
Distributed Sampling-Based Roadmap of Trees for
Large-Scale Motion Planning

Erion Plaku and Lydia E. Kavraki
Rice University

Department of Computer Science
Houston, Texas 77005, USA

{plakue, kavraki}@cs.rice.edu

Abstract— High-dimensional problems arising from com-
plex robotic systems test the limits of current motion planners
and require the development of efficient distributed motion
planners that take full advantage of all the available resources.

This paper shows how to effectively distribute the
computation of the Sampling-based Roadmap of Trees (SRT)
algorithm using a decentralized master-client scheme. The
distributed SRT algorithm allows us to solve very high-
dimensional problems that cannot be efficiently addressed
with existing planners. Our experiments show nearly linear
speedups with eighty processors and indicate that similar
speedups can be obtained with several hundred processors.

Index Terms— motion planning, roadmap, distributed al-
gorithm, PRM, SRT.

I. INTRODUCTION

Sampling-based planners have been used extensively in
recent years for multiple query or single query motion
planning [12]–[15], [17], [20]. In multiple query motion
planning, a roadmap is built during a preprocessing phase
in order to quickly respond to many queries. An example
of such a planner is the Probabilistic Roadmap Method
(PRM) [13]. Alternatively, in single query motion planning,
there is no preprocessing phase and the configuration space
is typically explored using a single or a bi-directional
tree. Examples of such planners include Rapidly-exploring
Random Trees (RRTs) [17] and Expansive Space Trees1

(ESTs) [12].
High-dimensional problems such as those arising in

planning with flexible objects [14], [16], [19], reconfig-
urable robots [21], coordination tasks [20], manipulation
planning [19], and computational biology search problems
[3], [4] test the limits of current motion planner imple-
mentations. Solving interesting problems for these complex
robotic systems requires the development of better planners
to reduce the time and the space used, which motivates
our work [1], [6]. An important avenue is to effectively
distribute computation in motion planning. This paper
describes an efficient distributed motion planner that can
be used to solve problems that are beyond the capabilities
of current sequential planners.

Work on this paper by E. Plaku and L. E. Kavraki has been supported
in part by NSF 0205671, NSF 0308237, EIA-0216467 and a Sloan
Fellowship to L. E. Kavraki.

1The acronym EST to describe Expansive Space Trees does not appear
in the original papers, but is used in this paper for convenience.

Fig. 1. A scene from our benchmarks. In problem “ConsR2,” two robots
must exchange places by going through ten small holes.

Despite the need for fast solutions for high-dimensional
problems, little effort has been devoted to the development
of distributed motion planners, especially when contrasted
with the work focused on sequential motion planners. The
work in [18] gives a parallel algorithm for 6 degrees of
freedom manipulators based on the property that the config-
uration space obstacle for a union of objects is the union of
the configuration space obstacle of the individual objects.
In [8], [9], a parallel version of the randomized path planner
[5] is proposed that uses the OR paradigm, i.e., different
processors compute the same algorithm and as soon as a
solution is found, the computation stops. The work in [11]
discretizes and then decomposes the configuration space
into hypercubes and cyclically assigns the exploration of
the hypercubes to the available processors. The method
is impracticable for high-dimensional problems due to the
discretization of the configuration space. The works in [2]
and [7] focus on embarrassingly parallel algorithms for PRM
and RRT, respectively. Embarrassingly parallel algorithms
avoid any interprocess communication and in the context
of PRM and RRT are limited to memory-shared systems.

In our earlier work [1], [6], the Sampling-based
Roadmap of Trees2 (SRT) planner was developed as a
powerful motion planner that seamlessly integrates multiple
query planners with single query planners and can be
efficiently distributed. The distribution scheme, however,
places a heavy computational burden on the master proces-

2The name of the planner in [1], [6] is changed from Probabilistic
Roadmap of Trees (PRT) to Sampling-based Roadmap of Trees (SRT) to
emphasize the importance of sampling, which in turn, can be done in a
variety of ways.

IEEE Inter Conf on Robotics and Automation (ICRA), Barcelona, Spain, 2005, pp. 3879–3884

sor, which manages the distribution of computations among
the client processors. As the number of client processors
increases, it becomes difficult for the master to balance the
computational load among the clients and thus it reduces
the efficiency of the distribution.

This paper presents a novel distribution scheme for SRT
that remains highly efficient for both memory-shared and
message-passing systems even when the computation is
distributed over hundreds of processors. The bottleneck of
the distribution scheme in [1] is eliminated by introducing
several master processors that cooperate with each-other
to distribute the computation evenly among the client pro-
cessors. The distributed SRT algorithm allows us to solve
very high-dimensional problems that cannot be efficiently
addressed with existing planners. This paper presents ex-
periments with 126 degrees of freedom (DOF) where the
computation of SRT is distributed over eighty processors.
Figure 1 shows an example. We were able to obtain nearly
linear speedups for the distributed computation of SRT. Our
experiments with eighty processors indicate that similar
speedups can be obtained with several hundred processors.
Our results pave the way for the use of distributed SRT to
planning problems of unprecedented complexity.

In section II, we briefly review the sequential SRT
algorithm introduced in [1], [6]. Section III describes the
distribution of the SRT algorithm. In section IV we describe
the experimental setup, the set of benchmarks used to test
the efficiency of our planner, and the results obtained. We
conclude in section V with a discussion on the distributed
SRT.

II. SRT PLANNER

In this section, we briefly review the sequential SRT
algorithm [1], [6]. The pseudocode for SRT is given in
Algorithm 1. SRT constructs a roadmap aimed at captur-
ing the connectivity of the free configuration space. The
nodes of the roadmap are not single configurations but
trees, which are referred to as milestones. As illustrated
in line 3 of Algorithm 1, each milestone is generated
using a sampling-based tree planner, such as RRT [17] and
EST [12]. Connections between milestones are computed in
line 10 of Algorithm 1 by using bi-directional RRTs or ESTs.
SRT can use the roadmap to answer multiple queries or stop
the computation of the roadmap as soon as a solution to
the single query at hand is obtained.

III. DISTRIBUTED SRT

In this section, we describe the design and implemen-
tation of a new distributed version of SRT. A different
and simplified version of a distributed SRT appears in [1].
Before relating the details, we discuss data and control flow
dependency in each stage of the SRT algorithm. Milestone
computations are independent of each-other; each mile-
stone can be processed in parallel. Distributing the compu-
tation of a single milestone is considerably more involved
due to the sampling scheme we use to generate milestones.
Random edge selection can be done entirely in parallel;
however, the distribution of the closest edge selection is

Algorithm 1: Sampling-based Roadmap of Trees (SRT).

Input: K, number of milestones.
Output: A roadmap GT = (VT ,ET).

1: VT ← /0, ET ← /0, Q← /0, EC ← /0.
2: while |VT |< K do
3: T ← build tree rooted at a collision-free random config.
4: VT ←VT ∪{T}.
5: Q← Q∪{qT }, where qT is the representative of T .
6: for all T ∈VT do
7: S ← a set of nc closest and nr random qT ′ ∈Q to qT .
8: EC ← EC ∪{(T,T ′) : qT ′ ∈ S}.
9: for all (T1,T2) ∈ EC do

10: if not connected(T1,T2) and connect(T1,T2) then
11: ET ← ET ∪{(T1,T2)}.

more difficult since it requires the construction of a search
structure that depends on the representatives of all the
milestones. Finally, edge computations are not independent
of each-other. Since milestones can change after an edge
computation as a result of adding new configurations to
the milestones and since computing an edge requires both
milestones, the edge computations cannot be efficiently
distributed without some effort. It requires milestones to be
sent from one client to the other. Furthermore, computation
pruning due to connected component analysis entails con-
trol flow dependencies throughout the computation of the
edges. Our experiments with the sequential implementation
revealed that the bulk of the run time occurs in milestone
and edge computations.

We have designed a master-client architecture for our
distributed implementation of SRT. The clients are re-
sponsible for milestone and edge computations while the
masters ensure that the load is distributed as evenly as
possible among the clients. The masters arbitrate mile-
stone ownership, edge selection, maintain the connected
component data structure, and coordinate the activities
of all the processors. A given set of processors P =
{P1,P2, . . . ,Pp} is partitioned into a set of master processors
M = {M1,M2, . . . ,Mm} and a set of client processors C =
{C1,C2, . . . ,Cc}. Each client Ci ∈ C is owned by some
master MCi ∈ M. Consequently, each master Mi ∈ M owns
a set of clients CMi ⊆ C. Each master is responsible for
only a fraction of the clients in order to ensure a timely
response to their needs, since all the useful computation
is done by the clients. This design was chosen as we
expect to significantly increase the number of clients.
In our implementation, each master owns c/m clients.
The distributed SRT algorithm proceeds through several
stages: milestone computations, candidate edges, and edge
computations. The pseudocode of the distribution of the
SRT planner is given in Algorithm 2.

A. Milestone Computations

The milestone computation stage is described in Al-
gorithm 2 under COMPUTE MILESTONES. During this
stage, all the clients and masters M2 through Mm compute

Algorithm 2: Distributed SRT.
Master Client

1: ♦Executed by M1 ∈M
2: Q← /0.
3: for i = 1 to K do
4: Wait for some qT to arrive; Q ← Q∪{qT }.
5: Broadcast finish.
6: GC = (VT ,EC)← graph of candidate edges.
7: Send GC to all other masters.

COMPUTE
MILESTONES

1: ♦Executed by all Cj ∈C and M2, . . . ,Mm ∈ M
2: TCj ← /0.
3: while finish has not been received do
4: T ← generate a milestone; TCj ← TCj ∪{T}.
5: Send representative qT to master M1.
6: ♦Executed by M2, . . . ,Mm ∈M
7: Send milestones to clients to balance load.

1: ♦Executed by all Mi ∈M
2: W = CMi ← working clients.
3: while unprocessed edges remain in GC do
4: for Cj ∈W do
5: if ∃e = (T ′,T ′′) ∈ EC ∩TCj ×TCj then
6: Send e to Cj .
7: W ←W −{Cj}.
8: else
9: Find milestones S = {T1, . . . ,T5} s.t.

∃(T ′,T ′′) ∈ EC ∩ (TCj ∪S)× (TCj ∪S).
10: Notify owner of each milestone T ∈ S to

send a copy of T to Cj .
11: if computed edges arrived from Ch ∈C then
12: W ←W ∪{Ch}, if Ch ∈CMi .
13: Update connected comps and GC.
14: Broadcast finish.

COMPUTE
EDGES

1: ♦Executed by all Cj ∈C
2: while finish has not been received do
3: if send(T ′,Ci) is received then
4: Send copy of milestone T ′ to client Ci.
5: if recv(T ′,Ci) is received then
6: if milestones received > 5 then
7: Mark first received milestone T for deletion.
8: Send additions made to T to owner of T .
9: Delete T .

10: Add T ′ to the list of milestones received.
11: if add(T ′,Ci,c1, . . . ,c�) is received then
12: Add c1, . . . ,c� to T ′.
13: Update indices accordingly.
14: if e = (T ′,T ′′) is received then
15: Connect T ′ and T ′′.
16: Send result to all the masters.

milestones and send their representatives to master M1

until a predefined total number of K milestones have been
computed. Each set of milestones TCi computed by client
Ci is stored locally in Ci while the set of the representatives
is stored in M1. The milestones computed by masters M2

through Mm are sent to those clients which computed the
smallest number of milestones in order to balance the load
as much as possible. During the milestone computation
stage, the communication is limited and non-blocking
resulting in an efficient distribution of the computation load
and little overhead.

B. Candidate Edges

During this stage, master M1 computes the graph of
candidate edges GC = (VT ,EC) using the milestone rep-
resentatives. Each milestone T is connected to its k-closest
neighbors, where the distance between two milestones
is defined as the distance between their representative
configurations. In addition, milestone T is connected to a
number of random neighbors to offset any problems with
the metric used. The graph of candidate edges is sent to
all the other masters M2, . . ., Mm, which update their local
copies of GC. There is no distribution of this stage since
it constitutes only a small amount of the total computation
time and requires complex search data structures.

C. Edge Computations

The edge computation stage is described in Algorithm 2
under COMPUTE EDGES. The connections between mile-
stones are computed by the clients while the masters decide
which candidate edges should be connected.

Let e =(T ′,T ′′) be the edge that master MCi sent to client
Ci. If both milestones are currently owned by client Ci, then

Ci runs the tree-connection algorithm on T ′ and T ′′ and if
the connection is successful, it sends to all the masters the
indices of two configurations q′ ∈ T ′ and q′′ ∈ T ′′ that are
connected by a local path. Otherwise, client Ci has to wait
until it receives copies of the milestones that it does not
own from their respective owners. During this time Ci could
complete send operations that would help other clients to
compute their assigned edges.

Upon receiving a computed edge, each master adds the
edge to GT and updates the graph of candidate edges. All
edges (Ti,Tj) ∈ GC such that Ti and Tj lie in the same
connected component of GT are deleted from GC as they
will not change the connected component structure of GT .

Initially, masters attempt to send to their assigned clients
candidate edges whose milestones are locally stored, since
the computation of such edges requires no communication
with other clients. Once all the local candidate edges of
a client Ci are computed, master MCi attempts to find 3–
5 milestones, that when added to Ci create many local
candidate edges. Copies of these milestones are sent to
client Ci by their respective owners. Client Ci may have
to delete copies of other milestones that it has received in
previous steps to make room for the new milestones. Since
edge computations usually add new configurations to the
milestones involved, all the new configurations added to
the milestones marked for deletion are sent back to their
original owners, which in turn merge the additions with
the existing configurations. Indices of configurations are
updated accordingly.

Recall that clients receive candidate edges only from
their respective masters. If client Ci receives an edge e =
(T ′,T ′′) it means that T ′ and T ′′ are owned by Ci or

that the respective owners of T ′ and T ′′ will send to Ci

copies of these milestones. In both cases, T ′ and T ′′ will
eventually be stored locally in Ci resulting in a deadlock-
free design. Before deleting a local copy of milestone T ,
client Ci ensures that all the candidate edges already send
to it by master MCi that involve T have been computed.
Also note that milestones grow large as the result of
edge connections and different merges that may occur
throughout the computation process making it inefficient
for clients to send these milestones to other clients. In our
implementation, a client sends to other clients only a subset
of the configurations of a large milestone.

IV. EXPERIMENTS AND RESULTS

The experiments were chosen to evaluate the perfor-
mance of the distributed SRT compared to the sequential
implementation. In this paper, we use RRT as the sampling-
based tree planner for SRT. The benchmarks presented in
this paper are generally more difficult than those presented
in [1], [6] in order to show the importance of an efficient
distributed planner when solutions by traditional sequential
planners, such as PRM, EST, RRT, or even newer and
more powerful sequential planners, such as SRT, cannot
be obtained in a reasonable amount of time.

A. Benchmarks

Figure 2 illustrates the environments and the robots that
we used to create the benchmarks.

Benchmark “ConsR1” consists of ten consecutive walls
each with a small hole, as shown in Figure 2(b). The robot
is an object in the shape of the letter “C,” as shown in
Figure 2(a), which must move through all the ten holes.
The dimensions and relative positioning of the holes are
such that the robot is forced to wiggle its way through.
Benchmark “ConsR2” is a similar problem with two robots
in the shape of the letters “C” and “S,” respectively, as
shown in Figure 1. Benchmarks “ConsR1” and “ConsR2”
have 6 and 12 DOFs, repsectively.

Benchmark “BunnyR1” consists of a fence, a wall with a
cross-like hole, and another fence placed consecutively near
each-other, as shown in Figure 2(c). The robot is an object
in the shape of a bunny, as shown in Figure 2(a), consisting
of 8171 vertices and 16301 triangles. The motion planner
finds collision-free paths that move the robot through the
openings in the walls. The openings in the fence are as large
as necessary to allow the robot to go through. Benchmark
“BunnyR2” is similar to benchmark “BunnyR1,” but with
two bunny-like robots instead of one. Similarly, benchmark
“BunnyR8” consists of eight bunny-like robots placed
inside box that has a wall with a small cross-like hole in the
middle, as shown in Figure 2(d). Benchmarks “BunnyR1,”
“BunnyR2,” and “BunnyR8” have 6, 12, and 48 DOFs,
repsectively.

Benchmark “LettersR21” consists of a box that has a
wall with a circular hole in the middle inside which a
circular ring is placed, as shown in Figure 2(e). There
are twenty-one robots in the shape of the letters “A, B,
C, . . . , U,” respectively, some of which are illustrated in

Figure 2(a). The robots are placed in a grid-like format on
one side of the wall and the objective of the motion planner
is to move the robots through the openings in the wall to
the other side and position the robots in the same grid-like
format. Benchmark “Letters21” has 126 DOFs.

The environment of benchmark “MazeR1” consists of a
3D-maze object, as shown in Figure 2(f). The robot is a
single object in the shape of a cylinder bent several times,
as shown in Figure 2(a), which should move from the
lower left corner to the upper right corner of the maze. The
dimensions of the cells and of the robot are such that the
robot must wiggle its way through. Benchmark “MazeR1”
hase 6 DOFs.

B. Hardware and Software Setup

The implementation of the distributed SRT algorithm was
carried out in ANSI C/C++ using the Intel R©8.0
compilers and libraries. Additionally, we made use of
the SWIFT++ collision detection library [10], the MPICH
implementation of MPI standard for communication and
OpenGL for visualization. The experiments were run
on the Rice Terascale Cluster, a 1 TeraFLOP
Linux cluster based on Intel R© Itanium R©2 proces-
sors. Each node has two 64-bit processors running at 900
MHz, with 1.5 MB of L2 data cache and 2 GB memory per
processor. The nodes are connected by a Gigabit Ethernet
network. For the experiments, we used only one processor
per node.

C. Efficiency of Distributed SRT

To measure the efficiency of the distributed SRT algo-
rithm, we ran the distributed code on various benchmarks
using 1, 4, 8, 16, 24, 32, 48, 64, and 80 client processors
and 1, 2, and 3 master processors. Table I contains a
summary of the results. For each benchmark, we report
the computation time required by the sequential version
of SRT (time[1]) and the distributed efficiency of SRT with
80 clients (efficiency[80 clients]) and n masters, where n =
1,2,3. The distributed efficiency is calculated as ts/(td ·N),
where ts is sequential time, td is distributed time, and N
is the number of processors. As an example, referring
to Table I, benchmark “ConsR2” requires approximately
20hrs of computation time by the sequential SRT. Ideally,
when 81 processors are used the running time would be
15mins. When the distributed SRT is used with 80 clients
and one master the running time is only 17mins which
results in an efficiency of 0.89. Using 82 processors reduces
the ideal running time to 14.9mins. When the number
of masters is increased to two, the computation time of
the distributed SRT is reduced to 16mins resulting in an
efficiency of 0.92. Finally, using 83 processors results in an
ideal time of 14.7mins. Increasing the number of masters to
three keeps the same computation time of 16mins resulting
in a slightly reduced efficiency of 0.91.

The overall efficiency of the distributed SRT algorithm
is reasonably high on all our benchmarks. When only
one master is used, the efficiency of the distributed SRT
ranges from 0.58 to 0.89 with an average of 0.73 and

(a) Letters “A, B, C, S,” bent cylinder, and bunny. (b) “ConsR1” and “ConsR2.”

(c) “BunnyR1” and “BunnyR2.” (d) “BunnyR8.” (e) “LettersR21.” (f) “MazeR1.”

Fig. 2. Path planning benchmarks: (a) robots, (b) – (f) scenes.

TABLE I

EFFICIENCY OF DISTRIBUTED SRT.

benchmark time[1](s) efficiency[80 clients]
1 master 2 masters 3 masters

ConsR1 19635.18 0.89 0.93 0.88
ConsR2 73388.19 0.89 0.92 0.91
BunnyR1 4702.47 0.69 0.85 0.94
BunnyR2 14355.57 0.74 0.97 0.88
BunnyR8 4437.82 0.71 0.84 0.85
LettersR21 5275.28 0.58 0.62 0.65
MazeR1 6572.53 0.63 0.72 0.94

median of 0.71. When the number of masters is increased
to two, the efficiency ranges from 0.62 to 0.97 with
an average of 0.84 and median of 0.85. Increasing the
number of masters to three does not change the efficiency
significantly; it ranges from 0.65 to 0.94 with an average
of 0.86 and median of 0.88. As illustrated in Table I,
increasing the number of masters from one to two resulted
in increased efficiency of our distributed algorithm for all
the benchmarks. The largest increase, 31.08%, is obtained
for benchmark “BunnyR2” and the lowest increase, 3.37%,
is obtained for benchmark “ConsR2.” When only a single
master is used, the load of the master increases propor-
tionally to the number of the clients. As the number of
clients becomes large, a single master is not able to handle
their requests. Increasing the number of masters to two or
three allows for a better distribution of the workload, and
consequently, higher efficiency. This phenomenon is clearly
seen in the “MazeR1” benchmark where the efficiency of
the distributed SRT with 80 clients increased from 0.63 to

Fig. 3. Speedup of distributed SRT.

0.94, an increase of 49.20%, when the number of masters
is changed from one to three.

Figure 3 compares the ideal speedup to the speedup
obtained for the benchmark “ConsR2” when the distributed
code is run with one, two, and three masters and up
to 80 processors. Figure 4 presents logged data for the
benchmark “ConsR1,” showing where clients spend their
time, i.e., milestone computation, edge computation, or
communication. The plots in Figures 3 and 4 are char-
acteristic of the behavior of the distributed SRT on the
other benchmarks as well. Figure 3 indicates a nearly linear
speedup for the distributed SRT when two or three masters
are used. As expected, the speedup is worse, but only
slightly, when one master is used. Figure 4 indicates that
virtually all of the overhead occurs during the last stages
of edge computations. At this point, only a few edges
have not been computed (fewer than the number of clients

Fig. 4. Time distribution of SRT.

available) and consequently many clients starve wasting
useful computation time. Nevertheless, milestone and edge
computations are nearly fully distributed and storage is also
distributed evenly.

Extrapolating from the results of our experiments, we
suspect that similar speedups and computation distributions
can be obtained even when the number of clients is doubled
or tripled and the number of masters remains the same. We
still have not reached the point were masters become the
bottleneck, but 80 was the largest number of processors we
had available.

V. DISCUSSION

High-dimensional problems arising from complex
robotic systems require the development of powerful se-
quential motion planners and the development of efficient
distributed motion planners that take full advantage of all
the available resources. This paper presents an efficient
algorithm for evenly distributing the computation of SRT,
allowing us to solve difficult problems with up to 126
DOF in few minutes. The distributed SRT planner provides
a platform for solving problems of high complexity that
cannot be solved in a reasonable amount of time even by
the most efficient sequential planners.

We believe that the efficiency of the distributed algorithm
derives in part from the hierarchical nature of SRT and
the sharing of the scheduler’s load among the different
masters. Prior work on the distribution of SRT [1], [6] and
the experiments with one master indicate that the master
becomes the bottleneck as the number of clients increases,
since it is unable to handle the large number of requests
efficiently. Increasing the number of masters allows for
an even distribution of the workload and, consequently,
a higher efficiency. Using two or three masters, we were
able to obtain nearly linear speedups when running on
80 processors – the largest number we had available.
We believe that our master-client architecture can easily
support several hundred processors and still yield nearly
linear speedups.

ACKNOWLEDGMENT

The authors would like to thank all the members of
the Physical and Biological Computing group at Rice
University for their helpful comments and discussions.

REFERENCES

[1] M. Akinc, K. E. Bekris, B. Y. Chen, A. M. Ladd, E. Plaku, and
L. E. Kavraki, “Probabilistic roadmaps of trees for parallel com-
putation of multiple query roadmaps,” in Interantional Symposium
on Robotics Research, ser. Springer Tracts in Advanced Robotics
(STAR), D. Paolo and R. Chatila, Eds. Springer Verlag, 2003.

[2] N. M. Amato and L. Dale, “Proabilistic roadmap methods are em-
barrasingly parallel,” in IEEE International Conference on Robotics
and Automation, 1999, pp. 688–694.

[3] N. M. Amato, K. Dill, and G. Song, “Using motion planning to
map protein folding landscapes and analyze folding kinetics of
known native structures,” in International Conference on Research
in Computational Molecular Biology, April 2002, pp. 2–11.

[4] M. S. Apaydin, D. L. Brutlag, C. Guestrin, D. Hsu, and J.-C.
Latombe, “Stochastic roadmap simulation: An efficient representa-
tion and algorithm for analyzing molecular motion,” in International
Conference on Research in Computational Molecular Biology, April
2002, pp. 12–21.

[5] J. Barraquand and J.-C. Latombe, “Robot motion planning: A dis-
tributed representation approach,” International Journal of Robotics
Research, vol. 10, no. 6, pp. 628–649, December 1991.

[6] K. E. Bekris, B. Y. Chen, A. M. Ladd, E. Plaku, and L. E. Kavraki,
“Multiple query motion planning using single query primitives,”
in IEEE/RSJ International Conference on Intelligent Robots and
Systems, 2003, pp. 656–661.

[7] S. Carpin and E. Pagello, “On parallel RRTs for multi-robot sys-
tems,” in 8th conference of the Italian Association for Artificial
Intelligence, 2002, pp. 834–841.

[8] D. J. Challou, D. Boley, M. L. Gini, and V. Kumar, “A parallel
formulation of informed randomized search for robot motion plan-
ning problems,” in IEEE International Conference on Robotics and
Automation, 1995, pp. 709–714.

[9] D. J. Challou, M. L. Gini, and V. Kumar, “Parallel search algorithms
for robot motion planning,” in IEEE International Conference on
Robotics and Automation, 1993, pp. 46–51.

[10] S. A. Ehmann and M. C. Lin, “Geometric algorithims: Accurate
and fast proximity queries between polyhedra using convex surface
decomposition,” Computer Graphics Forum - Proceedings of Euro-
graphics, vol. 20, pp. 500–510, 2001.

[11] D. Henrich, C. Wurll, and H. Wörn, “Multi-directional search with
goal switching for robot path planning,” in International Conference
on Industrial and Engineering Applications of Artificial Intelligence
and Expert Systems, 1998, pp. 75–84.

[12] D. Hsu, R. Kindel, J.-C. Latombe, and S. Rock, “Randomized
kinodynamic motion planning with moving obstacles,” International
Journal of Robotics Research, vol. 21, no. 3, pp. 233–255, 2002.

[13] L. E. Kavraki, P. Svestka, J.-C. Latombe, and M. H. Overmars,
“Probabilistic roadmaps for path planning in high-dimensional con-
figuration spaces,” IEEE Transactions on Robotics and Automation,
vol. 12, no. 4, pp. 566–580, June 1996.

[14] A. M. Ladd and L. E. Kavraki, “Using motion planning for knot
untangling,” International Journal of Robotics Research, vol. 23, no.
7-8, pp. 797–808, 2004.

[15] ——, “Fast exploration for robots with dynamics,” in Workshop on
Algorithmic Foundations of Robotics, 2004.

[16] F. Lamiraux and L. E. Kavraki, “Planning paths for elastic objects
under manipulation constraints,” International Journal of Robotics
Research, vol. 20, no. 3, pp. 188–208, 2001.

[17] S. M. LaValle and J. J. Kuffner, “Randomized kinodynamic plan-
ning,” International Journal of Robotics Research, vol. 20, no. 5,
pp. 378–400, May 2001.

[18] T. Lozano-Pérez and P. O’Donnell, “Parallel robot motion planning,”
in IEEE International Conference on Robotics and Automation,
Sacramento, USA, 1991, pp. 1000–1007.

[19] M. Moll and L. E. Kavraki, “Path planning for minimal energy
curves of constant length,” in IEEE International Conference on
Robotics and Automation, 2004, pp. 2826–2831.

[20] G. Sánchez and J.-C. Latombe, “On delaying collision checking in
PRM planning: Application to multi-robot coordination,” Interna-
tional Journal of Robotics Research, vol. 21, no. 1, pp. 5–26, 2002.

[21] M. Yim, D. G. Duff, and K. D. Roufas, “PolyBot: a modular
reconfigurable robot,” IEEE International Conference on Robotics
and Automation, pp. 514–520, 2000.

