
Parsing in Dialogue Systems using

Typed Feature Structures

Rieks op den Akker, Hugo ter Doest,
Mark Moll and Anton Nijholt

Memoranda Informatica 95{25
September 1995

ISSN 0924-3755

University of Twente
Department of Computer Science
P.O. Box 217
7500 AE Enschede
The Netherlands

Order-adress: University of Twente
TO/INF library
The Memoranda Informatica Secretary
P.O. Box 217
7500 AE Enschede
The Netherlands
Tel.: 053-4894021

c
 All rights reserved. No part of this Memorandum may be reproduced, stored in a database or
retrieval system or published in any form or in any way, electronically, mechanically, by print,
photoprint, micro�lm or any other means, without prior written permission from the publisher.

Parsing in Dialogue Systems using

Typed Feature Structures

Memoranda Informatica 95{25

Rieks op den Akker, Hugo ter Doest, Mark Moll and Anton Nijholt

Department of Computer Science

University of Twente

P.O. Box 217

7500 AE Enschede

The Netherlands

email: finfrieks,terdoest,moll,anijholtg@cs.utwente.nl

September 1995

Abstract

The analysis of natural language in the context of keyboard-driven dialogue systems is the central issue
addressed in this paper. A module that corrects typing errors and performs domain-speci�c morpholog-
ical analysis has been developed. A parser for typed uni�cation grammars is designed and implemented
in C++; for description of the lexicon and the grammer a specialised speci�cation language has been
developed. It is argued that typed uni�cation grammars and especially the newly developed speci-
�cation language are convenient formalisms for describing natural language use in dialogue systems.
Research on these issues is carried out in the context of the Schisma project, a research project of the
Parlevink group in linguistic engineering; participants in Schisma are KPN Research and the Univer-
sity of Twente. The aims of the Schisma project are twofold: both the accumulation of knowledge
in the �eld of computational linguistics and the development of a natural language interfaced the-
atre information and booking system is envisaged. The Schisma project serves as a testbed for the
development of the various language analysis modules necessary for dialogue systems.

1 Introduction

A dialogue system is a system that allows users
to communicate with an information system by
means of a dialogue using natural language.
Such systems always provide their users infor-
mation about a particular restricted domain, in-
formation that is stored in a data or knowledge
base, like for instance a travel information sys-
tem. Within our Parlevink language-engineering
project we are currently developing a theatre in-
formation and booking system. The sub-project
Schisma, in which this dialogue system is aimed
at, is a joint research project with the Speech and
Language group of KPN Research (the R&D de-
partment of Royal PTT Nederland). In the pro-
jected system the language used to communicate
with it is Dutch.

OUTPUT

PARS

CLIENT KEYBOARD INPUT

SCHISMA

BASE

DATA-

SCHISMA

DICTIONARY

MAF

GENERATION

GRAMMAR

SCHISMA

LEXICON

SCHISMA

DIALOGUE

MANAGER

Figure 1: Global architecture of Schisma

A dialogue system as meant here has sev-
eral aspects: extracting the relevant informa-
tion from the user input, dialogue management,
user- and dialogue modelling, information re-
trieval/update from the database, and language
generation. A global architecture of the Schisma
dialogue system is shown in �gure 1. It is the
architecture of a �rst prototype of the dialogue
system. The actual status of a dialogue does
not dynamically in
uence the process of pars-

ing, nor the preprocessing of the input in the
module Maf, that handles Morphological Anal-
ysis and Fault correction. In this paper we con-
centrate on the �rst of the above mentioned as-
pects implemented in the two modulesMaf and
Pars. For discussion on dialogue management
and user-modelling we refer to (Andernach et al.
1995; Andernach 1995). The system processes
user input typed on a keyboard. TheMaf mod-
ule accounts for typing errors in the input, de-
tects word boundaries and use of punctuation
and tags the distinguished words with their syn-
tactic type (i.e. category). Details on the Maf

module are presented in section 2.
The parser is that part of the dialogue system

that should identify the relevant semantic infor-
mation communicated by the user. It outputs
one (ideally) or several (in case of syntactic am-
biguities) analyses of the input from the Maf

module. The dialogue manager then selects the
most likely analysis given the current status of
the dialogue. From experiments with a semi-
automatic system, in which selected persons set
up a dialogue with a Wizard, we gained insight
in how client users express their wants, infor-
mation, and answers in Dutch when they think
they are communicating with a machine. Anal-
yses of the corpus of dialogues resulting from
these experiments, known as Wizard of Oz ex-
periments, not only give answers to questions
like \what words or phrases do clients use" but
they also point out that clients make typing er-
rors, sometimes react very unpredictable, and
often express themselves by means of ungram-
matical but pragmatically well understandable
(given the context of the dialogue) sentences. In
dialogues in which people ask information about
theatre performances in a number of theatres
and/or want to book seats for a particular per-
formance, time, date and location phrases very
often occur. These domain-dependent charac-
teristics of the Schisma dialogues in
uence the
morphological and parse modules that have to
concentrate on recognition of these and other
domain-speci�c phrases or words.
Other experiments with existing (\commer-

cially available") natural language interfaces

1

(Komen 1995) have shown that systems in which
input analyses are restricted to the search for
particular (domain-dependent) phrases or pat-
terns are often missing relevant information pro-
vided by the user. In conclusion, input analysis
should do more than this and should try to ex-
tract as much syntactic/semantic structure from
the input, using general linguistic/grammatical
knowledge about the natural language as well as
domain speci�c information concerning the most
relevant concepts and their relations. On the
other hand we are aware of the fact that a formal
syntactical/semantical speci�cation of the user
language cannot be complete: users will subject
the analyser with input not covered by the for-
mal language, although completely understand-
able for a human being. Hence, the quest for a
robust grammar and parser. In section 3 we will
discuss shortly the basic parsing technique and
consider robustness.
The quest for a good, i.e. a practically use-

ful, grammar and parsing system is a language
engineering exercise consisting of several stages
of development out of which, on the basis of ex-
periments with earlier versions, �nally and hope-
fully a satisfying system results. For the devel-
opment of syntactic/semantic typed uni�cation
grammars we have de�ned and implemented a
convenient speci�cation language for typed uni�-
cation grammars based on a context-free phrase-
structure grammar. In sections 4 to 6 our parser
and the formal language to specify types, lexi-
con and grammar is presented. We describe how
a syntactic/semantic speci�cation of a fragment
of a natural language is compiled and linked
with the parser resulting in a parser for the lan-
guage that translates input sequences into their
semantic representation as specifed by the syn-
tactic/semantic speci�cation grammar. In sec-
tion 4 a general introduction to types and fea-
ture structures is given. Uni�cation of typed fea-
ture structures is the main and the most costly
operation in our parsing technique. For a good
performance of the Pars module an e�cient im-
plementation of this operation is a prerequisite.
Section 5 reports on the way uni�cation is imple-
mented by means of object-oriented techniques.

Section 6 presents the speci�cation language for
de�ning feature types, lexicon entries and gram-
mar rules. Finally in section 7 we come to con-
clusions and present plans for the near future.

The formalisms and techniques presented in
this paper are in principal applicable and useful
for (the speci�cation of) parsing systems for di-
alogue systems or natural language interfaces in
general. The examples used in this paper come
from the Schisma application, that functions as
the main test environment for gaining insight in
the practical value of the e�orts and products
reported and presented in this paper.

2 The Preprocessor Maf

As we postponed the development of a spoken in-
terface to the Schisma system, we concentrate
here on the analysis of keyboard input; that is,
the input of the Maf module is the character
string typed in by the client. The Maf module
is best seen as the preprocessor of the Schisma
system. It handles typing errors and detects cer-
tain types of phrases (proper names that occur
in the database, date and time phrases, num-
ber names, etc.). The latter task of Maf is es-
pecially important, since it extracts information
crucial for the continuation of the dialogue from
the input string.

Output of the Maf module is a word graph.
We de�ne a word graph here as a directed graph
having as its nodes the positions in the input
string identi�ed as (possible) word boundaries.
Nodes are numbered starting with 0 for the left-
most boundary; that is the position left to the
�rst input character. A pair (index1; index2)
is an edge of the graph if index1 and index2
are word boundaries, index1 < index2 and the
words enclosed between index1 and index2 are
identi�ed as one text unit. This implies that
edges may provide text units to the parser that,
in fact, contain more than one word.

In addition, the Maf module labels the edges
of the graph with a value that indicates the qual-
ity of the recognition (and, possibly, correction)
performed.

2

\begin

/* begin tag */

\orgstring

/* the original string for this item */

\recstring

/* the recognised string */

\type

/* the category/type of the word */

\info

/* additional information to type */

\index1

/* index1 points at a word boundary */

\index2

/* index2 points at a word boundary */

\val

/* probability, costs */

\end

/* end tag */

Figure 2: Output speci�cation of the Maf

module; comments are allowed in between /*

and */.

2.1 Output of Maf

Of course word graphs are only used on a con-
ceptual level in developing the preprocessor. The
word graph is communicated among the distin-
guished submodules of Maf by means of so
called items. The form of these items is as il-
lustrated in �gure 2.

On the implementation level this means that
the Maf module has as output a collection of
items; each item is clearly bounded by begin

and end tokens. Items contain the original string
and its reading followed by the type (i.e. cate-
gory) of the string. The info token is followed,
if required for the feature type at hand, by a
canonical representation of the meaning content
of the recognised string. For instance, in case of
a phrase indicating a date, the info �eld con-
tains a string of format DDMMYY; in case of
time phrases the format is HHMM and strings
that have type number assigned to them have
a info �eld of the form DDDD.DD. Recogni-
tion of phrases representing database items is

SCHISMA

BASE

DATA-

COLLECT

TIME

DATE

LEX

SCHISMASCHISMA

DICTIONARY LEXICON

DBREC

NUMBERCORSE

Figure 3: Architecture of the Maf module

re
ected by a database key occurring after the
info token. The indices following the index1

and index2 tokens specify the boundaries for
the string at hand. The value that appears af-
ter the val token allows us to assign some qual-
ity measure to the string recognition. It can be
used for choosing the correct analysis of the in-
put string at a later stage (in conjunction with
other (preferably) higher level knowledge). The
itemset for one word graph is surrounded by the
\beginset and \endset tokens.

The architecture of the Maf module as de-
picted in �gure 3 should now be understood as
follows: the error correcting module CorSe (see
section 2.2) outputs a word graph that is pro-
vided to the tagging modules DBrec, Num-
ber, Date and Time which scan the graph
for phrases that are special in the Schisma do-
main. For details on the tagging modules and the
phrases they recognise we refer to section 2.3.
In addition, the word graph is provided to the
Lexmodule. For performing the error correction
CorSe has access to a large dictionary (typically
200,000 words). The tagging modules look for
phrases in the input string that contain particu-
larly important information for the dialogue; es-
pecially the detection of proper names referring
to database items, phrases indicating date and
time information and number names is aimed
at here; for detecting proper names referring
to the database the DBrec module needs ac-
cess to the Schisma database. Lex searches the
word graph for words that appear in the domain-

3

speci�c lexicon and determines the appropriate
feature type(s) in order to capture their meaning
content.
In section 2.4 the Lex module is de�ned and

in section 2.5 some words are devoted to imple-
mentation issues.

2.2 Segmentation and Error Correc-

tion

Clearly, the analysis of typed input is somewhat
simpler than spoken language recognition. How-
ever, a typed interface introduces the challenge
of handling typing errors the client makes and
detecting word boundaries. In detecting and cor-
recting typing errors we have to use knowledge of
what character sequences are allowed in Dutch.
Roughly there are two approaches to this from
the engineering point of view: the integrated ap-
proach and the preprocessor approach. In the in-
tegrated approach recognition of tokens (lexical
items, number names, etc. (see discussion be-
low)) is done simultaneously with the error cor-
rection; this can be done by recording all word
components in a trie structure and then operate
on it by means of a cost function. See (O
azer
1994) for details. The preprocessor approach
requires the introduction of generic knowledge
of what character sequences de�nitely may and
what may not occur. It makes use of what
trigrams of characters and what triphones (tri-
grams of phonemes) are viable in the Dutch lan-
guage (given a dictionary of words that may oc-
cur). Using these trigrams substrings of the in-
put string are compared to words in the dictio-
nary. We refer to (Vosse 1994) for details on this
error correction method. For reasons of compo-
sitionality we have chosen the latter approach:
this option o�ers the best possibility to parti-
tion Maf in a number of submodules that have
clear input/output speci�cations and thus can
be developed and implemented separately.
In general, the CorSe module has to account

for the following kinds of typing errors:

� insertion of characters,

� deletion of characters,

� substitution of character by other ones,

� exchange of characters; like in Fikners

(should read Finkers).

Clearly, special attention must be given to typing
errors concerning word boundaries and the de-
tection of word boundaries themselves. Related
to this is that punctuation symbols are handled
as one character words.

2.3 Tagging Modules

Clearly, the choice for an error correcting pre-
processor is a design decision that has some con-
sequences for the architecture of the Maf com-
ponent. Most important implication is that the
components following the preprocessor, what-
ever they are have clear input/output relations
and may perform their task in sequential order
as well as parallel (in contrast to integrated).
The modules described below are in fact spe-

cialised taggers; each of them looks for a special
type of phrases; if they �nd the type of phrase
they are looking for the phrase is tagged and out-
put to the postprocessor Collect. In general
the output of the taggers is as illustrated in �g-
ure 2. The capitalised literals below correspond
to module names in the architecture of Maf as
given in �gure 3.

� Number; recognition of number names; 40,
veertig (fourty), etc.,

� Date; recognition of date phrases; for in-
stance morgen (tomorrow), vandaag (to-
day), 12 februari (the 12th of February),

� Time; recognition of time phrases; examples
are: vanavond (tonight), om acht uur (at
eight o'clock),

� DBrec; recognition of the use of proper
names occurring in the Schisma database;
examples: Youp van het Hek (proper
name of an actor), Hond op 't IJs (title
of his performance).

The Time, Date and DBrec modules are of
special importance in the Schisma domain, since

4

Ikw il de veertiende naar Verde
6 6

wil

6 6

NUMBER

6

?

Verdi

6

DBREC

?

DATE

Figure 4: A word graph of an input string

they detect phrases on which queries and up-
dates to the Schisma database are based. The
recognition of number names is considered a task
necessary in any dialogue system.

To illustrate how the CorSe and tagging
modules work, in �gure 4 the word graph of the
string Ikw il de veertiende naar Verde (On
the 14th I would like to go to Verdi) is given.
Spaces are represented by the character. It
can be seen that the CorSe module corrected
strings w il and Verde to wil (would like) and
Verdi (the componist), respectively. Also the
strings de veertiende (the 14th), veertiende
(14th) and Verde have been tagged by theDate,
Number and DBrec modules respectively.

2.4 The Lex and Collect Modules

The submodule Lex searches the lexicon for
words that are provided by the CorSe module
through the word graph. The lexicon is a rather
small list of words that carry important domain
semantics; for each of the words a feature type
is supplied in the lexicon. We refer to section
3 for a discussion on typical feature types used
for representing meaning in Schisma. Before
the lexicon actually is searched, a morphologi-
cal analysis is performed that accounts for in-

ection of verbs, adjectives, nouns, etc. Strings
for which the lexicon does not contain an en-
try are assigned the (most general) type word, a
prototype feature type for words not occurring
in the lexicon. We refer to section 4 for details
on typed feature structures. In addition Lex as-
signs feature types to punctuation symbols in the
word graph (remember that the error correcting
module provides these symbols as words in the
word graph).

The Collect submodule accepts the items
as generated by the taggers, the error correcting
module and Lex, collects them and surrounds
the set by \beginset \endset tokens to indicate
the start and end of the word graph respectively.

2.5 Implementation Report

Currently modulesDBrec, CorSe and Lex are
available. DBrec and Lex have been developed
by the Schisma partners, and CorSe has been
adapted from the source code based on (Vosse
1994). The other modules Date, Time and
Number are still under construction.

1 S How may I help you ?

2 C Are there any tickets left for

3 the Verdi opera on the 14th

4 next month?

5 S Yes, there are,

6 but only first rank.

7 C oh that's ok ! What is the Verde

8 opera about ?

9 S [description of the plot of

10 the opera]

11 C I'd like two tickets

12 S I will make reservations for two

13 tickets for the Verdi opera on

14 the 14th of October. It's $40,

15 tickets are $20 each.

16 C ok, thanks

17 S You're welcome, goodbye

Figure 5: Example of a Schisma dialogue; C

refers to client input and S is system output.

In �gure 5 an example is given of a Schisma
dialogue. Referring to the linenumbers in front
of the utterances in the dialogue we will show
how the distinct submodules and especially the
tagging modules act on the client input.

2 Verdi is recognised by the DBrec mod-
ule as a database item; this both restricts
the genre (classical music) and the perfor-
mances the client may aim at (composi-
tions by Verdi); the Date module detects

5

the phrase on the 14th next month as in-
dicating a date; in �gure 6 the item output
by Maf for this string is given;

7,8 the CorSe module corrects the ill-formed
string Verde to Verdi; it therefore uses the
Schisma lexicon which contains all strings
occurring in the database; see �gure 6 for
the actual output of Maf for this string;
the string opera is recognised by Lex as a
word carrying important domain semantics;
in addition the question mark (and other
punctuation symbols) are tagged as such by
the CorSe module;

11 the Number module tags the string two as
a number;

16 Lex tags the string ok and thanks with a
feature type indicating the end of the dia-
logue.

\begin

\orgstring

Verde

\recstring

Verdi

\type

db /* db item */

\info

COMP381 /* db key */

\index1

27

\index2

32

\val

.6 /* correction */

\end

\begin

\orgstring

on the 14th next month

\recstring

on the 14th next month

\type

date

\info

141095 /* DDMMYY */

\index1

47

\index2

69

\val

1.0

\end

Figure 6: Examples of items output by

Maf.

Future research concerning Maf will follow
the integrated approach as discussed in section
2.2. Expertise accumulated in working on the
separate modules of Maf, will then be incorpo-
rated in the new design.

3 Parsing

3.1 Introduction

The input of the parser is the output of the
morphological/fault-detecting and -correcting
module discussed in the previous section: a word
graph, a compact structure representing a set
of readings of the (corrected) input from the
user, where a reading is a path through the word
graph. The parser analyses each of these read-
ings independently of other readings.
Basically the parser is a head-corner chart

parser for typed uni�cation grammars. Like
all chart parsers it starts with a set of basic
items trying to construct completed items cov-
ering more and more adjacent words in the in-
put until it has found a complete parse, cov-
ering all words. Head-corner parsing can best
be seen as a generalisation of left-corner pars-
ing. Both parsing techniques use top-down pre-
diction (unlike pure bottom up chart parsers),
but while in left-corner parsing, the input is pro-
cessed strictly from left to right, in head-corner
parsing the parser starts looking for a possible
head of the sequence of input words. The set
of possible heads of a sequence of words is com-
pletely speci�ed by the context-free rules. One
of the right-hand side components (nonterminal
symbols) of each rule is speci�ed as the head of
the rule. It is up to the grammar writer to assign
heads to rules. The basic idea is that the head
of a rule derives (generates) the most informa-
tive (semantically relevant) words of the part of
the sentence covered by this rule and that the
parser should start looking for these words. An
earlier version of this chart parser was presented
in (Sikkel and Op den Akker 1993) and we refer
to this paper for the technical details about the
technique of head-corner chart parsing.

3.2 Robustness

Parsing in the context of a natural language dia-
logue system should be robust. Robustness here
is a property of a feature uni�cation grammar
in combination with the parser on the basis of
which it works. Robustness means, as far as

6

natural language processing is concerned, �lter-
ing the relevant syntactic/pragmatic information
from the reading. We are not interested in a lin-
guistically sound and complete grammmar and
parser for Dutch. The syntactic structure of a
reading is only of interest as far as it re
ects its
semantic/pragmatic meaning. Pragmatic mean-
ing is the communicative function of the user ut-
terance in the context of a speci�c dialogue. Ulti-
mately, it can be expressed in terms of operations
(queries and updates) on the system database.
Although some parts of a grammar will be use-
ful for dialogue systems for di�erent speci�c do-
mains and applications, parts of it have to be
developed speci�cally for a particular domain.
Hence, a context-free uni�cation grammar is de-
veloped on the basis of an analysis of the corpus
of dialogues resulting from Wizard of Oz exper-
iments.
For the most important (domain-dependent)

phrases and sentence-structures that occur in the
corpus, we have developed a context-free uni�ca-
tion grammar together with a lexicon of words
with typed feature structures. (See the next
section for the speci�cation language we use.)
Words contained in the lexicon, nouns in par-
ticular, have feature types assigned to them that
are designed to allow disambiguation by feature
uni�cation failure. In developing the grammar
we have striven at assigning one analysis to a
reading if there is only one meaning. This is
quite hard to accomplish especially if the reading
contains words that have obtained the default
type word by the module Maf. This happens if
the word could not be matched properly with a
word in the domain-speci�c lexicon or with other
domain-speci�c words. Since the semantic in-
formation that goes with these unknown words
misses (bottom or?, see the next section) disam-
biguation can not be preformed by means of uni-
�cation failure. The grammar for the Schisma
prototype we are developing now contains about
100 context-free rules. Each rule is accompanied
with a set of feature constraints. These con-
straints serve two purposes. They specify how
to build the semantic feature structure of the
left-hand side category compositionally using the

feature structures from the right-hand side cat-
egories. Also they restrict the applicability of
the context-free rule using failure of uni�cation
performed on the feature structures of the cate-
gories that occur in the rule. Uni�cation is per-
formed during parsing: items on the chart con-
sist of typed feature structures with their indices
marking positions in the input string.

The parser outputs for each reading of its in-
put a set of completed items. A completed item
is a feature structure and it covers the whole or
a part (i.e. a list of subsequent words) of the
reading. The part it covers is indicated by the
indices of the item. In case of an ambiguous sen-
tence or phrase, it may output several completed
items covering the whole reading. It is up to the
dialogue manager using the status of the current
dialogue to select the most likely parse or par-
tial parse out of the semantic feature structures.
The selection of the best parse will also be based
on heuristic rules using numbers indicating how
informative the covered words are, and on the
grammar rules that have been used to build the
completed item (analysis).

4 Typed Feature Structures

4.1 Types

Types can be used to categorize linguistic and
domain entities. In addition to that the rela-
tions between entities can be de�ned using an
inheritance hierarchy. For types we follow the
de�nition of Carpenter (1992). Types can be or-
dered using the subsumption relation. We write
s v t for two types s and t if s subsumes t, that
is, s is more general than t. In that case s is
called a supertype of t, or inversely, t is a subtype
of s. With the subsumption relation the set of
types form a lattice (see �gure 7).

The type that subsumes all other types (\the
most general type") is called bottom and is de-
noted by ?. The most general subtype for a pair
of types s and t is called the least upper bound
and is written as s t t. For instance, in �gure 7
we have s t t = x and v t w = >. In the latter

7

s

u v

t

w x

Figure 7: A type lattice. The lines represent
the subsumption relation. More speci�c types
are placed higher in the lattice. The top ele-
ment `>' is used to denote inconsistency between
types.

case the two types contain con
icting informa-
tion and are hence inconsistent.
There are two ways to specify a type lattice.

The �rst way is to express each new type in
terms of its subtypes. This can be seen as a set-
theoretical approach: each type is a set of possi-
ble values and a new type can be constructed by
taking the union of other (possibly in�nite) sets.
For instance, the type fruit could be de�ned as

fruit := apples [bananas;

where apples is a set of all apples and bananas is
a set of all bananas. The bottom element ? is
then the set of all entities within the domain and
the top element > is the empty set ;.
The other way to specify a type lattice is to

express each type in terms of its supertypes. In
this context the term `inheritance' is often used;
a type inherits information from its supertypes.
The disadvantage of specifying types this way
is that inconsistencies in the lattice are easily
introduced. If a type is speci�ed to have two
supertypes that contain con
icting information,
that type would be inconsistent. With the set-
theoretical approach this cannot happen. How-
ever, from the grammar writer's point of view it
is often easier to �rst introduce general concepts
and later di�erentiate them into more speci�c
types than to start with the most speci�c types
and generalize over them to construct new types.
Hence, in the speci�cation language described in
section 6 the second approach is followed.

4.2 Feature Structures

Feature structures provide a convenient way to
keep track of complex relations. During parsing
constraints can be checked with feature struc-
tures, and after parsing the meaning of the lan-
guage utterance can (hopefully) be extracted
from them. The structure of our feature struc-
tures is similar to the more traditional form of
feature structures as used in the patr-ii system
(Shieber 1986) and those de�ned by Rounds and
Kasper (1986).

Typed feature structures are de�ned as rooted
DAGs (directed acyclic graphs), with labeled
edges and nodes. More formally, we can de-
�ne a typed feature structure tfs as a 2-tuple
ht; featuresi, where t 2 Types, the set of all
types, and features is a (possibly empty) set of
features. A feature is de�ned as a feature name
/ feature value pair. A feature value is again a
typed feature structure. At �rst glance the la-
bels on the nodes seem to be the only di�erence
with the traditional feature structures, but there
is more to typing than that. Every type has a
�xed set of features. Such a feature value type
can be seen as the appropriate value for a partic-
ular feature. It should be equal to the greatest
lower bound (the most speci�c supertype) of all
the possible values for that feature. So a typed
feature structure is actually an instantiation of a
type. Types are used as a sort of templates. By
typing feature structures we restrict the number
of `allowed' (or appropriate) feature structures.
Putting these restrictions on feature structures
should fasten the parsing process; at an earlier
stage it can be decided if a certain parse should
fail.

Another advantage of typing feature struc-
tures is that it is no longer necessary to make
a distinction between nodes with features (`com-
plex nodes'), nodes without features (`constant
nodes') and nodes with type ? (`variable nodes')
as is often done with traditional feature struc-
tures. In a consistent de�nition of the type lat-
tice the least upperbound of a complex and a
constant node should always be > (unless that
constant node represents an abstract, underspec-

8

agreement

singular

number person

third t

agreement

number person

thirdplural = >
agreement

singular

number person

t

agreement

number person

third =

agreement

singular

number person

third

Figure 8: Basic uni�cations. In the �rst case
uni�cation fails, i.e. the feature structures con-
tain con
icting information. The second case is
self-evident.

i�ed piece of information), so that two such
nodes can never be uni�ed.

5 Uni�cation

The basic operation on feature structures is uni-
�cation. New feature structures are created by
unifying two existing ones. In �gure 8 two ba-
sic examples show what uni�cation means. In
these feature graphs agreement, singular, plural
and third are names of types, and number and
person are names of features.

The uni�cation of two feature structures fails
if:

� the least upper bound of the two root nodes
is >, or

� the uni�cation of the feature values of two
features with the same name fails.

Uni�cation is a costly operation in uni�cation-
based parse systems, because it involves a lot
of copying of feature structures. In many im-
plementations of parsing systems it takes more
than 80% of the total parse time. Several al-
gorithms have been devised to do uni�cation
e�ciently (Tomabechi 1991; Wroblewski 1987;
Sikkel 1993). The e�ciency of uni�cation can be
increased by minimizing the amount of copying
in cases that uni�cation fails, while on the other
hand the overhead costs to do this should be as
small as possible. Up to now Tomabechi's algo-

n parses HCP TOM

4 5 100 542
5 14 249 1,827
6 42 662 6,268
7 132 1,897 22,187
8 429 5,799 80,685

Table 1: An untyped version of the

uni�cation algorithm compared with

Tomabechi's algorithm.

rithm seems to be the fastest. With this algo-
rithm the copying of (partial) feature structures
is postponed until it has been established that
uni�cation can succeed. But Tomabechi already
suggests in a footnote that the algorithm can be
improved by sharing substructures. This idea
has been worked out into an algorithm (Veldhui-
jzen van Zanten and Op den Akker 1994). The
copy algorithm has been implemented in a pre-
decessor of the current parser and has proven
to be very e�ective in experiments. Table 1
shows the results of one of these experiments.
The algorithms were tested with the `sentences'
Jann; n = 4 : : : 8, using the following grammar:
S ! S S j Jan (so the sentences are extremely
ambiguous). The �rst column stands for the
sentence length, the second column shows the
number of parses and the third and fourth col-
umn show the number of nodes created dur-
ing uni�cation for Veldhuijzen van Zanten's and
Tomabechi's uni�cation algorithm.

By introducing the types, the overhead in-
creases slightly; for every two nodes that are to
be uni�ed the least upper bound has to be looked
up in a table. But still, we expect an improve-
ment in the performance.

Before the algorithm is described in more de-
tail, it is necessary to de�ne the general prop-
erties of a node in a feature structure. These
properties (`members' in the object-oriented pro-
gramming terminology, or `�elds' in a traditional
record implementation) can be divided in two
kinds: (1) properties that describe the structure
of a feature structure and (2) bookkeeping prop-
erties, that are used to store intermediate results.

9

s

v w

u tt

v x

s
f g f g

h k k h k

(a) The initial feature

structures.
s

v w

u tt

v x

s
f g f g

h k k h k
t

w

(b) The feature values of f

have been uni�ed.

s

v w

u tt

v x

s
f g f g

h k k h k
t

w

(c) The feature values of g

have been uni�ed.

t

v

s
f g

h k

w

(d) The resulting unifact.

Figure 9: An example uni�cation. A type id
on the right of a node stands for the auxiliary
type of that node. The dashed arrows indicate
forward links. If a node has a forward link to
another node, the feature structures starting in
these nodes are uni�able. It is assumed that x v
w and u v t.

proc unify(tfs1; tfs2)
nextGeneration();
if uni�able(tfs1; tfs2) then
return copyUnifact(tfs1)

else

return >
�

end.

proc uni�able(tfs1; tfs2)
tfs1 := dereference(tfs1);
tfs2 := dereference(tfs2);
if (tfs1 = tfs2) then return true �;
tfs1!auxType := lub(tfs1; tfs2);
if (tfs1!auxType = >) then
return false

�;
stillUnifies := true;
while stillUnifies do

foreach f 2 tfs2!features

if (f 2 tfs1!features) then
stillUnifies :=
unifiable(tfs1!f; tfs2!f)

else

add feature tfs2!f to
tfs1!auxFeatures

�

od

od;
if (stillUnifies = true) then
forward(tfs2; tfs1);
return true

else

return false

�

end.

Figure 10: The uni�cation algorithm.

An improved version of Tomabechi's quasi-
destructive uni�cation algorithm.

10

For the �rst kind only

� a type id, that uniquely de�nes the feature
names and the appropiate values for the cor-
responding features, and

� a set of features, where each feature consists
of a name and a value (i.e. an instance of a
certain type)

are needed. To handle the bookkeeping we need
the following properties:

� a forward pointer: a pointer to another
node, of which the uni�cation algorithm has
established that uni�cation with this node is
possible,

� an auxiliary type id: the type id of the cor-
responding node in the unifact (the result of
uni�cation),

� auxiliary features: features of the node that
is uni�ed with the current node, that do not
occur in the set of features of the current
node,

� an unifact pointer: a pointer to the unifact
that is constructed by the copy algorithm,

� a forward mark and an unifact mark: mark-
ers containing a generation number indicat-
ing whether the forward and unifact pointer
can be used in the current uni�cation pro-
cess.

Uni�cation is executed as a two-step opera-
tion: �rst, it is checked whether uni�cation is
possible, that is, the two feature structures to be
uni�ed contain no con
icting information. Sec-
ond, the unifact is constructed using the book-
keeping information left by the �rst step.

Though the algorithm is implemented with
object-oriented techniques in C++, the algo-
rithm is displayed in conventional pseudo-Pascal
code to enhance the readability for those not fa-
miliar with these techniques. Step one, the check
if uni�cation is possible, is shown in �gure 10.

Some auxiliary procedures for the uni�cation al-
gorithm are displayed in �gure 11. Finally, �g-
ure 12 shows how step two, the creation of the
unifact, is implemented.
The example in �gure 9 shows how the uni-

�cation algorithm works. First the generation
counter is increased to make any old intermedi-
ate results obsolete. The procedure uni�able is
then called with the two s nodes as arguments.
Now subsequent calls are made to uni�able for
each feature value pair of the two s nodes. First
the feature structures starting in the two t nodes
are uni�ed. They di�er only in the feature value
for the k feature. It is assumed that x v w, so
that the two nodes are uni�able. The auxiliary
type will then be w. Now the two t nodes are
uni�able and a forward link from one t node to
the other one can be made (see �gure 9b). Now
the feature values for the g feature can be uni-
�ed. Because of the forward link of the previous
step, the feature values of the f and g feature of
the left feature structure are now uni�ed. So for
uni�cation to succeed we have to assume that
u v t. Under this assumption a forward link
from the u node to the left t node can be made
and the initial call to uni�able returns true (see
�gure 9c). The �nal step is then a call to copyU-

nifact to create the unifact from the intermediate
results (see �gure 9d). Note that this uni�cation
is non-destructive; both operands remain intact.
The procedure lub (called from uni�able) de-

termines the least upper bound of two types.
This least upper bound can be looked up in the
type lattice as explained in section 4. If two
types have > as least upper bound, they are not
uni�able and it is not necessary to look at the
feature values of the types.
The procedure copyUnifact (�gure 12) only

creates a new node if it is not possible to share
that node with an existing feature structure.
A new node is created by createTFS, which
makes a node of the right type and initializes
the features with appropiate values. The vari-
able needToCopy is used to check whether a new
node has to be created. Only if one of the follow-
ing two situations occurs it is necessary to make
a new node:

11

proc nextGeneration()
currentGeneration :=
currentGeneration+ 1

end.

proc dereference(tfs1)
if tfs!forwardMark = currentGeneration

^ tfs!forward 6= nil then

return tfs!forward

else

return tfs

�

end.

proc forward(tfs1; tfs2)
tfs1!forward := tfs2;
tfs1!forwardMark := currentGeneration;

end.

Figure 11: Auxiliary procedures for the uni-
�cation algorithm

� the unifact has more features than the fea-
ture structure from which it constructed,
that is, the number of auxiliary features is
greater than 0,

� the unifact di�ers from the feature structure
from which it constructed in at least one
feature value.

Otherwise the node will be shared with the cur-
rent node of the typed feature structure from
which the unifact is constructed.

6 The Speci�cation Language

To specify a language it is necessary to have a
metalanguage to specify that language. Almost
always the usage of a speci�cation language is
limited to only one grammar formalism. This
is not necessarily a drawback, as such a speci�-
cation language can be better tailored towards
the peculiarities of the formalism. For exam-
ple, ALE (Carpenter and Penn 1994) is a very
powerful (type) speci�cation language for the do-
main of uni�cation-based grammar formalisms.

proc copyUnifact(tfs)
tfs := dereference(tfs);
if (tfs!unifactMark = currentGeneration)
then

return tfs!unifact

�;
needToCopy := (#tfs!auxFeatures > 0);
i := 0;
foreach f 2 tfs!(features[auxFeatures)
do

copies[i] := copyUnifact(f);
needToCopy := needToCopy _
(copies[i] 6= f);
i := i+ 1

od

if needToCopy then

if tfs!unifact = nil then

tfs!unifact :=
createTFS(tfs!auxType)

�;
for j := 0 : : : i� 1 do

add feature copies[j]
to tfs!unifact

od;
tfs!unifactMark := currentGeneration;
return tfs!unifact

else

return tfs

�

end.

Figure 12: The copy algorithm. This proce-
dure generates the unifact after a successful call
to uni�able(tfs1; tfs2).

12

But apart from expressiveness of the speci�ca-
tion language, the ease with which the intended
information about a language can be encoded is
also important. An example of a language that
combines expressiveness with ease of use is the
Core Language Engine (Alshawi 1992). Unfor-
tunately the Core Language Engine (CLE) does
not support typing. Within our project a type
speci�cation language is being developed that
can be positioned somewhere between ALE and
CLE. This speci�cation language can be used to
specify a type lattice, a lexicon and a uni�cation
grammar for a head-corner parser. The notation
is loosely based on CLE, though far less exten-
sive. For instance, the usage of lambda calculus
is not supported.

6.1 Speci�cation of Types

A type speci�cation consists of four parts: a
type id for the type to be speci�ed, a list of su-
pertypes, a list of constraints and a formula ex-
pressing the semantics for the new type. Fig-
ure 13 shows how a type lattice can be speci�ed.
For each type <constraints> should be replaced
with patr-ii-like path equations. Path equations
can have the following two forms:

hf1 f2 : : : fni = hg1 g2 : : : gni

hf1 f2 : : : fni := node

The �rst form says that two paths (i.e., se-
quences of features) in a feature structure should
be joined. With the second form the type of
a node in a feature structure can be speci�ed.
The right-hand side should be equal to a type
identi�er or a constant (a string or a number).
During the parsing of the speci�cation a min-
imal satisfying feature structure is constructed
for each path equation. So all the nodes in a
feature structure have type ?, unless speci�ed
otherwise. Subsequent path equations are uni-
�ed to generate a new feature structure satisfy-
ing both constraints. Finally the resulting fea-
ture structure for all the constraints is uni�ed
with constraints inherited from the supertypes.
<QLF> should be replaced with the semantics

in a quasi-logical formula. QLF is basically equal

to �rst-order predicate calculus, but is extended
with some extra operators to express the mood
of an utterance and to express some basic set
properties. A more detailed description of QLF
can be found in (Moll 1995). The idea is that
the constraints are only necessary during pars-
ing and the semantics are passed on to be used
after parsing. In the following example a possi-
ble quasi-logical form for a phrase is given:

de opera voorstelling op 4 januari

(the opera performance on 4 January)

EXISTS X (opera(X) AND date(X,4-1-95))

The opera predicate comes from the QLF part of
the opera type and the date predicate is gener-
ated by parsing the time phrase. Another gram-
mar rule combines these predicates and binds the
variable X.

A type inherits information from its super-
types in the following way: the constraints for
the type are uni�ed with the constraints of the
supertypes, and the quasi-logical formula for the
type is concatenated with a list of quasi-logical
formulas for the supertypes. The QLF expres-
sions are not evaluated, but are just translated
to internal representations.

6.2 Speci�cation of Words

Lexical entries can be speci�ed in the same way
as types. This is not surprising, since words
can also be seen as types. There is, however,
one restriction: a word cannot be used as super-
type in the speci�cation of other types (includ-
ing words). Ambiguous words can be speci�ed
by simply de�ning multiple entries for the same
lexeme:

LEX("flies", verb, <constraints>, <QLF>)

LEX("flies", noun, <constraints>, <QLF>)

The type identi�er that is given to a word is
the type identi�er of the �rst type of the list of
supertypes. In the previous example the words
only had one supertype, so there is a feature
structure for \
ies" with a verb type identi�er
and a feature structure with a noun type identi-
�er. In the lexicon every word is associated with
a list of feature structures, one for each meaning.

13

TYPE(performance; bottom; <constraints>; <QLF>)

TYPE(play; performance; <constraints>; <QLF>)

TYPE(concert; performance; <constraints>; <QLF>)

TYPE(musical; play, concert; <constraints>; <QLF>)

TYPE(ballet; concert; <constraints>; <QLF>)

performance

play

musical ballet

concert

Figure 13: Speci�cation of a type lattice

6.3 Speci�cation of Grammar Rules

Grammar rules are internally also represented
as typed feature structures. They have a spe-
cial rule type identi�er. It is not necessary to
represent rules as feature structures, but such
structures happen to be a very practical repre-
sentation mechanism for grammar rules.
In general, a grammar rule speci�cation looks

like the one in �gure 14. The asterisks mark the
head in the grammar rule. Next to the speci-
�cation the resulting typed feature structure is
shown. Note that grammar symbols are in fact
types.
The next example shows how typing can make

some grammar rules super
uous.

TYPE(perfphrase; nounphrase; ;)

RULE(nounphrase --> *perfphrase*;

<nounphrase kind> = <perfphrase kind>,

<nounphrase sem> = <perfphrase sem>;

)

The asterisks mark the head in the grammar
rule. Both the type and rule specify that a per-
formance phrase is a kind of noun phrase. So
with the type speci�cation the rule becomes su-
per
uous.

7 Concluding Remarks

For a practically useful dialogue system full han-
dling of users' natural language input is most
important. This is especially the case if the di-
alogue system does not force the user to pro-
vide his/her information in a prede�ned (\menu
driven") order but leaves it to the client to con-
trol the dialogue and allows him/her to use free
natural language. To �nd a good formal spec-
i�cation of the language and a robust analyser

and parser is a complicated task to be performed
before such a dialogue system is obtained. The
making of such a system is a process consisting
of several design steps. In this paper we have re-
ported on some of the �rst steps we have taken
towards the design of dialogue systems. We con-
sider the development and the implementation
of our speci�cation language for typed uni�ca-
tion grammars to be a major step in this design.
It provides a very convenient tool for the speci-
�cation of the syntactic and semantic aspects of
fragments of natural languages used in dialogue
systems. A lot has to be done before the ultimate
goal has been reached.

In the near future we will integrate the Maf

module in the Wizard of Oz environment, hereby
confronting the Wizard with the output of Maf

instead of with the user input directly. Experi-
ments with this extended environment will give
more insight in the practical value (and short-
comings) of our results. Moreover we will work
on an implementation of Maf based on an in-
tegrated approach of the users input instead of
the \pipe line approach" presented in this paper.
Although it will have the same functionality as
the one presented here we expect it to be more
e�cient.

We will also write a second, more complete,
version of our grammar and lexicon for the
Schisma application using all features provided
by the presented speci�cation language for typed
uni�cation grammars. The next step is then to
incorporate the generated parser into the Wiz-
ard of Oz environment as well. The Wizard will
then be o�ered the output of the parsing module:
a semantic feature structure that should provide
enough relevant information to select an appro-

14

RULE(s --> np *vp*,

<np agr> = <vp agr>,

<vp subject> = <np sem>,

<s sem> = <vp sem>)

<rule>

s

s np vp

np vp

sem
agr

agr
sem

sem

subject

Figure 14: Speci�cation of a rule

priate action for continuation of the dialogue.
This also o�ers the opportunity to verify exper-
imentally (using a \real" grammar) our claims
about the e�ciency of our uni�cation algorithm
for typed feature structures. Moreover, these ex-
periments will also be used for the speci�cation
of heuristic rules to be used by the dialogue man-
ager in the process of selecting \the best analy-
ses" of user input given the current status of the
dialogue.

Acknowledgements

We would like to thank Gert Veldhuijzen van
Zanten for making the �rst major improvements
to Tomabechi's uni�cation algorithm.

References

Akker, R. o. d., Ter Doest, H., Moll, M., and
Nijholt, A. (1995). Parsing in dialogue sys-
tems using typed feature structures. In
Proceedings of the International Workshop

on Parsing Technologies. Prague/Karlovy
Vary, Czech Republic.

Alshawi, H., editor (1992). The Core Language

Engine. Cambridge, MA: The MIT Press.

Andernach, T. (1995). Predicting and interpret-
ing speech acts in a theatre information and
booking system. In Andernach, T., Van de
Burgt, S. P., and Van der Hoeven, G. F., ed-
itors, Corpus-Based Approaches to Dialogue
Modelling, Proceedings of TWLT9, 107{115.
University of Twente. Enschede.

Andernach, T., Ter Doest, H., Op den Akker, R.,
Schaake, J., Van der Hoeven, G. F., Van der
Burgt, S. P., and Nijholt, A. (1995). Lan-
guage analysis for dialogue management in a
theatre information and booking system. In
Language Engineering '95, AI'95, 15th In-

ternational Conference, 351{362. Montpel-
lier, France.

Bergin, J. (1994). Data Abstraction: the Object-

Oriented Approach using C++. New York:
McGraw-Hill.

Carpenter, B. (1992). The Logic of Typed Feature
Sructures. Cambridge University Press.

Carpenter, B., and Penn, G. (1994). Ale 2.0
user's guide. Technical report, Carnegie
Mellon University Laboratory for Compu-
tational Linguistics, Pittsburgh, PA.

Komen, E. (1995). Evaluation of Natural
Languagetm for the SCHISMA domain.
Memoranda Informatica 95-14, University
of Twente, Enschede, The Netherlands.

Moll, M. (1995). Head-corner parsing using
typed feature structures. Master's thesis,
University of Twente, Department of Com-
puter Science.

O
azer, K. (1994). Error-tolerant �nite state
recognition with applications to morpholog-
ical analysis and spelling correction. Tech-
nical report, Bilkent University, Ankara,
Turkey.

Rounds, W. C., and Kasper, R. T. (1986). A
complete logical calculus for record struc-
tures representing linguistic information. In

15

Proceedings of the 15th Annual IEEE Sym-
posium on Logic in Computer Science, 39{
43. Cambridge, MA.

Shieber, S. M. (1986). An Introduction to

Uni�cation-based Approaches to Grammar.
Stanford, CA, USA: Center for the Study of
Language and Information.

Sikkel, K. (1993). Parsing Schemata. PhD
dissertation, University of Twente, Depart-
ment of Computer Science.

Sikkel, K., and Op den Akker, R. (1993). Predic-
tive head-corner chart parsing. In Proceed-

ings of the Third International Workshop
on Parsing Technologies, 267{275. Tilburg
(The Netherlands), Durbuy (Belgium).

Stroustrup, B. (1991). The C++ Programming

Language. Reading, MA: Addison-Wesley.
second edition.

Tomabechi, H. (1991). Quasi-destructive graph
uni�cation. In Proceedings of the 29th An-

nual Meeting of the ACL. Berkeley, CA.

Veldhuijzen van Zanten, G., and Op den Akker,
R. (1994). Developing natural language in-
terfaces: a test case. In Boves, L., and
Nijholt, A., editors, Twente Workshop on

Language Technology 8: Speech and Lan-
guage Engineering, 121{135. Enschede, The
Netherlands.

Vosse, T. G. (1994). The Word Connection. PhD
dissertation, Rijksuniversiteit Leiden. Nes-
lia Paniculata.

Wroblewski, D. (1987). Nondestructive graph
uni�cation. In Proceedings of the Sixth Na-

tional Conference on Arti�cial Intelligence.

16

