
Kinodynamic Motion Planning with Hardware Demonstrations

Ioan A. Şucan Jonathan F. Kruse Mark Yim Lydia E. Kavraki

Abstract— This paper provides proof-of-concept that state-
of-the-art sampling-based motion planners that are tightly
integrated with a physics-based simulator can compute paths
that can be executed by a physical robotic system. Such a
goal has been the subject of intensive research during the
last few years and reflects the desire of the motion planning
community to produce paths that are directly relevant to
realistic mechanical systems and do not need a huge post-
processing step in order to be executed on a robotic platform.
To evaluate this approach, a recently developed motion planner
is used to compute paths for a modular robot constructed from
seven modules. These paths are then executed on hardware
and compared with the paths predicted by the planner. For
the system considered, the planner prediction and the paths
achieved by the physical robot match, up to small errors. This
work reveals the potential of modern motion planning research
and its implications in the design and operation of complex
robotic platforms.

I. INTRODUCTION

During the last two decades, motion planning [1], [2]
has grown from a field that considered basic geometric
problems, such as the piano movers’ problem [3], to a field
that tackles planning for complex robots with kinematic and
dynamic constraints and has implications to areas such as
computational biology and computer graphics [4]. Much of
the recent progress in motion planning is attributed to the
development of sampling-based algorithms [1], [2], [5], [6],
[7]. With the development of this class of methods, it is
possible to produce motions that take into account high order
dynamic constraints of the robot [8], friction and gravity [9],
dynamically changing environments [10] and others. Despite
recent successes, it is typically assumed that the motions
produced by a planner will undergo a post-processing step,
which might alter and tune them significantly, before these
are applied to a physical robot.

Only very recent efforts have tried to bridge this gap in
the general case [9] by developing powerful planners that are
tightly coupled with physical simulators. The latter are used
to encode a realistic model of the robot and its potentially
complex physical behavior. This paper provides strong evi-
dence that the above approach is a very promising one by
demonstrating how the motion plans produced by a variant
of the Path-Directed Subdivision Tree Planner (PDST) [11],

This work was supported in part by NSF IIS 0713623 and Rice
University funds. The computational experiments were run on equipment
obtained by NSF CNS 0454333 and NSF CNS 0421109 in partnership
with Rice University, AMD and Cray. I.A. Şucan and L.E. Kavraki are
with the Department of Computer Science, Rice University {isucan,
kavraki}@rice.edu

J. Kruse and M. Yim are with the Department of Mechanical Engineer-
ing and Applied Mechanics, University of Pennsylvania {jonathaf,
yim}@seas.upenn.edu,@grasp.upenn.edu

[9] are applied to a modular robot composed of CKBot
modules [12]. Modular robots are composed of multiple
small modules (Fig. 2) that can change their connectivity
depending on the application. In many cases, the modules are
all identical and can be connected in a very large number of
topologies, typically exponential in the number of modules
[13]. Producing general motion for robots with many degrees
of freedom and arbitrary topologies such as these is a
challenging problem. This paper discusses motion planning
for specific topologies and does not consider reconfiguration.

A model of the robot is built using a physics-based sim-
ulator that incorporates the dynamics (inertial components)
of the robot. It is shown that the motion produced by the
planner described in this work can serve as input to drive
the actual robot from an initial to a final state such that the
motion executed by the physical robot closely matches the
motion produced by the planner. Although preliminary, the
results indicate the presented approach is viable for planning
motions for real modular robots.

1) Earlier Work - Motion Planning: Sampling-based mo-
tion planning became popular with the development of Prob-
abilistic Road-Maps (PRM) [14]. While the basic principles
of these methods are simple, many new problems could
be solved. For this kind of methods, samples are usually
random states of the robot. Other sampling-based motion
planning methods were quickly developed to handle more
and more complex problems [15], [16], [17], [18], [19], [20],
[21]. For sampling-based motion planners, computational
improvements come at the cost of completeness. A sampling-
based motion planing algorithm can only be probabilistically
complete [22], which means it will eventually find a solution
if one exists.

The PDST planner, used in this paper, falls under the
broader category of sampling-based planners. PDST has been
shown to solve kinodynamic problems that are difficult to
tackle [11] with popular planners such as Rapidly-exploring
Random Trees (RRT) [16], [18] or Expansive Space Trees
(EST) [15], [19] by a combination of sampling path segments
and keeping a subdivision of the search space to guide the
exploration. PDST is probabilistically complete and has been
designed to be tightly coupled with a physics-based simulator
so as to take realistic models of robots into account [9].

2) Earlier Work - Planning for Modular Robots: While
there exists significant work for generating sequences of open
loop gaits [23], reconfiguration planning without considering
dynamic constraints [24], [25], [26], [27], quasi-static motion
planners [28], hand-tuned closed-loop dynamic gaits [12]
and control theoretic approaches [29], an algorithm for auto-
matically solving the motion planning problem for modular



robots with dynamics is not available. The work in this paper
does not try to optimize a particular path or solve a single
problem. Instead, it tries to develop a general algorithm that
may not give optimal solutions, but can be used as a black
box to produce paths that can be executed by a real system.

3) Contribution: In this work, a step is taken towards the
application of a sampling-based motion planner coupled with
a physics-based simulator for computing the dynamic motion
of a modular robot among obstacles. To the authors’ knowl-
edge, this has not been done before. The basic approach
is to simulate the robot in a virtual world using a physics-
based simulator and compute a continuous path satisfying a
set of requirements (such as collision avoidance and robot
dynamics) using a sampling-based algorithm. The physics-
based simulator used is Open Dynamics Engine (ODE) [30].
The sampling-based algorithm is an improved version of
PDST. This algorithm is applied on test problems and the
solution path is executed on physical hardware (Section III-
.1). Two such test problems are analyzed in this paper. The
path the robot actually performs is compared to the path
projected by the planner. The end result is that with the
described method, the real robot is able to closely follow the
projected path. This paper discusses relevant decisions that
had to be made in order to obtain this result. Despite the fact
that certain aspects of the hardware were not modeled, the
average difference at the joint angles between the executed
and the projected path is only a few degrees.

This paper does not deal with all the issues that apply
to modular robots. While the presented approach will be
extended in the future for use with self-reconfiguration, (i.e.,
the connectivity and topology changes in the middle of a
plan) only a single topology of the robot (that does not
reconfigure) is used in the described applications.

The organization of the paper is as follows. Section II
presents the algorithm used in this work. A particular ap-
plication and experimental validation follows in Section III.
Future work and conclusions are presented in Section IV.

II. MOTION PLANNING APPROACH

For the type of problems addressed in this work, a kinody-
namic motion planner is needed. The most popular sampling-
based planners for kinodynamic problems generate a tree of
collision free motions that obey the dynamic constraints of
the robot. There are various ways to guide the tree expansion.
RRT expands towards randomly produced states [18], EST
attempts to detect less explored regions and expand towards
them [19].

As it will be shown later, for the examples in this paper,
better results than those of RRT/EST can be achieved with
a recent sampling-based motion planner: PDST [9], [11].
The basic principles of PDST are that it generates a tree of
motions where samples are path segments instead of states
and the coverage of the space is guaranteed through the use
of a space subdivision scheme. The space to be subdivided
is application specific and usually equal to the state space
itself or a projection of the state space.

Algorithm 1 PDSTgb(qstart, Niterations)
1: Let p0 be the path of duration 0 containing qstart.
2: p0.priority ← 0.
3: Initialize priority queue P with p0.
4: Initialize the subdivision with {Q}.
5: Initialize priority queue Pb with {}.
6: for i← 1..Niterations do
7: Let bias be true iff rand() < P and Pb 6= {}.
8: if bias then
9: Let s be a random sample from Pb.

10: Let (cnew, tnew)← HILLCLIMB(s).
11: else
12: Let s ∈ P such that score(s) is minimized.
13: Let (cnew, tnew) be random control and duration.
14: end if
15: new = SIMULATE(s, cnew, tnew).
16: if simulation was successful then
17: If new is a solution, return path to new.
18: new.priority ← i.
19: Add new to P and Pb.
20: Drop last element of Pb if Pb.size() >M
21: end if
22: if not bias then
23: s.priority ← 2 · s.priority + 1.
24: Update subdivision by splitting cell containing s.
25: end if
26: Update P , Pb so each sample lies in a unique cell.
27: end for

The PDST algorithm proceeds as follows. The root of the
generated tree is a path of duration 0 consisting solely of
the starting state. The tree is built iteratively as described
in Algorithm 1. The purpose of the subdivision space Q is
to help in deciding in which direction exploration should
continue, and guarantee probabilistic completeness [9]. A
sample cell subdivision is shown in Fig. 1. The samples
are assigned a score and kept in a priority queue. For a
sample s, score(s) = s.priority/volume(s.cell), s.priority
is initialized to the number of the iteration that produced s
and s.cell identifies the cell containing s. At every iteration,
the sample with minimal score is selected (line 12). A new
sample is formed by branching from the selected sample
at a random time in a random direction (line 15). The
cell containing the selected sample is subdivided (line 24).
At the end of each iteration, the invariant that a sample
cannot intersect multiple cells must be satisfied. This means
that some samples from the subdivided cell and the newly
inserted sample may need to be split (line 26).

The results obtained by PDST can be improved if some
goal biasing is added (Section III-.4). The main change to the
basic PDST implementation this paper proposes is the use
of ranking functions. These are application specific functions
that assign a rank to every state – a heuristically obtained
positive value indicating how close a state is to the goal
region. A ranking function can be a metric, but does not need
to be. The rank of a sample is defined to be the rank of the



Fig. 1. 2-dimensional subdivision in a run of PDST (3 iterations).

last state of the sample. In the process of adding samples
to the tree of motions (line 19), a small (maximum size
is M) secondary priority queue is maintained such that it
contains the samples with highest rank (line 20). Samples
from this priority queue are used for goal biasing: with a
small probability (P ∈ [0, 1), line 7), a sample from the
secondary priority queue is selected instead of the sample
with minimal score (line 9). In this case, cell subdivision
is not performed. Extra time is spent however selecting the
control to be applied (line 13). Since the planner attempts to
branch from a state known to be among the closest ones to
the goal, time could be saved by further progressing towards
the goal. A hill climbing algorithm is used to produce a
control that maximizes the rank of the generated sample. This
algorithm works by successively increasing and decreasing
the value of each component in the applied control and
keeping the changes that increase the rank of the generated
sample. With these changes, the motion planner is referred
to as PDST with goal biasing, or PDSTgb. It is important to
note that since P < 1, PDSTgb retains PDST’s probabilistic
completeness property.

III. APPLICATION AND EXPERIMENTS

This section presents an application of PDSTgb to planning
motion for CKBot modules. First, a model of the robot
described in Section III-.1 is constructed. This model is
placed in two test workspaces: one without any obstacles and
the other with obstacles (see Fig. 4). For each workspace,
PDSTgb is used to compute a solution to the problem
described in Fig. 3. Once a solution is found, the controls
that lead to that solution are extracted. The feasibility of the
produced solution is then tested by sending the controls to
the real robot and checking if it performs the same motion
the planner projected.

1) Robots: The hardware test-bed of this work consists
of seven identical CKBot modules [12]. The modules are
serially connected, forming a chain. The first module of
the chain is rigidly attached to a cantilever such that the
cantilever itself does not interfere with the motion of any
of the other modules. One module can be viewed as a cube
with connectors on top, bottom, left, and right faces as shown
in Fig. 2. The top, left and right faces are rigidly mounted
together, the bottom face is actuated to rotate up to form
the front or rear face of a perfect cube. These modules
each have one rotational degree of freedom controlled with a
position feedback hobby servo, a micro controller, CANbus
[31] communications, and a structure made of laser-cut ABS

plastic. Colored acrylic is attached to each module, along
their centerlines, for use in position tracking (see Fig. 2).

Fig. 2. Different views of a CKBot module.

The modules can either have their on-board controller to
command the servo to move to a sequence of positions, or
position commands can be communicated using the Robotics
bus protocol [31] over a CANbus. The hobby servos have a
highly tuned position feedback control built in and accept
commands from the micro controller at 60Hz. Each module
is attached to another on one of 4 faces by screwing them
together. For this work, the modules were attached end-to-
end in a serial chain with power and high level position
commands issued off-board.

2) Simulated Model for the Hardware: A model of the
hardware module described in Section III-.1 was created
for ODE [30]. Based on this model, a method for au-
tomatically creating ODE models of arbitrarily connected
modules was designed. A model of the chain robot previ-
ously described was then constructed. The model includes
dimensions, masses of the rigid bodies and joint limits of
the structure. Two attributes of the CKBot servo motors were
difficult to determine and were not included in the model.

The first is the highly tuned position control code (typ-
ically PID). ODE easily models torque commands to rigid
bodies and represents realistic motion from these commands.
However, the servos in CKBot cannot be commanded by
torque, they only receive desired angle commands. Attempts
were made to have PDSTgb apply desired angles as controls
and let an ODE function act as the servo motors’ on-board
controller, but modeling the controller turned out to be
inaccurate and achieving positions close to the goal was not
possible.

The second unmodeled attribute is the inertia and friction
from the gear train within the servo. The reflected inertia of
the motor and transmission in the servo was approximated
by adding a “friction” force at every time-step which was
a torque equal to a constant times the joint angle velocity,
−kθ̇, applied to the hinge joint.

The motion planner itself is not aware of any of the
parameters describing the model. The only information the
planner has is the number of joints it can control, which
is the number of modules - 1, the first module being fixed
to the space. The fact that the first module is anchored has
no bearing in the planning process, it only decreases the
dimension of the state space by 1. There are no conceptual
difficulties with considering problems where the first module
is not anchored, but such examples were outside the scope



of this paper.
3) The Problem: A simple task to test the feasibility of

the proposed method is computing the controls for lifting the
robot from a vertical down position to a vertical up position,
as shown in Fig. 3.

The difficulty of the problem lies in the fact that the
maximum torques of the motors in the modules are only
able to statically lift approximately 5 modules. One strategy
to overcome this, is to exploit momentum to reduce the
maximum torque seen by the motors. Creating a sequence
of motions manually would be difficult as the timing of
the issued commands is critical. In [29], an example of
control theoretic methods for finding optimal controllers for
underactuated serial chains in actions such as swinging up
is presented. However, those methods cannot automatically
handle arbitrary configurations nor arbitrary obstacles in the
workspace of the robot.

Fig. 3. The start and goal states (7 modules).

The experiment was tried in two virtual worlds (see Fig.
4), both of which allow a solution. The first world (Test
1) has no obstacles and only challenges the planner to find
feasible controls. The second world (Test 2) includes two
obstacles, posing the additional difficulty of avoiding the
obstacle. This forces the planner to find a path that uses
momentum while keeping the lower part of the robot rotated
up to avoid collisions.

Fig. 4. Used environments: one with (Test 1) and the other without
(Test 2) obstacles. The obstacles are in the plane of the robot and limit
the motion. The top module is attached to the space (7 modules).

PDSTgb only relies on the subdivision scheme and the
ranking functions for directing the search. The reason for
this is that the developed algorithm should be reusable with
different starting and ending robot states. The space where
subdivision occurs for this problem is a 3-dimensional one,

the first two dimensions being the x, z coordinates of the
last module (x, z is the plane observed in the images) and
the third dimension, the square root of the sum of squares
of the rotational velocities of all the modules. Choosing
these dimensions for the subdivision allows the planner to
explore the positions in the workspace the robot can possibly
reach with its endpoint (the first two dimensions) and the
space of angular velocities (last dimension). Exploring the
third dimension allows the planner to more easily find paths
that make use of momentum. The ranking function takes
into account the height reached (the z coordinate of the
last module) and the sum of squares of the angles between
modules (to reflect how close to vertical the robot is).

Runtime

Number of modules

2 3 4 5 6 7 8 9 10 11 12

Log of time (s)

-3

-2

-1

0

1

2

3

4

5

6

7

8

9

RRT

EST

PDST

PDSTgb

Time Limit

Fig. 6. Logarithmic execution times in Test 1 for RRT, EST, PDST,
PDSTgb with varying number of modules. Time limit set to one hour.

TABLE I
RUNTIME (SECONDS) FOR THE DIFFERENT ALGORITHMS

Test 1 Test 2
6 modules 7 modules 6 modules 7 modules

RRT 1959.46 N/A N/A N/A
EST 2402.67 N/A 3504.19 N/A
PDST 69.77 2269 60.68 1656
PDSTgb 5.34 25 18.57 143

4) Computation of Paths: PDSTgb was executed on the
environments shown in Fig. 4. The parameters used were
P = 0.05,M = 20. The runtime was limited to one hour.
For comparison purposes, RRT, EST and PDST were also
ran to solve the same problem. All implementations are
in C++. For EST and RRT, the implementation from the
OOPSMP framework [32] was used. The metric that was
found best for RRT was the Euclidean distance between
positions of the last module. The results are averaged over 30
runs (after removing the slowest and fastest two runs). A run
is considered to have found a solution if it reaches a height of
at least 95% of the maximally achievable height. When close
enough to the goal state, the hardware controller can take
over and achieve the desired final state. Experiments were
run on the Rice Cray XD1 cluster where each processor is at
2.2 Ghz and has up to 8GB RAM. Fig. 6 shows a logarithmic
plot of the runtime of these algorithms for different number
of modules. For 6 and 7 modules, runtimes are presented
in Table I. The results clearly show the need for algorithms
like PDST, as well as the benefits of adding biasing. Lifting



Fig. 5. Experiment results. The top row includes frames from the simulation. The bottom row includes frames from the implementation in hardware.

the robot can be solved with up to 9 modules when using
PDSTgb as opposed to 6 modules when using EST or RRT.
In Test 2, the placement of obstacles is such that it poses
difficulty especially for biasing. As expected, Table I shows
the runtime for PDSTgb increases from Test 1 to Test
2. An interesting effect of this particular workspace is that
PDST is able to ignore part of the space it should explore,
thus having a slightly shorter execution time on Test 2.
Even so, without biasing, PDST takes significantly more time
to find a solution. Significant effort was put into generating
realistic paths, to avoid jerky motions and not exceed the
capabilities of the hardware. These constraints slow down
the planning process, hence the need for faster planners.

The output of the algorithm is a succession of states, 0.05
seconds apart. Each state describes the exact position of all
the modules in the robot and the torques to be applied for
achieving the next state. However, the hardware only needed
the joint angles of the modules. A set of screen-shots from
both the simulation and the hardware execution with seven
modules are shown in Fig. 5.

5) Hardware Validation: In order to validate that the path
produced by PDSTgb is feasible, the output needs to be tested
on the hardware. The angles generated by PDSTgb algorithm
are converted into a favorable format for the hardware’s
controller. However, the differences between the ODE model
and the servo control need to be addressed. The servo uses
position control applying torques to move the joint to a
commanded angle as quickly as possible, and once there,
to have an angular velocity of zero. PDSTgb uses torques
as controls for its path generation, and essentially takes
snapshots of the angles of the servos without velocity being
constrained to zero at each time step.

In order to successfully execute a path, adjustments are
made to the rate at which instructions are sent to the hardware
in lines per second (LPS) where each line is one position
command to all the modules and are nominally executed at
a fixed rate. The tuning in the vertical lifting experiment
adjusts the LPS to minimize the tendency for the servos to
reach zero angular velocity at each step. By adjusting the
speed, so many of the servos are near maximum force, the
servo controls are saturated and thus more predictable. The
LPS within each run would vary between 25 and 60 LPS
for the run without obstacles and 6 and 60 for the run with
obstacles.

For example, if a swinging path is attempted at a slower
instruction rate, the servos would essentially try to stop at

each of the desired positions, producing a jerky motion that
does not take advantage of momentum or gravity. With too
high of an instruction rate, the servos cannot keep pace with
the desired trajectory resulting in large errors. If the proper
instruction rate is selected (and changed properly throughout
the execution of the path), the servos are able to utilize the
momentum of the modules to complete the desired path.
By tuning the rate at which these instructions are given to
the modules, the servo motors are able to better match the
PDSTgb generated path.

6) Evaluation of the results: In order to quantitatively
measure the differences between the instruction data gener-
ated by PDSTgb and the real path execution, a vision system
and a program using the Image Processing Toolbox from
MATLAB tracked the positions of the colored acrylic circles
on each module throughout the execution of the path.

The program finds the center points of each circle and
creates vectors describing each module’s position and direc-
tion. From these vectors, the angles between each adjacent
modules are calculated. These results are then compared to
the instruction input from PDSTgb, after being scaled for
differences in time. These values are then computed to give
the average error between hardware output and instruction
input per module for each instruction given (see Table II).
With seven modules, one module serves as the base, so
the six angles in the table represent the average joint error
between the hardware output and the instructions given for
each module. These differences most likely stem from the
non-modeled position control of the servo motors in the
simulation.

TABLE II
AVERAGE JOINT ANGLE ERROR (IN DEGREES) BETWEEN ODE AND

HARDWARE IMPLEMENTATION (7 MODULES)

Without Obstacles
1 2 3 4 5 6

4.064 8.5044 5.2193 5.2519 3.6285 1.1467
With Obstacles

1 2 3 4 5 6
7.2188 8.5283 6.767 5.0843 5.3291 4.3001

It is significant that the average error is not too large even
though the low-level hardware control is not modeled. It may
be that a position based low-level control is more robust
to errors in system identification than a pure torque control
method. A position feedback servo with some model errors
will try to track the desired trajectory to a first order where
a torque controller with the same model errors may lead



to integrated position errors. However, a system with little
model error will likely perform best with low-level torque
control.

As the work continues, the aim will be to decrease
these error values through a better simulation that can more
accurately take into account many more physical attributes
of the modules and their motors. These results raise some
interesting questions about what ranges of error are ac-
ceptable in automated path generation. If the robot reaches
the final desired position, or reaches the desired position
while avoiding all obstacles, how much error in the overall
performance is allowable?

IV. CONCLUSIONS AND FUTURE WORK

This paper explores the application of a motion planner to
a hardware platform. The motion planner (PDSTgb) is tightly
integrated with a physics-based simulator (ODE) which uses
a model of a real robot constructed from CKBot modules.
PDSTgb is run on two test problems and the produced
paths are executed on a real robot. The path the real robot
executes closely follows the path projected by the planner.
This represents strong evidence that the method is viable and
can lead to solving more complex problems.

The authors plan to continue improving the motion plan-
ner, reduce its runtime and tackle more complex problems.

At the same time, a new module that has a direct-drive
high-torque brushless motor as the main drive instead of
the servo is almost complete. This new module will likely
alleviate many of the errors and inconsistencies in the ODE
model which should enable much more interesting dynamic
experiments, with higher degrees of freedom, more complex
motions and environments, creating motions that would
otherwise be impossible for a human to create.

V. ACKNOWLEDGMENTS

The authors would like to thank Mark Moll, Erion Plaku
and Konstantinos Tsianos for reading this work and provid-
ing valuable comments.

REFERENCES

[1] H. Choset, K. M. Lynch, S. Hutchinson, G. A. Kantor, W. Burgard,
L. E. Kavraki, and S. Thrun, Principles of Robot Motion: Theory,
Algorithms, and Implementations. MIT Press, June 2005.

[2] S. M. LaValle, Planning Algorithms. Cambridge, U.K.: Cambridge
University Press, 2006, available at http://planning.cs.uiuc.edu/.

[3] J. Schwartz and M. Sharir, “On the piano movers’ problem: General
techniques for computing topological properties of real algebraic man-
ifolds,” Communications on Pure and Applied Mathematics, vol. 36,
pp. 345–398, 1983.

[4] J.-C. Latombe, “Motion planning: A journey of robots, molecules,
digital actors, and other artifacts,” International Journal of Robotics
Research, vol. 18, no. 11, pp. 1119–1128, November 1999.

[5] S. Lindemann and S. M. LaValle, “Current issues in sampling-based
motion planning,” in Robotics Research: The Eleventh International
Symposium. Berlin: Springer-Verlag, 2005, pp. 36–54.

[6] S. Carpin, “Randomized motion planning - a tutorial,” International
Journal of Robotics and Automation, vol. 21, no. 3, pp. 184–196, 2006.

[7] K. I. Tsianos, I. A. Şucan, and L. E. Kavraki, “Sampling-based robot
motion planning: Towards realistic applications.” Computer Science
Review, vol. 1, no. 1, pp. 2–11, August 2007.

[8] K. E. Bekris and L. E. Kavraki, “Greedy but safe replanning under kin-
odynamic constraints,” in IEEE International Conference on Robotics
and Automation, 2007.

[9] A. M. Ladd, “Direct motion planning over simulation of rigid body
dynamics with contact,” Ph.D. dissertation, Rice University, Houston,
Texas, December 2006.

[10] D. Ferguson, N. Kalra, and A. Stentz, “Replanning with RRTs,” in
IEEE International Conference on Robotics and Automation, 2006.

[11] A. M. Ladd and L. E. Kavraki, “Motion planning in the presence
of drift, underactuation and discrete system changes,” in Robotics:
Science and Systems, Boston, MA, June 2005, pp. 233–241.

[12] J. Sastra, S. Chitta, and M. Yim, “Dynamic rolling for a modular
loop robot,” International Journal of Robotics Research, vol. 39, pp.
421–430, January 2008.

[13] M. Park, S. Chitta, A. Teichman, and M. Yim, “Automatic configura-
tion recognition methods in modular robots,” International Journal of
Robotics Research, vol. 27, pp. 403–421, March 2008.

[14] L. E. Kavraki, P. Svestka, J.-C. Latombe, and M. Overmars, “Proba-
bilistic roadmaps for path planning in high dimensional configuration
spaces,” IEEE Transactions on Robotics and Automation, vol. 12,
no. 4, pp. 566–580, August 1996.

[15] D. Hsu, J.-C. Latombe, and R. Motwani, “Path planning in expansive
configuration spaces,” in IEEE International Conference on Robotics
and Automation, vol. 3, April 1997, pp. 2719–2726.

[16] S. M. LaValle, “Rapidly-exploring random trees: A new tool for
path planning,” Computer Science Dept., Iowa State University, Tech.
Rep. 11, 1998.

[17] R. Bohlin and L. Kavraki, “Path planning using lazy prm,” in IEEE
International Conference on Robotics and Automation, vol. 1, 24-28
April 2000, pp. 521–528.

[18] S. M. LaValle and J. J. Kuffner, “Randomized kinodynamic planning,”
International Journal of Robotics Research, vol. 20, no. 5, pp. 378–
400, May 2001.

[19] D. Hsu, R. Kindel, J.-C. Latombe, and S. Rock, “Randomized kinody-
namic motion planning with moving obstacles,” International Journal
of Robotics Research, vol. 21, no. 3, pp. 233–255, March 2002.

[20] G. Sánchez and J.-C. Latombe, “A single-query bi-directional proba-
bilistic roadmap planner with lazy collision checking,” International
Journal of Robotics Research, pp. 403–407, 2003.

[21] E. Plaku, M. Y. Vardi, and L. E. Kavraki, “Discrete search leading con-
tinuous exploration for kinodynamic motion planning,” in Robotics:
Science and Systems, Atlanta, Georgia, 2007.

[22] L. E. Kavraki, J.-C. Latombe, R. Motwani, and P. Raghavan, “Ran-
domized query processing in robot path planning,” Journal of Com-
puter and System Sciences, vol. 57, no. 1, pp. 50–60, 1998.

[23] M. H. Yim, C. Eldershaw, Y. Zhang, and D. G. Duff, “Limbless
conforming gaits with modular robots,” in International Symposium
on Experimental Robotics. Singapore: Springer-Verlag, June 2004.

[24] J. E. Walter, J. L. Welch, and N. M. Amato, “Distributed reconfigura-
tion of metamorphic robot chains,” in Proc. of the 19th Annual ACM
Symposium on Principles of Distributed Computing (PODC’00), 2000,
pp. 171–180.

[25] Z. Butler, R. Fitch, and D. Rus, “Distributed control for unit-
compressible robots: goal-recognition, locomotion, and splitting,”
IEEE/ASME Transactions on Mechatronics, vol. 7, no. 4, pp. 418–
430, December 2002.

[26] C. C. Ünsal, H. Kiliççöte, and P. K. Khosla, “A modular self-
reconfigurable bipartite robotic system: Implementation and motion
planning,” Autonomous Robots, vol. 10, pp. 67–82, 2001.

[27] K. C. Prevas, C. Ünsal, M. O. Efe, and P. K. Khosla, “A hierarchical
motion planning strategy for a uniform self-reconfigurable modular
robotic system,” in IEEE International Conference on Robotics and
Automation, Washington, DC, May 2002, pp. 787–792.

[28] C. Eldershaw and M. Yim, “Motion planning of legged vehicles in
an unstructured environment,” in IEEE International Conference on
Robotics and Automation, 2001, pp. 3383–3389.

[29] G. Sohl and J. Bobrow, “Optimal motions for underactuated manipu-
lators,” in Proc. of Design Engineering Technical Conference, 1999.

[30] R. Smith, “Open dynamics engine,” http://www.ode.org.
[31] D. Gomez-Ibanez, E. Stump, B. Grocholsky, V. Kumar, and C. Taylor,

“The robotics bus: a local communications bus for robots,” in Mobile
Robots XVII, D. W. Gage, Ed., vol. 5609, 2004, pp. 155–163.

[32] E. Plaku, K. E. Bekris, and L. E. Kavraki, “OOPS for Motion Planning:
An Online Open-source Programming System,” in IEEE International
Conference on Robotics and Automation, Rome, Italy, 2007, pp. 3711–
3716.


