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Abstract

Kinodynamic Motion Planning for High-dimensional Physical Systems

by Ioan Alexandru Şucan

This thesis presents a kinodynamic motion planner, Kinodynamic Motion Plan-

ning by Interior-Exterior Cell Exploration (KPIECE), specifically designed for systems

with complex dynamics, where physics-based simulation is necessary. A multiple-

level grid-based discretization is used to estimate the coverage of the state space.

The coverage estimates help the planner detect the less explored areas of the state

space. The planner also keeps track of the boundary of the explored region of the

state space and focuses exploration on the less covered parts of this boundary. Ex-

tensive experiments show KPIECE provides computational gain over state-of-the-art

methods and allows solving some harder, previously unsolvable problems. A shared

memory parallel implementation is presented as well. This implementation provides

better speedup than an embarrassingly parallel implementation by taking advantage

of the evolving multi-core technology.
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this document includes, and to Derek Ruths for naming the algorithm (KPIECE).

This work was supported in part by NSF IIS 0713623 and Rice University funds.

The experiments were run on equipment obtained by NSF CNS 0454333 and NSF

CNS 0421109 in partnership with Rice University, AMD and Cray.



Contents

1 Introduction 1
1.1 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Thesis Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Background and Previous Work 7
2.1 Sampling-based Motion Planning . . . . . . . . . . . . . . . . . . . . 8
2.2 Physics Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3 Algorithm 14
3.1 Discretization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 Algorithm Execution . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.3 Implementation Details . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.4 Computing the Discretization . . . . . . . . . . . . . . . . . . . . . . 23
3.5 Goal Biasing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4 Experiments 26
4.1 Robot Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.1.1 Modular Robot . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.1.2 Car Robot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.1.3 Blimp Robot . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.2 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.3 Discussion on Algorithm Components . . . . . . . . . . . . . . . . . . 37
4.4 Parallel Implementation . . . . . . . . . . . . . . . . . . . . . . . . . 38

5 Conclusions and Future Work 41

iv



List of Figures

1.1 A model of a complex robot: PR2 from Willow Garage. This robot has
36 degrees of freedom. . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.1 An example roadmap for PRM. Dark regions represent Qobs. . . . . . . 9
2.2 An example tree structure. Dark regions represent Qobs. . . . . . . . . 10
2.3 The operation of a physics simulator: one simulation step. . . . . . . 12

3.1 One level of discretization. Interior cells are differentiated from exterior
cells. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2 An example discretization with three levels. The line intersecting the
three levels defines a cell chain. Cell sizes at lower levels of discretiza-
tion are integer multiples of the cell sizes at the level above. . . . . . 18

4.1 Left: start and goal configurations. Right: environments used for the
chain robot (7 modules). Experiments were conducted for 2 to 10
modules. In the case without obstacles, the environments are named
chain1-x where x stands for the number of modules used in the chain.
In the case with obstacles, the environments are named chain2-x. . . . 29

4.2 Environments used for the car robot (car-1, car-2, car-3). Start and
goal configurations are marked by “S” and “G”. . . . . . . . . . . . . 30

4.3 Environments used for the blimp robot (blimp-1, blimp-2, blimp-3).
Start configurations are marked by “S”. The blimp has to pass between
the walls and through the hole(s), respectively. . . . . . . . . . . . . . 31

4.4 Runtimes of different algorithms on the car and blimp models. The
achieved speedup is shown in Table 4.1. . . . . . . . . . . . . . . . . . 31

4.5 Runtimes of different algorithms on the modular robot model with no
obstacles, using varying number of modules. The achieved speedup is
shown in Table 4.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

v



4.6 Number of simulation steps for different algorithms on the car and
blimp models. Notice the similarity to Figure 4.4. This similarity
serves to prove that the runtime of sampling-based planning algorithms
is dominated by physics simulation, so minimizing the number of sim-
ulation steps leads to speedup. . . . . . . . . . . . . . . . . . . . . . . 33

4.7 Memory usage for different algorithms on the car and blimp models.
Notice the similarity to Figure 4.6. Since for every simulation step
a new state is produced and the number of motions in the built tree
is directly proportional to the number of states, the fewer simulation
steps there are, the fewer motions will need to be stored in memory. . 35

4.8 Logarithmic runtimes with twelve different discretizations for the chain1,
chain2, car, and blimp. . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.9 Logarithmic runtime for KPIECE with various components disabled, on
2-dimensional and 3-dimensional projections (car and blimp) with the
automatically computed one-level discretization. A = no components
disabled, B = no cell distinction, C = no progress evaluation, D = no
cell distinction and no progress evaluation. . . . . . . . . . . . . . . . 38

4.10 Runtime with different number of threads on a four-core machine, for
2-dimensional and 3-dimensional projections (car and blimp). . . . . . 40

vi



List of Tables

4.1 Speedup achieved by KPIECE over other algorithms for four different
problems. If one of the other algorithms was unable to solve the prob-
lem in at least 10% of the cases, “—” is reported. KPIECE was con-
figured with an automatically computed one-level discretization, as
described in Section 3.4. . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.2 Speedup achieved by KPIECEb relative to KPIECE, both using the auto-
matically computed one-level discretization. . . . . . . . . . . . . . . 34

4.3 Speedup achieved by KPIECE when using a two-level discretization
relative to the automatically computed one-level discretization. For
chain1-10 and chain2-10, a solution was found only with the two-level
discretization so no speedup is reported. . . . . . . . . . . . . . . . . 35

4.4 Speedup achieved by KPIECE with multiple threads for 2-dimensional
and 3-dimensional projections (car and blimp). KPIECE was configured
with an automatically computed one-level discretization, as described
in Section 3.4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.5 Speedup achieved by KPIECE in embarrassingly parallel mode. . . . . 39

vii



Chapter 1

Introduction

Given a robotic system that can be controlled in a specific way, motion planning

is the problem of taking that system from a given starting state to a goal state while

respecting a set of constraints [1, 2, 3]. Over the last two decades, this field has

grown from one that considered basic geometric problems, such as the piano movers’

problem [4], to a field that addresses planning for complex robots (see Figure 1.1)

with kinematic and dynamic constraints [5, 6]. Although the motion planning prob-

lem stemmed from the artificial intelligence and robotics fields, its applications have

expanded to other domains such as graphics and computational biology [7, 8, 9]. Ex-

ploration robots, tour guides, surgical robots, digital actors, folding proteins are only

a few examples of cases where motion planning is used.

A simplified case of the motion planning problem is finding a continuous collision-

free path for a robot consisting of polyhedral parts among polyhedral obstacles. This

version of the problem is usually referred to as motion planning under geometric
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constraints, path planning or kinematic motion planning and has been shown to be

PSPACE-complete [10, 11]. When considering some of the physical limitations the

robot exhibits, such as bounded forces, the problem is known as planning under

differential constraints, or kinodynamic motion planning. In this latter case, it is not

known if the problem is even decidable except in some particular cases [12, 13, 14].

Complete algorithms for the kinematic motion planning problem and some cases of

the kinodynamic motion planning problem exist [1, 2, 3], however they are impractical

for realistic problems. Significant improvements were achieved with the development

of sampling-based algorithms [15, 16, 17]. More details on this class of methods and

a literature survey follow in Section 2.1.

Figure 1.1: A model of a complex robot: PR2 from Willow Garage. This robot has 36
degrees of freedom.
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1.1 Problem Definition

Before defining the motion planning problem as it is used in this work, we intro-

duce a few notations:

• Q is a differentiable manifold of dimension m, representing the state space of

the robotic system.

A single element q ∈ Q, q = (q1, ..., qm) completely describes the state of a

robotic system. This means that each component qi defines a parameter of

the system; such parameters can be joint angles, positions in space, velocities,

accelerations, etc.

• g(q, q̇) ≥ 0 is a set of constraints the robotic system must satisfy in its motion

(e.g., collision avoidance, maximum speeds, maximum forces).

– Qobs ⊆ Q is the set of invalid states.

A state is invalid if it would cause the robotic system to break one of the

constraints under which it operates.

– Qfree = Q \Qobs is the set of valid states.

This is the set of states in which the robot is allowed to be.

• U is a manifold representing the control space for the robotic system.

A single element u ∈ U represents the set of inputs given to a robotic system

at a point in time.
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An instance of the motion planning problem addressed here can be formally de-

fined by the tuple S = (Q,U, I,G, f) where Q is the state space, U is the control space,

I ⊂ Qfree is the set of initial states, and G ⊂ Q, G∩Qfree 6= ∅ is the set of goal states.

The dynamics are described by a forward propagation routine f : Q × U → TgQ,

where TgQ is the tangent bundle of Q (f does not need to be explicit). A solution to

a motion planning problem instance consists of a sequence of controls u1, . . . , un ∈ U

and times t1, . . . , tn ∈ R≥0 such that q0 ∈ I, qn ∈ G and qk ∈ Qfree, k = 1, . . . , n, can

be obtained sequentially by integration of f .

For the purposes of this work, the function f is computed using the Open Dy-

namics Engine (ODE) [18] physics simulator. Instead of equations of motion to be

integrated, a model of a robot and its environment needs to be specified. More

details about physics simulation follow in Section 2.2.

1.2 Contribution

This thesis introduces a new sampling-based motion planning algorithm that is

able to handle high dimensional systems with complex dynamics. The algorithm is

innovative in the sense that while it is general (uses physics simulation for evaluat-

ing robotic systems), it reduces both runtime and memory requirements by making

better use of the information collected during the planning process. This planning al-

gorithm will be referred to as Kinodynamic Planning by Interior-Exterior Cell Explo-

ration (KPIECE). While there are other planners for systems with complex dynamics,

KPIECE was designed with additional goals in mind. One such design goal is the ease
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of use for systems where only a forward propagation routine is available (that is, the

simulation of the system can only be done forward in time). Another goal is that no

state sampling and no distance metric are required. These requirements make KPIECE

particularly well suited for complex systems described by physical models instead of

equations of motion, since in such cases only forward propagation is available and

sampling of states is in general expensive. Since KPIECE does not need to evaluate

distance between states, it is also well suited for systems where a distance metric

is hard to define or when the goal is not known until it is actually reached. It is

typical for sampling-based planners to spend more than 90% of their computation

performing forward propagation. Since physics simulation is considerably more ex-

pensive than integration of motion models, it is essential to use as few propagation

steps as possible. This fact was a major motivation behind this work and as will

be shown later, KPIECE provides significant computational improvements over previ-

ous methods (up to two orders of magnitude), which allows tackling more complex

problems that could not be previously addressed. Since motion planning is usually a

subproblem of a more complex task, it is generally desirable to have fast methods for

the computation of motion plans. To this end, KPIECE was also designed with shared

memory parallelism in mind and the developed implementation can take advantage

of the emerging multi-core technology (multiple cores per chip). The implementa-

tion can use a variable number of processors and shows super-linear speedup in some

cases. The combination of obtained speedup and physics-based simulation, could

make KPIECE fast and accurate enough to be applicable in real-time motion planning

for complex reactive robotic systems.
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1.3 Thesis Overview

The rest of the thesis is organized as follows: Chapter 2 describes background

and related work, Chapter 3 contains a description of the proposed algorithm, and

Chapter 4 presents experiments using KPIECE. Conclusions and future work are in

Chapter 5.
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Chapter 2

Background and Previous Work

Around two decades ago, the focus in motion planning was on planning under

geometric constraints. This problem is sometimes referred to as the piano movers’

problem, or in 2D, the sofa movers’ problem, and it was the subject of extensive

research [4, 19, 20]. A number of complete algorithms were developed for various cases

of the problem and it was eventually shown to be PSPACE-complete [10, 11]. The

developed algorithms are of theoretical interest only, since they are computationally

prohibitive and difficult to implement. Techniques such as cell decomposition methods

and potential fields [1, 2, 3] were studied as well, but few were successful at solving

problems where the state space is highly dimensional [21].

In addition to geometric constraints, planning for real robotic systems requires ac-

counting for dynamic constraints (e.g., friction, gravity, limits in forces). In general it

is not known if this version of the problem, planning under differential constraints, is

even decidable [13]. However, for the simplified case of a point mass robot, a polyno-
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mial algorithm exists [12]; the reconfiguration of modular robots under kinodynamic

constraints is possible in Θ(
√
n) time under certain assumptions [14].

The proven difficulty of planning under geometric constraints and the need to con-

sider even more complex versions of the problem, such as planning under differential

constraints, pushed the research in motion planning towards approximate techniques.

There are multiple directions of research that deal with such approximate techniques,

and this work continues in one of these directions, namely sampling-based motion

planning, a direction in which promising results have been shown for planning under

differential constraints [2, 3, 5, 53].

2.1 Sampling-based Motion Planning

Much of the recent progress in motion planning is attributed to the development

of sampling-based algorithms [2, 3]. Sampling-based motion planning algorithms

developed up to this point are only probabilistically complete [22, 23], which means

if a solution exists, it will be eventually found, but if no solution exists, the algorithm

will not terminate. The main idea behind this class of methods is the notion of

sampling the state space Q of the robotic system. Since an exact representation of

Qobs is not usually available (and would be hard to compute), collision checking can

be used in the environment of the robotic system to test whether a particular state

q ∈ Q is valid or not. With the development of collision checking algorithms [24],

this test can be performed quickly. Sampling states from Q and testing whether they

are in Qfree allows sampling-based algorithms to carry out a systematic search of
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the continuous space Q. The search consists of finding path segments [qa, qb] such

that moving the robotic system from qa to qb according to its motion capabilities will

not cross any state in Qobs. Obtaining multiple such valid path segments yields an

approximate representation of the connectivity of Qfree. Various strategies exist for

producing sequences of valid segments (motion plans) such that two given states qstart

and qgoal can be connected.

Figure 2.1: An example roadmap for PRM. Dark regions represent Qobs.

One of the most influential algorithms in sampling-based motion planning was PRM

[25, 26, 27]. This method provided a coherent framework for many earlier works that

used sampling and opened new directions for research. In a preprocessing step, this

algorithm constructs a roadmap – a graph of valid robot states obtained by sampling,

connected by valid robot paths (shown in Figure 2.1). In a second step, the desired

starting and ending states of a robot are connected to the roadmap and the problem

of computing a valid path between them is reduced to a graph search algorithm.
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While the underlying principle is simple, the algorithm is efficient and problems that

are intractable for complete algorithms can be solved [2]. Because constructing the

roadmap requires connection of states by paths, PRM and algorithms based on PRM

are better suited for planning under geometric constraints, so finding the input that

connects one state to the other (the steering problem) is not necessary [28, 29].

Figure 2.2: An example tree structure. Dark regions represent Qobs.

PRM set the foundation for many other algorithms [30, 31, 32, 33, 34, 35, 36, 37,

38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49]. Among these, a notable class is that

of tree-based planners. As the name suggests, tree-based planners grow a tree in the

state space of the robotic system (as shown in Figure 2.2). The initial tree consists

of the robot’s starting state. Newly sampled states are connected to some already

existing state in the tree. This category of motion planners is more appropriate

for planning under differential constraints as they only perform forward integration,

thus avoiding the need to solve the steering problem [28, 29]. There are various

10



ways to guide the tree expansion. Rapidly-exploring Random Trees (RRT) expand

towards randomly produced states [32, 33], Expansive Space Trees (EST) attempt

to detect less explored regions and expand towards them [34, 35]. A more recent

development is the idea of a Path-Directed Subdivision Tree (PDST) [44, 50, 51]. PDST

uses an adaptive subdivision of the state space and a deterministic priority scheme to

guarantee coverage, avoiding the use of a metric. Other recent work considers issues

like safety and exploration of unknown environments: the Greedy, Incremental, Path-

directed (GRIP) planner [48]. The Discrete Search Leading continuous eXploration

(DSLX) planner uses discrete paths in a discretization of the workspace to lead the

continuous tree exploration [49].

KPIECE tries to push the current limits of planning under differential constraints

by combining new ideas with ideas from previous work. More details about this follow

in Chapter 3.

2.2 Physics Simulation

Sampling-based motion planning algorithms typically need to evaluate the be-

haviour of the robotic system when certain controls are given as input. This infor-

mation can be obtained through the numerical integration of motion models of the

robotic system. However, as robotic systems become more complex, accounting for

additional constraints such as gravity and friction becomes a necessity. In this case,

physics simulation can replace integration of motion models.
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Figure 2.3: The operation of a physics simulator: one simulation step.

Figure 2.3 shows the operation of a typical physics simulator. As in the case of

numerical integration, time is discretized and the function describing the state of the

robotic system is evaluated at these discrete points in time only. In the case of physics

simulation, this discretization interval typically does not vary and is referred to as the

“simulation step”. When the system is in a particular state qt, applying the control

ut takes the system to state qt+1, within one simulation step.

One essential difference between integration of motion models and physics sim-

ulation is that simulation backward in time is not always possible. For example, if

an object is dropped from a certain height, forward simulation can correctly account

for gravity and compute that the object will fall and eventually hit the ground. At-

tempting to simulate backward in time once the object is at rest is not well defined:

an infinite number of possible previous states exist.

An additional difference is that at every step of the simulation, contacts between

objects need to be determined. This implies that collision checking needs to be per-

formed. When integrating motion models, performing collision checking is not always

a necessity (e.g., only the final state of a motion is needed), which makes physical
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simulation significantly more computationally expensive. Although simulation incurs

more computational costs than simple integration, the benefits outweigh the costs: in-

creased accuracy is available since physics simulators take into account more dynamic

properties of the robot and constructing models of systems is easier and less error

prone than deriving equations of motion. Nevertheless, limited numerical precision

will remain a problem for both approaches.

This work uses physics simulation as a black box only and does not attempt to

improve on simulation algorithms. Currently, many options exist when it comes to

physics simulation libraries, both commercial and free. Among the better known ones

are PhysX, ODE, Vortex, bullet, etc. More details on these libraries can be found in

[52]. For the purposes of this work, the Open Dynamics Engine (ODE) [18] library was

used. This library was chosen because it is open source and it has previously been

used in the context of sampling-based motion planning [5, 50, 53].
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Chapter 3

Algorithm

A high-level description of the algorithm is provided before the details are pre-

sented. KPIECE iteratively constructs a tree of motions in the state space Q of the

robot. Each motion µ = (s, u, t) is identified by a state s ∈ Q, a control u ∈ U and

a duration t ∈ R≥0. The control u is applied for duration t from s to produce a

motion. It is possible to split a motion µ = (s, u, t) into µ1 = (s, u, ta) followed by

µ2 = (
∫ t0+ta

t0
f(s(τ), u)dτ, u, tb), where s(τ) identifies the state at time τ and ta+tb = t.

In this exploration process, it is important to cover as much of the state space as pos-

sible, as quickly as possible. For this to be achieved, estimates of the coverage of Q are

needed. To this end, the discretization described in Section 3.1 is employed. When

a less covered area of the state space is discovered, the tree of motions is extended

in that area. This process is iteratively executed until a stopping condition such as

time limit exceeded or goal reached is satisfied.

14



3.1 Discretization

During the course of its run, the motion planner must decide which areas of the

state space merit further exploration. As the size of the tree of motions increases,

making this decision becomes more complex. There are various strategies to tackle

this problem (e.g., [33, 35, 37, 49, 51]). The approach taken in this work is to construct

a discretization that allows the evaluation of the coverage of the state space. This

discretization consists of k levels L1, ...,Lk, as shown in Figure 3.1 and Figure 3.2.

Each of these levels is a grid where cells are polytopes of fixed size. The number of

levels and cell sizes are predefined, however, cells are instantiated only when they are

needed. The purpose of these grids is to cover the area of the space that corresponds

to the area spanned by the tree of motions. Each of the levels provides a different

resolution for evaluating the coverage. Coarser resolution (higher levels) can be used

initially to find out roughly which area is less explored. Within this area, finer

resolutions (lower levels) can then be employed to more accurately detect less explored

areas. The following is a formal definition of a k-level discretization:

• for i ∈ {1, ..., k} : Li = {pi|pi is a cell in the grid at level i}

• for i ∈ {2, ..., k} : ∀p ∈ Li,Dp = {q ∈ Li−1|q ⊂ p}, such that

– ∀p ∈ Li,Dp 6= ∅

–
⋃

p∈Li
Dp = Li−1

– ∀p, q ∈ Li, p 6= q → Dp ∩ Dq = ∅
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The tree of motions exists in the state space Q, but since the dimension of this

space may be too large, the discretization is typically imposed on a projection of the

state space, E(Q). It is assumed that if the projected space E(S) (with S ⊆ Q) is

well covered, S is well covered. The use of such a projection E(Q) was also discussed

in [49, 50]. Finding projections E that are appropriate for approximating coverage is

a research problem in itself. In this work it is assumed that such projections E are

available, when needed. Section 4.1 presents simple cases of E used in this work. An

important result shown in this thesis is that such simple projections work for complex

problems.

For any motion µ, each level of discretization contains a cell that µ is part of. A

motion µ is considered to be part of a grid cell p if there exists a state s along µ

such that the projection E(s) is inside the bounding box of cell p. If a motion spans

more than one cell at the same level of discretization, it is split into smaller motions

such that no motions cross cell boundaries. This invariant is maintained to make sure

each motion is accounted for only once. For every motion µ, there will be exactly one

cell at every level of discretization that µ is part of. This set of cells forms a tuple

c = (p1, ..., pk), pi ⊂ pi+1, pi ∈ Li and will be referred to as the “cell chain” for µ.

Since cells in L1 will determine whether a motion is split, we augment the definition

of the discretization:

• ∀p ∈ L1,Mp = {mi|mi is a motion contained in p}

For all p ∈ L1 we say p containsMp and for all p ∈ Li, i > 1 we say p contains Dp.

While the discretization spans the potentially very large projection space E(Q), cells
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are instantiated only when a motion that is part of them is found, hence the grids

are not fully instantiated. This allows the motion planner to limit its use of memory

to reasonable amounts. The size of the grid cells is discussed in Section 3.4.

Figure 3.1: One level of discretization. Interior cells are differentiated from exterior cells.

A distinguishing feature of KPIECE is the notion of interior and exterior cells. A cell

is considered exterior if it has less than 2n instantiated neighboring cells (diagonal

neighboring cells are ignored) at the same level of discretization, where n is the

dimension of E(Q). Cells with 2n neighboring cells are considered interior (there can

be no more than 2n non-diagonal neighboring cells in an n-dimensional space). As

the algorithm progresses and new cells are created, some exterior cells will become

interior (see Figure 3.1). When larger parts of the state space are explored, most

17



Figure 3.2: An example discretization with three levels. The line intersecting the three
levels defines a cell chain. Cell sizes at lower levels of discretization are integer multiples of
the cell sizes at the level above.

cells will be interior. However, for very high dimensional spaces, to avoid having only

exterior cells, the definition of interior cells can be relaxed and cells can be considered

interior before all 2n neighboring cells are instantiated. For the purposes of this work,

this relaxation was not necessary.

With these notions in place, a measure of coverage of the state space can be

defined. For a cell p ∈ L1, the coverage is simply the sum of the durations of the

motions inMp. For higher levels of discretization, the coverage of a cell p ∈ Li, i > 1

is the number of instantiated cells in Dp.
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3.2 Algorithm Execution

A run of the KPIECE algorithm proceeds as described in Algorithm 1. The tree of

motions is initialized to a motion defined by the initial state qstart, a null control and

duration 0 [line 1]. Adding this motion to the discretization will create exactly one

exterior cell for every level of discretization [lines 2,3].

At every iteration, a cell chain c = (p1, ..., pk) is sampled. This means pi ∈ Li will

have to be selected, from pk to p1, as will be shown later. It is important to note here

that “samples” in the case of KPIECE are chains of cells. This can be regarded as a

natural progression (selection of “volumes”) from the selection of states (“points”) as

in the case of RRT and EST, and selection of motions (“curves”) as in the case of PDST.

Experiments show that selecting chains of cells benefits from the better estimates of

coverage that can be maintained for cells at each level, as opposed to estimates for

single motions or states. Sampling a cell chain c = (p1, ..., pk) is a k-step process that

proceeds as follows: the decision to expand from an interior or exterior cell is made

[line 5], with a bias towards exterior cells. An instantiated cell, either interior or

exterior, is then deterministically selected from Lk, according to the cell importance

(higher importance first). The idea of deterministic selection was inspired by [51],

where it has been successfully used. The importance of a cell p, regardless of the level

of discretization it is part of, is computed as:

Importance(p) =
log(I) · score
S · N · C

where I stands for the number of the iteration at which p was created, score is
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initialized to 1 but may later be updated to reflect the exploration progress achieved

when expanding from p, S is the number of times p was selected for expansion (ini-

tialized to 1), N is the number of instantiated neighboring cells at the same level of

discretization, and C is a positive measure of coverage for p, as described at the end

of Section 3.1.

Once a cell p is selected, if p /∈ L1, further levels of discretization can be used to

better identify the more important areas within p. The selection process continues

recursively: an instantiated cell from Dp is subsequently selected using the method

described above until the last level of discretization is reached and the sampling of

the cell chain is complete. At the last level, a motion µ fromMp is picked according

to a half-normal distribution [line 6]. The half-normal distribution is used because

order is preserved when adding motions to a cell and motions added more recently

are preferred for expansion. A state s along µ is then chosen uniformly at random

[line 7]. Expanding the tree of motions continues from s [line 9].

The controls applied from s are selected uniformly at random from U [line 8].

The random selection of controls is what is typically done if other means of control

selection are not available. This choice is not part of the proposed algorithm, and

can be replaced by other methods, if available.

If the tree expansion was successful, the newly obtained motion is added to the

tree of motions and the discretization is updated [lines 11,13]. An estimate of the

achieved progress is then computed. For every level of discretization j, the coverage

of some cells may have increased:
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∆Cj = Σp∈Lj
∆p, where ∆p = increase in coverage of p

Pj = α + β · (ratio of ∆Cj to time spent computing simulations).

Pj is considered the progress at level j [line 16]. The values α and β are implemen-

tation specific and should be chosen such that Pj > 0, and Pj ≥ 1 implies good

progress. The offset α needs to be strictly positive since the increase in coverage can

be 0 (e.g., in case of an immediate collision). The value of Pj is also used as a penalty

if not enough progress has been made (Pj < 1): the cell at level j in the selected

cell chain has its score multiplied by Pj [line 17]. If good progress has been made

(Pj ≥ 1), the value of Pj is ignored, since we do not want to over-commit to specific

areas of the space.

3.3 Implementation Details

To aid in the implementation of the KPIECE algorithm, an efficient grid data-

structure (Grid) is defined. Grid maintains the list of cells it contains, grouped into

interior and exterior, sorted according to their importance. To maintain the lists of

interior and exterior cells sorted, binary heaps are used. For every cell p, Grid also

maintains some additional data: another Grid instance (stands for Dp), for all but

the lowest level of discretization, and for the lowest level of discretization, an array of

motions (stands for Mp). Algorithm 2 shows the steps for adding motions to Grid.
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Algorithm 1 KPIECE(qstart, Niterations)

1: Let µ0 be the motion of duration 0 containing solely qstart

2: Create an empty Grid data-structure G
3: G.AddMotion(µ0)
4: for i← 1...Niterations do
5: Select a cell chain c from G, with a bias on exterior cells (70% - 80%)
6: Select µ from c according to a half normal distribution
7: Select s along µ
8: Sample random control u ∈ U and simulation time t ∈ R+

9: Check if any motion (s, u, t◦), t◦ ∈ (0, t] is valid (forward propagation)
10: if a motion is found then
11: Construct the valid motion µ◦ = (s, u, t◦) with t◦ maximal
12: If µ◦ reaches the goal region, return path to µ◦
13: G.AddMotion(µ◦)
14: end if
15: for every level Lj do
16: Pj = α + β · (ratio of increase in coverage of Lj to simulated time)
17: Multiply the score of cell pj in c by Pj if and only if Pj < 1
18: end for
19: end for

Algorithm 2 AddMotion(s, u, t)

20: Split (s, u, t) into motions µ1, ..., µk such that µi, i ∈ {1, ..., k} does not cross the
boundary of any cell at the lowest level of discretization

21: for µ◦ ∈ {µ1, ..., µk} do
22: Find the cell chain corresponding to µ◦
23: Instantiate cells in the chain, if needed
24: Add µ◦ to the cell at the lowest level in the chain
25: Update coverage measures and lists of interior and exterior cells, if needed
26: end for
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KPIECE is implemented as a set of components that interact with Grid. The main

component of KPIECE, the tree expansion, was presented in Section 3.2. Goal biasing

is implemented as another component and is described in Section 3.5.

3.4 Computing the Discretization

An important issue not discussed so far is the selection of number of levels in

the discretization and the grid cell sizes. This section presents a method to compute

these cell sizes if the discretization is assumed to consist of only L1 (a one-level

discretization).

While KPIECE is running, we can keep track of averages of how many motions

per cell there are, how many parts a motion is split into before it is added to the

discretization, and the ratio of interior to exterior cells. While we do not know how

to compute optimal values for these statistics (if they exist), there are certain ranges

that may work better than others. In particular, it was observed that for good runtime

performance the following should hold:

• Less than 10% of the motions cover more than 2 cells in one simulation time-

step. This value should be in general less than 1% as the event occurs only

when the velocity of the robotic system is very high.

• At least 50% of the motions need to be 3 simulation time-steps or longer.

• The average number of parts in which a motion is split should be larger than 1

but not higher than 4.
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• As the algorithm progresses, at least some interior cells need to be created.

• The average number of samples per cell should be in the range of tens to hun-

dreds.

Based on collected statistics and these observations, it can be automatically de-

cided whether the cell sizes used for L1 are good, too large or too small. This infor-

mation is reported for each dimension of the space. If the used cell size is too small

or too large in some dimension, the size in that dimension is increased or decreased,

respectively, by a factor larger than 1 and the algorithm is restarted. This process

usually converges in 2 or 3 iterations.

These statistics do not offer any information about higher levels of discretization,

nor do they provide information about how many levels of discretization should be

used. The presented constants are implementation specific, but they seem not to vary

across the examined robotics systems.

3.5 Goal Biasing

Goal biasing is a standard technique used by motion planners to reduce their

runtime. The basic idea is that if the planner knows where the goal is, it can greedily

attempt to reach it [32]. This section presents how goal biasing can be used by KPIECE.

If a heuristic h : Q→ R+ for estimating the distance to the goal is available, the

information provided by that heuristic can be used in computing the cell importance:

cells closer to the goal get higher score and are thus selected for expansion more
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often. In particular, when a cell is instantiated, its score is set to h(s) where s is the

last state of the motion m that required the creation of the cell (we say h∗(m) = h(s)).

While this technique usually contributes to reducing the runtime of the algorithm, it

may become a problem and slow down the algorithm when obstacles block the way and

higher score is given to cells that cannot be crossed. In such cases, learning becomes

an essential component since the higher score that was assigned by the heuristic is

decreased as progress stagnates.

In addition to influencing the score of cells, the biasing component also maintains

a set of so-called good motions, B. For every motion m, h∗(m) is computed; B is a

limited-size set (at most 30) of motions with the largest values of h∗(m). With a low

probability (usually 5%), tree expansion is continued from a motion in B, rather than

from a motion selected based on the coverage estimates. An additional constraint

imposed on the motions in B is that they have to be in different cells at the lowest

level discretization. This constraint prevents having all motions in B be almost the

same.
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Chapter 4

Experiments

The presented algorithm was benchmarked against well-known efficient algorithms

(RRT, EST, PDST) with three different robotic systems, in different environments. For

modeling the robots, the ODE [18] physics-based simulator was used. For the imple-

mentations of RRT [33] and EST [34], the OOPSMP framework was used [54]. A plugin

for linking OOPSMP with the ODE simulator was developed. Every effort was made to

tune the parameters of both RRT and EST. For RRT, a number of different metrics were

tested for each robot and experiments are presented with the metric that performed

best. In addition, random controls were selected instead of attempting to find con-

trols that take the robotic system toward a desired state, as this strategy seemed to

provide better results. For EST, the nodes to expand from were selected both based

on their degree [35] and based on a grid subdivision of the state space [37]. Exper-

iments are shown for the selection strategy that performed best. PDST and KPIECE

were implemented by the author. A projection was defined for each robot and the
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same projection was used for both PDST and KPIECE. In addition to the projection,

KPIECE needs a discretization to be defined for each robot. When comparing with

other algorithms, only discretizations computed as shown in Section 3.4 were used.

Separate experiments are shown when using empirically chosen discretizations with

multiple levels. Explanations on how these multiple levels were chosen are given later

in this section. No goal biasing was used for any of the algorithms, unless otherwise

specified. Experiments for RRT with biasing are shown as RRTb and experiments for

KPIECE with biasing are marked as KPIECEb. All implementations are in C++ and

were tested on the Rice Cray XD1 Cluster, where each machine runs at 2.2 Ghz and

has 8 GB RAM. For each system and each of its environments, each algorithm was

executed 50 times. The best two and worst two results in terms of runtime were

discarded and the results of the remaining 46 runs were averaged. The time limit was

set to one hour and the memory limit was set to 2 GB. If an execution exceeded the

time or memory limit, its execution time was considered equal to the time limit, for

the purpose of computing average runtimes.

4.1 Robot Models

Three different robots were used in benchmarking the planner, to show its gen-

erality: a modular robot, a car, and a blimp. These robots have been chosen to be

different in terms of the difficulties they pose to a motion planner. Details on what

these difficulties are follow in the next paragraphs. ODE version 0.9 was used to model

the robots. The used simulation step size was 0.05s.

27



4.1.1 Modular Robot

The model for this robot was created in collaboration with Mark Yim1, and char-

acterizes the CKBot modules [55] used by the GRASP Laboratory of Robotics Research

and Education2. Using these modules, different robots can be constructed. Each CK-

Bot module contains one motor. An ODE model for serially linked CKBot modules

has been created [5]. The task is to compute the controls for lifting the robot from

a vertical down position to a vertical up position for varying number of modules, as

shown in Figure 4.1. Each module adds one degree of freedom. The controls repre-

sent torques that are applied by the motors inside the modules. The difficulty of the

problem lies in the high dimensionality of the control and state spaces as the number

of modules increases, and in the fact that at maximum torque, the motors in the

modules are only able to statically lift approximately 5 modules. Consequently, the

planner has to find swinging motions to solve the problem. The employed projection

E was a 3-dimensional one, the first two dimensions being the (x, z) coordinates of

the last module (x, z is the plane observed in Figure 4.1) and the third dimension,

the square root of the sum of squares of the rotational velocities of all the modules.

The environments the system was tested in are shown in Figure 4.1.

1Mark Yim is with the Department of Mechanical Engineering and Applied Mechanics, University
of Pennsylvania yim@grasp.upenn.edu

2http://www.grasp.upenn.edu/
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Figure 4.1: Left: start and goal configurations. Right: environments used for the chain
robot (7 modules). Experiments were conducted for 2 to 10 modules. In the case without
obstacles, the environments are named chain1-x where x stands for the number of modules
used in the chain. In the case with obstacles, the environments are named chain2-x.

4.1.2 Car Robot

A model of a car [2] was created. The model is fairly simple and consists of five

parts: the car body and four wheels. Since ODE does not allow for direct control

of accelerations, desired velocities are given as controls for the forward velocity and

steering velocity (as recommended by the developers of the library). These desired

velocities go together with a maximum allowed force. The end result is that the car

will not be able to achieve the desired velocities instantly, due to the limited force.

In effect, this makes the system a second order one. The employed projection E was

the (x, y) coordinates of the center of the car body. The environments the system

was tested in are shown in Figure 4.2.
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Figure 4.2: Environments used for the car robot (car-1, car-2, car-3). Start and goal
configurations are marked by “S” and “G”.

4.1.3 Blimp Robot

The third robot that was tested was a blimp robot [51]. The motion in this case

is executed in a 3D environment. This robot is particularly constrained in its motion:

the blimp must always apply a positive force to move forward (slowing down is caused

by friction), it must always apply an upward force to lift itself vertically (descending is

caused by gravity) and it can turn left or right along the direction of forward motion.

Since ODE does not include air friction, a Stokes model of drag was implemented for

the blimp. The employed projection E was the (x, y, z) coordinates of the center of

the blimp. The environments the system was tested in are shown in Figure 4.3.

4.2 Experimental Results

In terms of runtime, when compared to other algorithms such as RRT, EST, and

PDST, Table 4.1 shows significant computational gains for KPIECE (Figure 4.4 and

Figure 4.5 show the data in Table 4.1 as well, in a different format). In particular, as
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Figure 4.3: Environments used for the blimp robot (blimp-1, blimp-2, blimp-3). Start
configurations are marked by “S”. The blimp has to pass between the walls and through
the hole(s), respectively.
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Figure 4.4: Runtimes of different algorithms on the car and blimp models. The achieved
speedup is shown in Table 4.1.
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Figure 4.5: Runtimes of different algorithms on the modular robot model with no obsta-
cles, using varying number of modules. The achieved speedup is shown in Table 4.1.

the dimensionality of the problem increases, KPIECE does better and speedups up to

two orders of magnitude are observed. For simple problems however, other algorithms

can be faster (e.g., RRT for chain1-3). Using biasing for RRT (column marked by RRTb)

does not help very much for the presented environments. In fact, biasing slows down

RRT most of the time since there are obstacles blocking direct paths to the goal.

Adding biasing for KPIECE does however often improve the runtime, as shown in

Table 4.2. The fact that learning is also present limits the negative effects biasing
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Figure 4.6: Number of simulation steps for different algorithms on the car and blimp
models. Notice the similarity to Figure 4.4. This similarity serves to prove that the runtime
of sampling-based planning algorithms is dominated by physics simulation, so minimizing
the number of simulation steps leads to speedup.

has in certain cases.

The presented speedup values are consistent with the time spent performing sim-

ulations, as shown in Figure 4.6, which serves to prove that the computational im-

provements are obtained by minimizing the usage of the physics-based simulator.

Since physics simulation takes up around 90% of the execution time, computational

gain will be observed in the case of purely geometric planning as well, where simula-
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Table 4.1: Speedup achieved by KPIECE over other algorithms for four different problems.
If one of the other algorithms was unable to solve the problem in at least 10% of the
cases, “—” is reported. KPIECE was configured with an automatically computed one-level
discretization, as described in Section 3.4.

Problem RRT RRTb EST PDST

chain1-2 1.1 3.5 2.2 2.5
chain1-3 0.8 2.1 1.0 3.6
chain1-4 1.5 3.9 1.8 9.6
chain1-5 4.1 3.7 14.4 15.6
chain1-6 13.4 9.6 946.8 42.5
chain1-7 58.5 196.3 — 238.1
chain1-8 — — — —

Problem RRT RRTb EST PDST

chain2-5 18.3 23.4 — 13.0
chain2-6 35.0 255.7 — 23.0
chain2-7 45.7 124.7 — 81.3
chain2-8 — — — 5.9
chain2-9 — — — —

Problem RRT RRTb EST PDST

car-1 3.2 3.1 27.7 7.9
car-2 5.0 3.5 16.1 9.7
car-3 8.7 14.8 15.5 13.1

blimp-1 1.6 2.2 3.1 3.3
blimp-2 6.4 7.2 8.7 9.4
blimp-3 4.5 7.3 5.7 7.5

tion is replaced by collision detection. With less time spent performing simulations,

there are fewer samples to store in the built tree. This leads to savings in memory

consumption, as indicated in Figure 4.7.

Table 4.2: Speedup achieved by KPIECEb relative to KPIECE, both using the automatically
computed one-level discretization.

chain1-2: 1.1 chain1-7: 0.9 chain2-5: 0.9 car-1: 1.3 blimp-1: 1.5
chain1-3: 1.0 chain1-8: 1.0 chain2-6: 0.9 car-2: 1.1 blimp-2: 1.2
chain1-4: 0.8 chain1-9: 3.9 chain2-7: 0.9 car-3: 1.3 blimp-3: 0.8
chain1-5: 1.1 chain2-8: 1.5
chain1-6: 0.9 chain2-9: 1.0

While the results shown in Table 4.1 are computed with a one-level discretiza-
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Figure 4.7: Memory usage for different algorithms on the car and blimp models. Notice
the similarity to Figure 4.6. Since for every simulation step a new state is produced and
the number of motions in the built tree is directly proportional to the number of states, the
fewer simulation steps there are, the fewer motions will need to be stored in memory.

Table 4.3: Speedup achieved by KPIECE when using a two-level discretization relative
to the automatically computed one-level discretization. For chain1-10 and chain2-10, a
solution was found only with the two-level discretization so no speedup is reported.

chain1-2: 1.0 chain1-7: 1.9 chain2-5: 0.8 car-1: 1.3 blimp-1: 2.1
chain1-3: 1.1 chain1-8: 1.9 chain2-6: 0.9 car-2: 1.0 blimp-2: 1.4
chain1-4: 0.7 chain1-9: 5.0 chain2-7: 1.5 car-3: 0.9 blimp-3: 1.4
chain1-5: 0.8 chain2-8: 0.7
chain1-6: 2.2 chain2-9: 1.2
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Figure 4.8: Logarithmic runtimes with twelve different discretizations for the chain1,
chain2, car, and blimp.

tion, for some problems, better results can be obtained using multiple levels of dis-

cretization. To show this, for each robot, twelve discretizations are defined. First, a

one-level discretization (consists only of L1) is computed as discussed in Section 3.4.

Two more one-level discretizations with half and double the cell volume of the com-

puted discretization’s cells are then constructed (cell sides shortened and lengthened

proportionally, in each dimension). For each of these three one-level discretizations,

three more two-level discretizations (consist of L1, L2) are defined: ones that have

the same L1, but L2 consists of cells with sizes of 10, 15, and 20 times the cell sizes
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of L1. Table 4.3 shows the speedup obtained when employing the best of the nine

defined two-level discretizations. As we can see, in most cases there are benefits to

using two discretization levels. Experiments with more than two levels of discretiza-

tion were conducted as well, but the performance started to decrease and the results

are not presented here. The defined discretizations can also be used to evaluate the

sensitivity of KPIECE to the defined grid sizes. As shown in Figure 4.8, the runtimes

of the algorithm for the different discretizations are relatively close to one another

(within a factor of 2.3). This implies that the algorithm is not overly sensitive to the

defined discretization and thus approximating good cell sizes is sufficient. Neverthe-

less, finding a good number of levels of discretization and good cell sizes remains an

open problem.

4.3 Discussion on Algorithm Components

In the previous section we have shown the computational benefits of using KPIECE

over other algorithms. There are a few key details that make KPIECE distinct: the

sampling of a chain of cells, the grouping of cells into interior and exterior, and the

progress evaluation, based on increase in coverage. While the sampling of cell chains

is an inherent part of the algorithm, the other two features can be easily disabled.

This allows us to evaluate the contribution of these components individually.

Figure 4.9 shows that both progress evaluation and cell distinction contribute

to reducing the runtime of KPIECE. While these components do not seem to help

for easier problems (blimp-1), their contribution is important for harder problems
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Figure 4.9: Logarithmic runtime for KPIECE with various components disabled, on 2-
dimensional and 3-dimensional projections (car and blimp) with the automatically com-
puted one-level discretization. A = no components disabled, B = no cell distinction, C = no
progress evaluation, D = no cell distinction and no progress evaluation.

(car-3, blimp-3). In particular, the cell distinction seems to be the more important

component as the problems get harder. This is to be expected, since the distinction

allows the algorithm to focus exploration on the boundary of the explored space,

while ignoring the larger, already explored interior volume.

4.4 Parallel Implementation

The presented algorithm was also implemented in a shared memory parallel frame-

work. While previous work has shown significant improvements with embarrassingly

parallel setups [56, 57], this work attempts to take the emerging multi-core tech-

nology into account and use it as an advantage. Instead of running the algorithm

multiple times and stopping when one of the active instances found a solution as in

[56, 57], KPIECE uses multiple threads to build the same tree of motions (threads
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can continue expanding from cells instantiated by other threads). Synchronization

points are used to ensure correct order of execution. This execution format will be-

come more important in the next few years as the number of computing cores and

memory bandwidth increase. Since each computing thread starts from a different

random seed, the chances of all seeds being unfavourable decrease. If a single thread

finds a path through a narrow passage, the rest of the threads will immediately use

this information as well. This setup also seems to reduce the variance in the average

runtime of the algorithm. It is important to note this proposed parallelization scheme

can be applied to other sampling-based algorithms as well.

Table 4.4: Speedup achieved by KPIECE with multiple threads for 2-dimensional and 3-
dimensional projections (car and blimp). KPIECE was configured with an automatically
computed one-level discretization, as described in Section 3.4.

Threads car-1 car-2 car-3 blimp-1 blimp-2 blimp-3
2 1.7 2.0 2.6 2.3 1.9 1.4
3 2.8 2.7 3.0 2.9 3.0 2.2
4 3.9 3.6 4.4 3.5 3.2 3.1

Table 4.5: Speedup achieved by KPIECE in embarrassingly parallel mode.
Threads car-1 car-2 car-3 blimp-1 blimp-2 blimp-3

2 1.3 1.5 1.6 1.5 1.6 1.3
3 1.5 1.8 1.8 1.8 1.9 1.4
4 1.7 2.1 2.0 2.2 3.0 1.5

All experiments presented in previous chapters were conducted when using the

planner in single-threaded mode. Table 4.4 shows the speedup achieved by the mo-

tion planner when using one to four threads on a four-core machine. The achieved

speedup is super-linear in some cases, a known characteristic of sampling-based mo-
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tion planners. When comparing to the speedup obtained with an embarrassingly

parallel setup, shown in Table 4.5, we notice that lower runtimes are obtained with

the shared memory setup. In addition, total memory requirements in the suggested

setup do not increase significantly as the number of processors is increased.
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Figure 4.10: Runtime with different number of threads on a four-core machine, for 2-
dimensional and 3-dimensional projections (car and blimp).

Due to the fact that using multiple random seeds increases the chances of the

motion planner benefiting from at least one favourable seed, using more threads than

available processing units may reduce runtime as well. To evaluate this possibility,

we run KPIECE with up to 10 threads on a four-core machine (shown in Figure 4.10).

Once we use more threads than number of cores, speedup decreases drastically, but

does not come to a complete halt. Based on the conducted experiments, it seems to

be the case that using a number of threads up to double the number of cores provides

small benefits.
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Chapter 5

Conclusions and Future Work

We have presented KPIECE, a sampling-based motion planning algorithm designed

for high dimensional systems with complex dynamics, where physics-based simulation

is needed. The algorithm is general, provides significant computational improvements

and has a reduced memory footprint, when compared to previous work. All these

features are essential for extending the range of solvable motion planning problems.

KPIECE does not need a distance metric or a way to sample states. It does however

require a projection of the state space and the specification of a discretization. At

this point it is recommended that the projection is defined by the user. As shown

in the experiments, even simple intuitive projections work for complex problems.

Initial experiments were conducted using Principal Component Analysis (PCA) to

automatically extract projections that can be used for estimating the coverage instead

of using the complete state space. The results are promising and it is likely this step

of the problem can be made automatic. However, this is beyond the scope of this
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thesis and is left for future work.

The discretization is an additional requirement when compared to other state-of-

the-art algorithms. The algorithm’s performance is not drastically affected by the

discretization and a method to automatically compute one-level discretizations was

presented. When using an automatically computed one-level discretization, KPIECE

was compared to other popular algorithms, and shown to provide significant compu-

tational speedup. In addition, the provided shared memory parallel implementation

seems to give better results than the embarrassingly parallel setup.

KPIECE is the result of a combination of ideas. Some of these ideas are new, some

are inspired by previous work. In previous work, we have encountered state [32, 35]

and motion sampling [51]; KPIECE takes this further and uses cell chain sampling.

We have also seen progress evaluation [49], deterministic sample selection [51], use

of physics-based simulation [50], and use of additional data-structures for estimation

of coverage [37, 49, 51]. KPIECE implements variants of these ideas, combined with

new ideas like distinction between interior and exterior cells, to obtain an algorithm

that works well in a parallel framework. The result is a more accurate and efficient

method that can solve problems previous methods could not.

It is conjectured that KPIECE is probabilistically complete: in a bounded state

space, the number of cells is finite. Since with every selection, the importance of a cell

can only decrease, every cell will be selected infinitely many times during the course of

an infinite run. Every motion in a cell has positive probability of being selected, which

makes the number of selections of each motion in the tree of motions be infinite as well.

By the completeness of PDST [50], KPIECE is likely to be probabilistically complete.
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A formal proof is left for future work.

Further work is needed for better automatic computation of the employed dis-

cretization. Automatic computation of the used state space projection would be

beneficial as well, not only for KPIECE, but for other algorithms that require such a

projection. Furthermore, it would be interesting to push the limits of this method to

harder problems.
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