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Abstract

Task and Motion Planning for Mobile Manipulators

by Ioan Alexandru Şucan

This thesis introduces new concepts and algorithms that can be used to solve the

simultaneous task and motion planning (STAMP) problem. Given a set of actions

a robot could perform, the STAMP problem asks for a sequence of actions that

takes the robot to its goal and for motion plans that correspond to the actions in

that sequence. This thesis shows how to solve the STAMP problem more efficiently

and obtain more robust solutions, when compared to previous work. A solution to

the STAMP problem is a prerequisite for most operations complex robots such as

mobile manipulators are asked to perform. Solving the STAMP problem efficiently

thus expands the range of capabilities for mobile manipulators, and the increased

robustness of computed solutions can improve safety.



A basic sub-problem of the STAMP problem is motion planning. This thesis gen-

eralizes KPIECE, a sampling-based motion planning algorithm designed specifically

for planning in high-dimensional spaces. KPIECE offers computational advantages

by employing projections from the searched space to lower-dimensional Euclidean

spaces for estimating exploration coverage. This thesis further develops the original

KPIECE algorithm by introducing a means to automatically generate projections to

lower-dimensional Euclidean spaces. KPIECE and other state-of-the-art algorithms

are implemented as part the Open Motion Planning Library (OMPL), and the prac-

tical applicability of KPIECE and OMPL is demonstrated on the PR2 hardware

platform.

To solve the STAMP problem, this thesis introduces the concept of a task motion

multigraph (TMM), a data structure that can express the ability of mobile manipu-

lators to perform specific tasks using different hardware components. The choice of

hardware components determines the state space for motion planning. An algorithm

that prioritizes the state spaces for motion planning using TMMs is presented and

evaluated. Experimental results show that planning times are reduced by a factor of

up to six and solution paths are shortened by a factor of up to four, when considering

the available planning options. Finally, an algorithm that considers uncertainty at the

task planning level based on generating Markov Decision Process (MDP) problems

from TMMs is introduced.
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Chapter 1

Introduction

One of the overarching goals of robotics is to create robotic devices that can take

as input high-level specifications of tasks and execute them without requiring low-

level instructions on how to implement that execution [1]. This is a difficult endeavor

and requires solving a broad range of problems. This thesis relates to the problems of

motion planning and of task planning, which typically need to be solved for a robot

to move in its environment. Loosely stated, motion planning is the problem of finding

the set of inputs to the robot’s actuators – a motion plan – such that the robot moves

from an initial to a final position while respecting a set of constraints (e.g., collision

avoidance) [1], and task planning is the problem of finding the sequence of high-level

actions – a task plan – the robot needs to take in order to achieve its goal [2] (e.g.,

reach for a tool and then bring it to a user). The execution of the high-level actions

often requires corresponding motion plans.

Robots for planetary exploration, museum tour guides, search and rescue robots,
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service robots and robots in surgery are just a few of the many examples of robotics

applications that need task planning [2] as well as motion planning [3,4]. In general,

the motion planning problem can be viewed as search in high-dimensional continuous

spaces. As such, its applications have expanded to other domains such as graphics,

computational biology and verification [5–8]. For simplicity in presentation, this

thesis will present developments in motion planning in the context of robotic systems.

However, most of the contributions to motion planning described herein apply to other

fields as well.

The task planning problem and the motion planning problem are closely related.

For example, if an action selected at task planning level cannot be executed due to the

inability of a motion planner to find the corresponding actuator inputs that implement

that action, this information needs to be passed to the task planner so that the same

action is not selected repeatedly. Furthermore, when a motion planner computes

corresponding motion plans for two consecutive actions, it should ensure that the

motion plan computed for the first action does not prohibit the computation of a

motion plan for the second action. Because of the necessary information exchange, the

task planning and the motion planning problems are often solved simultaneously. In

this thesis, simultaneous task and motion planning (STAMP) refers to the problem of

simultaneously selecting a task plan from a set of available possibilities and computing

a corresponding set of motion plans. A formal definition of this problem is given later.

A solution to the STAMP problem requires (1) identifying a task plan that takes the

robot to its goal and (2) simultaneously computing the necessary motion plans for

that task plan. The STAMP problem as defined in this thesis does not include
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generating possible sequences of actions, which is often included in task planning as

considered in artificial intelligence [2]. Previous work has addressed the task and

motion planning problem (e.g., [9–15]), but more work is needed towards developing

fast algorithms that can be used in reactive systems. The contributions this thesis

makes to task and motion planning are intended primarily for complex robots that

can perform specified tasks using different sets of their hardware components. Such

robots are typically mobile manipulators – robots capable of both locomotion in the

environment and manipulation of objects in the environment.

This thesis is structured in roughly two parts: the first part presents algorithms,

techniques and tools for solving the motion planning problem, and the second part

presents techniques for solving the STAMP problem. The second part of the thesis

builds upon developments introduced in the first part. While individual contributions

included in this thesis are often applicable in a variety of contexts, the thesis as a

whole develops planning techniques adequate for task and motion planning for mobile

manipulation platforms.

1.1 Definition of Problems

This thesis addresses two problems: the motion planning problem, defined in

Section 1.1.1, and the simultaneous task and motion planning problem, defined in

Section 1.1.2.
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1.1.1 Motion Planning

Figure 1.1: A generic representation of the
motion planning problem.

In the simplest form, motion plan-

ning is the problem of finding a continu-

ous path that connects a given start state

to a given goal state (see Figure 1.1), un-

der some specified set of constraints [1].

The specified constraints may include

collision avoidance, maintaining orienta-

tion of certain robot parts, bounds in ve-

locity, bounds in acceleration, etc. De-

pending on the type of constraints, two versions of the motion planning problem are

distinguished: planning under geometric constraints (sometimes called “path plan-

ning” [3]) and planning under differential constraints (this version of the problem

includes “kinodynamic motion planning” [3]).

Planning under Geometric Constraints An instance of the Motion Planning

Problem under Geometric Constraints can be represented as a tuple (X , isV alid, S,

G) where:

• X is a set that represents the state space of the robotic system (sometimes called

the configuration space [1]). A point x ∈ X fully characterizes the state of the

system planning is performed for.

• isV alid : X → {⊤,⊥} is a function that decides whether a state is valid or not.
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This function effectively separates the state space into two disjoint subsets: the

set of valid states Xvalid = {x ∈ X | isV alid(x) = ⊤} and the set of invalid

states Xinv = X \ Xvalid.

• S ⊆ X , S ∩ Xvalid 6= ∅, is the set of possible start states.

• G ⊆ X , G ∩ Xvalid 6= ∅, is the set of possible goal states.

This version of the problem typically assumes robots can move instantaneously

in any direction – only geometric constraints such as collision avoidance are consid-

ered. This assumption is reasonable for certain robotics applications, if for example

there exists a controller capable of following a geometrically computed path. How-

ever, many practical applications require accounting for dynamic constraints such as

bounded torques, friction, etc.

Planning under Differential Constraints An instance of the Motion Plan-

ning Problem under Differential Constraints can be represented as a tuple (X , U ,

propagate, isV alid, S, G) where:

• X , isV alid, S and G are the same as for planning under geometric constraints,

with the added requirement that X is a differentiable manifold.

• U is a set representing the control space for the robotic system.

• propagate : X × U → TgX models the evolution of the robotic system as

controls are applied, where TgX is the tangent bundle of X . propagate is

5



usually represented as a system of differential equations or it can be modeled

using a simulator (e.g., [16]).

Solution to the Motion Planning Problem

A solution to the motion planning problem is a continuous path p : [0, T ]→ X , for

some T ∈ [0,∞), such that p(0) ∈ S, p(T ) ∈ G, (t ∈ [0, T ])→ (isV alid(p(t)) = ⊤).

The representation of p depends on the version of the motion planning problem

being considered. If planning solely under geometric constraints, p can be represented

as a finite sequence of way-points: p = (x0, x1, . . . , xn), such that x0 ∈ S, xn ∈ G. In

this case it is assumed that a means of interpolating between states is known. This

means of interpolation needs to consider the topology of X and allow generating the

states on any motion segment between x and y, for x, y ∈ X (from this point onwards

we use the notation x, y to denote a motion segment). The validity of p could then

be written as ∀i ∈ {1, . . . , n} ((x ∈ xi−1, xi)→ (isV alid(x) = ⊤)).

If planning under differential constraints, p can be reconstructed from the robot’s

initial state, a finite sequence of controls to be passed to the propagate function

and a corresponding sequence of durations to apply the controls for. A possible

representation is then p = (x0, (u0, . . . , un−1), (t0, . . . , tn−1)); xi can be constructed

from xi−1 by applying propagate with the control input ui−1 for the duration ti−1; for

a correct solution, xn has to be an element of G.

6



1.1.2 Simultaneous Task and Motion Planning

Start State

Grasping Pose Book

move_to

Grasping Pose Coffee

move_to

Released Book

Grasped Book

grip

Can Release Book

move_to

Grasped Coffee

grip

Can Release Coffee

move_to

Released Coffee

release

move_to

release

Figure 1.2: Example task
graph.

Practical applications of robotics require solving prob-

lems that are more complex than computing motion plans

between two given states. For example, interaction with

physical objects in the robot’s surroundings is typically

required. Such interaction often requires a robot to plan

motions towards objects of interest, achieve contact, per-

haps plan other motions that transport the object of inter-

est and finally break contact. Such sequences of actions

constitute a task plan. In the simplest sense, task and

motion planning is the problem of finding the discrete, fi-

nite, sequence of actions a robot needs to perform in order

to achieve its goal, and at the same time compute motion

plans for corresponding actions. The set of possible se-

quences of actions is typically encoded as a graph such

as the one shown in Figure 1.2. These graphs – the task graphs – can be specified

explicitly (e.g., [17]) but are most often specified implicitly using compact representa-

tions such as Linear Temporal Logic (LTL) [18] or Stanford Research Institute Prob-

lem Solver (STRIPS)-like languages [2] (e.g., Planning Domain Definition Language

(PDDL) [19]).

This thesis uses a representation of task graphs that can accommodate all rep-

resentations the author has encountered in the literature. This representation is

described next. The notation is as follows:

7



• Let X be the state space of the robotic system a task graph is specified for.

• LetA be a finite set of atomic propositions. These atomic propositions represent

properties of the system that can be true or false.

• Let R be a finite set of regions. Each region R ∈ R is in fact a set of states

R ⊂ X (a subset of the state space).

• Let T be a finite set of actions. What these actions are depends on the represen-

tation of the task (STRIPS-like, LTL, etc). When motion planning is required

as part of performing an action, the instance of the motion planning problem is

associated to that action as well. In the case of a robotic arm, a typical example

is T = {grip, release, plan}; these actions correspond to closing the arm’s

end effector, opening the arm’s end effector and moving the arm between two

states, along a planned path.

Representing Task Graphs A task graph is a directed acyclic graph G = (V, E),

where:

• V ⊆ R× 2A, i.e., a vertex is identified by a region and a set of atomic proposi-

tions, where 2A denotes the power set ofA. For v = (R, A) ∈ V , R ∈ R, A ∈ 2A.

R is called the region of vertex v and A is the set of propositions that are true

at vertex v. The vertex v encodes the task state of the robotic system. To refer

to the region – the subset of X – that corresponds to a vertex v, we use the

notation Q(v).

8



• E ⊂ V × V such that ∀v ∈ V, (v, v) /∈ E. The existence of an edge (v1, v2) ∈ E

implies there exists a potential means of arriving to v2 from v1 (an action in T ).

• root ∈ V is the vertex designated as the starting task state for the robot.

Typically this vertex has no parents and Q(root) has one single element.

• F ⊆ V , F 6= ∅ is a set of vertices designated as goals of the task planner.

Types of Actions For an edge e = (v1, v2), v1 = (R1, A1), v2 = (R2, A2), either

A1 6= A2 or R1 6= R2. If A1 = A2 and R1 = R2 then the action would be a no-op and

need not be included in the task graph.

If the only change performed by the edge’s action is changing values of atomic

propositions (R1 = R2, A1 6= A2) the action is called an observation action. We treat

observation actions differently, in the sense that the robot needs to physically reach the

region corresponding to the action’s starting vertex in order to continue its operations:

it needs to observe its environment and make a decision. This is typically necessary

for practical robotics applications. Actions that are not observation actions are called

sequence actions. A sequence action between v1 = (R1, A1) and v2 = (R2, A2) implies

changing the state of the robotic system from x ∈ R1 to x′ ∈ R2 and potentially also

updating the set of true atomic propositions.

Simultaneous Task and Motion Planning Given a task graph G = (V, E), the

simultaneous task and motion planning (STAMP) problem requires finding an ordered

sequence of edges P = {e1, . . . , ek}, P ⊆ E such that if ei = (vi,a, vi,b), we always have

vi,b = vi+1,a, v1,a = root and vk,b ∈ F . Furthermore, for each edge ei, a corresponding
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motion plan mi ⊂ Xvalid needs to be computed, between the states xi,a ∈ Q(vi,a),

xi,b ∈ Q(vi,b) (as in Section 1.1.1). It is assumed that given two consecutive motion

plans mi, mi+1, it is possible they can be connected: there exists a means to control

the robotic system from xi,b ∈ Q(vi,b) to xi+1,a ∈ Q(vi,b) (= Q(vi+1,a)). The difficulty

of the STAMP problem lies in finding a sequence of actions for which corresponding

motion plans can be computed and connected.

Since observation actions require the robot to actually reach specific regions in

the state space, a complete course of action cannot be fully decided in advance.

The algorithms presented in this thesis only operate on sequence actions. When an

observation action needs to be taken, its starting vertex is designated as a goal. If

the robot reaches a goal that is in fact the starting vertex of an observation action,

the observation can then be performed. Using the result of the observation, sequence

actions following the observation action can be then considered. In this manner,

algorithms that only operate on sequence actions can be applied in real situations,

when observations need to be made. For the remainder of the thesis we make the

assumption that only sequence actions are included in task graphs.

1.2 Contributions

This thesis presents algorithmic contributions applicable towards solving two prob-

lems: the motion planning problem and the STAMP problem. The contributions are

as follows:
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• The KPIECE algorithm for planning under differential constraints is generalized

and a method for generating random projections to lower-dimensional Euclidean

spaces is described. The use of random projections enables KPIECE and similar

algorithms (such as SBL [20] and EST [21]) to efficiently estimate the cover-

age of a robot’s state space by considering discretizations of lower-dimensional

Euclidean spaces. This improvement leads to computational advantages over

previous work and increases ease of use by reducing required user input.

• A number of state-of-the-art sampling-based algorithms, including KPIECE,

are implemented as part of a free software library called OMPL (The Open

Motion Planning Library). OMPL is an easy to use, efficient library, useful in

both academic and industrial settings. The practical applicability of OMPL

and of the algorithms it includes are demonstrated through their integration

with perception on the PR2 hardware platform (Personal Robot 2, from Willow

Garage), as part of ROS [22]. Multiple versions of the KPIECE algorithm are

included in OMPL: in addition to the version for planning under differential con-

straints, versions for planning under geometric constraints are also developed.

Computational advantages over previous work are observed when planning with

geometric constraints as well.

• The concept of a task motion multigraph (TMM) is developed. TMMs can

be used to represent the available motion planning options for complex robotic

systems such as mobile manipulators. This thesis shows how to encode a given

task as a TMM.
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• An algorithm that solves the STAMP problem using TMMs is presented and

evaluated. The algorithm makes use of information from the TMM to prioritize

the spaces for which motion plans are computed. Experimental results for office-

like environments show that planning times can be reduced by as much as a

factor of six and solution paths can be shortened by a factor of four, when

considering the available planning options. The reduced computation time and

improved quality of solutions can extend the applicability of motion planning

for mobile manipulators to more complex tasks.

• An algorithm that considers uncertainty at the task planning level based on

generating MDP (Markov Decision Process) problems from TMMs is presented

and evaluated.

The contributions this thesis brings enable complex robotic systems such as mobile

manipulators to efficiently and robustly solve the STAMP problem.

Algorithmic developments this thesis introduces for solving the motion planning

problem enable fast computation of individual motion plans, while the concept of a

TMM enables the exchange of information between the selection of possible task plans

and the computation of motion plans, such that the STAMP problem can be solved

up to six times faster than in previous work. TMMs also enable the consideration of

uncertainty at task planning level, leading to robust solutions. The combination of

speedup in computation and robustness of solutions makes the algorithms presented

in this thesis applicable in practical scenarios.
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1.3 Organization of the Thesis

In the first part of the thesis, Chapters 3 and 4 present algorithms, techniques and

tools for solving the motion planning problem. Chapter 3 shows an improved version

of the KPIECE algorithm that uses random projections, Chapter 4 describes OMPL

and shows applications of KPIECE and OMPL on the PR2 hardware platform.

In the second part of the thesis, building upon the developments introduced in

the first part, Chapters 5 and 6 present techniques for simultaneous task and motion

planning. The concept of a task motion multigraph (TMM) is introduced in Chapter 5

and Chapter 6 shows how to account for uncertainty using TMMs.
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Chapter 2

Background

2.1 Motion Planning

Two decades ago, the focus in motion planning was on planning under geometric

constraints. This problem is sometimes referred to as the piano movers’ problem, or

in 2D, the sofa movers’ problem, and it was the subject of extensive research [23–25].

A number of complete algorithms were developed for various cases of the problem and

it was eventually shown to be PSPACE-complete [26, 27]. The developed algorithms

are typically difficult to implement and computationally prohibitive by today’s stan-

dards. Techniques such as cell decomposition methods and potential fields [1, 3, 4]

were studied as well, but few were successful at solving problems where the state

space is high-dimensional [28].

In addition to geometric constraints, planning for real robotic systems requires ac-

counting for dynamic constraints (e.g., friction, gravity, limits in forces). In general it
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is not known if this version of the problem, planning under differential constraints, is

even decidable [29]. However, for the simplified case of a point mass robot, a polyno-

mial algorithm exists [30]; the reconfiguration of modular robots under kinodynamic

constraints is possible in Θ(
√

n) time under certain assumptions [31].

The proven difficulty of planning under geometric constraints and the need to con-

sider even more complex versions of the problem, such as planning under differential

constraints, pushed the research in motion planning towards techniques with weaker

completeness guarantees [3, 4]. There are multiple directions of research that exhibit

weaker completeness guarantees. This thesis relies on one of these directions, namely

sampling-based motion planning, a direction in which promising results have been

shown for planning in high-dimensional systems with complex dynamics [3,4,32,33].

Sampling-based Motion Planning Much of the recent progress in motion plan-

ning is attributed to the development of sampling-based algorithms [3,4]. Sampling-

based motion planning algorithms relinquish completeness in favor of probabilistic

completeness [34, 35]. Given sufficient time, a probabilistically complete algorithm

will eventually find a solution with probability 1, if one exists. However, if no solu-

tion exists, the algorithm will not terminate.

One of the most influential algorithms in sampling-based motion planning was

Probabilistic Roadmap Method (PRM) [36–38]. This method provided a coherent

framework for many earlier works that used sampling and opened new directions for

research. The core idea of PRM is to approximate the connectivity of the valid part

state space, Xvalid. The approximation is represented as a graph called the roadmap.
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The vertices of the roadmap are states sampled from Xvalid. For every vertex in

the roadmap, connections to some k-nearest neighboring vertices are considered. If

the motion of the robot between two vertices does not cross Xinv, the corresponding

edge is added to the roadmap. As more vertices and more edges are added, the

roadmap data structure approximates Xvalid more accurately. When a user-specified

query needs to be solved, the motion planning problem can be reduced to a graph

search problem by connecting the start and goal states to the roadmap. A graphical

representation of a roadmap is shown in Figure 2.1.

Figure 2.1: Graphical representation of a roadmap in a two-dimensional state space.

PRM inspired many other sampling-based algorithms [20,21,39–56]. Among these,

a notable class is that of tree-based planners. As the name suggests, tree-based

planners grow a tree in the state space of the robotic system. The initial tree consists

of the robot’s starting state. Newly sampled states are connected to some already
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Figure 2.2: Graphical representation of a tree of motions in a two-dimensional state space.

existing state in the tree [57].

Tree-based motion planners are appropriate for planning under differential con-

straints because implementations that only use forward propagation are possible. If

backward propagation is available, more efficient bi-directional tree planners can also

be used, but in this case the steering problem [58, 59] needs to be solved as well. A

further reason to use tree-based planners is that they explicitly consider the problem

to be solved – the tree is grown from the start state towards the goal state – which

typically allows finding a solution faster than approximating Xvalid entirely. A rep-

resentation of a tree of motions is shown in Figure 2.2. There are two fundamental

issues tree planners must consider in their expansion:

1) In which parts of the tree expansion should continue: There are various ways to

guide the tree expansion (e.g., [21,41–43,54,60–63]). Rapidly-exploring Random Trees
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(RRT) expand from states closest to randomly produced states [42, 60], Expansive

Space Trees (EST) and Single-query Bi-directional probabilistic roadmap planner

with Lazy collision checking (SBL) attempt to detect less explored regions and expand

from them [20, 21, 43]. A more recent development is the idea of a Path-Directed

Subdivision Tree (PDST) [64]. PDST uses an adaptive subdivision of the state space

and a deterministic priority scheme to guarantee coverage, avoiding the use of a

metric.

2) How this expansion should continue: RRT [42, 60] suggests a Voronoi bias,

by expanding toward random states. However, this can become problematic when

planning with differential constraints, and controls that achieve specific states cannot

be easily computed. Methods that discretize the control set in order to achieve better

coverage and reduced planning time have been introduced as well [65,66]. Existence of

narrow passages that need to be crossed by valid solutions can significantly reduce the

performance of planners. Techniques that improve sampling in narrow passages [67]

or identify the direction of narrow passages [68] have also been developed. Recently,

the idea of combining two layers of planning has been introduced (SyCLoP, presented

as DSLX in earlier work) [61]. SyCLoP is a meta-planner that uses discrete paths (top

layer) in a discretization of the workspace to guide the continuous tree exploration

(bottom layer). The planner at the bottom layer can be chosen among different

tree-based planners.
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2.2 Task Planning

Start State

Grasping Pose Book

move_to

Grasping Pose Coffee

move_to

Released Book

Grasped Book

grip

Can Release Book

move_to

Grasped Coffee

grip

Can Release Coffee

move_to

Released Coffee

release

move_to

release

Figure 2.3: Example task
graph.

To solve problems of practical interest it is most often

necessary to perform sequences of actions for a robot to

achieve its goal. For example, if a humanoid robot is

tasked to place a book on a shelve, it will have to perform

a minimum of four actions: move one of its arms towards

the book, grasp the book, take the book to its destination

and release the book. This sequence of operations assumes

the robot is capable of three basic actions: move, grasp

and release. This assumption is fairly common in previous

work and is also made in this thesis. Of course, different

sets of actions could have been used to characterize the

robot’s hardware capabilities. The problem of placing a

book on the shelve can be made more interesting if, for

example, there is a cup of coffee in the way, such that in

order to place the book on the shelve, the coffee needs to be first moved out of the

way. In this case, the number of actions the robot has to perform increases. However,

it is unclear whether moving the cup of coffee out of the way is always necessary. To

represent the possible sequences of actions a robotic device could choose to perform

the typical approach is to use graphs. Figure 2.3 shows an example graph, a task graph

representing the task of retrieving a book, accounting for the possibility of moving the

cup of coffee out of the way. The key observation here is that even if a valid sequence
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of actions is found in the task graph using well known search algorithms [2, 69], that

sequence of actions may not be feasible because corresponding motion plans may

not exist for that particular sequence of edges (as defined in Section 1.1.2). For this

reason, the task and motion planning problems are usually solved simultaneously, as

discussed in Section 2.3. In the artificial intelligence domain, task planning implies

the construction of the task graphs as well. In this work however, explicit task graphs

are assumed as input and the problem addressed is referred to as STAMP.

2.3 Task and Motion Planning

There has been a significant amount of research in motion planning (e.g., [3, 4]),

grasping (e.g., [70, 71]), task planning (e.g., [2, 69]) and manipulation planning (e.g.,

[9,72,73]) that has lead to the current state-of-the-art in simultaneous task and motion

planning. This section discusses two lines of work:

1) Work that builds upon the notion of manipulation graph: The methods included

here combine motion and task planning using the notion of a manipulation graph.

The original description of the manipulation graph [72, 74] is intended for solving

the problem of transporting an object of interest to its destination using a robot

in a static environment with movable obstacles. Vertices in manipulation graphs

correspond to subsets of the state space where the object to be transported is both

at a stable configuration (e.g., on a table) and graspable (i.e., the robot can safely

hold the object). An edge in the manipulation graph exists if a motion planner can

find a plan that connects the edge’s vertices. The edges in the manipulation graph
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denote one of the following:

• Transit path: path executed by the robot without carrying any objects, avoiding

collisions with the environment and with itself.

• Transfer path: path executed by the robot while carrying an object. The object

is considered fixed to the robot along such a path and is treated as part of the

robot for collision avoidance purposes.

Solving the task and motion planning problem is then reduced to finding a se-

quence of transit and transfer paths. A significant amount of previous work expands

on the idea of the manipulation graph to produce systems that can solve more complex

problems that can include multiple mobile robots (e.g., [9–15,72–77]).

2) Work that relies on the idea of guiding continuous exploration with discrete

paths: This line of work performs motion planning in the state space of the robot

and uses paths in the task graph as discrete guides (e.g., [78, 79]). Similar concepts

have been used for planning foot steps for humanoid robots (e.g., [80]) and climbing

robots (e.g., [81]).

The line of work mentioned first is closer to the work in this thesis. Each of the

systems that falls under that category employs a representation of a task graph. In

this thesis, the distinction between transfer and transit paths is not important. We

refer to it only for a more clear connection to previous work.

One of the most complex systems that extends the idea of manipulation graphs is

aSyMov [12]. This system is presented in more detail, as it is representative. Planning
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can be performed for multiple robots, with potentially different capabilities, under

symbolic and geometric constraints in an environment with movable objects. This is

a very general form of the problem and allows for solving complex tasks. aSyMov uses

a STRIPS-like [2] language to represent tasks. Because probabilistically complete [3]

motion planners are used, maximum runtime bounds are imposed in order to make the

algorithm terminate. Although performance is good for tasks that involve one robot

operating on one object, the aSyMov paper shows the success rate of the method

drops to 15% for tasks that involve two robots moving two objects, and computation

can take more than a hundred seconds on current modern machines [12]. Even though

the latter task is seemingly still simple, the number of sub-tasks and individual motion

plans that have to be computed is high, which increases the running time.

The approach aSyMov follows is based on constructing Probabilistic RoadMaps

(PRMs) [3, 36] for every robot and every movable object in the environment. A

roadmap R1 is connected to a roadmap R2 by identifying a milestone in R1 and

creating a corresponding milestone in R2. Use of these connected roadmaps effectively

allows the extraction of transit and transfer paths.

aSyMov is not the only system capable of task and motion planning. Over the

years, a number of other systems were proposed (e.g., [9–11, 13–15, 72, 73, 75–77]),

with varying levels of interaction between task and motion planning. Alami et al. use

motion planning as a subroutine and information about its progress is not used at the

task planning level [77]. Hauser and Latombe use roadmaps [10] in a similar fashion

to Cambon et al. [12]: they are connected by explicitly sampling the intersection of

the state spaces they correspond to.
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The work by Wolfe et al. [14] uses a hierarchical representation of tasks. At the

lowest level of the hierarchy there are primitive actions. Among these actions there

can also be algorithms that compute motion plans. This hierarchical representation

speeds up the search at the task level. Information about the length of the paths

produced by motion planning is used to provide optimal solutions at the task level.

A hierarchical representation for performing motion planning with temporal goals is

shown by Fainekos et al. [82].

Most of the previous work mentioned so far presents algorithms that can solve

the STAMP problem, and many of the approaches also include means of generating

task graphs from input specifications. The main difference to the work presented in

this thesis is that the option of using subsets of the robot’s hardware components to

perform actions is not considered. Considering the option of planning for only some

of the hardware components of the robot leads to significant computational gains, as

shown in Chapter 5.

One of the contributions of Nielsen and Kavraki [73] is that of showing how to

compute a sequence of motion plans along a path from an input manipulation graph,

in a manner that reduces computation along the path segments that are hard to plan

for. This idea is further explored and generalized in this work.

23



Chapter 3

The KPIECE Algorithm for

Motion Planning

3.1 Space Exploration when Planning under Dif-

ferential Constraints

When considering dynamic constraints of the robotic system, such as friction,

bounds in accelerations, bounded forces, etc., it is typical that motion plans are

computed using sampling-based tree planners (e.g., [20, 21, 32, 41–43, 46, 49, 54, 56,

83–85]). These are general algorithms, applicable to a variety of systems, and do

not rely on particular properties of robotic systems. Although algorithms capable

of solving difficult problems exist, better planning algorithms are needed as robotic

systems become more complex and there is a need to account for dynamic constraints.

Certain well known techniques for speeding up motion planning algorithms [57] are not
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applicable in such cases; for example, consideration of friction requires computation

of contacts, which makes lazy collision checking [20, 40] inapplicable; if the model of

the robotic system cannot be used for simulation backward in time, the use of bi-

directional algorithms is not possible. To quickly compute motion plans for systems

with complex dynamics, two approaches can be followed: (1) ignore the complexities

of the system and only compute geometric paths (sequences of states), in the hope

that a controller can follow the paths by keeping velocities sufficiently low (e.g.,

[86]); (2) improve the exploration capabilities of the tree planner through means that

only depend on forward propagating the model of motion – numerically evaluating

motions only forward in time. While the first approach allows for the implementation

of algorithms that can make use of many techniques for speeding up the planning

process [57], including bi-directional search and lazy collision checking, the execution

of rapid motions or of motions that must account for payload, friction, etc., cannot

be correctly planned. In consequence, the latter approach is followed in this chapter.

This chapter presents KPIECE (Kinodynamic Planning by Interior-Exterior Cell

Exploration) [87], a tree sampling-based motion planning algorithm, specifically de-

signed for systems with complex dynamics. An initial version of this algorithm has

been previously presented by the author [83, 88]. KPIECE was previously shown to

be an efficient algorithm in a variety of planning scenarios. The recent developments

presented in this chapter make the algorithm more general, applicable for a wider

variety of problems and reduce the input required from the user. The presented de-

velopments are are also applicable to related algorithms such as EST [21] or SBL [20].

As described in Section 2.1, when searching high-dimensional state spaces using
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a tree of motions, deciding which part of the tree merits further exploration can

be difficult. Considering dynamics further complicates the problem for a number of

reasons: (1) the dimensionality of the state space is typically higher because velocities

and perhaps accelerations are included in the robot’s state, (2) the state space may

not be entirely reachable from the robot’s initial state, (3) it is often difficult to define

a meaningful metric for these complex state spaces. These problems are addressed

by the exploration strategy KPIECE uses, and significant computational advantages

are achieved over previous work. The key feature of the exploration strategy used by

KPIECE is the estimation of coverage in a Euclidean projection of the state space.

This chapter contributes to the further development of KPIECE with a means to

automatically compute the projections necessary for the exploration strategy. We now

describe how the coverage estimation process works (Section 3.1.1). The KPIECE

algorithm is then presented in Section 3.1.2. Section 3.1.3 shows how to automatically

compute projections necessary in the exploration process, and experimental results

are shown in Section 3.2.

3.1.1 Estimating State Space Coverage

The key difficulty in guiding the exploration of the state space when computing

motion plans is avoiding over-exploration of certain regions of the state space and

under-exploration of other regions of the state space. If the coverage of the state

space could be evaluated easily, deciding which parts of the state space should be

explored further would be a simpler problem. However, it is not apparent how to

quickly evaluate such measures of coverage in general.
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To avoid this problem, an approach followed in the literature is to employ a

projection of the state space X to help in making the decision of where to continue the

tree expansion from [20,51,56,83]. We denote this projection space by E(X ). Typically

E(X ) is assumed to be Euclidean and of low dimension; E : X → Rk, (k is up to 3 or

4, by today’s standards). Estimating the coverage of E(X ) is then an easier problem,

since simple approaches based on uniform discretization of Rk can be used, as shown in

Figure 3.1: Uniform discretization of a space
to be explored and a possible tree of motions.

Figure 3.1. In the context of tree-based

planners, the assumption is that if the

tree of motions covers E(X ) well, it also

covers X well. It has not been proven

when or whether this assumption holds.

However, previous work has shown em-

pirically that the tree exploration can be

guided towards the goal region for some

user-defined projections [51, 56, 83], and

significant computational gains are ob-

served. Nevertheless, using projection spaces to estimate coverage replaces one prob-

lem by another: it is not clear how to define the projection E in general. For this

reason, motion planners require the projection E to be supplied as an input.

Empirical evidence suggests that projections are typically easy to specify because

algorithms requiring such projections are usually robust with respect to this input.

This statement is supported by experiments conducted with KPIECE, where the same

problem instance is solved using different input projections, at similar computational
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cost (shown later in Section 3.2).

Intuitively, the purpose of the projection is to provide a space in which coverage

is to be estimated, such that the space is representative for the problem being solved.

For example, if we are planning for a car moving in plane, a representative space for

estimating coverage is the plane in which the car is moving (2-dimensional projection).

For a manipulator arm, the position in space of the tip of the arm is representative

(3-dimensional projection). For systems where velocity is important, for example an

inverted pendulum, a representative space is that of the velocity of the pendulum

and its angle (2-dimensional projection). If the pendulum has multiple links, the

projection can consist of the norm of angular velocities and the position of the tip of

the pendulum in the plane of motion (3-dimensional projection).

3.1.2 The KPIECE Algorithm

KPIECE is innovative in the sense that while it is able to handle high-dimensional

systems with complex dynamics, it reduces both runtime and memory requirements

by making better use of information collected during the planning process. Intu-

itively, this information is used to decrease the amount of forward propagation the

algorithm needs. The key contribution of KPIECE is its exploration strategy. The

exploration strategy depends on estimating the coverage of the state space of the

robotic system, which in turn depends on the existence of a projection from the state

space of the robotic system to a low-dimensional Euclidean space. The initial version

of KPIECE assumed such a projection is supplied by the user. The variant presented

in this chapter removes this burden from the user and automatically computes such
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a projection in a randomized fashion. Before showing how to automatically compute

random projections and corresponding experimental results, we describe the basic

KPIECE algorithm for convenience. A complete description of the algorithm can be

found in [87].

KPIECE is a sampling-based algorithm that explores the state space of the robotic

system by growing a tree of motions. Each motion in the tree is defined as ν = (s, u, t),

where s ∈ X is the starting state of the motion and u ∈ U is the control applied at

that state, for a duration t ∈ R≥0.

From a high-level perspective, KPIECE proceeds iteratively, as described in Algo-

rithm 1: at each iteration, an existing motion from the tree is selected [line 3]; a new

motion starting at a state along the selected motion is produced and added to the

tree [line 4]; information gathered in the expansion process is incorporated for future

selections of motions [line 7]; this process continues until some termination criterion

is met.

The above description is intended to be solely an overview of KPIECE. The steps

Algorithm 1 are common to many other sampling-based algorithms that use trees.

What makes such algorithms different is how these steps are carried out. In the case

of KPIECE, this accounts for up to two orders of magnitude speedup with respect to

previous work. Various aspects of KPIECE are discussed in the following paragraphs.

The Tree of Motions The tree is initialized with a motion ν0 = (s, nil, 0) that

consists of the robot’s starting state s ∈ Xvalid and a control that has no effect, applied

for 0 duration. Although motions are in fact continuous segments, they are computed
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Algorithm 1 KPIECE (qstart, Niterations)

1: T = InitializeTree(qstart)
2: for i← 1...Niterations do

3: ν = SelectMotion(T )
4: ExpandTree(T, ν)
5: if solution is found then

6: return solution
7: EvaluateProgress()
8: return no solution

by a forward propagation function (as in Section 1.1.1), with fixed step size. This

means that intermediate states along each motion are generated at a fixed resolution.

We call this resolution the propagation step size. As a result, for every motion, the

duration of the control is t = m · r, where r ∈ R+ is the propagation step size and

m ∈ N is the number of steps.

The controls applied from s are selected uniformly at random from U . The du-

ration of the control is obtained by sampling a value for m. The random selection

of controls is what is typically done if other means of control selection are not avail-

able. This choice is not part of the proposed algorithm, and can be replaced by other

methods, if available. Different methods of control selection are desirable for systems

that are not stable for instance, as in this case random selection of controls will likely

not lead to valid states. Using some generic forms of control such as LQR is also

possible [89].

For a motion ν, let States(ν) be the set of states along the motion ν, at the

propagation step size, as they are generated by forward propagation. States(ν) is

not stored by KPIECE, but it is generated as needed. See Figure 3.2 for an example.

New motions expanded from an existing motion ν can start at any state in States(ν).
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Let AS =
⋃

ν States(ν) be the set of all states that the tree of motions consists of,

with respect to the used propagation step size. AS is not computed by KPIECE, but

it is a notion used to explain the execution of the algorithm.

Figure 3.2: Tree of motions as grown by KPIECE. The states at the start of motions are
depicted as larger vertices. The motion is computed by forward integration at fixed step
size. Intermediate states are depicted as smaller vertices. The intermediate states are not
stored by KPIECE.

Not unlike other sampling-based planners that employ trees, KPIECE tries to

reach the goal as quickly as possible, but also eventually explore entirely the reachable

regions of the valid state space Xvalid, so that a solution is found if one exists. In

order to achieve this, KPIECE carefully selects motions for further expansion [line

3 in Algorithm 1]. An important part of the selection strategy is estimating the

coverage of the state space that the tree of motions achieves.
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Using Projections to Estimate State Space Coverage As X can be high-

dimensional and its topology is not known to the algorithm, a projection E to a

Euclidean space Rk is used. This is an input to the initial version of the algorithm,

and Section 3.1.3 will show how to automatically compute this input. Rk is the

projection space and k is the dimension of the projection.

Define Coord : Rk → Zk, where Z is the set of integers:

Coord(p) = Coord((p1, . . . , pk))

=
(⌊

p1 − o1

d1

⌋

, . . . ,
⌊

pk − ok

dk

⌋)

= z,

where ⌊·⌋ denotes truncation to nearest smaller integer, p = (p1, . . . , pk) ∈ Rk, o =

(o1, . . . , ok) ∈ Rk is an arbitrary point designated as the origin, di ∈ R+, i ∈ {1, . . . , k}

and z ∈ Zk. Coord discretizes Rk into k-dimensional cubes of uniform size, each with

sides of lengths d1, . . . , dk.

For every z ∈ Zk, define the corresponding cell in X to be:

Cell(z) = {x ∈ X | Coord(E(x)) = z}.

Motions added to the tree of motions are said to be part of a cell if all their states

are included in the cell:

Motions(z) = {ν | x ∈ States(ν) implies x ∈ Cell(z)}.

The invariant that every motion is part of a single cell is maintained. This is
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achieved by splitting motions before adding them to the tree of motions, such that

they are not part of multiple cells. When a motion ν is to be added, States(ν) is

generated. For every x ∈ States(ν), Coord(E(x)) is computed. With this information,

it can be decided which parts of the motion go to which cells. Since States(ν) is an

approximation of the motion ν, this computation is not exact, but it is sufficient for

our purposes.

It is now possible to define the coverage achieved by a tree of motions in X . For

every cell coordinate z ∈ Zk, the coverage of Cell(z) is

Coverage(z) =
∑

ν=(s,u,t)∈Motions(z)

(

1 +
t

r

)

,

where r is the propagation step size. Since t is an integer multiple of r, the value

of the coverage represents the number of states in Cell(z) that are also in AS:

Coverage(z) = |AS ∩ Cell(z)|, where | · | denotes the cardinality of a set.

At this point we make the assumption that coverage estimates for cells are relevant

for the coverage of X . We do not prove this is the case from a mathematical point of

view, but experimental results shown later support this hypothesis.

As the tree of motions increases, and the number of states in AS increases,

KPIECE keeps track of the minimal set of cells that covers AS. We say C ⊂ Zk

covers AS if AS ⊆ ⋃

z∈C Cell(z). We say C is minimal if there is no subset D ( C

such that D covers AS. When the algorithm starts, AS has only one state. One

cell is sufficient to cover AS – the cell that contains the starting state. Let Mc ⊂ Zk

denote the minimal cover of AS. Throughout the execution of the algorithm, the
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cardinality of Mc increases. Cells included in Mc are called instantiated cells. Mc is

called a discretization of the space covered by the tree of motions.

Distinguishing Interior and Exterior Cells For every z = (z1, . . . , zk) ∈ Zk,

the neighbors of Cell(z) are Neighbors(z) =

{ Cell(w) ∈Mc | w = (z1, . . . , zi−1, y, zi+1, . . . zk),

for y = zi − 1 or y = zi + 1 }.

The maximum cardinality of Neighbors(z) is 2k. A distinguishing feature of KPIECE

is the notion of interior and exterior cells. A cell is considered exterior if it has less

than 2k neighboring cells. Cells with 2k neighboring cells are considered interior. The

reason for making this distinction is that focusing the exploration on exterior cells

allows the motion planner to cover the state space faster. As the algorithm progresses

and new cells are created, some exterior cells become interior (see Figure 3.3). When

larger parts of the state space have been explored, most cells have become interior.

However, for high-dimensional spaces, to avoid having only exterior cells, the defi-

nition of interior cells can be relaxed and cells can be considered interior before the

cardinality of the set of neighbors reaches 2k.

Importance of Cells An important step in the execution of KPIECE is selecting

the cell from which to continue the expansion of the exploration tree. This section

describes the notion of importance associated to cells, a notion used in the selection of

cells. The following pieces of information are considered when selecting a cell Cell(z):
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Figure 3.3: Representation of a tree of motions and its minimal cover. Interior cells are
differentiated from exterior cells.

• The coverage Coverage(z) (work in the same spirit suggested in e.g., [61]),

• The number of times Cell(z) was previously selected (suggested in e.g., [21]),

• The cardinality of Neighbors(z),

• The iteration at which Cell(z) was added to Mc (suggested in e.g., [64]),

• A measure of the progress in exploration achieved when expanding from Cell(z)

(work in the same spirit suggested in e.g., [54]).

KPIECE prefers expanding from cells that are less covered rather than from cells

that are well covered. Cells that have been selected for expansion fewer times are

preferred over cells that have been selected many times. Cells that have fewer neigh-

bors and cells that have been instantiated more recently are preferred, as these are
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more likely to be closer to unexplored areas of the space. Cells that have led to good

progress in exploration are preferred over cells that have led to slower progress (e.g.,

if a cell contains many motions that place the robot in front of a wall, it is possible

expanded motions will often hit the wall).

The considerations mentioned above for selecting cells are heuristics that have

been shown to work well in practice. KPIECE combines their use in the notion of

importance, since no one heuristic can be identified as better than the others. The

importance of a cell Cell(z) is defined as:

Importance(z) =
log(I) · score

S · (1 + |Neighbors(z)|) · Coverage(z)
,

where I is the number of the iteration at which Cell(z) was added to Mc, S is the

number of times Cell(z) was selected for expansion (initialized to 1) and score reflects

the exploration progress achieved when expanding from Cell(z) (initialized to 1). The

definition we propose for importance represents what worked well in our experiments.

However, it is possible that other definitions can lead to better performance for certain

applications. KPIECE prefers expanding from cells with higher importance. With

careful bookkeeping, the importance of a cell can be computed in constant time, since

all the values it depends on can be made readily available.

To make the definition of importance complete, the use of score needs to be

explained. Adding a motion to the tree of motions may increase the coverage of the

space. The update to score proceeds as follows:

• Assume a motion was selected for expansion from Motions(z) (Algorithm 1,
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line 3).

• Let total coverage Cbefore =
∑

z∈Mc
Coverage(z), and Tbefore = current time.

• Algorithm 1 proceeds with lines 4 through 6.

• Let total coverage Cafter =
∑

z∈Mc
Coverage(z), and Tafter = current time.

• Line 7 of Algorithm 1 consists of the following steps:

P = α + β ·
(

Cafter − Cbefore

Tafter − Tbefore

)

score = score ·min(P, 1),

for score corresponding to Cell(z).

The purpose of score is to reflect how much progress has been made when ex-

panding from Cell(z). Based on the increase in total coverage and the time spent

achieving this increase in coverage, a penalization value P is computed. P is used as

a multiplicative factor for score. To avoid entering an infinite loop where the cell

with highest importance is always the same, score must never be multiplied by a

value larger than 1, hence the use of min(P, 1). α and β are implementation specific

constants that help defining P . P is intended to be smaller than 1 for expansions

that did not provide significant increase in coverage. If P ≥ 1, the score is not be

changed. If the coverage increase is 0, P = α, so α must always be larger than 0 so

that the score does not become 0. β ∈ R+ is chosen such that P ends up being larger

than 1 only for expansions that have led to significant progress.
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Algorithm Execution A more detailed description of KPIECE is given in Algo-

rithm 2. The algorithm begins by initializing the tree of motions with a motion of 0

duration that consists solely of the robot’s starting state [lines 1–3]. This motion is

added to a special data structure called Grid. Grid associates Motions(z) to every

z ∈Mc and takes care of the bookkeeping necessary to update the importance of cells

as the algorithm is running.

To expand the tree of motions, KPIECE needs to select an existing motion from

that tree. Grid is used to identify areas of X that are considered more important –

using the notion of importance defined above [line 5].

KPIECE randomly decides whether to expand from an interior or exterior cell

from Mc. A strong bias towards exterior cells is usually employed. This decision

effectively separates Mc in two disjoint sets: Mc,int and Mc,ext (the set of interior cells

and the set of exterior cells, respectively). Subsequently, KPIECE deterministically

selects the cell Cell(c) with maximum importance from either Mc,int or Mc,ext. This

operation can be performed quickly by maintaining Mc,int and Mc,ext as heaps. A

motion ν from Motions(c) is then picked according to a half-normal distribution.

The half-normal distribution h(σ2) is used because motions that have been added

more recently are preferred for expansion [line 6]. h(σ2) corresponds to the normal

distribution (mean = 0 and variance = σ2) folded about the y-axis at 0; it returns a

value larger than 0, with a high probability of being close to 0. For a set Motions(c)

with m motions, numbered from 0 to m−1, where the 0th motion is the most recently

added one, a randomly selected motion ν is the ⌊h((m/3)2)⌋th motion. A state s along

ν is then chosen uniformly at random from States(ν) [line 7]. Expanding the tree of
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motions continues from s [line 9]. Because States(ν) is not stored it may be necessary

to recompute s, but the memory savings outweigh the computational costs.

If the tree expansion was successful, the newly obtained motion is added to the tree

of motions and the discretization is updated [lines 11,13]. Information gained during

the expansion step is incorporated in the score of the selected cell c, as previously

described [lines 14,15].

Algorithm 2 KPIECE(qstart, Niterations)
1: Let ν0 be the motion of duration 0 containing solely qstart

2: Create an empty Grid data-structure G

3: G.AddMotion(ν0)
4: for i← 1...Niterations do

5: c = G.Select(0.75)
6: Select ν ∈Motions(c) using a half-normal distribution
7: Select s along ν

8: Sample random control u ∈ U and simulation time t ∈ R+

9: Check if any motion (s, u, t◦), t◦ ∈ (0, t] is valid (forward propagation)
10: if a motion is found then

11: Construct the valid motion ν◦ = (s, u, t◦) with t◦ maximal
12: If ν◦ reaches the goal region, return path to ν◦

13: G.AddMotion(ν◦)
14: P = α + β · (ratio of increase in coverage to time spent in simulation)
15: Multiply the score of Cell(c) by min(P ,1)
16: return no solution

3.1.3 Using Random Linear Projections

Finding an input projection can be often intuitive, and multiple different projec-

tions work well for the same robotic system. For example, for a manipulator arm,

in addition to the position in space of the tip of the arm, the projection that only

considers the first two angles of the arm (closest to base) also leads to good results.
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In some cases however, for example in the case of reconfigurable robots, defining a

projection can be hard. In those cases, or when the user is simply unwilling to set

a projection, random projections can be automatically computed and used as a fall-

back. The inspiration to use random projections comes from a theorem by Johnson

and Lindenstrauss [90] which states:

For any ε > 0, any n points from a l2 metric can be embedded in a l2 metric of

dimension O(log n/ε2), with (1 + ε) distortion.

This means that distances between states in the state space with the l2 norm are

approximately preserved in the projection space with the l2 norm. Since l2 norm

is usually not an appropriate metric for the state space X , we do not rely on the

mathematical foundation provided by this theorem [91].

Automatically computing projections has the potential of finding projections that

are better than what even an expert user can provide, in the sense that planners

will run faster, it opens up the possibility of using different projections for different

environments, and it simplifies the input to motion planning algorithms. Moreover,

as the complexity of robotic systems increases, human intuition may fail to produce

any useful projections.

Sampling a Random Linear Projection We assume a tractable dimension for

our projection space; low-dimensional projection spaces are preferred: 2- or 3-dimensional.

Using 4- or 5-dimensional projection spaces is possible, but computationally expen-

sive by today’s standards. For the purposes of this work, dimensions of k = 2 and

k = 3 were used. Next, k vectors in Rn, where n > k is the dimension of X (or an
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ambient space surrounding X ), are randomly sampled according to a normal distri-

bution (with mean 0 and variance 1). Other methods of sampling, such as uniform

sampling, would work as well. The k vectors already constitute a projection, but to

avoid representing the same information in multiple dimensions, the Gramm-Schmidt

process is ran to make the k vectors orthonormal. For a state x ∈ X , a random linear

projection V,

V = (v1, ..., vk), vi ∈ Rn,

the projection of x is E(x) ∈ Rk, with

E(x) = VT x,

assuming all vectors are column vectors. When KPIECE is executed without spec-

ifying a projection as input, the process described above can be used to generate

a projection. The following section shows the performance of KPIECE with such

projections.

3.2 Performance of KPIECE with Random Linear

Projections

The idea of using random linear projections is simple to apply but the influence

of such projections on the performance of KPIECE (and of other algorithms that

employ this input) is unclear. To answer this question we propose to simply evaluate
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the performance of KPIECE in terms of runtime for a number of sampled random

linear projections and for some user specified projections.

3.2.1 Experimental Setup

Due to the probabilistic nature of sampling-based algorithms, the runtime of

KPIECE needs to be averaged over multiple executions (starting from different ran-

dom seeds). To reduce the amount of computation necessary for this experiment,

a simple method of approximating a projection’s utility was defined. Given a trial

problem to solve, KPIECE is run twice using a random projection as input. The

utility of that projection is then the inverse of the average runtime of the two ex-

ecutions. If at least one of the two executions was unable to reach a solution, the

utility is considered to be 0. Sorting sampled projections by utility allows performing

a more careful evaluation on only a fraction of the sampled projections, thus saving

computational time.

Algorithm 3 shows how to identify four random projections of interest: the three

with top utility and the one with median utility. The performance of these four

projections is compared with user defined projections on a set of problems. The

considered problem instances are shown in Section 3.2.2 and experimental results are

in Section 3.2.3.
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Algorithm 3 FindProjection(k, n)

for i = 1 to Nattempts do

V[i]← RandomLinearProjection(k, n)
utility[i]← EvaluateProjection(V)

(R1, R2, R3) ← the 3 projections with highest utility
M ← the projection with median utility
return (R1, R2, R3, M)

3.2.2 Robot Models

KPIECE uses physics models for the robots it plans the motion for. For this

purpose, the Open Dynamics Engine (ODE) [16] (version 0.10) physics simulation

library is used. The used simulation step size was 0.05s. A set of ODE models of

increasing complexity are defined in the following section. We consider a robot more

complex if it has a higher-dimensional state space.

Modular Robot The model characterizes the CKBot modules [92]. Using these

modules, different robots can be constructed. Each CKBot module contains one

motor. An ODE model for serially linked CKBot modules has been created [32]. The

task is to compute the controls for lifting the robot from a vertical down position

to a vertical up position for varying number of modules, as shown in Figure 3.4.

Each module adds one degree of freedom (DOF). The controls represent torques that

are applied by the motors inside the modules. The difficulty of the problem lies in

the high dimensionality of the control and state spaces as the number of modules

increases, and in the fact that at maximum torque, the motors in the modules are

only able to statically lift approximately 5 modules. Consequently, the planner has
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to find swinging motions to solve the problem. The state space for a chain modular

robot with m modules is X = {x | x = ((x1, ẋ1), ..., (xm, ẋm))}, where xi is the angle

position of module i, i ∈ {1, .., m}. The employed projection was E : X → R3. In the

evaluation of E , the first two dimensions are the (x, z) coordinates of the last module

(x, z is the plane observed in Figure 3.4) and the third dimension, the square root of

the sum of squares of the rotational velocities of all the modules. The environments

the system was tested in are shown in Figure 3.4.

Figure 3.4: Left: start and goal configurations. Right: environments used for the chain
robot (7 modules). Experiments were conducted for 2 to 10 modules. In the case without
obstacles, the environments are named chain1-x where x stands for the number of modules
used in the chain. In the case with obstacles, the environments are named chain2-x.

Car Robot A model of a car [3] was created. The model is fairly simple and

consists of five parts: the car body and four wheels. Since ODE does not allow for

direct control of accelerations, desired velocities are given as controls for the forward

velocity and steering velocity (as recommended by the developers of the library).

The desired velocities indicate what velocities the car is intended to achieve and

go together with a maximum allowed force. The end result is that the car will
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not be able to achieve the desired velocities instantly, due to the limited force. In

effect, this makes the system a second order one. The state space for this model is

X = {x | x = (x, y, θ, v, θ̇)}, where (x, y) denote the center of the car chassis, θ is the

car’s orientation and v is the velocity along the orientation. The employed projection

was E : X → R2. E evaluates to the (x, y) coordinates of the center of the car body.

The environments the system was tested in are shown in Figure 3.5.

Figure 3.5: Environments used for the car robot (car-1, car-2, car-3). Start and goal
configurations are marked by “S” and “G”. The small cubes represent obstacles.

Blimp Robot The third robot that was tested was a blimp robot [62]. The motion

in this case is executed in a 3D environment. This robot is particularly constrained

in its motion: the blimp must always apply a positive force to move forward (slowing

down is caused by drag), it must always apply an upward force to lift itself vertically

(descending is caused by gravity) and it can turn left or right with respect to the

direction of forward motion. Since ODE does not include air friction, a Stokes model

of drag was implemented for the blimp (the drag force is Fdrag = −bv where v is the

linear velocity of the blimp and b is the drag coefficient). The state space for this

model is X = {x | x = (x, y, z, θ, v, ż, θ̇)}, where (x, y, z) denote the center of the

45



blimp, θ is the blimp’s orientation and v is the forward velocity along the orientation.

The employed projection was E : X → R3. E evaluates to the (x, y, z) coordinates

of the center of the blimp. The environments the system was tested in are shown in

Figure 3.6.

Figure 3.6: Environments used for the blimp robot (blimp-1, blimp-2, blimp-3). Start
configurations are marked by “S”. The blimp has to pass between the walls and through the
hole(s), respectively. The small cubes represent obstacles.

3.2.3 Results and Discussion

All runtimes reported in this section are the result of running KPIECE with

different projections on an 8-core machine, with 16 GB RAM and a 10 minute time

limit. For each value, KPIECE was run 50 times; the best 2 and worse 2 results (in

terms of runtime) were dropped; the runtime of the remaining 46 runs was averaged to

produce the reported value. All values are reported in seconds. The value of Nattempts

in Algorithm 3 was 150.

Tables 3.1, 3.2 and 3.3 show the averaged runtimes of KPIECE using different

projections. The user projections were defined by the author. Every effort was made

to find projections that work well. Different combinations of using the velocity of the

car and blimp in their projections were attempted, but the best results were obtained
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Table 3.1: User-defined & 8 random linear projections (E) for the car robot. For each
environment, runtime (s), success rate are reported.

E k car-1 car-2 car-3
U1 2 7.15, 1.00 8.84, 1.00 15.90, 1.00
R1 2 5.77, 1.00 7.93, 1.00 14.62, 1.00

R2 2 6.02, 1.00 11.13, 1.00 37.13, 1.00
R3 2 5.58, 1.00 8.82, 1.00 24.03, 1.00
M 2 6.30, 1.00 8.82, 1.00 17.72, 1.00
R1 3 8.04, 1.00 10.51, 1.00 31.99, 1.00
R2 3 9.27, 1.00 12.84, 1.00 37.06, 1.00
R3 3 6.22, 1.00 7.76, 1.00 31.12, 1.00
M 3 6.25, 1.00 9.43, 1.00 28.82, 1.00

Table 3.2: User-defined & 8 random linear projections (E) for the blimp robot. For each
environment, runtime (s), success rate are reported.

E k blimp-1 blimp-2 blimp-3
U1 3 4.04, 1.00 7.86, 1.00 49.24, 1.00
R1 2 6.69, 1.00 132.76, 0.78 307.61, 0.13
R2 2 5.42, 1.00 15.92, 1.00 273.59, 0.43
R3 2 4.12, 1.00 12.10, 1.00 136.74, 0.59
M 2 10.67, 1.00 125.47, 0.93 371.79, 0.26
R1 3 3.50, 1.00 6.78 , 1.00 74.68, 0.98
R2 3 3.43, 1.00 7.10 , 1.00 38.50, 1.00

R3 3 3.52, 1.00 30.36, 1.00 181.11, 0.65
M 3 3.56, 1.00 6.79, 1.00 64.55, 1.00

with the simplest projections: the workspace. For the modular robot, defining a

more complicated projection (U1) seems to help more [64]; for comparison purposes,

we also define a simple projection (U2). The R1, R2, R3 and M projections were

obtained as discussed earlier, by projecting from an ambient space surrounding X to

2- and 3-dimensional projection spaces (k = 2, k = 3).

Random linear projection that performed best are marked in bold-face. We ob-
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Table 3.3: User-defined & 8 random linear projections (E) for each modular robot. For
each environment, runtime (s), success rate are reported.

N E k chain1-N chain2-N N chain1-N chain2-N
5 U1 3 3.11, 1.00 3.14, 1.00 8 6.04, 1.00 30.35, 1.00

U2 2 3.24, 1.00 20.71, 0.76 N/A, 0.00 N/A, 0.00
R1 2 3.63, 1.00 29.67, 0.87 N/A, 0.00 N/A, 0.00
R2 2 3.72, 1.00 51.22, 0.46 31.14, 0.17 N/A, 0.00
R3 2 3.33, 1.00 24.66, 1.00 62.67, 0.13 N/A, 0.00
M 2 3.64, 1.00 86.40, 0.61 155.81, 0.28 N/A, 0.00
R1 3 5.80, 1.00 26.68, 1.00 197.12, 0.09 N/A, 0.00
R2 3 5.10, 1.00 9.20, 1.00 39.49, 1.00 52.70, 0.96

R3 3 5.90, 1.00 21.68, 1.00 162.81, 0.76 N/A, 0.00
M 3 6.63, 1.00 17.40, 1.00 212.03, 0.26 182.23, 0.26

6 U1 3 3.26, 1.00 3.34, 1.00 9 37.24, 1.00 133.84, 0.48
U2 2 24.35, 0.96 85.41, 0.33 N/A, 0.00 N/A, 0.00
R1 2 150.18, 0.78 41.48, 0.13 N/A, 0.00 N/A, 0.00
R2 2 108.01, 0.65 N/A, 0.00 N/A, 0.00 N/A, 0.00
R3 2 3.79, 1.00 19.42, 1.00 N/A, 0.00 N/A, 0.00
M 2 25.18, 1.00 109.74, 0.65 N/A, 0.00 N/A, 0.00
R1 3 7.94, 1.00 7.68, 1.00 185.90, 0.67 144.51, 0.93

R2 3 8.48, 1.00 8.59, 1.00 139.60, 0.41 228.04, 0.13
R3 3 10.10, 1.00 60.09, 1.00 201.33, 0.43 257.78, 0.76
M 3 38.65, 1.00 131.63, 0.39 N/A, 0.0 N/A, 0.0

7 U1 3 3.92, 1.00 4.55, 1.00 10 214.85, 0.41 656.44, 0.02
U2 2 120.40, 0.04 N/A, 0.00 N/A, 0.00 N/A, 0.00
R1 2 10.06, 1.00 74.95, 0.67 N/A, 0.00 N/A, 0.00
R2 2 108.20, 0.20 N/A, 0.00 N/A, 0.00 N/A, 0.00
R3 2 15.33, 1.00 146.62, 0.35 N/A, 0.00 N/A, 0.00
M 2 74.60, 0.74 409.50, 0.02 N/A, 0.00 N/A, 0.00
R1 3 19.88, 1.00 30.32, 1.00 N/A, 0.00 N/A, 0.00
R2 3 18.62, 1.00 23.27, 1.00 N/A, 0.00 N/A, 0.00
R3 3 34.67, 1.00 41.67, 1.00 N/A, 0.00 N/A, 0.00
M 3 72.12, 1.00 138.81, 0.11 N/A, 0.00 N/A, 0.00
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Table 3.4: The percentage of the projections that were considered valid by the evaluation
procedure in Section 3.2.3. Maximum allowed time per trial environment is presented as
well.

2 dimensions 3 dimensions

Trial environment valid time (s) valid time (s)

car-3 52.7% 90.0 78.0% 90.0
blimp-3 83.3% 90.0 64.7% 90.0
chain1-5 100.0% 90.0 100.0% 90.0
chain1-6 84.0% 90.0 86.7% 90.0
chain1-7 42.7% 90.0 47.3% 90.0
chain1-8 10.0% 90.0 15.3% 90.0
chain1-9 0.7% 200.0 3.3% 200.0
chain1-10 0.0% 600.0 0.0% 600.0

serve that in the case of the car and the blimp, the random projections actually do a

little better than the user-defined projections. This in itself represents an impressive

result, considering the simplicity of the process through which the random projec-

tions were found. In addition, looking at Table 3.4, we notice that the percentage

of random linear projections that produce some results, is very high (above 50%).

This means that for systems of moderate dimension, finding a good random linear

projection is an easy task. Further evidence supporting this observation is the fact

that the M projections also perform well. Of course, there may be other potentially

non-linear projections that could do better.

Looking at Table 3.3, where we test systems with higher-dimensional state spaces,

random linear projections do not perform as well as the non-linear user-defined pro-

jection U1. However, it should be noted that finding U1 required significant effort.

For 5, 6 and 7 modules we do however get results that are no worse than 5 times
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slower, with 100% success rate. For 8 modules, we get similar results in terms of

runtime but the success rate drops under 100%. At 9 modules an interesting result

is observed. With the hard to find U1 projection, the success rate is 0.48 (48%) for

the chain2-9 environment while with the best found random linear projection, the

average runtime is almost the same but the success rate is much higher: 0.93 (93%).

At 10 modules, no randomly sampled projections had utility above 0, even though

we increased the allowed runtime for the trial environment (as shown in Table 3.4).

However, even with the U1 projection, we obtain poor results (low success rate).

The fact that the runtime is limited to 10 minutes is likely the primary cause for

this low success rate. It is possible that using a higher-dimensional projection would

also improve results. Comparing with the user-defined projection U2, random linear

projections do significantly better.

Overall, for systems with moderate dimension it is likely that easy to find random

linear projections will perform well. As the dimension increases, this is no longer the

case, but we still get reasonable results.
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Chapter 4

The Open Motion Planning

Library and Practical Applications

Many of the core concepts in motion planning are relatively easy to explain, but

implementing motion planning algorithms in a generic way is non-trivial. This chap-

ter describes the Open Motion Planning Library (OMPL), an open source C++ im-

plementation (with Python bindings) of many sampling-based algorithms, including

KPIECE, and core low-level data structures that are commonly used [93]. OMPL is

designed to be used in both academic and industrial settings.

Within the robotics community, it is often challenging to demonstrate that a new

motion planning algorithm is an improvement over existing methods according to

some metric. First, it is a substantial amount of work for a researcher to implement

not only the new algorithm, but also one or more state-of-the-art motion planning

algorithms to compare against. Ideally, implementations of low-level data structures
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and subroutines used by these algorithms (e.g., proximity data structures) are shared,

so that only differences of the high-level algorithm are measured. Second, for an ac-

curate comparison, one needs a known set of benchmark problems. Finally, collecting

various performance metrics for several planners with different parameter settings,

running on several benchmark problems and storing them in a way that facilitates

easy analysis subsequently is a non-trivial task. OMPL was designed to help with all

these issues, and make it easier to try out new ideas.

From the beginning, OMPL was intended to be useful in practical applications.

This requires that planning algorithms have to be able to solve motion planning prob-

lems for systems with many degrees of freedom at interactive speeds. An additional

requirement is the ability to cleanly integrate OMPL with other software components

on a robot, such as perception, kinematics, control, etc. Through a collaboration

with Willow Garage, OMPL is integrated with ROS [22] and serves as the motion

planning back-end for the arm planning software stack.

Related Software Packages for Motion Planning Several other packages for

motion planning are available. Some, such as the Motion Strategies Library (MSL) [94],

the Motion Planning Kit (MPK) [95], and VIZMO++ [96], are no longer maintained.

Others, such as KineoWorks [97] and the Object-Oriented Programming System for

Motion Planning (OOPSMP) [98], are designed as standalone applications for mo-

tion planning, which makes their integration with other software components more

difficult. OOPSMP is in some sense the predecessor of OMPL, as it significantly

influenced the design of OMPL.
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Another software package that is related to OMPL is OpenRAVE [99]. Open-

RAVE is open source, actively developed, and it is widely used. It is important

to understand the difference in design philosophy behind OMPL and OpenRAVE.

OpenRAVE is designed to be a complete package for robotics. It includes, among

other things: motion planning algorithms, geometry representation, collision check-

ing, grasp planning, forward and inverse kinematics for several robots, controllers,

simulated sensors, visualization tools, etc. OMPL, on the other hand, was designed

to focus completely on motion planning with a clear mapping between theoretical

concepts in the literature and abstract classes in the implementation. This high level

of abstraction makes it easy to integrate OMPL with a variety of front-ends and other

libraries. Some integration examples are described in Section 4.4. To some extent,

the integration with ROS [22] gives a user many of OpenRAVE’s features that are

purposefully not included in OMPL. As a result of this narrower focus in OMPL,

more resources have been spent on implementing a broader variety of sampling-based

algorithms than what is currently available in OpenRAVE.

Conceptual Overview of OMPL OMPL is intended for use in research and

education, as well as in industry. For this reason, the main design criteria for OMPL

are as follows:

• Clarity of concepts OMPL was designed to consist of a set of components

as indicated in Figure 4.1, such that each component corresponds to known

concepts in sampling-based motion planning [3].

• Efficiency OMPL has been implemented entirely in C++ and is thread-safe.
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• Simple integration with other software packages To facilitate the inte-

gration with other software libraries, OMPL offers abstract interfaces that can

be implemented by the “host” software package. Furthermore, the dependencies

of OMPL are minimal: only the Boost libraries [100] are required.

• Straightforward integration of external contributions API constraints

for planning algorithms are minimal, so that external contributions can be easily

integrated.

As opposed to all other existing motion planning software libraries, OMPL does

not include a representation of workspaces or of robots; as a result, it also does

not include a collision checker or any means of visualization. OMPL is reduced

to only motion planning algorithms. The advantage of this minimalist approach

is that it allowed designing a library that can be used for generic search in high-

dimensional continuous spaces subject to complex constraints. Instead of defining

valid states as collision-free, which would require a specific geometric representation

of the environment and robot as well as support for a specific collision checker, OMPL

leaves the definition of state validity completely up to the user. This gives enormous

design freedom: the user can defer collision checking to a physics engine, write a

state sampler that constructs only valid states, or define state validity in completely

arbitrary ways that may or may not depend on geometry.

To make OMPL as easy to use as possible, various parameters needed for tuning

sampling-based motion planners are automatically computed. The user has the option

to override defaults, but that is not a requirement.
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ControlSpace
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the planner uses to represent 
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Figure 4.1: Overview of OMPL structure

4.1 Implementation of Core Concepts

This section describes some of the more important concepts present in OMPL.

Figure 4.1 gives a high-level overview of the main classes in OMPL and of their

relationships. Class names are written in a sans-serif font (e.g., StateSpace), while

methods and functions names are written in a monospaced font (e.g., isSatisfied()).

For conciseness, the arguments to methods and functions are omitted.
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States, Controls, and Spaces To maximize the range of application for the in-

cluded planning algorithms, OMPL represents the search spaces, i.e, the state spaces

(denoted as X earlier) to be searched (StateSpace), in a generic way. State spaces in-

clude operations on states such as distance evaluation, test for equality, interpolation,

as well as memory management for states: (de)allocation and copying. Additionally,

each state space has its own storage format for states, which is not exposed outside

the implementation of the state space itself. To operate on states, the planning algo-

rithms implemented in OMPL rely only on the generic functionality offered by state

spaces. This approach enables planning algorithms in OMPL to be applicable to any

state spaces that may be defined, as long as the expected generic functionality is

provided.

Furthermore, OMPL includes a means of combining state spaces using the class

CompoundStateSpace. A combined state space implements the functionality of a regular

state space on top of the corresponding functionality from the maintained set of

state spaces. This allows trivial construction of more complex state spaces from

simpler ones. For example SE3StateSpace is just a combination of SO3StateSpace and

RealVectorStateSpace. Instances of CompoundStateSpace can be constructed at run time,

which is necessary for constructing a state space from an input file specification, as

is done, for example, in ROS.

In addition to states and state spaces, some algorithms in OMPL require a means

to represent controls. Control spaces (ControlSpace, denoted as U earlier) mirror the

structure of state spaces and provide functionality specific to controls, so that planning

algorithms can be implemented in a generic way.
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State spaces optionally include specifications of projections to Euclidean spaces

(ProjectionEvaluator). Low-dimensional Euclidean projections are used by several sam-

pling-based planning algorithms (e.g., KPIECE, SBL, EST) to guide their search

for a feasible path, as it is much easier to keep track of coverage (i.e., which areas

have been sufficiently explored and which areas should be explored further) in such

low-dimensional spaces.

State Validation and Propagation Whether a state is valid or not depends on

the planning context. In many cases state validity simply means that a robot is not

in collision with any obstacles, but in general any condition on a state can be used.

Testing whether a state is valid is achieved through the StateValidityChecker abstract

class. In OMPL.app (see Section 4.4) a state validity checker for rigid body motion

planning is predefined, but in general, a user needs to implement their own. In

addition to testing the validity of states, motion segments (between two states) need

to be tested as well. This second validity test is achieved through the MotionValidator

class. Based on a given state validity checker, a default MotionValidator is constructed,

one that checks whether the interpolation between two states at a certain resolution

produces states that are all valid. However, it is possible to plug in a different

MotionValidator. For example, one might want to add support for continuous collision

checking, which can adaptively check for collisions and provide exact guarantees for

state validity [101].

For planning with controls, a user needs to specify how the system evolves when

certain controls are applied for some period of time starting from a given state. This
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functionality is implemented through the StatePropagator class. In the simplest case, a

state propagator is essentially a lightweight wrapper around a numerical integrator for

systems of the form q̇ = f(q, u), where q is a state vector and u a vector of controls.

One can use, e.g., standard numerical integrators such as those available from the

GNU Scientific Library, variational integrators [102], or a physics engine to perform

state propagation.

Samplers The fundamental operation that sampling-based planners perform is

sampling the space that is explored. Additionally, when considering controls in the

planning process, sampling controls may be performed as well.

To support sampling functionality, OMPL includes three types of samplers: state

space samplers (StateSampler), valid state samplers (ValidStateSampler) and control

samplers (ControlSampler).

State space samplers are implemented as part of the StateSpace they can sam-

ple, since they need to be aware of the structure of the states in that space. For

instance, uniformly sampling 3D orientations is dependent on their parametrization.

Three sampling distributions are implemented by every state space sampler: uniform,

Gaussian and uniform in the vicinity of a specified point. This first sampler is neces-

sary to sample over the entire space, while the latter two are used for sampling states

near a previously generated state. This is the most basic level of sampling.

Previous work has shown that the strategy used for sampling valid states in the

state space significantly influences the runtime of many planning algorithms. Valid

state samplers provide the interface for implementing different sampling strategies.
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The probability distribution of these samplers depends on the algorithm used and is

not imposed as part of the API. The implementation of valid state samplers relies on

the existence of a state space sampler and a state validator (StateValidityChecker). A

common approach to constructing valid state samplers is to repeatedly call a state

space sampler until the state validator returns true. In OMPL there are several valid

state samplers implemented: a uniform valid state sampler (UniformValidStateSampler),

two samplers (GaussianValidStateSampler, ObstacleBasedValidStateSampler) that generate

valid samples near invalid ones (which is often helpful in finding paths through narrow

passages [103,104]).

When considering controls in the planning process, a means to generate controls

is also necessary. This functionality is attained using control samplers, which are

implemented as part of the control spaces (ControlSpace) they represent.

Goal Representations OMPL uses a hierarchical representation of goals. In the

most general case, a Goal can be defined by an isSatisfied() function that when

given a state, reports whether that state is a goal state or not. While this very

general implicit representation is possible, it offers planners no indication of how to

reach the goal region. For this reason, isSatisfied() optionally reports a heuristic

distance to the goal region, which is not required to be a metric.

GoalRegion is a refinement of the general Goal representation, one that explicitly

specifies the distance to the goal using a distanceGoal() function. The isSatisfied()

function is then defined to return true when distanceGoal() reports distances smaller

than an user set threshold. GoalRegion is still a very general representation but allows
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planners to bias their search towards the goal. A refinement of GoalRegion is Goal-

SampleableRegion, one which additionally allows drawing samples from the goal region.

GoalState and GoalStates are concrete implementations of GoalSampleableRegion.

For practical applications it is often possible to sample the goal region, but the

sampling process may be relatively slow (e.g., when using numerical inverse kinematics

solvers). For this reason a further refinement of GoalStates is defined: GoalLazySamples.

This refinement continuously draws samples in a separate sampling thread, and allows

planners to draw samples from the goal region without waiting, after at least one

sample has been produced by the sampling thread.

Planning Algorithms OMPL includes two types of motion planners: ones that

do not consider controls when planning and ones that do. We chose to split the

planning algorithms in OMPL in these two categories for efficiency reasons. With

additional levels of abstraction it would have been possible to avoid this split [98].

The downside would have been that the implementation of planners would have had

to follow a strict structure, which makes the implementation of new algorithms more

difficult and possibly less efficient.

If controls are not considered, the solution path is constructed from a finite set

of segments, and each segment is computed by interpolation between a pair of sam-

pled states. This type of planners is typically used for computing motion plans

under geometric constraints solely. Several geometric planning algorithms are imple-

mented in OMPL, including KPIECE [83, 87], bidirectional KPIECE, bidirectional

lazy KPIECE, RRT [60], RRT-Connect [41], lazy RRT, SBL [20], EST [21], and a
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space = SE3StateSpace()

# set the bounds (code omitted)

ss = SimpleSetup(space)

# "isStateValid" is a user-supplied function

ss.setStateValidityChecker(isStateValid)

start = State(space)

goal = State(space)

# set the start & goal states to some values

# (code omitted)

ss.setStartAndGoalStates(start, goal)

solved = ss.solve(1.0)

if solved:

print setup.getSolutionPath()

StateSpacePtr space(new SE3StateSpace());

// set the bounds (code omitted)

SimpleSetup ss(space);

// "isStateValid" is a user-supplied function

ss.setStateValidityChecker(isStateValid);

ScopedState<SE3StateSpace> start(space);

ScopedState<SE3StateSpace> goal(space);

// set the start & goal states to some values

// (code omitted)

ss.setStartAndGoalStates(start, goal);

bool solved = ss.solve(1.0);

if (solved)

setup.getSolutionPath().print(std::cout);

Figure 4.2: Solving a motion planning problem with OMPL in Python (left) and in C++
(right).

basic version of PRM [36]. In addition, there are multi-threaded versions of RRT and

SBL.

When controls are considered, the solution path is constructed from a sequence

of controls. Control-based planners are typically used when motion plans need to

respect differential constraints as well. Several algorithms for planning with differ-

ential constraints are implemented in OMPL as well, including KPIECE [83,87] and

RRT [42].

4.2 Example Usage

Figure 4.2 shows the complete code necessary for planning the motion of a rigid

body between two states, in Python and C++. In both cases, the only steps taken in

the code are: instantiate the space to plan in (SE(3)), create a simple planning context

(using SimpleSetup), specify a Boolean operator that distinguishes valid states, specify
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the input start and goal states, and finally, compute the solution. The SimpleSetup

class initializes instantiations of the core motion planning classes shown in Figure 4.1

with reasonable defaults, which can be overridden by the user if desired.

Essentially, the execution of the code can be reduced to three simple steps: (1)

specify the space in which planning is to be performed, (2) specify what constitutes a

valid state, and (3) specify the input start and goal states. Such simple specifications

are desirable for many users who simply wish motion planning to work, without

having to select problem specific parameters, or different sampling strategies, different

planners, etc. This capability is made possible by OMPL’s automatic computation of

planning parameters. In the example above, a planner is automatically selected based

on the specification of the goal and the space to plan in. The selected planner is then

automatically configured by computing reasonable default settings that depend on

the planning context. If a user decides to choose their own planner, or set their own

parameters, OMPL allows the user to do so completely—no parameter is hidden.

4.3 Benchmarking with OMPL

A seemingly simple but often ignored part of motion planning software is bench-

marking planning code. OMPL includes benchmarking capabilities (through a class

called Benchmark) that can be simply dropped in and applied to existing planning

contexts. In very simple terms, a Benchmark object runs a number of planners multi-

ple times on a user specified planning context represented with SimpleSetup. Although

simple, this code automatically keeps track of all the used settings and takes all the
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possible measurements during planning (currently, tens of parameters are recorded

for every single motion plan). The recorded information is logged and can be post-

processed using a Python script included with OMPL. The script can produce MySQL

databases with all experiment data so that the user can write their own queries later

on, but it can also automatically generate simple box plots for real- and integer-valued

measurements, as shown in Figure 4.3, and bar plots for binary-valued measurements.
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Figure 4.3: Sample output of automatically computed benchmark results.

4.4 Integration with Other Robotics Software

It is relatively straightforward to integrate OMPL with other robotics software.

Below we present two case studies that highlight different use cases.

OMPL.app: A Graphical User Interface for OMPL A graphical front-end for

OMPL called OMPL.app was created. OMPL.app serves two purposes: (1) provide

novice users with an easy-to-use interface so they can experiment with several motion
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Figure 4.4: The OMPL.app graphical interface. A solution path for an L-shaped, free-
flying robot is shown. The red dots indicate the positions of sampled states. A user can
load meshes that represent the environment and a robot, define start and goal states and
solve problems.

planning algorithms and apply them to example rigid body motion planning problems,

and (2) demonstrate the integration of OMPL with third-party libraries for collision

checking and visualization tools. The graphical interface of OMPL.app is shown in

Figure 4.4.

Integration with ROS OMPL is provided as a ROS package as well, and it is in-

cluded in the arm planning software stack in ROS. OMPL is interfaced with collision

checking, visualization and control components included in ROS. Given a robot de-
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scription in URDF1 format, a state space representation is automatically constructed

for OMPL and motion plans can be computed for any user-specified group of joints.

Typically, the chosen groups of joints are the seven joints of the arms, although motion

planning for the mobile base was also tried successfully.

4.5 Applications of OMPL

4.5.1 KPIECE for Planning under Geometric Constraints

KPIECE was designed to be used for motion planning with differential constraints.

However, this does not mean the algorithm cannot be used for planning under geomet-

ric constraints as well. Furthermore, comparisons with certain types of algorithms,

such as ones that use lazy collision checking or bi-directional search, cannot be per-

formed for the problems with differential constraints presented above. For KPIECE

to be used for planning under geometric constraints, two changes need to be made:

(1) the sampling of controls to be applied to states x in the tree is replaced by the

sampling of random states x′, such that x′ is nearby x (e.g., a Gaussian distribution

that has x as mean and the variance specified as user input can be used to sample

x′), and (2) the simulation of a robot model forward in time under specified controls

is replaced by a local planner.

To shed some light on the performance of KPIECE when planning solely under

geometric constraints, two experiments with only kinematic constraints are included.

The first experiment is that of moving an arm with 7 degrees of freedom (The PR2

1http://www.ros.org/wiki/urdf
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arm from Willow Garage) from a position above a table to a position under the table,

as show in Figure 4.5. OMPL integrated with ROS was used for this experiment.

The second experiment is that of moving a rigid body from a start configuration to

a goal configuration in a complex environment, as shown in Figure 4.6. OMPL.app

was used for this experiment. The projection used in the first experiment was a two-

dimensional one, consisting of the joint values at the first two joints of the arm. For

the second experiment, the projection was the position of the rigid body in space

(ignoring orientation).

Figure 4.5: Move the right arm from above to below the table: start state (left) and goal
state (right). The representation of the table is as observed using a laser scanner.

Table 4.1 shows the runtimes of various algorithms when planning for the problems

described above, averaged over 100 runs. KPIECE is still faster than RRT and EST,

but the speedup is not as significant as in the previous examples. For comparison,

runtimes of bi-directional search algorithms, SBL [20] and RRTConnect [41], are

included. LBKPIECE is a lazy bi-directional implementation of KPIECE, with a
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Figure 4.6: Move the “L”-shaped rigid body from start to goal, indicated by “S” and “G”,
respectively.

Table 4.1: Runtimes of kinematic versions of the algorithms.

Algorithm Arm Plan Time (ms) Rigid Body Plan Time (ms)

RRT 456 3248
EST 187 3907
KPIECE 166 698

RRTConnect 21 1508
SBL 29 3943
LBKPIECE 37 1146

connection strategy similar to that of SBL. For the arm problem, the bi-directional

versions are an order of magnitude faster, with RRTConnect outperforming the other

algorithms. For the rigid body problem, since the start and goal states are close in

the workspace, bi-directional algorithms no longer perform as well. In fact KPIECE

performs best due to its ability to expand towards unexplored space.
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4.5.2 Integrating Motion Planning with Perception and Con-

trol

A key factor to be considered when computing motion plans for real hardware

platforms is whether the environment is fixed or not.

If the environment is fixed, then motion planning can be performed offline and

there is no need for perception, other than perhaps motor encoders to be used in

feedback control. Such approaches are for example applicable for industrial robots,

where the same motion needs to be executed repeatedly. Consideration of robot

dynamics is necessary depending on the capabilities of the controller and the speed

at which the robot needs to be operated. In either case, since the motion planning

step can be performed offline, the constraints on the runtime of the motion planner

are not too stringent.

If the environment is changing, typically the robot also needs to react to changes

in the environment, as they are perceived. In this case, sensors are used to con-

struct representations of the environment around the robot. The representation of

the environment is updated often and thus motion plans may need to be updated

or recomputed. Furthermore, the perceived robot data is typically in the form of a

set of 3D points (a point cloud) that is not exhaustive (i.e., does not represent the

environment fully) and includes noise. This presents an additional set of difficulties

in terms of modeling this data for motion planning.

This section includes experimental validation of the KPIECE algorithm in a real

life scenario that accounts for fast-changing environments. To test KPIECE and a bi-
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directional version of KPIECE (LBKPIECE) in such scenarios, OMPL was integrated

with a perception pipeline on the PR2 from Willow Garage [33, 105]. The PR2

comprises an omni-directional wheeled base, telescoping spine, two force-controlled

7-DOF arms and an actuated sensor head. Each arm has a 1-DOF gripper attached

to it. The robot can negotiate ADA-compliant2 wheelchair-accessible environments,

and its manipulation workspace is similar to that of an average-height adult. The

sensor head comprises a Hokuyo UTM-30 planar laser range-finder on a tilt stage,

and a stereo camera on a pan-tilt stage. The laser is tilted up and down continuously,

providing a 3D view of the area in front of the robot. The resulting point clouds are

the input to the perception system, which in turns drives the manipulation system.

Perception Pipeline

We define a generic framework that can deal with a wide variety of sensors that

produce point cloud data. The key characteristics of this perception system are that:

1. It accounts for occlusions correctly by maintaining a model of the environment,

2. It deals with noisy sensor data, especially data obtained from lasers, by removing

noise using knowledge of the robot model.

The perception pipeline performs the key task of creating a representation of the world

that can be used for collision checking. This representation is updated in realtime,

is easily accessible for collision checking and correctly accounts for occlusions. The

2http://www.ada.gov/
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interface to the pipeline is generic in the sense that it can incorporate a wide variety

of sensor inputs.

Sensor Input The raw input received from the sensor is in the form of a point

cloud: a set of points in space that correspond to observed objects in the environment.

Most 3D sensors provide information in this format and can be easily plugged into the

system described in this chapter. For the implementation on the PR2, the system was

interfaced with two different sensors: a Videre stereo camera with projective texture

and a tilting Hokuyo laser scanner. The laser sensor is mounted on a tilting stage

and it moves up and down at a specified velocity. The viewing angle of the sensor is

270◦. This allows the robot to create a detailed representation of the environment in

front of it. The stereo camera can provide a denser representation of the environment

but was not used as extensively in our implementation.

Processing Noisy Point Clouds The sensor data is often noisy and needs to

be processed carefully before being incorporated into the robot’s view of the world.

During manipulation, the arms of the robot are frequently in the sensor field of view.

The system must then be able to distinguish sensed points that are coincident with

points on the robot itself (see Figure 4.7), i.e., it must be able to infer that sensed

points that are on the robot itself are not part of the environment and therefore

should not be considered as obstacles.

Such points are separated from the sensor input using a simple approach: for each

robot link that could potentially be seen by the robot’s sensors, the system checks if

any points in the input cloud are contained in the geometric shape corresponding to
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the convex hull of that link. This is a simple test and quickly lets the system partition

the sensor data into two parts: points that are part of the environment and points

that are part of the robot itself and should not be considered obstacles.

An additional problem, called the shadowing effect, is especially prevalent in laser

scanner data. This problem arises when laser scans slightly graze the different parts

of the body of the robot. Points cast by the edges of the arms often appear to be

further away and part of the environment. They form a virtual barrier below the

arm, on each side, and greatly constrain the motion of the arm. Furthermore, as the

arm moves, these shadow points often appear to lie on the desired path of the arm, so

execution is halted. To remove these points, a small padding distance is added to the

collision representations of the the robot links. If the line segment between a point in

the input cloud and the sensor origin intersects the extended collision representation,

the point is classified as a shadow point and removed.

Figure 4.7: The robot’s world view using its laser without (left) and with (right) filtering.

The filtering process described above is also applied for bodies the robot is manip-
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ulating: if the robot is holding an object, that object must not be part of the collision

environment any more and the shadow points it casts need to be removed as well.

The processed point cloud with shadow points removed can now be processed further

for incorporation into the environment representation the robot uses.

Constructing a Collision Environment The representation of the collision en-

vironment, also referred to as a collision map, consists of axis aligned cubes where

points from the input cloud are incorporated (see Figure 4.8). Cubes with 1 cm sides

were used in the collision map implemented on the PR2. A cubic box is added to the

map at a particular location as soon as at least one sensor point is found to occupy the

grid cell corresponding to that location. This process is simple and can be executed

very quickly.

A proper implementation of a collision environment with frequent sensor updates

must deal correctly with occluded data. Replacing the original collision map with only

fresh sensor data on every sensor update implies that the map will have no memory

about obstacles that may now be occluded. One approach to handling occlusions

is to use ray-tracing to trace out every ray coming from the sensors up to a large

distance and retain parts of the previous map that are now found to be occluded.

This can be very computationally expensive. Since we strive to obtain a perception

pipeline that runs close to realtime, we only account for occlusions caused by the robot

itself: e.g., when the robot arm is in front of the sensor and parts of the environment

are occluded. The simplified approach starts with the previous world representation

C (initially empty) and a new world representation N . We first determine the set
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difference D between the two views, i.e., we look for parts of C that are not part of

the new view N , i.e.,

D = C −N.

The parts in D are either moving obstacles that have changed their position or are

parts that have become occluded. For every box d ∈ D, we then check whether the

line segment between d and the sensor origin intersects a body part of the robot.

If it does, the box is considered occluded and is added to the new world view N .

N now becomes the current representation of the world that retains a memory of

the objects seen previously in the environment but now occluded by parts of the

robot. This implementation is fast enough to satisfy our requirements for realtime

implementation (it runs at around 30Hz - 50Hz with approximately 10000 boxes in

the environment).

Figure 4.8: Example collision map in an office showing retention of occluded data in the
environment. Part of the chair is occluded by the arm (marked in red).
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The collision map is a critical input to the motion planning and motion execution

processes. In our implementation on the PR2 robot, the environment was restricted

to a box of size 2m forward, 1.5m on each side and 2m upward, with respect to the

robot’s base. The box contains the entire reachable workspace of the arm. Restricting

the environment size has a significant performance impact and helps in the goal of

updating this environment in realtime.
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Figure 4.9: Diagram of the sampling-based motion planning architecture. Arrows indicate
communication between components.

Motion Planning

The architecture of the used motion planning system is shown in Figure 4.9. Given

a URDF description of the PR2, a representation of the state spaces for the arms is
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Figure 4.10: Example manipulation task that uses OMPL.

automatically constructed for OMPL at runtime.

User requests that require planning to either an arm state (triggered by the “re-

plan to state” call) or to an end effector location (triggered by the “replan to posi-

tion” call) are accepted. These requests are converted to OMPL goals: GoalState and

GoalRegion, respectively. Planning is then performed with the OMPL library, using

the KPIECE algorithm. Because the obtained solution may become invalid in case

the environment changes, the execution of a path is continuously monitored. In case

of failure, the path is recomputed.

In the practical deployment of the system described above, motion plans were

computed at an average of 10Hz. An example application is shown in Figure 4.10.

The bottleneck of the system was actually the retrieval of sensor data: the tilting
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speed of the laser scanner was low. The development of this system demonstrated

the practical applicability of sampling-based planners in real life scenarios, where

speed of computation is essential. In particular, the OMPL library and the KPIECE

algorithm performed reliably and efficiently in a variety of environments.
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Chapter 5

Task Motion Multigraphs

This chapter introduces the concept of a task motion multigraph (TMM) and shows

how TMMs can be used to solve the STAMP problem as defined in Section 1.1.2, in

a manner that is more efficient than in previous work. TMMs represent explicitly

the state spaces in which motion planning can be performed for a robot to achieve

its goal [106, 107]. While TMMs can technically be used with any robotic system,

their usefulness is apparent for complex robots, with many degrees of freedom, such

as mobile manipulators.

A core issue not captured when representing tasks as graphs (as in Section 1.1.2)

rather than TMMs is that there are multiple ways of performing the same operation

when the robot used has complex hardware. For example, when asked to reach for an

object, a mobile manipulator can use its manipulator alone, it can move its base and

then use its manipulator, or it can move both its base and its manipulator simulta-

neously. More precisely, TMMs represent the possibility that a mobile manipulator
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could perform certain tasks using only subsets of its hardware. The experiments in-

cluded in this chapter show that it is possible to use information from task motion

multigraphs and produce fast algorithms that compute sequences of motion plans

necessary for solving given tasks.

A recurring issue with task and motion planning is that of computation time. For

many practical applications, reduced computation times are desirable. For instance,

a robot performing tasks in a changing environment must be able to recompute its

tasks quickly in order to react to observed changes. In addition, avoiding unnecessary

motions is desirable (e.g., while the robot’s base is moving, the robot’s arms should

stay fixed if possible). This work proposes a solution for the above issues, in the

context of mobile manipulation, under some assumptions that are mentioned later

on.

Again of practical interest is the consideration of uncertainty, be that caused by

the robot’s inability to perfectly execute specified commands, imperfections in the

robot’s perception, or other sources. Chapter 6 covers this aspect as well, again in

the context of mobile manipulation, using TMMs.

This chapter continues by stating the considered problem setup in Section 5.1

and then showing how TMMs can be constructed in Section 5.2. An algorithm that

uses TMMs is described in Sections 5.3 and 5.4. Finally, experimental results are

presented and discussed in Section 5.5.
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5.1 Problem Scenario

Assumptions We consider a single robotic device. This assumption is made for the

simplification of the prose and of the experiments, rather than for theoretical reasons.

We assume that a task specification is available, in any of the variants suggested

by previous work (LTL [18], STRIPS-like [2], etc.). Such specifications can be used to

construct explicit task graphs (e.g., using techniques from artificial intelligence [2]).

In some cases, the explicit construction is possible only if the horizon of actions is

bounded. This is a reasonable assumption for robots such as mobile manipulators op-

erating in human environments. Task graphs can also be specified explicitly (e.g. [17])

and in that case a higher-level specification is not needed. For simplicity, assume the

only actions the robot can perform are grip (close gripper), release (open gripper)

and move to (plan a motion). The grip and release actions are very simple ones

and do not include the computation of grasp poses. It is assumed that if grasp poses

are necessary (which is typically the case), a grasp reasoning system (e.g., [70]) is

employed at the time the task graph is generated and grasp poses are included in

the graph’s nodes. It is further assumed that such grasp poses, when specified, can

be converted to states, or sets of states. Such computation can be performed, for

instance, with inverse kinematics [108,109].

Robotic Devices From a theoretical standpoint, TMMs can be used with any

robotic system. From a practical point of view, use of TMMs is beneficial for robots

with many degrees of freedom, such as mobile manipulators, which are often capable

of performing their tasks using subsets of their available hardware components.
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Mobile manipulators are robotic devices that include a means of locomotion (e.g.,

tracks, wheels, legs) and a means of interaction with the environment (usually arms).

Mobile manipulators are often complex, with many degrees of freedom (e.g., Honda

Asimo, Willow Garage PR2; see Figure 5.1). Their complexity makes them versatile,

capable of solving a variety of tasks without undergoing hardware changes specific

for particular tasks. In fact, given a specific task, it is possible a mobile manipulator

can perform that task in a multitude of ways, depending on its choice of hardware

components. For example, a mobile manipulator can open a door by simply extending

its arm and pressing the door’s handle. At the same time, it is possible for the robot

to get closer to the door by moving its base, and then pressing the handle with its

arm. Furthermore, it is possible for the robot to use its arm and base simultaneously.

Figure 5.1: Examples of mobile manipulators (from left to right): Honda Asimo, Willow
Garage PR2, DFKI AILA, KUKA youBot.

In this chapter, robotic devices are viewed simply as sets of joints J . For exam-

ple, the PR2 mobile manipulator consists of the joints in its base, torso, arms and

head. Furthermore, we consider an additional joint that connects the robot to the
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environment. For an omni-directional robot moving in plane, such as the PR2, this

joint corresponds to 3 DOF (position and rotation in plane) – an SE(2) joint. A set

of joints J implicitly defines a state space XJ . Often, groups of joints are controlled

simultaneously, typically when the joints make up a functional part of the robot’s

hardware. Typical examples of groups of joints that are controlled together are the

joints in the base and joints in the arm(s).

5.2 Construction and Definition of TMMs

This section shows how a TMM is constructed from a problem specification (a task

graph) and information about the robot hardware to be used. First, an intermediate

notion is introduced, the task motion graph (TMG), and then a definition of TMMs

is given.

5.2.1 Task Motion Graphs

Figure 5.2-Left shows an example task graph. This example encodes the task of

delivering a book, while accounting for the possibility of having to move a cup of

coffee out of the way, if delivering the book directly is not possible. The move to

actions are of special interest since these are the ones that require motion planning.

Contracting the edges that correspond to grip and release actions in the task graph

leads to a simplification as shown in Figure 5.2-Right. We refer to this simplification

as the task motion graph. This does not mean that the grip and release actions are

not going to be performed in the execution of the task plan. Removing these edges
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is only a simplification that allows us to focus on the motion planning actions. The

TMG also encodes the different state spaces that could be used for motion planning,

indicated as labels on edges. What these state spaces are, depends on the hardware

characteristics of the considered robotic system. The example in Figure 5.2-Right is

for a mobile robot with one arm. The state spaces used correspond to sets of joints

that are assumed to be controlled together: the arm and the base. Essentially, the

TMG encodes the different sequences of motions that could take the robot to its goal,

accounting for the hardware components that could possibly be used to execute those

motions.

For convenience, we remind the reader that the mobile manipulator consists of a

set of joints J and this implicitly defines a state space XJ . Furthermore, a task graph

is assumed to be defined as in Section 1.1.2.

Definition 5.2.1 Task Motion Graphs.

A task motion graph (TMG) for mobile manipulation is a directed acyclic graph

G = (V, E) such that:

• V = {v | Q(v) ⊂ XJ}. Every vertex v is associated with a set of states Q(v) ⊂

XJ . Q(v) can be explicitly specified as a set of states or implicitly specified in a

manner that allows computation of states in Q(v) (e.g., end-effector poses, which can

be converted to states using inverse kinematics [108]).

• E ⊂ V × V such that ∀v ∈ V, (v, v) /∈ E and there exists an edge labeling

function label(e) = (Act, Enve, Ae). The existence of an edge (v1, v2) ∈ E implies

there exists an action that can take the robot from v1 to v2, and that action requires

motion planning. Act specifies the action that requires motion planning. For the
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Figure 5.2: Left: The task graph for delivering a book. It may be necessary for a cup
of coffee to be moved out of the way to deliver the book. Right: The task motion graph
– only actions that require motion planning are kept, and they are labeled with the state
spaces that could possibly be used for motion planning.

purposes of this work, Act is always move to (Act ∈ T as in Section 1.1.2). At the

start of the action, the robot is at a state x ∈ Q(vi) and at the end of the action, the

robot is at a state x′ ∈ Q(vj). Enve defines the environment in which motion plans

for edge e are to be computed. Ae = {Ae,1, . . . , Ae,k|Ae,· ⊆ J, k < 2|J |} defines the

possible sets of joints to plan for when computing motion plans along edge e.

• root ∈ V and Q(root) consists of a single element: the starting state of the

robotic system.
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• F ⊆ V , F 6= ∅ is the set of goal states for the task.

It is important to note that there can be multiple sets of joints that can be

used when computing motion plans along an edge e. Ae is an input specified by

the user. For example, if moving an arm’s end-effector is intended, Ae,1 can be

defined to be the minimal set of joints usually required to perform the operation:

the joints in the actual arm. For more complex problems, it may be necessary to

move the robot’s base as well. For this reason, additional sets of joints (Ae,2, . . . ) can

be included in Ae. The intention is that the robot can use any combination of its

available hardware components, which corresponds to planning in any state space XL

(orthogonal projection of XJ), for L =
⋃

j∈A j, A ⊆ Ae. From a practical standpoint,

the choice of Ae also depends on what controllers are available because elements of

Ae (sets of joints) typically correspond to the sets of joints that can be controlled

together.

Example: Consider a mobile manipulator with an arm with 7 joints and an omni-

directional base that moves in plane. Assume the arm and the base can be con-

trolled independently. We define Jarm to be the set of joints in the arm and Jbase

to be a virtual joint with 3 degrees of freedom that corresponds to the SE(2) state

space (XJbase
= SE(2)). We thus have XJarm

7-dimensional, XJbase
3-dimensional

and XJ 10-dimensional, J = Jarm ∪ Jbase. A simple TMG G = (V, E) can have

V = {vstart, vgoal}, Q(vstart) = {xstart}, Q(vgoal) = {xgoal}, defines the two vertices

of the TMG: a start state and a goal state. E = {e = (vstart, vgoal)}, label(e) =

(move to, Env, {Jarm, Jbase}), root = vstart, F = {vgoal}. This specification defines
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a TMG that requires the computation of a motion plan from a specified start state

xstart ∈ XJ to a state xgoal ∈ XJ . The motion plan is to be computed in either XJarm
,

XJbase
or XJarm∪Jbase

. Planning may not be feasible for all possible combinations of

spaces specified by Ae. Env represents the environment considered for determining

the validity of states (e.g., collision checking).

5.2.2 Task Motion Multigraphs

A task motion multigraph (TMM) is the explicit representation of a TMG, in a

manner that can be used for motion planning.

Definition 5.2.2 Task Motion Multigraphs.

Given a TMG, G = (V, E), we define a task motion multigraph (TMM), GM =

(VM , EM) as follows:

• VM = V .

• for every e = (vi, vj) ∈ E, label(e) = (Act, Enve, Ae), let EM,e be a multiset,

EM,e = {em,k = (vi, vj) | k ∈ {1, . . . , 2|Ae| − 1}} and labelM(em,k) = (Act, Enve, Je,k),

for Je,k =
⋃

j∈a(k) j, a : {1, . . . , 2|Ae| − 1} → 2Ae \ {∅} is a bijection, 2Ae is the power

set of Ae. EM =
⋃

e∈E EM,e.

• rootM ∈ VM corresponds to root ∈ V .

• FM ⊆ VM , FM 6= ∅ corresponds to F ⊆ V .

In essence, a TMM is a TMG where all possible sets of joints used in motion

planning are explicitly specified for each edge. The conversion, which can be done
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automatically, is fairly straightforward and only requires addition of edges. See Fig-

ure 5.3 for an example. The TMM reveals an additional layer of complexity for mobile

manipulation: the need to decide which state spaces to plan in. This is a different

type of decision to be made, in addition to other decisions such as selection of grasping

poses. We introduce TMMs in an attempt to expose the need to consider which state

spaces to plan in. This observation has been made in previous work as well [10, 12],

but this work presents the first formalization. Since there is a combinatorial explosion

in the construction of a TMM from a TMG (in terms of number of edges), it is desir-

able that the TMG is defined in a manner amenable to the robotic system this notion

is used for. For instance, a robotic system with a mobile base and two arms may

define three sets of joints to be used for planning: Jleft, Jright, Jbase, corresponding

to the joints in the respective arms and the base. Edges in the TMG could then use

Ae = {Jleft, Jright, Jbase}. The definition of Ae implies that the option of planning in

the full state space, XJleft∪Jright∪Jbase
, is included in the edges of the TMM, allowing

in this case even the use of control theoretic techniques, if available [110].

Definition 5.2.3 A TMM plan (A motion plan for a TMM).

A TMM plan for a TMM G = (V, E) is an ordered sequence of edges P =

{e1, . . . , ek}, P ⊆ E such that for every edge e = (va, vb) ∈ P there exists a mo-

tion plan between some state xa ∈ Q(va) and some state xb ∈ Q(vb). Furthermore,

the motion plans for any two consecutive edges ei, ei+1, 1 ≤ i < k from P can be con-

nected. The two motion plans are said to be connected if there exists a well-defined

method (e.g., a controller) to move from the last state xi,L of the motion plan for ei

to the first state xi+1,B of the motion plan for ei+1. For the purposes of this work, the

86



condition xi,L = xi+1,B was imposed for connectivity to be achieved.

A TMM plan P = {e1, . . . , ek} is a solution in a TMM if e1 = (root, ·) and vb ∈ F

(vb is a goal), with ek = (va, vb).

Remark: Given a TMM plan, it is easy to see that a task plan in the original task

graph can be constructed: the actions from the task graph that are not present in

the TMM do not require motion planning. Only grip and release actions (closing

and opening the end-effector) need to be re-inserted.

Figure 5.3: Left: The task motion graph for delivering a book, defining the groups of
joints Ae. Light: The task motion multigraph. Edges define Je.

5.3 Task and Motion Planning with TMMs

Intended Use The intended use scenario of task motion multigraphs is as follows.

A task graph with bounded horizon is provided as input. This work does not concern
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itself with how the task graph is constructed: its existence is assumed (e.g., [17]).

A corresponding TMG is then constructed by: (1) discarding the actions that do

not require motion planning and (2) attaching information to the TMG edges about

possible state spaces to plan in. The TMG is then converted to a TMM, and a TMM

plan that solves the STAMP problem is computed.

This chapter provides a formalization of the available motion planning options in

a manner that can facilitate computation. The following section shows an example

method that uses information contained in the TMM to compute motion plans. The

availability of the TMM at the time of motion plan computation helps with the iden-

tification of less expensive but feasible sequences of motion plans. This information

is used to attempt to reduce the amount of time spent planning motions.

Baseline Algorithm Computing motions plans for certain edges in the TMM may

be more time consuming than for others: the complexity of the environments can

vary, the set of joints Je to plan for (and implicitly, the dimensionality of XJe
) may

also vary. Planning motions along some edges may not even be feasible. These

considerations make it obvious that computing the sequence of motion plans for some

paths in the TMM can be much more computationally intensive than for others. To

address this issue, we attempt to compute motion plans for the path that appears to

be the cheapest. Which path appears to be the cheapest changes as the computation

progresses. The cost of a path is the sum of the costs of its edges. The cost of an
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edge e, label(e) = (Act, Enve, Je) is:

cost(e) = exp

(

dim(XJe
)

maxJ dim(XJ)

)

·















1 if sol

s · (1 + t) ·
(

1 + dL(e)
dR(e)+dL(e)

)

if not sol,

where dim(XJe
) is the dimension of the state space to be used for planning along edge

e, maxJ dim(XJ) is the dimension of the largest state space considered by the TMM,

s represents the number of times e was selected for motion planning (starts at 1), t is

the number of seconds already spent planning motions along e, dL(e) represents the

number of edges from e to the closest goal vertex, and dR(e) represents the number

of edges from e to the root. If motion plans along edge e are already available (sol is

true), the cost of e relates only to the dimensionality of the state space, thus making

edges that actuate fewer joints preferable. If no motion plans for e are available

(sol is false), the cost of e is increased proportionally to the number of times e was

selected for planning. Furthermore, the closer e is to a possible goal, the fraction

dL(e)/(dR(e) + dL(e)) decreases, thus decreasing the cost of edges closer to possible

goals.

The definition for the cost of an edge is heuristically determined, with the purpose

of approximating how expensive paths are. The provided formula is intended as a

guide and represents what worked well in the presented experiments. In general, the

dimensionality of the space to plan in and the amount of time spent planning seem to

be the more important parameters when estimating edge costs. Determining better

edge costs is an open issue that can affect performance. This is a topic for further

investigation and several other approaches may be applicable (e.g., [73]).
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The computation of a task plan in a TMM proceeds as described in Algorithm 4.

The body of the algorithm is an iterative process that runs motion planners on dif-

ferent edges of the TMM for short periods of time. There are two main steps in

the iteration. The first step [lines 2-4] aims to find motion plans for TMM edges

that are closer to the goal (greedily selected). If no progress towards the task goal is

made, the second step [lines 5-7] is executed. The second step aims to find motion

plans for TMM edges selected stochastically, so that probabilistic completeness can

be achieved.

At every iteration, the set of segments that make up the path of least cost from the

root to a goal node in GM is computed using Dijkstra’s algorithm [line 2]. The edge

along this path that is closest to the goal and that has no motion plan associated to it

is then selected deterministically by SelectEdgeFromPath() [line 3]. Such an edge will

exist as long as no complete solution has been found for the TMM. Motion planning is

performed on the selected edge for a short duration (∆t) [line 4]. Repeated selections

of the same edge continue the computation of the motion plan rather than restart it.

Unless a motion corresponding to the selected edge is successfully computed, motion

planning is executed on another edge, one selected from the remaining set of edges in

the TMM [lines 6, 7]. With low probability (10% in this work) SelectEdge() selects

an edge randomly; otherwise, priority is given to edges that have fewest number of

computed motions, then to edges that have lowest cost. The intention is to be greedy

and follow the path of least cost to the goal but at the same time allow the exploration

of other options. Planning is performed for short durations ∆t to allow updating edge

costs more often.
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Figure 5.4: Diagram showing a computed motion along edge e = (v1, v2). The motion
starts at state x′ ∈ Q(v1), reaches a state in QR(v2) and there exists a means to connect to
x′ from x ∈ QR(v1).

Algorithm 4 TMM-Computation(GM = (VM , EM))

1: while timeSpent < MaxT do

2: P ← ShortestPath(GM)
3: edge ← SelectEdgeFromPath(P )
4: sol← MotionPlan(edge, ∆t)
5: if sol = nil then

6: nextEdge ← SelectEdge(EM\M(edge))
7: sol← MotionPlan(nextEdge, ∆t)
8: if sol 6= nil then

9: RecordSolution(edge, sol)
10: if HaveSolution(GM) then

11: return ExtractSolution(GM)
12: return nil

For a vertex v ∈ V , let the reached states in Q(v) be denoted by QR(v) ⊆ Q(v).

A state x is reached if there exists a TMM plan that ends at x (see Definition 5.2.3).

Initially, QR(v) = ∅ for all vertices, except for the root: QR(root) = Q(root). For

a new motion plan to be computed for an edge e = (v1, v2), a starting state needs

to be identified in Q(v1). A state x′ ∈ Q(v1) can be used as a starting state for a

motion plan along e if some state x ∈ QR(v1) has been previously reached by a TMM

plan, and x can be connected to x′ using a well-defined means (in this work, x = x′).
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When a motion plan for an edge e is computed, the reached state in Q(v2) is added

to QR(v2) (via RecordSolution()). A diagram showing the computation of a motion

is in Figure 5.4. If QR(v1) = ∅, no motion plan is computed for e. This is done to

avoid computing motion plans that start at unreachable states.

Termination for the algorithm is possible in two ways: either HaveSolution()

returns true [line 12] and a solution is found, or the total time spent planning exceeds

MaxT , in which case the algorithm returns failure.

5.4 Sharing Exploration Information with TMMs

In this section, we show how to further leverage the information contained in the

TMM to decrease computational effort. The additional idea is that when planning

in higher-dimensional spaces is required to find solutions, information from the ex-

ploration of lower-dimensional spaces is reused. Samples generated while exploring

lower-dimensional projections XJ ′′ are lifted to the full state space of the robot and

to higher-dimensional projections XJ ′ , J ′′ ⊆ J ′. Thus, when reverting to planning in

higher-dimensional spaces, the motion planner does not start from scratch. An addi-

tional feature of our approach is that it can implicitly perform decoupled planning [4],

as discussed later. This idea is developed for planning under geometric constraints.

Preliminaries Let GM = (VM , EM) be the TMM given as input. For every edge

e = (va, vb) ∈ EM , label(e) = (Act, Env, Je), define the following operators:

• M(e) = {(v′
a, v′

b) ∈ EM | va = v′
a, vb = v′

b}, the multi-set of edges that connect
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the same pair of nodes as edge e,

• Joints(e) = Je, the set of joints e corresponds to (specified by label(e) =

{Act, Enve, Je}),

• Space(e) = XJe
, the state space Je implicitly defines.

Let XJ be the full state space of the robot. Given x ∈ XJ and y ∈ XJ ′ , J ′ ⊂ J ,

let Lift(y, x) ∈ XJ be the state that has the same values as y for the joints in J ′

and the same values as x for the joints in J\J ′. The inverse operation of Lift() is

Project(). For x ∈ XJ , Project(x,XJ ′) = y ∈ XJ ′ , where y has the same values as x

for the joints in J ′ (y is an orthogonal projection of x).

Updated TMM Algorithm Algorithm 5 shows an updated version of Algo-

rithm 4. The difference with respect to Algorithm 4 is that instead of directly call-

ing a motion planner (MotionPlan(), lines [4, 7]), a more complex routine is called

(TMM-MotionPlan(), shown in Algorithm 6). To perform its computation, TMM-

MotionPlan(), just like MotionPlan(), receives as arguments the edge (edge) to plan

motions for and an amount of time to spend planning (∆t). The difference is that

TMM-MotionPlan() may need to switch to a different space to plan in, one that cor-

responds to an edge in M(edge). To accommodate this change, TMM-MotionPlan()

returns the edge it computed a motion plan for, in addition to the actual motion plan

(if one is computed).

Given a TMM edge edge = (va, vb) and an amount of time ∆t, Algorithm 6

computes a valid motion between va and vb along a TMM edge in M(edge) within
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Algorithm 5 TMM-Computation(GM = (VM , EM))

1: while timeSpent < MaxT do

2: P ← ShortestPath(GM)
3: edge ← SelectEdgeFromPath(P )
4: (edge′, sol) ← TMM-MotionPlan(edge, ∆t)
5: if sol = nil then

6: nextEdge ← SelectEdge(EM\M(edge))
7: (edge′, sol)← TMM-MotionPlan(nextEdge, ∆t)
8: if sol 6= nil then

9: RecordSolution(edge′, sol)
10: if HaveSolution(GM) then

11: return ExtractSolution(GM)
12: return nil

the amount of time ∆t, or terminates with failure. The availability of a bi-directional

motion planning algorithm is assumed. An instance of such an algorithm (edge.mp)

and storage for its generated exploration information are associated to every edge

in the TMM. Sampling-based planners would be typically used for edge.mp, but the

only needs for an algorithm to be usable are that it must allow: (1) access to the

valid motion segments it generates in its exploration (readNextValidMotionSegment()

function used in Algorithm 6), and (2) a means of incorporating information about

new valid motion segments that are computed externally (addValidMotionSegment()

function used in Algorithm 6). The method about to be described could be used with

uni-directional motion planners as well, but the resulting implementation would be

less efficient.

Algorithm 6 manages the exploration information generated by the motion plan-

ning instances associated to the TMM’s edges. Significant computational gains can

be obtained by sharing exploration information between the planning instances. The
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overall memory consumption of our approach is not affected negatively, as will be

shown later. This approach requires essentially no changes to the underlying mo-

tion planner: the sharing of exploration information is managed completely by Algo-

rithm 6.

The first time TMM-MotionPlan() is called for edge, input states are added for all

edges in M(edge) [lines 1-3 Algorithm 6, Algorithm 7]. ActivatePlanner() starts the

motion planner corresponding to edge, and stops any other running motion planner

instance, if one is active [line 4]. The motion planner is automatically deactivated

when TMM-MotionPlan() terminates. It is assumed that the activated motion plan-

ner runs in background, while Algorithm 6 executes. However, the implementation

used in the experimental section is single-threaded, so that the benefits of the pro-

posed algorithm are exposed, rather than the benefits of increased computational

power.

The body of Algorithm 6 is a three part iterative process. At every iteration, the

readNextValidMotionSegment() function is called [line 5] to obtain a pair of states (xp,

x) that represent a new valid motion segment discovered by the motion planner in

use. Information gained at each iteration is propagated to higher-dimensional spaces

in the first part of the algorithm. When solutions are found in lower-dimensional

spaces, part two decides whether to report a solution or to switch to planning in

different state spaces. Part three switches to planning in higher-dimensional spaces

if slow progress is detected. More details on these parts follow.

1) Part one of Algorithm 6 [lines 6-12] shares information gained from the explo-

ration of Space(edge) with motion planners that could potentially be called for other
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Algorithm 6 TMM-MotionPlan(edge = (va, vb), ∆t)

1: if not AddedInputStates(edge) then

2: TMM-AddInputStates(edge, QR(va), Q(vb))
3: ActivatePlanner(edge.mp)
4: while timeSpent < ∆t do

5: (xp, x) ← edge.mp.readNextValidMotionSegment()
Part 1: // share information between planning spaces

6: if x 6= nil then

7: for e′ ∈M(edge) do

8: if Joints(edge) ⊂ Joints(e′) then

9: spc← Space(e′)
10: yp ← Project(Lift(xp, Root(xp)), spc)
11: y ← Project(Lift(x, Root(x)), spc)
12: e′.mp.addValidMotionSegment(yp, y)

Part 2: // report solution or plan for remaining dimensions

13: if edge.mp.haveSolution() then

14: (sol, xc)← edge.mp.getSolution()
15: if FullDimensionalSolution(sol) then

16: return (edge, sol)
17: edge.used ← True
18: e′ ← NextPlanningEdge(M(edge))
19: xs

c ← Lift(xc, StartRoot(xc))
20: xg

c ← Lift(xc, GoalRoot(xc))
21: TMM-AddInputStates(e′, {xs

c}, {xg
c})

22: return TMM-MotionPlan(e′, ∆t− timeSpent)
Part 3: // if slow progress, switch to higher-dimensional spaces

23: if SlowProgress() and Space(edge) 6= XJ then

24: edge.used ← True
25: for e′ ∈M(edge) do

26: if Joints(edge) ⊂ Joints(e′) then

27: return TMM-MotionPlan(e′, ∆t− timeSpent)
28: return nil
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Algorithm 7 TMM-AddInputStates(edge, s, g)

1: for e′ ∈M(edge) do

2: e′.mp.addInputStates(Project(s, Space(e′)),
Project(g, Space(e′)))

edges in M(edge). The goal is to reuse information between planning instances, so

that if planning in higher-dimensional spaces is needed, the planner does not start

from scratch.

If the motion segment between states xp ∈ Space(edge) and x ∈ Space(edge)

is valid, an equivalent motion segment from yp ∈ Space(e′) to y ∈ Space(e′) can

be constructed for some edges e′ ∈ M(edge). The condition on edges e′ is that

Joints(edge) ⊂ Joints(e′). For example, for the TMM in Figure 5.2-Right, explo-

ration in the space XJarm
would lead to progress in the state space XJarm+base

as well.

To compute the equivalent motion segment, the states xp and x first need to be lifted

to the full state space of the robot, XJ . This can always be done because plans from

the original input state to xp and to x are known. All joint values are known for the

original input state, so states xp and x can be lifted to XJ by filling in the missing

joint values with the ones from the input states. The lifted states can then be pro-

jected to Space(e′), yielding a valid motion segment that can be added to the motion

planner instance exploring Space(e′) [lines 9-12]. In the worst case scenario, there

could be 2|J|−1 − 1 sets J ′ such that Joints(edge) ⊂ J ′. While the number of state

spaces to keep track of is exponential, the validity of a motion (collision checking)

is evaluated only once. Furthermore, when the validity check is performed, all the

robot parts need to be checked for collision, and the full robot state is actually al-

97



ready constructed. The process of lifting and projecting that state can be made very

efficient.

2) Part two of Algorithm 6 [lines 13-22] handles the construction of solution plans

and the possibility of decoupled planning. When a solution is found in Space(edge),

it is possible that not all of the joints for the input start and goal states are matched,

since a plan was found only for a subset of the joints of the robot (e.g., a plan for the

base only, will not ensure that the arm has moved to its correct state). In that case,

planning is subsequently attempted for a subset of the unmatched set of joints.

The FullDimensionalSolution() routine checks if the obtained solution covers all

the dimensions of XJ [line 15]. If Space(edge) = XJ , FullDimensionalSolution() will

return true. If an incomplete solution is found, more planning needs to be done,

perhaps in a different state space. The NextPlanningEdge() routine decides which

edge to switch to. A constraint at this point is that no edge is active more than once

(mechanism implemented with the edge.used variable) to avoid infinite recursion.

NextPlanningEdge() identifies a TMM edge e′ whose corresponding joint values differ

between the start and goal states, such that the dimension of Space(e′) is minimal

and e′.used is false). For example, if planning for the base, left arm and right arm,

it may be necessary to switch to the space corresponding to the left arm after having

succeeded at planning a motion for the base alone. This is because even though an

SE(2) plan for the robot’s base was found, the arm may not be at the desired state. In

order to reuse the incomplete solution found while planning in Space(edge), additional

input states are added [line 21]. Because the motion planner we use is bi-directional, a

connection state xc ∈ Space(edge) along the solution exists such that xc is connected
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to both a starting state and a goal state. The state xc can be lifted to XJ in two ways,

using either of the input states it is connected to [lines 19,20]. Although xs
c 6= xg

c ,

they do not differ for the joints in Joints(edge). Subsequent planning in Space(e′)

may quickly lead to a solution. This is in fact a form of decoupled planning [3,4]. For

example, a motion for the base could be planned first, and a motion for the arm could

be planned subsequently. This approach may lead to faster computation of solutions,

but it is not a complete approach.

3) Part three of Algorithm 6 ensures that TMM-MotionPlan() eventually degrades

to simply calling the motion planner for XJ [lines 23-27]. If slow progress is detected,

a switch is made to a strictly higher-dimensional space that requires planning for

a larger set of joints. The condition we use for detecting slow progress is that the

distance between the set of states connected to starting states and the set of states

connected to goal sates does not decrease for two thousand iterations. Due to this

degradation policy, if the underlying motion planner is (probabilistically) complete,

the same property is maintained for TMM-MotionPlan().

5.5 Experimental Results

The benefits of using TMMs are experimentally evaluated in the context of motion

planning under geometric constraints. Four environments are defined: “Office1” in

Figure 5.6, “Office2” in Figure 5.8, “Office3” in Figure 5.10 and “Winding Tunnels”

in Figure 5.12. Each of the figures consists of two sides: the left side is an image of

the environment and the right side is the TMG to be used. The leafs of the TMGs are
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assumed to be the goal regions. The robot considered is the PR2 from Willow Garage.

A black dot at the bottom-left of each of the figures indicates the robot’s scale in the

environment. The sets of robot joints used for planning are the left arm (7 DOF),

the right arm (7 DOF) and the base (3 DOF) – a total of 17 DOF. Thus, the label

of every edge in the TMG is {base, left arm, right arm}, and seven (23 − 1) edges

are constructed in the TMM for every TMG edge. This represents the worst case

scenario, as not all edges would be necessary in practical applications. For example,

the edge corresponding to the left and right arms is usually unnecessary.

“Office1” and “Office2” are relatively simple office-like environments, with “Of-

fice1” being a bit more cluttered. “Office3” is a more complex office-like environment

due to the highly constrained regions that are required to be reached. Furthermore,

the regions marked in Figure 5.10-Left always differ in all the robot’s joints, so plan-

ning for all 17 joints is always necessary. “Winding Tunnels” is a complex environment

as well, requiring the navigation of narrow hallways.

RRT-Connect [41] was used as the underlying planner in Algorithm 4 and Al-

gorithm 6 because it is a simple and well established algorithm. However, other

algorithms could be used as well. Planning is done under geometric constraints only

and the implementation used is from OMPL [93].

This section shows experimental results for solving the task and motion planning

problem in three ways:

1. Using Algorithm 5 (which calls Algorithm 6 internally) and supplying a TMM

as input, for the problems described above. This method is denoted as “TMM2”.
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2. Using Algorithm 4 and supplying a TMM as input, for the problems described

above. This method is denoted as “TMM1”.

3. Using Algorithm 4 and supplying graphs as input rather than TMMs (the edges

in the input graph always correspond to planning in the full state space of the

robot). This method is denoted as “graph”.

Although the implementation of our TMM-based approach is easily parallelizable,

we use a single threaded implementation in our experiments. The total execution time

allowed for the algorithms (MaxT ) is 600 seconds.

Sample Execution Before presenting detailed experimental results, a sample exe-

cution of Algorithm 5 on the “Office1” environment is shown in Figure 5.5. Because

the actual TMM is too large to display, the TMG is shown at each step, with bits of

additional information from the execution of the algorithm.

The first step of the execution shows the input TMG. Each of the following

steps indicates the currently considered task solution: the path with bold edges from

“ROOT” to “r8”. Each edge on the current task solution is also marked by the state

space considered for planning. Green edges are ones for which motion plans have

been found. Red edges are ones for which motion plans have not yet been found,

but they are part of the currently considered task solution. Green vertices are task

regions that can be reached with currently available motion plans. Blue vertices are

task regions that could be planned towards from currently reached task regions. The

labels for the edges in bold identify the state spaces that correspond to the TMM

edges selected as the proposed sequence of actions.
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Figure 5.5: A sample step by step execution of Algorithm 5 (left to right and top to
bottom) for the “Office1” environment (shown in Figure 5.6).
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Collected Experimental Data Tables 5.1, 5.2, 5.3 and 5.4 show the results of

solving the task and motion planning problem with the TMM2, TMM1 and graph

approaches, for the environments described above, averaged over 30 runs. Each ta-

ble shows the success rate of the approaches (the percentage of times a solution was

produced within the allowed time), the amount of time spent planning motions, the

amount of memory consumed by exploration data-structures, the length of the pro-

duced solution and the percentage of edges in the TMM (and graph, respectively)

used while searching for a solution. The length of a TMM plan (see Definition 5.2.3)

is the sum of the lengths of its motion plans, and the length of a motion plan is the

sum of the distances between its way-points (as defined in Section 1.1.1):

d(x, x′) = d2(Project(x,XJbase
), P roject(x′,XJbase

)) · 0.05 +

d2(Project(x,XJleft arm
), P roject(x′,XJleft arm

)) +

d2(Project(x,XJright arm
), P roject(x′,XJright arm

)),

where d2 stands for the L2 norm. The factor 0.05 was used for the base to compensate

for the size of the environment. The angles of the joints in the arms were measured

in radians.

For each of the reported measurements, the method that performed better is

shown in bold face. The time spent planning motions and the length of the obtained

solutions are also shown in Figure 5.7, Figure 5.9, Figure 5.11 and Figure 5.13.

For “Office1”, on average, TMM2 seems to be the better approach (up to 20%

faster than the graph approach), followed by TMM1 (in the range of 15% faster than
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Figure 5.6: Left: The “Office1” environment. Right: The TMG for the task to solve.

Figure 5.7: Planning time and solution length for the “Office1” problem (as in Table 5.1).
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∆t (s) success time (s) mem (MB) length edges

0.10
TMM2 100% 8.77 1.00 25.70 49%
TMM1 100% 7.64 0.36 61.36 65%
graph 100% 8.27 0.47 77.87 70%

0.50
TMM2 100% 5.69 0.60 24.17 34%
TMM1 100% 7.29 0.35 60.45 57%
graph 100% 7.04 0.42 78.70 68%

1.00
TMM2 100% 5.73 0.48 19.92 29%
TMM1 100% 6.67 0.31 55.68 52%
graph 100% 7.96 0.46 81.26 67%

2.00
TMM2 100% 6.24 0.54 22.52 28%
TMM1 100% 6.97 0.34 51.89 54%
graph 100% 8.06 0.45 72.52 72%

Table 5.1: Experimental results for the “Office1” problem (shown in Figure 5.6)

∆t (s) success time (s) mem (MB) length edges

0.10
TMM2 100% 1.03 0.19 43.61 35%
TMM1 100% 0.71 0.04 54.02 88%
graph 100% 0.48 0.03 45.62 81%

0.50
TMM2 100% 1.03 0.22 43.96 32%
TMM1 100% 0.74 0.04 50.02 89%
graph 100% 0.56 0.04 45.51 92%

1.00
TMM2 100% 1.12 0.23 44.56 32%
TMM1 100% 0.90 0.05 48.10 89%
graph 100% 0.60 0.04 45.33 92%

2.00
TMM2 100% 1.26 0.26 44.47 32%
TMM1 100% 0.86 0.04 49.43 89%
graph 100% 0.62 0.04 45.24 92%

Table 5.2: Experimental results for the “Office2” problem (shown in Figure 5.8)
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Figure 5.8: Left: The “Office2” environment. Right: The TMG for the task to solve.

Figure 5.9: Planning time and solution length for the “Office2” problem (as in Table 5.2).
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Figure 5.10: Left: The “Office3” environment. Right: The TMG for the task to solve.

Figure 5.11: Planning time and solution length for the “Office3” problem (as in Table 5.3).
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∆t (s) success time (s) mem (MB) length edges

0.10
TMM2 100% 35.40 3.33 126.34 81%
TMM1 60% 83.36 4.14 194.64 76%
graph 63% 100.17 4.58 208.95 74%

0.50
TMM2 100% 22.34 2.35 124.18 68%
TMM1 100% 120.91 6.29 217.47 85%
graph 100% 112.53 5.70 212.17 86%

1.00
TMM2 100% 15.04 1.71 100.50 47%
TMM1 100% 109.93 5.83 201.68 84%
graph 100% 115.22 5.78 216.30 88%

2.00
TMM2 100% 11.09 1.47 96.50 34%
TMM1 100% 103.85 5.54 200.31 82%
graph 100% 124.80 6.36 216.30 86%

Table 5.3: Experimental results for the “Office3” problem (shown in Figure 5.10)
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Figure 5.12: Left: The “Winding Tunnels” environment. Right: The TMG for the task
to solve.
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Figure 5.13: Planning time and solution length for the “Winding Tunnels” problem (as
in Table 5.4).

∆t (s) success time (s) mem (MB) length edges

0.10
TMM2 40% 33.31 3.04 119.96 53%
TMM1 40% 43.55 2.13 117.72 62%
graph 20% 41.94 2.54 129.25 54%

0.50
TMM2 100% 63.85 4.71 102.25 48%
TMM1 90% 71.98 4.32 116.29 75%
graph 90% 94.60 5.30 135.32 80%

1.00
TMM2 100% 52.23 3.71 94.72 43%
TMM1 100% 99.93 5.12 113.82 76%
graph 97% 141.78 8.08 138.57 84%

2.00
TMM2 100% 49.41 3.45 88.19 39%
TMM1 100% 146.00 7.73 118.80 75%
graph 97% 129.66 7.58 137.69 84%

Table 5.4: Experimental results for the “Winding Tunnels” problem (shown in Figure 5.12)

the graph approach). For “Office2”, the ranking of average runtimes of the methods

is reversed: the graph approach is fastest and TMM2 is slowest. However, “Office2”

is a very simple problem, and all runtimes are in the range of 1 second.

For simpler problems, such as “Office1” and “Office2”, TMM2 and TMM1 do not

provide a significant computational benefit in terms of runtime. However, shorter
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solution paths (up to a factor of three in “Office1”) are observed when using TMM2.

TMM1 provides shorter solutions for “Office1” as well. The amount of time allowed

for a planning step (∆t) does not significantly influence the trend of the results.

When computing solutions for more complex problems, such as “Office3” and

“Winding Tunnels”, a speedup factor of three to six is obtained with TMM2. At the

same time, the solutions produced with TMM2 are shorter by as much as a factor

of two. “Office3” is an artificial example designed specifically to expose the benefits

of TMM2 over TMM1: planning for all the 17 degrees of freedom of the robot is

almost always required, so the performance of TMM1 degrades towards that of the

graph approach, both in terms of runtime and path length. Using TMM2, decoupled

planning comes to play and significantly shorter solutions are obtained, in addition

to the much reduced runtime.

For the “Winding Tunnels” problem, a situation similar to that for “Office1” is

observed: TMM2 is the fastest method, but significant improvements are observed

with TMM1 as well. Because “Winding Tunnels” is a more difficult problem, the

improvements due to TMMs are more pronounced. The value of ∆t again does not

influence the trend of the computation time and that of the solution length, but for

low values of ∆t, the success rate of all evaluated algorithms drops. This drop occurs

because more time is spent updating the considered sequence of actions and less time

is spent computing motion plans.

The percentage of edges that are used for motion planning is usually lower for

TMMs rather than for graphs. This is to be expected because TMMs have a much

larger number of edges. An additional observation is that when ∆t is smaller, a larger
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percentage of edges is considered. This is again to be expected because with lower

values of ∆t, more sequences of actions are considered by the TMM algorithm.

5.6 Discussion and Possible Extensions

As described, the TMM edges always correspond to motion planning in a particu-

lar state space. This can be generalized to include other means of generating motions

for TMM edges. For example, it could be possible to attempt simply controlling the

robot along a straight path for a TMM edge, and only when that controller fails to

find a solution, resort to motion planning. For complex manipulation scenarios, the

use of a manipulation graph along certain TMM edges may be beneficial as well. Of

course, in order to consider additional types of TMM edges, the cost functions need

to be updated accordingly.

In all the described experiments, 23−1 edges were included in the TMM for every

action in the TMG. In general, this does not have to be the case. For example, to

move a robot’s head, it is unlikely that planning in the space that corresponds to the

robot’s arms will lead to a solution. As long as the full state space of the robot is

considered, not all the possible combinations of subspaces have to be included in the

TMM to maintain the completeness guarantees of the underlying motion planner.

Another possible extension is to use a lazy form of propagating information be-

tween state spaces in Algorithm 6. Such an approach would reduce and even eliminate

any overhead caused by the process of sharing information described above.
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Chapter 6

Uncertainty and Task Motion

Multigraphs

Physical systems are characterized by imperfect actuation, imperfect sensing and

imperfect models, all of which lead to uncertainty. The sequence of actions a robot

follows to reach its goal influences the quality of the sensed data. For example,

a robot navigating in an empty environment will have more difficulty in localization

when compared to a robot that navigates around corners and walls. At the same time,

different actuators have different abilities in terms of following planned paths, and

the set of actuators used depends on the state spaces in which motions were planned.

As such, the information TMMs include, i.e., the possible sequences of actions that

lead to the goal and the state spaces that could be potentially used to plan motions

for those actions, directly affects a robot’s capability to address uncertainty issues.

This chapter shows how to incorporate uncertainty information at the task plan-
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ning level, using TMMs. A user can easily specify uncertainty information for edges

and vertices of the TMM (e.g., a notion of safety that is specific to particular ver-

tices of particular edges). Furthermore, this chapter assumes that motion planners

capable of reporting probabilities of success for their computed solutions are used as

underlying motion planners in the TMM-based algorithms described in Chapter 5.

Section 6.1 presents some of the previous work in considering uncertainty in motion

planning, and includes examples of motion planners that are able to qualify their

reported solutions with probabilities of success. However, for simplicity of imple-

mentation, this work does not actually use planners such as the ones described in

Section 6.1. Instead, an artificial model of uncertainty is employed to emulate uncer-

tainty in localization. This is a simple source of uncertainty and it is meant solely

as an example (many other different sources of uncertainty can be used). Section 6.2

shows how to incorporate information about uncertainty at the task planning level

using MDPs. Experimental results are shown in Section 6.3.

6.1 Considering Uncertainty in Motion Planning

Significant progress has been made towards incorporating various forms of un-

certainty at the motion planning level, leading to algorithms that compute robust

motion plans. These algorithms can be separated in two categories: ones that plan

in the state space and ones that plan in the belief space.
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6.1.1 Planning in the State Space

This class of algorithms builds upon already proven sampling-based algorithms

such as PRM [36], and estimate probabilities of success for segments that make up

solution paths. Techniques that plan in the state space can consider different types of

uncertainty, but do not necessarily consider all types of uncertainty simultaneously.

For example, uncertainty in sensing (e.g. [111, 112]) and uncertainty in actuation

(e.g. [113, 114]) can be considered separately. Nevertheless, considering both uncer-

tainty in sensing and uncertainty in actuation is possible [115].

Missiuro and Roy present a modified version of PRM that can account for un-

certainty in the representation of the environment [111]. It is assumed that the the

vertices that make up the sensed obstacles in the environment are represented using

Gaussian probability distributions, and uncertainty in the robot state is ignored. The

roadmap construction step of PRM is modified so that the probability of collision for

sampled states is estimated. A sampled state is then discarded with probability equal

to its probability of collision. At the query step of PRM, the probability of collision

for a segment in the roadmap is evaluated using a Monte Carlo approach. The cost of

a segment is then defined as a weighted sum that considers the probability of collision

and the length of the segment. The reported solution is the shortest path connecting

the given start and goal states.

Alterovitz et al. present another modification of PRM which they call the Stochas-

tic Roadmap Method (SMR) [113]. Their approach considers uncertainty in actuation

and is applied for of a system that accepts a finite set of controls. A stochastic model

of motion is assumed, and probabilities for successful execution are computed for each
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edge in the roadmap. A Markov Decision Process [116] is used in the query step of

PRM.

6.1.2 Planning in the Belief Space

Instead of planning in the state space of the robotic system, another approach

is to plan in the belief space. A point in the belief space consists of the parameters

necessary to represent a probability distribution for a point in the state space. For

example, for a finite state space with n states, the dimensionality of the belief space

is equal to n− 1. For infinite state spaces, the dimension of the belief space depends

on the probability model used. In previous work, Gaussian models of probability or

sets of particles are often used to approximate the belief state.

An approach similar in implementation to planning in the state space is the belief

roadmap [117], which can consider uncertainty in state information. The idea behind

this approach is to run PRM in the belief space. Points in the belief space are

Gaussian probability distributions. The dimensionality of the belief space is then

Θ(n2) for a state space of dimension n. Even though the robot is assumed to be fully

actuated, when milestones sampled in the belief space are to be connected, only n

of the parameters can be controlled: the means of the belief states. To address this

problem, Prentice and Roy [117] only sample the means of the belief states – which

are in fact elements of the state space – and factorize the covariance matrices in a

manner that affords computational savings. Although this method does reason in the

belief space of the robotic system, it still does so by sampling in the state space.

Different approaches for formalizing uncertainty are based on Markov Decision
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Processes [116] and Partially Observable Markov Decision Processes [118]. Markov

Decision Processes (MDPs) can be used to model robots that have uncertainty in ac-

tuation, but their state is fully observable (known at all times), and Partially Observ-

able Markov Decision Processes can be used to model robots that have uncertainty in

actuation and their state is not fully observable. Because Markov Decision Processes

(MDPs) are used in the following sections, they are defined next:

A Markov Decision Process (MDP) is a 4-tuple (S, A, T, R), where:

• S is the set of states the robot could be in.

• A is the set of actions the robot can perform in order to move between states.

• T : S×A→ 2S is a transition function indicating the probabilities of transition

between states; T (s, a, s′) is the probability of transitioning from state s to state

s′ under action a. Time is discretized, and at every step the robot takes, the

transition function is evaluated to determine which state the robot reaches.

• R : S ×A→ R is a reward function; R(s′, a) is the reward the robot receives if

it reaches state s′ after performing action a. This reward is usually discounted

over time using a parameter γ.

Often, the sets S and A are assumed to be finite. The solution to an MDP is a policy

π : S → A which specifies what the optimal action is for every state the robot could
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be at. The notion of optimality is defined in terms of maximizing rewards:

π(s) = arg max
a

∑

s′

T (s, a, s′)(R(s′, a) + γV (s′))

V (s) =
∑

s′

T (s, π(s), s′)(R(s′, π(s)) + γV (s′)),

where γ is the discount factor for the MDP. This factor has the effect of diminishing

the value of rewards the further they are in the future.

Typical algorithms that find the optimal policy for an MDP are policy iteration

and value iteration [116].

6.2 Considering Uncertainty in Task and Motion

Planning using TMMs

From a high-level perspective, the operation of Algorithm 5 can be viewed as

interleaving (1) the proposal of a possible sequence of actions that take the robot

to the goal and (2) the computation of some of the motion plans for the considered

actions. If some form of uncertainty is considered at the motion planning level, it is

possible to assign a probability of success to motion plans computed for the edges

in the TMM. This section shows how to make use of such probabilities so that more

robust sequences of actions are proposed in Algorithm 5. The step that proposes

the sequence of actions to follow in Algorithm 5 is based on an assignment of costs

to edges and Dijkstra’s algorithm. In this section, the use of Dijkstra’s algorithm

is replaced by the use of Markov Decision Processes (MDPs) and value iteration.
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Section 6.2.1 shows how to construct an MDP from a TMM at a given point in time

and Section 6.2.2 shows how to use an MDP in Algorithm 5. Experimental results

for the updated algorithm are shown in Section 6.3.

6.2.1 Construction of an MDP

Given the exploration information from a TMM GM = (VM , EM) at a particular

time, an MDP (S, A, T, R) is constructed as follows:

• S = VM ∪ {Fail}; the vertices in the TMM become states in the MDP, and an

additional state (Fail) that corresponds to catastrophic failure is added.

• A =
⋃

e∈EM
Space(e); all the state spaces that could be used for planning are

considered actions in the MDP.

• The MDP state transition function T is defined as follows:

T (s′, s, Space(e)) = η · Pt(e), for each edge e = (s, s′) ∈ EM

T (Fail, s, Space(e)) = η ·
∑

s′∈{s′|(s,s′)∈EM }

1− T (s′, s, Space(e))

Pt(e) = pModel(e) ·















p if sol

1
2
· 1

1+t
if not sol,

where pModel(e) corresponds to model uncertainty (in this work it depends

on the state space used to plan motions along e, but this definition could be

extended), p corresponds to the probability of success of a particular motion
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plan (reported by a motion planner when computing that plan), t is the amount

of time spent planning motions for edge e, η is a normalization constant such

that the probabilities of outgoing transitions from a particular state under a

particular action sum up to 1 (property of MDPs), and sol is a flag indicating

whether any motion plans have been found for edge e.

The transition function brings information obtained at the motion planning

level to the task planning level and thus allows the TMM-based algorithms

discussed in Chapter 5 to make use of it. Intuitively, for every edge in the

TMM, there exists a corresponding transition in the MDP. The probability of

that transition depends on the state space of the system (given by pModel(e))

and the computed motion plan (given by p) when such a plan is found. If motion

plans do not yet exist for the edge e, a probability of success that diminishes as

computation time increases is assumed.

• The reward function R of the MDP is defined such that:

R(Fail, ·) = −10000

R(s, a) =































R0(s, a) ·















dim(XJ)− dim(Space(e)) if p > PC

dim(Space(e)) otherwise

if sol

−ξ · dim(Space(e)) if not sol

R0(s, a) = β ·
( 1

1 + e−α·(p−PC)
− 1

2

)

,
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where XJ is the full state space of the robotic system, α, β, ξ are scaling factors,

p is the probability of success of the most probable motion in M(e), sol is a flag

that indicates whether any motion plan has been found for an edge in M(e)

and PC is a trust threshold. Explanations for these variables follow.

The intention of the reward function is to penalize actions that are not desirable

and to reward ones that are. At first, no probabilities are known for any of the

actions in the TMM. In this case, the only reasonable approach is to consider

a small penalty for each action in the corresponding MDP, so that we avoid a

bias towards long policies.

Figure 6.1: Value of R0(·, ·) function used in defining rewards for PC = 0.5, ξ = 0.05, α =
10 and β = 1000.
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When a motion plan is found for a particular edge in the TMM, the proba-

bility of that motion plan can either be sufficiently high so that including the

corresponding MDP transition in the optimal policy is desirable, or it is a low

probability and the corresponding MDP transition should be ignored. The dis-

tinction is made using the trust threshold PC : edges that have p > PC will yield

a reward that is positive, while ones that have p < PC will yield a negative

reward; α and β are positive factors that set the sale for the returned rewards.

A representation of the R0(·, ·) function is shown in Figure 6.1. PC is a key

parameter, as it decides whether the reward is positive or not. When a proba-

bility p is not available, because a solution has not yet been found, the reward

achieved by the edge is considered to be a small negative value, and the ξ factor

(positive) is used.

In this thesis, the discount factor γ for the constructed MDP is always set to 0.95.

The constants for the definition of the reward functions are PC = 0.5, ξ = 0.05, α = 10

and β = 1000. Furthermore, pModel(e) is defined as:

pModel(e) =































0.99 if Space(e) ∈ {Xright arm,Xleft arm}

0.90 if Space(e) = Xbase

0.75 otherwise.

The values mentioned here are by no means fixed. For practical applications, these

values will most likely need to be tuned. The intention in this thesis only to show

that TMMs can easily be used to consider uncertainty at task level, and the values
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selected are ones that lead to results supporting this point.

6.2.2 Using MDPs in the TMM Algorithm

Given an MDP constructed as shown above, value iteration is executed to find

the optimal policy. Let π : S → A be the optimal policy. The sequence of states

s0, s1, . . . , sk is extracted from the MDP such that s0 is the MDP state that corre-

sponds to the root of the TMM,

si+1 = max
s′∈S

(T (s′, si, π(si)) ·R(s′, π(si))) ,

and sk corresponds to a goal state in the TMM. The sequence of states above is used

to produce a sequence of possible actions that take the robot from the root of the

TMM to one of the goals. This computation replaces the call to Dijkstra’s algorithm

in Algorithm 5 [line 2].

6.3 Experimental Results

Source of Uncertainty For the experiments shown in this section a simple model

of uncertainty in localization was assumed: the farther the robot is from a wall in the

environment, the higher the uncertainty in localization is. The level of uncertainty is

shown in Figures 6.2, 6.3 and 6.4. The darker areas indicate locations that are farther

from walls, and thus offer less localization information for the robot.

The values computed for this source of uncertainty are not realistic. Their purpose
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is only to emphasize the fact that using information about probabilities at the task

planning level improves the robustness of the final solution. For practical applications,

different sources of uncertainty would be used.

Experimental Setup Algorithm 5 is updated as indicated in Section 6.2 and exe-

cuted on the environments shown in Figures 6.2, 6.3 and 6.4. The environment in 6.2

is very small and very simple; its purpose is to show a motivating example for con-

sidering uncertainty at the task level as well. The environment in Figure 6.3 is fairly

cluttered, and good localization information is available throughout the environment.

The environment in Figure 6.4 however, has a large open area that does not provide

good localization information. The environments were selected as such to emphasize

the difference made by the use of MDPs.

All experiments in this chapter were conducted in the same fashion as the ones

in Chapter 5. All values are averaged over 30 runs, and the motion planner used is

RRT-Connect [41] from OMPL [93]. In addition to information reported in Chapter 5,

this chapter includes two additional measurements: (1) “pct” represents the amount

of time spent in the computation of proposed sequences of actions that connect the

TMM’s root to one of its goals, and (2) “prob” represents the probability of success

for the complete task plan.

Presentation of Results Figure 6.2 shows a very simple problem where the robot

has two options: move directly to the goal (from “ROOT” to “r2”) in one single

action, or take two additional actions, so that dark (unsafe) areas are avoided. In

the process of the computation using Dijkstra’s algorithm, the shortest path is the
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only one considered, the motion plan between “ROOT” and “r2” is trivial to find,

and the problem is solved. When using MDPs, the direct solution is computed at

first. However, the probability of success for the motion plan connecting “ROOT”

to “r2” is computed to be 0.1, which is less than PC . This makes the reward of

moving to “r2” directly very low, so the subsequently proposed sequences of actions

extracted using MDPs are via regions “r0” and “r1”. The probabilities of success

for the corresponding motion plans are higher. Table 6.1 shows the values of the

collected measurements. Rows indicated by “Dij.” correspond to the use of Dijkstra’s

algorithm in Algorithm 5 and rows indicated by “MDP” correspond to the use of

MDPs, as explained in Section 6.2. The probability of success when using MDPs

is much larger than when using Dijkstra’s algorithm; however, the number of edges

in the TMM that are used in planning is significantly higher when using MDPs.

Furthermore, the execution of Dijkstra’s algorithm is much faster than value iteration

(the “pct” column), and the memory consumption is increased when using MDPs.

All these results are in some sense expected, just as is the fact that the length of

the computed task solutions is higher for MDPs. The differences are small in this

particular experiment because of the small scale of the environment and the used

distance function.

An additional experiment that was conducted on the environment in Figure 6.2

was that the probability of success for the computed motion plans were always set to

1. In that case, the solution proposed using the MDP algorithm was always the same

as the one using Dijkstra’s algorithm. This is desirable, because shorter solutions are

preferred when safety is not an issue.

124



ROOT

r2

r0

r1

Figure 6.2: Motivating example for considering uncertainty. The obvious shorter path is
to move from “ROOT” to “r2”, crossing the dark (unsafe) area. Considering uncertainty
produces the longer (but safer) solution, via the “r0” and “r1” regions.

∆t (s) success time (s) mem (MB) pct (ms) length edges prob

0.10
Dij. 100% 0.09 0.02 0.1 11.37 12% 0.09
MDP 100% 0.16 0.05 23.6 12.13 36% 0.61

0.50
Dij. 100% 0.09 0.02 0.1 11.43 11% 0.09
MDP 100% 0.16 0.05 22.8 12.15 36% 0.61

1.00
Dij. 100% 0.07 0.02 0.1 11.35 11% 0.09
MDP 100% 0.15 0.05 17.1 12.14 36% 0.61

2.00
Dij. 100% 0.07 0.02 0.1 11.38 11% 0.09
MDP 100% 0.18 0.05 22.6 12.19 36% 0.61

Table 6.1: Experimental results for the motivating example shown in Figure 6.2
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“Office1” shows an environment that includes few dark areas. As a result, the

probability of success is only slightly higher when using MDPs rather than Dijkstra’s

algorithm, as shown in Table 6.2. An interesting side-effect of using MDPs however is

that even though value iteration is much slower than execution of Dijkstra’s algorithm

(“pct” column), that difference is surpassed by the significantly reduced computation

time when using MDPs. Because the structure of the “Office1” problem is such

that there are two parallel sets of actions that lead to the goal, the overall costs of

the two task paths alternate, making the version of the TMM algorithm that uses

Dijkstra’s algorithm compute motion plans for both task paths. When the version

of the algorithm using MDPs is employed, the reward of one path becomes larger as

motions deemed “safe” are found. As a result, task paths do not alternate and the

algorithm stays committed to one path, as long as unsafe areas are not encountered.

A side-effect of this behavior is reduced computation time, for this particular problem.

“Office2” is a version of “Office1” that includes darker areas too. The observations

are similar as for “Office1”, as shown in Table 6.3. The main difference is that the

probability of success when using MDPs is distinctly higher, as the algorithm avoids

the darker areas and follows the longer task path. The differences in runtime are

also reduced. However, the actual value for the probability of success is still low even

for the experiments using MDPs. The reason for these low values is the unrealistic

model of uncertainty that was used and the fact that in this work, sampling-based

planners ignored the uncertainty information (although, previous work has shown

different possibilities of incorporating this information at the motion planning level).
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ROOT

r1 r4

r8

r3 r7

r0 r5

r2 r6

Figure 6.3: Left: The “Office1” environment with uncertainty map for localization. Darker
areas cause poor localization. Right: The TMG for the task to solve.

∆t (s) success time (s) mem (MB) pct (ms) length edges prob

0.10
Dij. 100% 8.60 1.00 2.7 27.07 48% 0.45

MDP 100% 12.83 1.40 816.1 42.52 54% 0.44

0.50
Dij. 100% 6.28 0.64 0.7 23.20 35% 0.45
MDP 100% 4.77 0.53 154.8 32.21 32% 0.45

1.00
Dij. 100% 5.19 0.47 0.6 19.14 28% 0.46
MDP 100% 1.91 0.25 102.7 23.96 21% 0.47

2.00
Dij. 100% 6.91 0.60 0.5 19.20 29% 0.44
MDP 100% 1.90 0.25 102.8 24.18 19% 0.46

Table 6.2: Experimental results for the “Office1” problem (shown in Figure 6.3)

127



ROOT

r2

r4

r0 r7

r8 r9

r3

r5

r10

r6

r1

Figure 6.4: Left: The “Office2” environment with uncertainty map for localization. Darker
areas cause poor localization. Right: The TMG for the task to solve.

∆t (s) success time (s) mem (MB) pct (ms) length edges prob

0.10
Dij. 100% 1.04 0.19 0.5 43.43 32% 0.33
MDP 100% 2.05 0.32 332.9 55.34 53% 0.48

0.50
Dij. 100% 1.12 0.23 0.5 44.37 32% 0.34
MDP 100% 1.04 0.20 179.6 50.32 27% 0.52

1.00
Dij. 100% 1.16 0.25 0.7 44.32 32% 0.34
MDP 100% 0.99 0.20 172.3 50.26 26% 0.53

2.00
Dij. 100% 1.21 0.26 0.7 44.18 32% 0.34
MDP 100% 1.02 0.20 180.3 50.00 26% 0.52

Table 6.3: Experimental results for the “Office2” problem (shown in Figure 6.4)
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6.4 Discussion and Possible Extensions

The use of MDPs as shown in this chapter is a simple approach of considering

uncertainty at the task level. As shown by the conduced experiments, the robust-

ness of the computed solutions can be significantly increased. Extensions to this

method that allow consideration of cycles in TMMs could make the approach more

general. Furthermore, different methods of constructing MDPs from TMMs could be

evaluated.
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Chapter 7

Conclusions

This thesis shows and experimentally validates algorithmic improvements for the

motion planning problem and for the simultaneous task and motion planning (STAMP)

problem.

An improved version of the KPIECE algorithm is developed. State space cover-

age estimation techniques based on projections to lower-dimensional Euclidean spaces

lead to significantly more efficient sampling-based planners. The described improve-

ments, as well as a number of previously introduced algorithms, are included in a free

software library called OMPL. The practical applicability of KPIECE and OMPL is

demonstrated on the PR2 mobile manipulator.

The notion of a task motion multigraph (TMM) is introduced to help with solving

the STAMP problem. This thesis shows that the exchange of information between

selection of tasks and computation of motion plans leads to increased efficiency in

planning. In the case of planning under geometric constraints, speedups by as much
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as a factor of six are observed. Furthermore, solution paths that are shorter and

require the actuation of fewer hardware components are shown for the PR2 mobile

manipulator. If uncertainty information is available at the motion planning level,

TMMs facilitate the inclusion of that information in the computation of task plans

through the use of Markov Decision Processes.

The individual improvements this thesis brings are applicable to a variety of prob-

lems, but the thesis as a whole furthers the planning capabilities of mobile manipu-

lators.
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[71] M. Ciocârlie, K. Hsiao, E. G. Jones, S. Chitta, R. Rusu, and I. Şucan, “Towards
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