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Motion Planning via Bayesian Learning in the Dark
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Abstract— Motion planning is a core problem in many ap-
plications spanning from robotic manipulation to autonomous
driving. Given its importance, several schools of methods
have been proposed to address the motion planning problem.
However, most existing solutions require complete knowledge of
the robot’s environment; an assumption that might not be valid
in many real-world applications due to occlusions and inherent
limitations of robots’ sensors. Indeed, relatively little emphasis
has been placed on developing safe motion planning algorithms
that work in partially unknown environments. In this work, we
investigate how a human who can observe the robot’s workspace
can enable motion planning for a robot with incomplete
knowledge of its workspace. We propose a framework that
combines machine learning and motion planning to address
the challenges of planning motions for high-dimensional robots
that learn from human interaction. Our preliminary results
indicate that the proposed framework can successfully guide a
robot in a partially unknown environment quickly discovering
feasible paths.

I. INTRODUCTION

Current motion planning methods provide efficient and
diverse ways to compute the motion of a robot given perfect
information about the environment [1]. However, the problem
remains challenging when only noisy or partial information
is available. If robots are to be deployed in houses, hospitals,
nursing homes, and other unstructured environments, planning
algorithms need to reason with partial information while
being computationally tractable. In such environments, a
service robot will typically rely on onboard sensors to create
a representation of its world, which may lead to occlusions,
limited point of view, or limited sensor precision. At the same
time, most of these tasks are safety-critical since the robot
might need to work alongside or with humans. Consequently,
new methods that produce safe trajectories in the presence
of sensing uncertainty need to be developed.

As an example, consider the Fetch robot shown in Fig. 1
performing a common manipulation task. It is tasked with
picking an object that is located inside a box (shown in light
blue). Due to limited visibility, the robot can only see the
frontal face of the box, represented in the figure as colored
voxels with occupancy information using Octomaps [2].
When planning from a starting configuration outside the box
to the goal configuration inside, a motion planning algorithm
may return the trajectory shown on the right. The resulting
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Fig. 1. a) An example where the robot only has access to partial workspace
information (octomap) while the full geometric information lightly-blues
shaded box is not visible. b) A standard motion planner produces an unsafe
(in-collision) path when planning in the partially known environment.

trajectory is in collision with the box but this information is
not available to the robot at planning time.

In this paper, we present an exploratory work for motion
planning that incorporates human expertise into the planning
process to produce safe trajectories when only a partial
representation of the environment is available. Our method,
Bayesian Learning IN the Dark (BLIND), combines inverse
reinforcement learning with motion planning in a novel
way to solve motion planning problems for high degree-of-
freedom (DOF) robots.

BLIND works by constructing a model of the task from
past experiences that captures safety as perceived by the
human. This model can be used to guide a motion planner
to produce safe trajectories. The parameters of the model are
learned by actively interacting with the human and inverse
reinforcement learning. This allows BLIND to produce safe
trajectories despite the missing workspace information.

The next section describes previous relevant work that
address the problem of motion planning under sensing un-
certainty and others that consider human-robot interaction.
Sec. III describes the details of our proposed methodology.
Sec. IV describes experiments performed in simulated envi-
ronments showing a Fetch robot solving the task described in
Fig. 1 and an ablation study. Finally, we describe conclusions
and future work.

II. RELATED WORK

We consider the problem of motion planning under sens-
ing uncertainty. Many motion planning methods model the
problem as a Markov Decision Process (MDP) [3]. More
specifically, partially observable MDPs (POMDPs) provide
a principled way to model sensing uncertainties in the
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planning and execution stages [4]. Despite recent and ongoing
advances in POMDP solvers [5], which have made POMDPs
exceedingly tractable, the applicability of POMDPs remains
largely limited to discrete state and action spaces. This
requirement of discretization makes the direct application
of POMDPs to motion planning tasks for high-DOF robots
challenging. In this work, instead of discretizing the high-
dimensional state-space, we construct a coarser MDP over a
lower-dimensional space that can be used to guide a standard
motion planner suitable for high-dimensional robots.

Linear-Quadratic Gaussian motion planning (LQG-MP)
provides true state distributions for uncertain states and
actions that can be used to perform robust planning [6].
However, it requires a Gaussian observation model, which
may not hold when obstacle locations and shapes are partially
unknown at planning time. Other approaches to planning un-
der uncertainty assume that noisy versions of the obstacles are
known and use them to find trajectories with a low probability
of collision [7]–[9]. The aforementioned approaches are not
suitable when planning using only occupancy information,
since they require knowledge of the shape of the obstacles and
estimates of the sensing uncertainty or they require Gaussian
observation models.

Closer to our work are methods that perform planning
in partially-known environments where obstacles are sensed
through contact information [10], [11]. In these cases, plan-
ning and execution are interleaved to find valid paths based
on contact feedback when the robot attempts to move on low
probability-of-collision paths according to a belief. Similar
to the work presented here, the sensing uncertainty comes
from limitations in sensing, occlusions, or limited field of view
from the robot’s perspective, and the environment is typically
represented as occupancy information. However, a critical
assumption in these methods is that the robot is allowed
to make contact with the environment. For safety-critical
applications, this assumption may not hold since making
contact may come with a high penalty (e.g., breaking a glass
or hurting a human). Our method incorporates a human into
the planning process avoiding the need to execute potentially
unsafe trajectories.

The idea of utilizing human guidance to teach robots new
skills and behaviors has also received significant attention
in the last decade, with learning from demonstration (LfD)
being a popular paradigm [12] augmented with active learning
from human queries [13], [14]. However, these methods
usually apply to discrete state-spaces [14] or plan only
for the low-dimensional robot end-effector [13], [15]. In
this work, we build upon these ideas but additionally seek
to scale the challenges of high-dimensional state spaces,
by planning directly in the high-DOF configuration space
and incorporating human input as soft constraints. Finally,
this work focuses on producing safe plans in incomplete
environments while prior (LfD) methods largely focus on
learning manipulation skills.

III. PROPOSED METHOD

We consider a high-DOF robot with d controllable joints
acting in a potentially unknown or partially known envi-
ronment W . The human and the robot are collocated and
the human can observe the full environment. Our goal is to
create a model for the task at hand alongside the feedback
given by the human to produce safe trajectories, despite
the incomplete workspace information. To accomplish this,
we introduce BLIND, a methodology that leverages Bayesian
inverse reinforcement learning to capture the human notion
of safety and optimization-based motion planning.

For a given motion planning problem, BLIND constructs
and maintains a task model structure as a roadmap G. The
task model represents past robot experiences from similar
tasks and it can either be constructed on the fly or queried
from an existing database. In G, vertices correspond to
workspace projections of discretized trajectories from past
experiences. In this paper, we use poses of the robot’s end-
effector as workspace projections. These vertices can be
computed by discretizing trajectories previously used by the
robot to solve similar tasks and keeping the pose of the
end-effector for every configuration. However, depending on
the task, other workspace projections may be used. Each
vertex is also related to a temporal parameter that represents
its relative temporal location along the original trajectory.
An edge between two vertices in G implies a temporal
dependency between the corresponding end-effector poses;
that is, projections that appeared earlier have out-edges to
later projections in the trajectories.

Alg. 1 shows the steps followed by BLIND. The algorithm
assumes that roadmap G already exists. If this is not the
case, it can be created by using a motion planner capable of
providing different trajectories using W , start and goal, e.g.,
a sampling-based motion planner [16] or an optimization-
based motion planner with randomized initial trajectories [17].
Furthermore, the algorithm requires the available workspace
information W , the start, the goal, and a maximum number
of human queries (maxq).

Given a new motion planning problem, BLIND starts by
connecting the start and goal to the task model roadmap G
(line 1). Then, BLIND queries the task model for a guidance
P (line 3). The guidance corresponds to a sequence of
end-effector poses along with their corresponding temporal
dependencies from start to goal. This step is achieved by
performing a graph search over the task model to find a path
between start and goal (see Sec. III-A). This guidance is then
used by a guided motion planning algorithm (line 4) to find
a collision-free trajectory from start to goal with end-effector
constraints given by P (see Sec. III-A).

The trajectory T returned by the planner is presented to the
human as a candidate solution that she can accept or reject.
In case she does not accept, BLIND asks the human for a
detailed critique (line 8). That is, the human is asked to label
each segment in T as good (D+) or bad (D−) (see Sec. III-
B) according to her preferences. A segment is the volume
swept by the robot between two consecutive configurations of
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Fig. 2. (Left) Task model G constructed from previous similar experiences.
Each vertex corresponds to a robot end-effector-pose, edges encode temporal
dependencies from the past trajectories. (Center) Given a new motion
planning problem, the start and goal configurations are connected to the
roadmap and a shortest path search is performed. (Right) The result is a
sequence of end-effector poses (guidance) that can help to guide a motion
planner to find safe trajectories.

the discretized trajectory. The critique is used by an inverse
reinforcement learning algorithm to compute the posterior of
a reward function that best explains the labeled data (line 9).
By sampling from this posterior, BLIND updates the edge
costs of the roadmap to capture the user preference (line 10).

Algorithm 1: BLIND

input : Roadmap G, incomplete workspace W ,
start, goal, maxq

output : Collision-free Trajectory T or ∅ when fail

1 G’ ← ConnectToRoadmap (G, start, goal) ;
2 for i = 1,. . . ,maxq do
3 P ← GuidanceSearch (G’) ;
4 T ←GuidedMP (W , P , start, goal) ;
5 if HumanAccepts (T ) then
6 Return T ;
7 else
8 (D+, D−) ←Critique (T ) ;
9 Pr(R|D+, D−) ←BIRL (G’, (D+, D−)) ;

10 G’ ←UpdateRoadmap (Pr(R|D+, D−)) ;
11 Return ∅ ;

BLIND contains two key novel components: on one hand
it maintains a task model that captures the human preference
and that is used to guide a motion-planner to follow safe
trajectories. On the other hand, it models safety as a reward
over the task model that can be learned using inverse rein-
forcement learning from a human. The following sections
describe these methods in detail.

A. Using the task model to guide motion planning

In BLIND, the task model G captures past similar experi-
ences and the human preference for the task. Past experiences
are captured on the roadmap vertices by end-effector poses
from trajectories previously planned in similar tasks. The
human preference is captured by the cost of edges between
vertices in G (see Sec. III-B). From an MDP point of view,
the cost of each edge is equivalent to the negative reward
of performing the action represented by the edge. These
rewards (costs) can be learned through inverse reinforcement
learning to capture the human preference. Therefore, finding
the shortest path from start to goal results in a sequence of
vertices that represent past experiences and has the maximum

accumulated reward (we call this sequence guidance). Fig. 2
shows a schematic of this process.

A key insight in BLIND is that guidance can be used by a
motion planner to produce a trajectory from start to goal that
is collision-free and passes through the set of end-effector
poses given by the guidance. Below, we describe how an
optimization-based planner can be used to perform such a
task.

Optimization-based motion planners [18]–[20] optimize a
cost function over the trajectory while ensuring collision-free
motions. In TrajOpt [20], for instance, the collision avoidance
is achieved by keeping a positive signed distance between
robot links and obstacles in the workspace. Other behaviors
such as joint limits, dynamics, and end-effector constraints
can be incorporated as additional terms in the optimization
formulation. This gives rise to a non-convex optimization
problem that can be solved using sequential convex opti-
mization, where each non-convex term is linearized around
a nominal trajectory and a locally convex version of the
problem is solved at every iteration [20], [21].

This can be achieved using TrajOpt with additional pose
constraints from the guidance (see [20]). Formulation (1)
shows “Guided TrajOpt”:

minimize
x0,...,xT

T−1∑
t=0

‖xt+1 − xt‖2 (1a)

subject to x0 = xSt, (1b)
xT = xG, (1c)
sd(Ait, Oj) ≥ ds ∀i, j, t (1d)

F−1k FK(xτ ) = 0 ∀(k, τ) ∈ P (1e)

where the variables xt ∈ C ⊆ Rd are waypoints of a
discretized trajectory (t = 0, . . . , T ) in configuration space;
xSt, xG are given start and goal configurations respectively,
sd( ) is the signed distance between convex shapes, Ait is
the i-th robot link at timestep t, Oj is j-th obstacle and
ds is a safe distance. In Equation 1e, Fk denotes the k-th
target pose from the guidance set that needs to be enforced
at its corresponding timestep for the robot’s end-effector and
FK(xτ ) is the pose of the end-effector at configuration xτ . τ
is the timestep of the corresponding pose. In Equation 1e, Fk
denotes the k-th target pose from the guidance set that needs
to be enforced at its corresponding timestep for the robot’s
end-effector and FKk(xt) is the pose of the end-effector the
robot at configuration xt.

B. Learning safety from human interaction

The roadmap G provides a model for the task where costs
between vertices encode how “good” it is to go from one
end-effector pose to the next. Therefore, the task model can
be seen as an MDP where vertices correspond to states,
edges correspond to actions, costs of edges are negative
rewards, and state-action values are computed as the cost-to-
goal using the Bellman-Ford algorithm. The notion of safety
is captured by a reward function (R) over the edges that can
be learned from interaction with the human using inverse
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reinforcement learning. The reward function is calculated as
a linear combination of features [22] over the vertices (v1, v2)
of each edge.

R(v1, v2) = w · φ(v1, v2)

Where w is a vector of weights and φ is a feature
function. Inspired by [14], we maintain a belief over reward
functions given a set of critiques from the user and update
them to capture safe trajectories using Bayesian Inverse
Reinforcement Learning (BIRL) [23]. Given user critiques in
the form of good segments and bad segments, the probability
of edges belonging to the set of good/bad labels can be written
as follows:

Pr(ai ∈ E(si) | R) =
1

Zi
expαQ(si,ai,R)

Pr(ai /∈ E(si) | R) = 1− 1

Zi
expαQ(si,ai,R)

where si, ai are the i-th state and action (pose, edge) of
the candidate trajectory respectively, Q(si, ai, R) is the state-
action value and E(si) corresponds to the set of optimal
actions at each state si, i.e., E(s) = argmaxaQ(s, a).

The likelihood of the labeled data can be expressed as:

Pr(D+, D− | R) =
∏

(si,ai)∈D+

Pr(ai ∈ E(si) | R)∏
(si,ai)∈D−

Pr(ai /∈ E(si) | R)

To generate samples from the posterior using the labeled
candidate trajectory, we use the Monte Carlo Markov Chain
(MCMC) policy walk algorithm from [23]. Sampling from
the MCMC allows us to estimate the posterior distribution
of reward functions over the edges of G.

IV. EXPERIMENTS

In our experiments, we compared the performance of
BLIND with the following three baselines:
• Plain-TrajOpt (P-TRAJOPT): This baseline is the plain

TrajOtp algorithm without any modifications.
• Random-BLIND (R-BLIND): This variation of BLIND

utilizes the task model graph G but not the human
critiques. Instead, the costs of edges in G are set
randomly for every new attempt.

• Penalized-BLIND (P-BLIND): This variation of BLIND
instead of BIRL uses a simple heuristic to update the
costs of edges in G. The heuristic simply adds a large
cost for every segment that was labeled as unsafe by the
human.

We designed a realistic scenario with an incomplete environ-
ment to examine the performance of BLIND. We emulated
the performance of a human by utilizing a collision checker
that has access to the full geometric information of the
environment. The robot starts from the left side of the box and

tries to place its arm inside the box while avoiding collision
with the box obstacle. As shown in Fig. 1a) only part of the
box is detected from the robot sensors (3D-camera) and is
represented as an occupancy grid. The rest of the box is not
detected by the robot and it must learn to avoid it leveraging
human queries.

We generated motion planning problems in incomplete
environments similar to [24]. Between different problems,
we vary the position of the box by ±10cm along the X and
Y-axis, and its angle relative to the robot base by ±15o. Both
the start and the goal are found through IK-sampling that
place the end-effector on the left-side and inside of the box
respectively with a tolerance of ±10cm.

To create the task model graph G we generated 10 en-
vironments with the aforementioned procedure and used P-
TRAJOPT only with the incomplete sensed information to
generate 10 trajectories. The end-effector poses from these
10 trajectories were composed in a task-model roadmap key-
pose as shown in Fig. 3 a). The same task-model roadmap
was used for all BLIND variants in all cases.

For this task we defined 5 simple reward features for each
edge on the task-model roadmap.

φ(va, vb) =[φ1, φ2, φ3, φ4, φ5]

φ1(va, vb) =|xa + xb|
φ2(va, vb) =|ya + yb|
φ3(va, vb) =|za + zb|
φ4(va, vb) =1(va,vb)∈M

φ5(va, vb) =1(va,vb)/∈M

where xi, yi, zi are the spatial coordinates of end-effector
pose i and M is the set of known regions from the sensors.
More specifically φ1, φ2, φ3 encode spatial information of
the edges while φ4, φ5 encode whether the edge vertices lie
in known or unknown regions.

To evaluate the methods, we created a test set of 100
problems with the procedure described above. Given a new
problem, all methods propose a trajectory and query the
human for approval. If the human approves the trajectory, it
is executed. If the human does not approve the trajectory,
the human labels the invalid trajectory parts, and a new
trajectory is proposed until approval. P-TRAJOPT and R-
BLIND disregard the critique while P-BLIND and BLIND
utilize it. P-TRAJOPT is initialized with a different random
trajectory each time to avoid proposing the same trajectory.

To evaluate the performance of the methods we count
the number of queries per problem and the success rate. As
one query we refer to the human Accepting/Rejecting and
optionally providing a Critique. In other words, the number
of queries is equivalent to how many times line 5 is called.
Note that at least 1 human query is needed to verify the safety
of the path. Motivated by the cost of querying a human, the
problem instance is considered a failure if it requires more
than ten queries.

The average number of queries needed for the 100 test
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a) Keypose Roadmap b) Unsafe Guidance c) Human Critique d) Safe Guidance

Fig. 3. a) The task-model roadmap that was constructed from 10 example trajectories. b) A misleading guiding path (end-effector poses sequence) which
fails to avoid the obstacles. The line traces the end-effector position in space. c) A critique provided by a human. Green lines denote good segments while
red lines denote a bad segment. Note that the human annotates the joint-space trajectory which corresponds to the end-effector segments visualized. d) A
retrieved guidance (end-effector poses ) that correctly guides around the box obstacle

TABLE I
AVG HUMAN QUERIES AND SUCCESS RATE

Method Human Queries Mean (±std) Success Rate

P-TRAJOPT 7.88 ± 3.78 0.24
R-BLIND 6.33 ± 3.05 0.67
P-BLIND 3.63 ± 3.19 0.87

BLIND 2.96 ± 3.17 0.86
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Fig. 4. Number of human queries needed until a safe path was found. A
maximum of 10 human queries was allowed.

problems along with the success rate is shown in Table I,
while Fig. 4 has the box plots of the number of queries needed
for each method. BLIND outperformed all the baselines both
in terms of the number of queries and success rate. As
expected due to most of the environment being unknown to
the robot, P-TRAJOPT was unable to find a safe path in most
cases. BLIND outperformed the other variants demonstrating
that the learned reward successfully produces safe paths.

V. DISCUSSION

In this work, we proposed BLIND, a method that can
learn to produce safe trajectories with human guidance in
incomplete environments. Our preliminary results show that
the method can successfully incorporate feedback given by
the human to produce safe trajectories with only a few
interactions and large missing parts of the environment.
Furthermore, our method to learn and update the human
notion of safety proved to be better than using random edge
costs of the task model or a simple penalization strategy. In
future work, we would like to improve BLIND by applying
it to more varied environments and learning more general
features. We would also like to implement a user interface
and evaluate BLIND with human users in a realistic partial
visibility setting for the robot.
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