocho, F. A. (2001). "Crystal structures of the 

maltodextrin/maltose-binding protein complexed with reduced oligosaccharides: 

flexibility of tertiary structure and ligand binding." Journal of Molecular 

Biology 306(5): 1115-26. 

Dunbrack, R. (2002). "Rotamer Libraries in the 21(st) Century." Current Opinion in 

Structural Biology 12(4): 431. 

Dunlop, M. (2000). "Aldose reductase and the role of the polyol pathway in diabetic 

nephropathy." Kidney Int Suppl 77: S3-12. 



211

Essman, U., Perera, L., Berkowitz, M. L., Darden, T., H., L. and L.G., P. (1995). "A 

smooth particle mesh Ewald method." Journal of Chemical Physics 103: 8577-

8593.

Ewing, T. J. A. and Kuntz, I. D. (1997). "Critical evaluation of search algorithms for 

automated molecular docking and database screening." Journal of 

Computational Chemistry 18: 1175-1189. 

Feeney, J. (2000). "NMR Studies of Ligand Binding to Dihydrofolate Reductase." 

Angew Chem Int Ed Engl 39(2): 290-312. 

Fenton, W. A., Kashi, Y., Furtak, K. and Horwich, A. L. (1994). "Residues in 

chaperonin GroEL required for polypeptide binding and release." Nature

371(6498): 614-9. 

Finn, P. and Kavraki, L. E. (1999). "Computational Approaches to Drug Design." 

Algorithmica 25: 347-371. 

Fischer, E. (1894). "Einfluss der Configuration auf die Wirkung der Enzyme." Ber. 

Dtsch. Chem. Ges. 27: 2985. 

Fless, G. M., Furbee, J., Jr., Snyder, M. L. and Meredith, S. C. (1996). "Ligand-induced 

conformational change of lipoprotein(a)." Biochemistry 35(7): 2289-98. 



212

Flexner, C. (1998). "HIV-protease inhibitors." New England Journal of Medicine

338(18): 1281-92. 

Fradera, X., Cruz, X., Silva, C. H. T. P., Gelpi, J. L., Luque, F. J. and Orozco, M. 

(2002). "Ligand-induced changes in the binding site of proteins." Bioinformatics

18(7): 939-948. 

Frauenfelder, H., Sligar, S. G. and Wolynes, P. G. (1991). "The energy landscapes and 

motions of proteins." Science 254(5038): 1598-603. 

Freedberg, D. I., Wang, I. X., Stahl, S. J., Kaufman, J. D., Wingfield, P. T., Kiso, Y. 

and Torchia, D. A. (1998). "Flexibility and function in HIV protease: dynamics 

of the HIV-1 protease bound to the asymmetric inhibitor kinostatin-272 (kni-

272)." Journal of the American Chemical Society 120(31): 7916-7923. 

Gane, P. J. and Dean, P. M. (2000). "Recent advances in structure-based rational drug 

design." Current Opinion in Structural Biology 10(4): 401-4. 

Garcia, A. E. (1992). "Large-amplitude nonlinear motions in proteins." Physical 

Review Letters 68(17): 2696-2699. 

Garcia, A. E., Blumenfeld, R., Hummer, G. and Krumhasl, J. A. (1997). "Multi-basin 

dynamics of a protein in a crystal environment." Physica D 107(2-4): 225-239. 



213

Gasteiger, J. and Marsili, M. (1980). "Iterative Partial Equalization of Orbital 

Electronegativity- A Rapid Access to Atomic Charges." Tetrahedron 36: 3219-

3288.

Gehring, K., Zhang, X., Hall, J., Nikaido, H. and Wemmer, D. E. (1998). "An NMR 

study of ligand binding by maltodextrin binding protein." Biochem Cell Biol

76(2-3): 189-97. 

Genest, D. (1999). "Correlated motion analysis from molecular dynamics trajectories: 

statistical accuracy on the determination of canonical correlation coefficients." 

Journal of Computational Chemistry 20: 1571-1576. 

Gerstein, M. and Krebs, W. (1998). "A database of macromolecular motions." Nucleic 

Acids Research 26(18): 4280-90. 

Given, J. A. and Gilson, M. K. (1998). "A hierarchical method for generating low-

energy conformers of a protein-ligand complex." Proteins: Structure, Function, 

and Genetics 33(4): 475-95. 

Go, N., Noguti, T. and Nishikawa, T. (1983). "Dynamics of a small globular protein in 

terms of low-frequency vibrational modes." Proceedings of the National 

Academy of Sciences USA 80(12): 3696-700. 



214

Gogonea, V., Suarez, D., van der Vaart, A. and Merz, K. M., Jr. (2001). "New 

developments in applying quantum mechanics to proteins." Current Opinion in 

Structural Biology 11(2): 217-23. 

Gohlke, H. and Klebe, G. (2001). "Statistical potentials and scoring functions applied to 

protein-ligand binding." Current Opinion in Structural Biology 11(2): 231-5. 

Graves, M. C., Lim, J. J., Heimer, E. P. and Kramer, R. A. (1988). "An 11-kDa form of 

human immunodeficiency virus protease expressed in Escherichia coli is 

sufficient for enzymatic activity." Proceedings of the National Academy of 

Sciences USA 85(8): 2449-53. 

Hall, J. A., Gehring, K. and Nikaido, H. (1997). "Two modes of ligand binding in 

maltose-binding protein of Escherichia coli. Correlation with the structure of 

ligands and the structure of binding protein." Journal of Biological Chemistry

272(28): 17605-9. 

Hall, J. A., Thorgeirsson, T. E., Liu, J., Shin, Y. K. and Nikaido, H. (1997). "Two 

modes of ligand binding in maltose-binding protein of Escherichia coli. Electron 

paramagnetic resonance study of ligand-induced global conformational changes 

by site-directed spin labeling." Journal of Biological Chemistry 272(28): 17610-

4.



215

Halperin, I., Ma, B., Wolfson, H. and Nussinov, R. (2002). "Principles of docking: An 

overview of search algorithms and a guide to scoring functions." Proteins: 

Structure, Function, and Genetics 47(4): 409-43. 

Hart, P. E., N.J., N. and Raphael, B. (1968). "A formal basis for the heuristic 

determination of minimum cost paths." IEEE Transactions on Systems Science 

and Cybernetics 4: 100–114. 

Hastie, T. and Stuetzle, W. (1989). "Principal curves." Journal of the American 

Statistical Association 84: 502 -516. 

Hayward, S. and Go, N. (1995). "Collective Variable Description of Native Protein 

Dynamics." Annual Reviews in Physical Chemistry 46: 223-250. 

Hayward, S., Kitao, A. and Berendsen, H. J. (1997). "Model-free methods of analyzing 

domain motions in proteins from simulation: a comparison of normal mode 

analysis and molecular dynamics simulation of lysozyme." Proteins: Structure, 

Function, and Genetics 27(3): 425-37. 

Hayward, S., Kitao, A., Hirata, F. and Go, N. (1993). "Effect of solvent on collective 

motions in globular protein." Journal of Molecular Biology 234(4): 1207-17. 



216

Ho, D. D., Toyoshima, T., Mo, H., Kempf, D. J., Norbeck, D., Chen, C. M., Wideburg, 

N. E., Burt, S. K., Erickson, J. W. and Singh, M. K. (1994). "Characterization of 

human immunodeficiency virus type 1 variants with increased resistance to a 

C2-symmetric protease inhibitor." Journal of Virology 68(3): 2016-20. 

Holtje, H. D. and Kier, L. B. (1974). "Sweet taste receptor studies using model 

interaction energy calculations." Journal of Pharmaceutical Sciences 63(11):

1722-5.

Hotelling, H. (1933). "Analysis of a complex of statistical variables into principal 

components." Journal of Educational Psychology 24: 441. 

Hubbard, S. J., Campbell, S. F. and Thornton, J. M. (1991). "Molecular recognition. 

Conformational analysis of limited proteolytic sites and serine proteinase 

protein inhibitors." Journal of Molecular Biology 220(2): 507-30. 

Huber, R. and Bode, W. (1978). "Structural basis of the activation and action of 

trypsin." Accounts Chemical Research 11: 114-122. 

Huennekens, F. M. (1994). "The methotrexate story: a paradigm for development of 

cancer chemotherapeutic agents." Adv Enzyme Regul 34: 397-419. 



217

Ibragimova, G. T. and Wade, R. C. (1998). "Importance of explicit salt ions for protein 

stability in molecular dynamics simulation." Biophysical Journal 74(6): 2906-

11.

Jacobs, D. J., Rader, A. J., Kuhn, L. A. and Thorpe, M. F. (2001). "Protein flexibility 

predictions using graph theory." Proteins: Structure, Function, and Genetics

44(2): 150-65. 

Jaqaman, K. and Ortoleva, P. J. (2002). "New space warping method for the simulation 

of large-scale macromolecular conformational changes." Journal of 

Computational Chemistry 23(4): 484-91. 

Jiang, F. and Kim, S. H. (1991). ""Soft docking": matching of molecular surface 

cubes." Journal of Molecular Biology 219(1): 79-102. 

Jones, G., Willett, P., Glen, R. C., Leach, A. R. and Taylor, R. (1997). "Development 

and validation of a genetic algorithm for flexible docking." Journal of Molecular 

Biology 267(3): 727-48. 

Kabsch, W. (1976). "A solution for the best rotation to relate two sets of vectors." Acta 

Crystallographica 32: 922-923. 



218

Kairys, V. and Gilson, M. K. (2002). "Enhanced docking with the mining minima 

optimizer: acceleration and side-chain flexibility." Journal of Computational 

Chemistry 23(16): 1656-70. 

Kalé, L., Skeel, R., Bhandarkar, M., Brunner, R., Gursoy, A., Krawetz, N., Phillips, J., 

Shinozaki, A., Varadarajan, K. and Schulten, K. (1999). "NAMD2: Greater 

scalability for parallel molecular dynamics." Journal of Computational Physics

151: 283-312. 

Kambhatla, N. and Leen, T. K. (1997). "Dimension reduction by local principal 

component analysis." Neural Computation 9(7): 1493 -1516. 

Kaplan, A. H., Michael, S. F., Wehbie, R. S., Knigge, M. F., Paul, D. A., Everitt, L., 

Kempf, D. J., Norbeck, D. W., Erickson, J. W. and Swanstrom, R. (1994). 

"Selection of multiple human immunodeficiency virus type 1 variants that 

encode viral proteases with decreased sensitivity to an inhibitor of the viral 

protease." Proceedings of the National Academy of Sciences USA 91(12):

5597-601.

Karplus, M. and McCammon, J. A. (2002). "Molecular dynamics simulations of 

biomolecules." Nature Structural Biology 9(9): 646-52. 



219

Kastenholz, M. A., Pastor, M., Cruciani, G., Haaksma, E. E. and Fox, T. (2000). 

"GRID/CPCA: a new computational tool to design selective ligands." Journal of 

Medicinal Chemistry 43(16): 3033-44. 

Katritch, V., Totrov, M. and Abagyan, R. (2003). "ICFF: A new method to incorporate 

implicit flexibility into an internal coordinate force field." Journal of 

Computational Chemistry 24(2): 254-65. 

Kaul, D. R., Cinti, S. K., Carver, P. L. and Kazanjian, P. H. (1999). "HIV protease 

inhibitors: advances in therapy and adverse reactions, including metabolic 

complications." Pharmacotherapy 19(3): 281-298. 

Keseru, G. M. and Kolossvary, I. (2001). "Fully flexible low-mode docking: application 

to induced fit in HIV integrase." Journal of the American Chemical Society

123(50): 12708-9. 

Kier, L. B. and Aldrich, H. S. (1974). "A theoretical study of receptor site models for 

trimethylammonium group interaction." Journal of Theoretical Biology 46(2):

529-41.

Kinoshita, J. H. and Nishimura, C. (1988). "The involvement of aldose reductase in 

diabetic complications." Diabetes Metab Rev 4(4): 323-37. 



220

Kitao, A. and Go, N. (1999). "Investigating protein dynamics in collective coordinate 

space." Current Opinion in Structural Biology 9(2): 164-169. 

Kitao, A., Hayward, S. and Go, N. (1998). "Energy landscape of a native protein: 

jumping-among-minima model." Proteins: Structure, Function, and Genetics

33(4): 496-517. 

Klebe, G. (2000). "Recent developments in structure-based drug design." Journal of 

Molecular Medicine 78(5): 269-81. 

Knegtel, R. M., Kuntz, I. D. and Oshiro, C. M. (1997). "Molecular docking to 

ensembles of protein structures." Journal of Molecular Biology 266(2): 424-40. 

Kohl, N. E., Emini, E. A., Schleif, W. A., Davis, L. J., Heimbach, J. C., Dixon, R. A., 

Scolnick, E. M. and Sigal, I. S. (1988). "Active human immunodeficiency virus 

protease is required for viral infectivity." Proceedings of the National Academy 

of Sciences USA 85(13): 4686-90. 

Kolossvary, I. and Guida, W. C. (1996). "Low Mode Search. An Efficient, Automated 

Computational Method for Conformational Analysis: Application to Cyclic and 

Acyclic Alkanes and Cyclic Peptides." Journal of the American Chemical 

Society 118: 5011-5019. 



221

Kolossvary, I. and Guida, W. C. (1999). "Low-Mode Conformational Search 

Elucidated: Application to C39H80 and Flexible Docking of 9-Deazaguanine 

Inhibitors into PNP." Journal of Computational Chemistry 20(15): 1671-1684. 

Kolossvary, I. and Keseru, G. M. (2001). "Hessian-Free Low-Mode Conformational 

Search for Large-Scale Protein Loop Optimization: Application to c-jun N-

Terminal Kinase JNK3." Journal of Computational Chemistry 22(1): 21-30. 

Koshland, D. E. (1958). "Application of a theory of enzyme specificity to protein 

synthesis." Proceedings of the National Academy of Sciences USA 44(2): 98-

104.

Kramer, B., Rarey, M. and Lengauer, T. (1999). "Evaluation of the FLEXX incremental 

construction algorithm for protein-ligand docking." Proteins: Structure, 

Function, and Genetics 37(2): 228-41. 

Kramer, M. A. (1991). "Nonlinear principal component analysis using autoassociative 

neural networks." AIChE Journal 37(2): 233 -243. 

Kramer, R. A., Schaber, M. D., Skalka, A. M., Ganguly, K., Wong-Staal, F. and Reddy, 

E. P. (1986). "HTLV-III gag protein is processed in yeast cells by the virus pol- 

protease." Science 231(4745): 1580-4. 



222

Kruskal, J. B. (1964). "Nonmetric multidimensional scaling : a numerical method." 

Psychometrika 29: 115-129. 

Kua, J., Zhang, Y. and McCammon, J. A. (2002). "Studying enzyme binding specificity 

in acetylcholinesterase using a combined molecular dynamics and multiple 

docking approach." Journal of the American Chemical Society 124(28): 8260-7. 

Kuntz, I. D., Blaney, J. M., Oatley, S. J., Langridge, R. and Ferrin, T. E. (1982). "A 

geometric approach to macromolecule-ligand interactions." Journal of 

Molecular Biology 161(2): 269-88. 

Lafontaine, I. and Lavery, R. (1999). "Collective variable modelling of nucleic acids." 

Current Opinion in Structural Biology 9(2): 170-6. 

Lam, P. Y., Jadhav, P. K., Eyermann, C. J., Hodge, C. N., Ru, Y., Bacheler, L. T., 

Meek, J. L., Otto, M. J., Rayner, M. M., Wong, Y. N. and et al. (1994). 

"Rational design of potent, bioavailable, nonpeptide cyclic ureas as HIV 

protease inhibitors." Science 263(5145): 380-4. 

Le Grice, S. F., Mills, J. and Mous, J. (1988). "Active site mutagenesis of the AIDS 

virus protease and its alleviation by trans complementation." Embo Journal 7(8):

2547-53.



223

Leach, A. R. (1994). "Ligand docking to proteins with discrete side-chain flexibility." 

Journal of Molecular Biology 235(1): 345-56. 

Leach, A. R. and Lemon, A. P. (1998). "Exploring the conformational space of protein 

side chains using dead-end elimination and the A* algorithm." Proteins: 

Structure, Function, and Genetics 33(2): 227-39. 

Lehoucq, R., Sorensen, D. C. and Yang, C. (1998). Arpack User's Guide: Solution of 

Large-Scale Eigenvalue Problems With Implicitly Restorted Arnoldi Methods.

Philadelphia, SIAM. 

Lehoucq, R. B. and Sorensen, D. C. (1996). "Deflation techniques for an implicitly 

restarted Arnoldi iteration." SIAM Journal on Matrix Analysis and Applications

17(4): 789-821. 

Levitt, M., Sander, C. and Stern, P. S. (1985). "Protein normal-mode dynamics: trypsin 

inhibitor, crambin, ribonuclease and lysozyme." Journal of Molecular Biology

181(3): 423-47. 

Levy, R. M. and Karplus, M. (1979). "Vibrational Approach to the Dynamics of an 

alpha-Helix." Biopolymers 18: 2465-2495. 



224

Lin, J. H., Perryman, A. L., Schames, J. R. and McCammon, J. A. (2002). 

"Computational drug design accommodating receptor flexibility: the relaxed 

complex scheme." Journal of the American Chemical Society 124(20): 5632-3. 

Liu, H., Muller-Plathe, F. and van Gunsteren, W. F. (1996). "A combined 

quantum/classical molecular dynamics study of the catalytic mechanism of HIV 

protease." Journal of Molecular Biology 261(3): 454-69. 

Lovell, S. C., Word, J. M., Richardson, J. S. and Richardson, D. C. (2000). "The 

penultimate rotamer library." Proteins: Structure, Function, and Genetics 40(3):

389-408.

Luo, X., Kato, R. and Collins, J. R. (1998). "Dynamic flexibility of protein-inhibitor 

complexes: a study of the HIV-1 protease/KNI-272 complex." Journal of the 

American Chemical Society 120: 12410-12418. 

Luong, C., Miller, A., Barnett, J., Chow, J., Ramesha, C. and Browner, M. F. (1996). 

"Flexibility of the NSAID binding site in the structure of human 

cyclooxygenase-2." Nature Structural Biology 3(11): 927-33. 

Luty, B. A., Wasserman, R., Stouten, P., Hodge, C. N., Zacharias, M. and McCammon, 

J. A. (1995). "A Molecular Mechanics/Grid Method for Evaluation of Ligand-

Receptor Interactions." Journal of Computational Chemistry 16: 454-464. 



225

Ma, B., Kumar, S., Tsai, C. J. and Nussinov, R. (1999). "Folding funnels and binding 

mechanisms." Protein Engineering 12(9): 713-20. 

Ma, B., Shatsky, M., Wolfson, H. J. and Nussinov, R. (2002). "Multiple diverse ligands 

binding at a single protein site: a matter of pre-existing populations." Protein 

Science 11(2): 184-97. 

Ma, B., Wolfson, H. J. and Nussinov, R. (2001). "Protein functional epitopes: hot spots, 

dynamics and combinatorial libraries." Current Opinion in Structural Biology

11(3): 364-9. 

MacKerell, A. D., Bashford, D., Bellott, M., Dunbrack Jr., R. L., Evanseck, J. D., Field, 

M. J., Fischer, S., Gao, J., Guo, H., Ha, S., Joseph-McCarthy, D., Kuchnir, L., 

Kuczera, K., Lau, F. T. K., Mattos, C., Michnick, S., Ngo, T., Nguyen, D. T., 

Prodhom, B., Reiher, I., W.E., Roux, B., Schlenkrich, M., Smith, J. C., Stote, 

R., Straub, J., Watanabe, M., Wiorkiewicz-Kuczera, J., Yin, D. and Karplus, M. 

(1998). "All-atom empirical potential for molecular modeling and dynamics 

studies of proteins." Journal of Physical Chemistry B 102: 3586-3616. 

Mangoni, M., Roccatano, D. and Di Nola, A. (1999). "Docking of flexible ligands to 

flexible receptors in solution by molecular dynamics simulation." Proteins: 

Structure, Function, and Genetics 35(2): 153-62. 



226

Meinicke, P. and Ritter, H. (1999). Local PCA Learning with Resolution-Dependent 

Mixtures of Gaussians. ICANN99 Ninth Int. Conf. on Artificial Neural 

Networks, Edinburgh, U.K. 

Miller, M., Schneider, J., Sathyanarayana, B. K., Toth, M. V., Marshall, G. R., 

Clawson, L., Selk, L., Kent, S. B. and Wlodawer, A. (1989). "Structure of 

complex of synthetic HIV-1 protease with a substrate-based inhibitor at 2.3 A 

resolution." Science 246(4934): 1149-52. 

Molla, A., Granneman, G. R., Sun, E. and Kempf, D. J. (1998). "Recent developments 

in HIV protease inhibitor therapy." Antiviral Research 39(1): 1-23. 

Moreno, E. and Leon, K. (2002). "Geometric and chemical patterns of interaction in 

protein-ligand complexes and their application in docking." Proteins: Structure, 

Function, and Genetics 47(1): 1-13. 

Morris, G. M., Goodsell, D. S., Halliday, R. S., Huey, R., Hart, W. E., Belew, R. K. and 

Olson, A. J. (1998). "Automated docking using a Lamarckian genetic algorithm 

and an empirical binding free energy function." Journal of Computational 

Chemistry 19(14): 1639-1662. 



227

Muegge, I. and Martin, Y. C. (1999). "A general and fast scoring function for protein-

ligand interactions: a simplified potential approach." Journal of Medicinal 

Chemistry 42(5): 791-804. 

Muegge, I. and Rarey, M. (2001). "Small Molecule Docking and Scoring." Reviews in 

Computational Chemistry 17: 1-60. 

Munshi, S., Chen, Z., Yan, Y., Li, Y., Olsen, D. B., Schock, H. B., Galvin, B. B., 

Dorsey, B. and Kuo, L. C. (2000). "An alternate binding site for the P1-P3 

group of a class of potent HIV- 1 protease inhibitors as a result of concerted 

structural change in the 80s loop of the protease." Acta Crystallographica 

Section D - Biological Crystallography 56(Pt 4): 381-8. 

Murray, C. W., Baxter, C. A. and Frenkel, A. D. (1999). "The sensitivity of the results 

of molecular docking to induced fit effects: Application to thrombin, 

thermolysin and neuraminidase." Journal of Computer Aided Molecular Design

13: 547-562. 

Najmanovich, R., Kuttner, J., Sobolev, V. and Edelman, M. (2000). "Side-chain 

flexibility in proteins upon ligand binding." Proteins: Structure, Function, and 

Genetics 39(3): 261-8. 



228

Nakajima, N., Higoa, J., Kiderab, A. and Nakamura, H. (1997). "Flexible docking of a 

ligand peptide to a receptor protein by multicanonical molecular dynamics 

simulation." Chemical Physics Letters 278(4-6): 297-301. 

Nakajima, N., Nakamura, H. and Kidera, A. (1997). "Multicanonical Ensemble 

Generated by Molecular Dynamics Simulation for Enhanced Conformational 

Sampling of Peptides." Journal of Physical Chemistry B 101(5): 817-824. 

Noguti, T. and Go, N. (1985). "Efficient Monte Carlo method for simulation of 

fluctuating conformations of native proteins." Biopolymers 24(3): 527-46. 

Noguti, T. and Go, N. (1989). "Structural basis of hierarchical multiple substates of a 

protein. I: Introduction." Proteins: Structure, Function, and Genetics 5(2): 97-

103.

Noguti, T. and Go, N. (1989). "Structural basis of hierarchical multiple substates of a 

protein. V: Nonlocal deformations." Proteins: Structure, Function, and Genetics

5(2): 132-8. 

Oates, P. J. and Mylari, B. L. (1999). "Aldose reductase inhibitors: therapeutic 

implications for diabetic complications." Expert Opin Investig Drugs 8(12): 

2095-2119.



229

Oshiro, C. M. and Kuntz, I. D. (1998). "Characterization of receptors with a new 

negative image: use in molecular docking and lead optimization." Proteins: 

Structure, Function, and Genetics 30(3): 321-36. 

Osterberg, F., Morris, G. M., Sanner, M. F., Olson, A. J. and Goodsell, D. S. (2002). 

"Automated docking to multiple target structures: incorporation of protein 

mobility and structural water heterogeneity in AutoDock." Proteins: Structure, 

Function, and Genetics 46(1): 34-40. 

Ota, N. and Agard, D. A. (2001). "Binding mode prediction for a flexible ligand in a 

flexible pocket using multi-conformation simulated annealing pseudo 

crystallographic refinement." Journal of Molecular Biology 314(3): 607-17. 

Pak, Y. and Wang, C. (2000). "Application of a Molecular Dynamics Simulation 

Method with a Generalized Effective Potential to the Flexible Molecular 

Docking Problems." Journal of Physical Chemistry B 104: 354-359. 

Pang, Y. P. and Kozikowski, A. P. (1994). "Prediction of the binding sites of huperzine 

A in acetylcholinesterase by docking studies." Journal of Computer Aided 

Molecular Design 8(6): 669-81. 



230

Pastor, M. and Cruciani, G. (1995). "A novel strategy for improving ligand selectivity 

in receptor-based drug design." Journal of Medicinal Chemistry 38(23): 4637-

47.

Paul, N. and Rognan, D. (2002). "ConsDock: A new program for the consensus 

analysis of protein-ligand interactions." Proteins: Structure, Function, and 

Genetics 47(4): 521-33. 

Pearson, K. (1901). "On lines and planes of closest fit to systems of points in space." 

The London, Edinburgh and Dublin Philosophical Magazine and Journal of 

Science 2: 572. 

Pfeiffer, S., Fushman, D. and Cowburn, D. (1999). "Impact of Cl- and Na+ ions on 

simulated structure and dynamics of betaARK1 PH domain." Proteins: 

Structure, Function, and Genetics 35(2): 206-17. 

Philippopoulos, M. and Lim, C. (1999). "Exploring the dynamic information content of 

a protein NMR structure: comparison of a molecular dynamics simulation with 

the NMR and X-ray structures of Escherichia coli ribonuclease HI." Proteins: 

Structure, Function, and Genetics 36(1): 87-110. 



231

Piana, S. and Carloni, P. (2000). "Conformational flexibility of the catalytic Asp dyad 

in HIV-1 protease: An ab initio study on the free enzyme." Proteins: Structure, 

Function, and Genetics 39(1): 26-36. 

Piana, S., Carloni, P. and Parrinello, M. (2002). "Role of conformational fluctuations in 

the enzymatic reaction of HIV-1 protease." Journal of Molecular Biology

319(2): 567-83. 

Rarey, M., Kramer, B., Lengauer, T. and Klebe, G. (1996). "A fast flexible docking 

method using an incremental construction algorithm." Journal of Molecular 

Biology 261(3): 470-89. 

Raymer, M. L., Punch, W. F., Goodman, E. D., Kuhn, L. A. and Jain, A. K. (2000). 

"Dimensionality Reduction Using Genetic Algorithms." IEEE Transactions on 

Evolutionary Computation 4: 164-171. 

Rhodes, G. (1993). Crystallography Made Crystal Clear. London, Academic Press. 

Rich, D. H., Bursavich, M. G. and Estiarte, M. A. (2002). "Discovery of nonpeptide, 

peptidomimetic peptidase inhibitors that target alternate enzyme active site 

conformations." Biopolymers 66(2): 115-25. 



232

Rick, S. W., Erickson, J. W. and Burt, S. K. (1998). "Reaction path and free energy 

calculations of the transition between alternate conformations of HIV-1 

protease." Proteins: Structure, Function, and Genetics 32(1): 7-16. 

Rick, S. W., Topol, I. A., Erickson, J. W. and Burt, S. K. (1998). "Molecular 

mechanisms of resistance: free energy calculations of mutation effects on 

inhibitor binding to HIV-1 protease." Protein Science 7(8): 1750-6. 

Ringhofer, S., Kallen, J., Dutzler, R., Billich, A., Visser, A. J., Scholz, D., Steinhauser, 

O., Schreiber, H., Auer, M. and Kungl, A. J. (1999). "X-ray structure and 

conformational dynamics of the HIV-1 protease in complex with the inhibitor 

SDZ283-910: agreement of time-resolved spectroscopy and molecular dynamics 

simulations." Journal of Molecular Biology 286(4): 1147-59. 

Roitberg, A. and Elber, R. (1991). "Modeling side chains In peptides and proteins: 

Application of the locally enhanced sampling and the simulated annealing 

methods to find minimum energy conformations." Journal of Chemical Physics

95(12): 9277-9287. 

Romo, T. (1998). Identification and modeling of protein conformational substates. 

Department of Biochemistry and Cell Biology. Houston, Rice University: 235.



233

Romo, T. D., Clarage, J. B., Sorensen, D. C. and Phillips, G. N., Jr. (1995). "Automatic 

identification of discrete substates in proteins: singular value decomposition 

analysis of time-averaged crystallographic refinements." Proteins: Structure, 

Function, and Genetics 22(4): 311-21. 

Rose, R. B., Craik, C. S. and Stroud, R. M. (1998). "Domain flexibility in retroviral 

proteases: structural implications for drug resistant mutations." Biochemistry

37(8): 2607-21. 

Roth, B. and Stammers, D. K. (1992). The Design of Drugs to Macromolecular Targets. 

The Design of Drugs to Macromolecular Targets. Beddell, C. R. New York, 

John Wiley & Sons Ltd.: 85-118.

Roweis, S. and Saul, L. (2000). "Nonlinear dimensionality reduction by locally linear 

embedding." Science 290(5500): 2323--2326. 

Rutenber, E., Fauman, E. B., Keenan, R. J., Fong, S., Furth, P. S., Ortiz de Montellano, 

P. R., Meng, E., Kuntz, I. D., DeCamp, D. L., Salto, R., Rose, J. R., Craik, C. S. 

and Stroud, R. M. (1993). "Structure of a non-peptide inhibitor complexed with 

HIV-1 protease. Developing a cycle of structure-based drug design." Journal of 

Biological Chemistry 268(21): 15343-15346. 



234

Ryckaert, J. P., Ciccotti, G. and Berendsen, H. J. C. (1977). "Numerical-Integration of 

Cartesian Equations of Motion of a System with Constraints - Molecular-

Dynamics of N-Alkanes." Journal of Computational Physics 23(3): 327-341. 

Sandak, B., Nussinov, R. and Wolfson, H. J. (1995). "An automated computer vision 

and robotics-based technique for 3-D flexible biomolecular docking and 

matching." Computer Applications in the Biosciences 11(1): 87-99. 

Sandak, B., Nussinov, R. and Wolfson, H. J. (1998). "A method for biomolecular 

structural recognition and docking allowing conformational flexibility." Journal 

of Computational Biology 5(4): 631-54. 

Sandak, B., Wolfson, H. J. and Nussinov, R. (1998). "Flexible docking allowing 

induced fit in proteins: insights from an open to closed conformational isomers." 

Proteins: Structure, Function, and Genetics 32(2): 159-74. 

Sawaya, M. R. and Kraut, J. (1997). "Loop and subdomain movements in the 

mechanism of Escherichia coli dihydrofolate reductase: crystallographic 

evidence." Biochemistry 36(3): 586-603. 

Schaffer, L. and Verkhivker, G. M. (1998). "Predicting structural effects in HIV-1 

protease mutant complexes with flexible ligand docking and protein side-chain 

optimization." Proteins: Structure, Function, and Genetics 33(2): 295-310. 



235

Schnecke, V., Swanson, C. A., Getzoff, E. D., Tainer, J. A. and Kuhn, L. A. (1998). 

"Screening a peptidyl database for potential ligands to proteins with side-chain 

flexibility." Proteins: Structure, Function, and Genetics 33(1): 74-87. 

Schweitzer, B. I., Dicker, A. P. and Bertino, J. R. (1990). "Dihydrofolate reductase as a 

therapeutic target." Faseb J 4(8): 2441-52. 

Scott, W. R. and Schiffer, C. A. (2000). "Curling of flap tips in HIV-1 protease as a 

mechanism for substrate entry and tolerance of drug resistance." Structure with 

Folding and Design 8(12): 1259-65. 

Sharff, A. J., Rodseth, L. E., Spurlino, J. C. and Quiocho, F. A. (1992). 

"Crystallographic evidence of a large ligand-induced hinge-twist motion 

between the two domains of the maltodextrin binding protein involved in active 

transport and chemotaxis." Biochemistry 31(44): 10657-63. 

Shepard, R. N. (1962). "The analysis of proximities: multidimensional scaling with an 

unknown distance function." Psychometrika 27(2): 125-140. 

Shilton, B. H., Flocco, M. M., Nilsson, M. and Mowbray, S. L. (1996). 

"Conformational changes of three periplasmic receptors for bacterial 

chemotaxis and transport: the maltose-, glucose/galactose- and ribose-binding 

proteins." Journal of Molecular Biology 264(2): 350-63. 



236

Shoichet, B. K., McGovern, S. L., Wei, B. and Irwin, J. J. (2002). "Lead discovery 

using molecular docking." Current Opinion in Chemical Biology 6(4): 439-46. 

Silva, A. M., Cachau, R. E., Sham, H. L. and Erickson, J. W. (1996). "Inhibition and 

catalytic mechanism of HIV-1 aspartic protease." Journal of Molecular Biology

255(2): 321-46. 

Spurlino, J. C., Lu, G. Y. and Quiocho, F. A. (1991). "The 2.3-A resolution structure of 

the maltose- or maltodextrin-binding protein, a primary receptor of bacterial 

active transport and chemotaxis." Journal of Biological Chemistry 266(8): 5202-

19.

Stultz, C. M. and Karplus, M. (1999). "MCSS functionality maps for a flexible protein." 

Proteins: Structure, Function, and Genetics 37(4): 512-29. 

Sudbeck, E. A., Mao, C., Vig, R., Venkatachalam, T. K., Tuel-Ahlgren, L. and Uckun, 

F. M. (1998). "Structure-based design of novel 

dihydroalkoxybenzyloxopyrimidine derivatives as potent nonnucleoside 

inhibitors of the human immunodeficiency virus reverse transcriptase." 

Antimicrobial Agents and Chemotherapy 42(12): 3225-3233. 

Szmelcman, S., Schwartz, M., Silhavy, T. J. and Boos, W. (1976). "Maltose transport in 

Escherichia coli K12. A comparison of transport kinetics in wild-type and 



237

lambda-resistant mutants as measured by fluorescence quenching." Eur J 

Biochem 65(1): 13-9. 

Tame, J. R. (1999). "Scoring functions: a view from the bench." Journal of Computer 

Aided Molecular Design 13(2): 99-108. 

Ten Eyck, L. F., Mandell, J., Roberts, V. A. and Pique, M. E. (1995). Surveying 

molecular Interactions with DOT. 1995 ACM/IEEE Supercomputing 

Conference, San Diego, California, USA, IEEE Press. 

Tenenbaum, J. B., de Silva, V. and Langford, J. C. (2000). "A Global Geometric 

Framework for Nonlinear Dimensionality Reduction." Science 290(5500):

2319-2323,.

Teodoro, M. L. and Kavraki, L. E. (2003). "Conformational Flexibility Models for the 

Receptor in Structure Based Drug Design." Current Pharmaceutical Design 9:

1419-1431.

Teodoro, M. L., Phillips, G. N., Jr. and Kavraki, L. E. (2003). "Understanding Protein 

Flexibility Through Dimensionality Reduction." Journal of Computational 

Biology 10(3-4): 617-634. 



238

Teodoro, M. L., Phillips, G. N. J. and Kavraki, L. E. (2000). Singular Value 

Decomposition of Protein Conformational Motions. Currents in Computational 

Molecular Biology. Satoru, M., Shamir, R. and Tagaki, T. Tokyo, Universal 

Academy Press, Inc.: 198-199.

Teodoro, M. L., Phillips, G. N. J. and Kavraki, L. E. (2001). Molecular Docking: A 

Problem with Thousands of Degrees of Freedom. IEEE International 

Conference on Robotics and Automation, Seoul, Korea, IEEE Press. 

Tibshirani, R. (1992). "Principal curves revisited." Statistics and Computing 2: 183 -

190.

Tipping, M. E. and Bishop, C. M. (1999). "Mixtures of Probabilistic Principal 

Component Analysers." Neural Computation 11(2): 443-482. 

Todd, M. J. and Freire, E. (1999). "The effect of inhibitor binding on the structural 

stability and cooperativity of the HIV-1 protease." Proteins: Structure, Function, 

and Genetics 36(2): 147-56. 

Totrov, M. and Abagyan, R. (1997). "Flexible protein-ligand docking by global energy 

optimization in internal coordinates." Proteins: Structure, Function, and 

Genetics Suppl(1): 215-20. 



239

Trosset, J. Y. and Scheraga, H. A. (1998). "Reaching the global minimum in docking 

simulations: a Monte Carlo energy minimization approach using Bezier 

splines." Proceedings of the National Academy of Sciences USA 95(14): 8011-

5.

Trosset, J. Y. and Scheraga, H. A. (1999). "Flexible docking simulations: scaled 

collective variable Monte Carlo minimization approach using Bezier splines, 

and comparison with a standard Monte Carlo algorithm." Journal of 

Computational Chemistry 20(2): 244-252. 

Trosset, J. Y. and Scheraga, H. A. (1999). "PRODOCK: Software Package for Protein 

Modeling and Docking." Journal of Computational Chemistry 20(4): 412-427. 

Troyer, J. M. and Cohen, F. E. (1995). "Protein conformational landscapes: energy 

minimization and clustering of a long molecular dynamics trajectory." Proteins: 

Structure, Function, and Genetics 23(1): 97-110. 

Tuffery, P., Etchebest, C., Hazout, S. and Lavery, R. (1991). "A new approach to the 

rapid determination of protein side chain conformations." Journal of 

Biomolecular Structure and Dynamics 8(6): 1267-89. 

Urzhumtsev, A., Tete-Favier, F., Mitschler, A., Barbanton, J., Barth, P., Urzhumtseva, 

L., Biellmann, J. F., Podjarny, A. and Moras, D. (1997). "A 'specificity' pocket 



240

inferred from the crystal structures of the complexes of aldose reductase with 

the pharmaceutically important inhibitors tolrestat and sorbinil." Structure 5(5):

601-612.

Vakser, I. A. (1995). "Protein docking for low-resolution structures." Protein 

Engineering 8(4): 371-7. 

van Aalten, D. M., Conn, D. A., de Groot, B. L., Berendsen, H. J., Findlay, J. B. and 

Amadei, A. (1997). "Protein dynamics derived from clusters of crystal 

structures." Biophysical Journal 73(6): 2891-2896. 

van Aalten, D. M., de Groot, B. L., Findlay, J. B., Berendsen, H. J. and Amadei, A. 

(1997). "A Comparison of Techniques for Calculating Protein Essential 

Dynamics." Journal of Computational Chemistry 18(2): 169-181. 

Vazquez-Laslop, N., Zheleznova, E. E., Markham, P. N., Brennan, R. G. and Neyfakh, 

A. A. (2000). "Recognition of multiple drugs by a single protein: a trivial 

solution of an old paradox." Biochemical Society Transactions 28(4): 517-20. 

Verkhivker, G. M., Bouzida, D., Gehlhaar, D. K., Rejto, P. A., Freer, S. T. and Rose, P. 

W. (2002). "Complexity and simplicity of ligand-macromolecule interactions: 

the energy landscape perspective." Current Opinion in Structural Biology 12(2):

197-203.



241

Verkhivker, G. M., Rejto, P. A., Bouzida, D., Arthurs, S., Colson, A. B., Freer, S. T., 

Gehlhaar, D. K., Larson, V., Luty, B. A., Marrone, T. and Rose, P. W. (2001). 

"Parallel simulated tempering dynamics of ligand–protein binding with 

ensembles of protein conformations." Chemical Physics Letters 337(1-3): 181-

189.

Vieth, M., Hirst, J. D., Kolinski, A. and Brooks, C. L. I. (1998). "Assessing energy 

functions for flexible docking." Journal of Computational Chemistry 19(14): 

1612-1622.

Wasserman, Z. R. and Hodge, C. N. (1996). "Fitting an inhibitor into the active site of 

thermolysin: a molecular dynamics case study." Proteins: Structure, Function, 

and Genetics 24(2): 227-37. 

Weber, P. C., Ohlendorf, D. H., Wendoloski, J. J. and Salemme, F. R. (1989). 

"Structural origins of high-affinity biotin binding to streptavidin." Science

243(4887): 85-8. 

Weichsel, A. and Montfort, W. R. (1995). "Ligand-induced distortion of an active site 

in thymidylate synthase upon binding anticancer drug 1843U89." Nature 

Structural Biology 2(12): 1095-101. 



242

Wilson, D. K., Bohren, K. M., Gabbay, K. H. and Quiocho, F. A. (1992). "An unlikely 

sugar substrate site in the 1.65 A structure of the human aldose reductase 

holoenzyme implicated in diabetic complications." Science 257(5066): 81-4. 

Wilson, D. K., Tarle, I., Petrash, J. M. and Quiocho, F. A. (1993). "Refined 1.8 A 

structure of human aldose reductase complexed with the potent inhibitor 

zopolrestat." Proceedings of the National Academy of Sciences USA 90(21):

9847.

Wlodawer, A., Miller, M., Jaskolski, M., Sathyanarayana, B. K., Baldwin, E., Weber, I. 

T., Selk, L. M., Clawson, L., Schneider, J. and Kent, S. B. (1989). "Conserved 

folding in retroviral proteases: crystal structure of a synthetic HIV-1 protease." 

Science 245(4918): 616-21. 

Wlodawer, A. and Vondrasek, J. (1998). "Inhibitors of HIV-1 protease: a major success 

of structure-assisted drug design." Annual Reviews Biophysics and 

Biomolecular Structure 27: 249-84. 

Wojciechowski, M. and Skolnick, J. (2002). "Docking of Small Ligands to Low-

Resolution and Theoretically Predicted Receptor Structures." Journal of 

Computational Chemistry 23(1): 189-197. 

Wolfram, S. (1999). The Mathematica Book. New York, Cambridge University Press. 



243

Wüthrich, K. (1986). Nmr of Proteins and Nucleic Acids. New York, J. Wiley & Sons. 

Zacharias, M. and Sklenar, H. (1999). "Harmonic Modes as Variables to 

Approximately Account for Receptor Flexibility in Ligand-Receptor Docking 

Simulations: Application to DNA Minor Groove Ligand Complex." Journal of 

Computational Chemistry 20(3): 287-300. 

Zhao, S., Goodsell, D. S. and Olson, A. J. (2001). "Analysis of a data set of paired 

uncomplexed protein structures: new metrics for side-chain flexibility and 

model evaluation." Proteins: Structure, Function, and Genetics 43(3): 271-9. 

Zhu, J., Fan, H., Liu, H. and Shi, Y. (2001). "Structure-based ligand design for flexible 

proteins: application of new F-DycoBlock." Journal of Computer Aided 

Molecular Design 15(11): 979-96. 


