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Abstract— Over the years, many motion planning algorithms
have been proposed. It is often unclear which algorithm might
be best suited for a particular class of problems. The problem
is compounded by the fact that algorithm performance can
be highly dependent on parameter settings. This paper shows
that hyperparameter optimization is an effective tool in both
algorithm selection and parameter tuning over a given set of
motion planning problems. We present different loss functions
for optimization that capture different notions of optimality.
The approach is evaluated on a broad range of scenes using
two different manipulators, a Fetch and a Baxter. We show
that optimized planning algorithm performance significantly
improves upon baseline performance and generalizes broadly
in the sense that performance improvements carry over to
problems that are very different from the ones considered
during optimization.

I. INTRODUCTION

Producing high-quality motions for complex robots remains
a challenging problem. This is in part because the motion
planning problem is fundamentally hard (PSPACE-complete,
in fact [1]). Nevertheless, a large number of motion planning
algorithms have been proposed that perform very well in
practice. These algorithms vary not only in their completeness
and optimality guarantees, but also in the heuristics used to
balance the exploration/exploitation trade-off in their search
for a feasible (or optimal) motion plan. There also many
other factors that in practice have a huge impact on an
algorithm’s performance: (a) the extent to which information
can be precomputed (and associated computational cost can
be amortized), (b) the representation of a robot and its
environment (e.g., point clouds vs. meshes vs. collections
of spheres), which significantly affect collision and distance
calculations, and (c) implementation details. This leads to two
closely related problems. For motion planning researchers it
becomes difficult to fairly compare against the state of the art,
since the performance of any algorithm depends on so many
specific details. For practitioners who simply want to use
the best algorithm for their specific application it can be an
endless trial-and-error process to select an algorithm and tune
its parameters to achieve optimal performance. This process
is particularly cumbersome for high-dimensional problems
where intuition may not help and planning times can be long.
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This paper proposes to use a hyperparameter optimiza-
tion approach to address the problems described above.
Hyperparameter optimization has gained in popularity in
recent years, in part because it has become an indispensable
tool in the deep learning community. The main idea is to
model the hyperparameter space, define a loss function that
characterizes performance on a particular task, and have
an optimization method explore the hyperparameter space
so as to minimize the loss value. In the context of motion
planning, this optimization can be thought of as choosing
the right algorithm and parameter values such that, e.g., total
planning time is minimized over a number of representative
motion planning problems. The focus in this paper is on
a particular class of motion planning algorithms called
sampling-based planners [2]. Hyperparameter optimization is
especially relevant for this class of algorithms: (1) many such
algorithms have been proposed, each with its own parameters,
(2) performance of these algorithms can be sensitive to
parameter values that are difficult to choose a priori, and (3)
due to the stochastic nature of such algorithms, characterizing
their performance can be non-trivial.

The contributions of this paper are as follows. We present
a formulation of motion planning algorithm selection and
parameter tuning as a hyperparameter optimization problem.
We outline general desiderata for the design of loss functions
that capture motion planning algorithm performance and
provide several concrete examples. Finally, we extensively
evaluate the performance improvements that can be obtained
through hyperparameter optimization and characterize the
extent that optimized algorithm performance generalizes in
realistic settings. While in practice the optimized planner
configuration’s performance seems to generalize to other
planning problems, we suspect that the optimal configuration
depends somewhat on a robot’s kinematics and the envi-
ronment geometery. We hope this work will be used in
the community to provide a higher standard of algorithm
assessment in motion planing.

The rest of the paper is organized as follows. The next
section briefly reviews hyperparameter optimization and re-
lated work on automatic algorithm configuration, with a focus
on robot motion planning. Section III describes the methods
used to solve the hyperparameter optimization problem for
motion planning. It lays out design considerations for loss
functions (i.e., optimization objectives for hyperparameter
optimization) and includes specific ones that are useful for
motion planning such as planning speed or convergence to
optimality. Section IV presents an extensive evaluation of
the hyperparameter optimization framework for a range of
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motion planning problems for a mobile manipulator with a
variety of loss functions.

II. RELATED WORK

In recent years several approaches to hyperparameter
optimization have been proposed. Although this type of
optimization can be performed using grid-search or gradient
descent techniques [3], stochastic, gradient-free methods [4]–
[7] have proven to be popular due to their generality and
better scalability compared to alternative methods. While
many hyperparameter optimization approaches are focused
specifically on deep learning methods, there also several black
box approaches that are broadly applicable such Bayesian
Optimization [8], Hyperband [9] and their combination
(BOHB) [7]. In this paper we use a toolbox called HpBand-
ster [6] that implements these methods, but others exist (e.g.,
Tune [10]).

There has been some prior work on applying hyperpa-
rameter optimization to motion planning [11], [12], but this
work focused on the problem of tuning parameters of a given
planning algorithm, whereas in this work the planning algo-
rithm is itself another hyperparameter. In [13], the Sequential
Model-based Algorithm Configuration (SMAC) [14] is used,
a precursor to the HpBandster algorithm used in this work,
whereas in [12] a variety of methods is used. Our work
generalizes this prior work to a much larger hyperparameter
search space (because of the large number of planning
algorithms and the large number of algorithm parameters
considered), but also discusses the design of effective loss
functions and different notions of optimality. In addition, our
work provides a more in-depth discussion of how planner
configuration optimization generalizes beyond the problems
considered during optimization.

III. METHODS

A. Introduction

The hyperparameter search space is generally huge in
motion planning. Even when restricted to just one library
of motion planning algorithms such as the Open Motion
Planning Library [15], there are tens of algorithms, each
typically having several parameters. Some hyperparameters
are categorical, while others are numerical. Additionally, there
are often complex dependencies that need to be captured,
so that only meaningful combinations of hyperparameter
settings are explored. Therefore, a simple brute force search is
impractical and a greedy optimization is likely to get stuck in a
local minimum. Thus, the problem is to design loss functions
that capture relevant aspects of motion planning algorithm
performance for use by a more intelligent optimization
routine. These loss functions should discriminate—with
high probability—higher performing algorithm configurations
versus lower performing ones, such that this probability
increases as the allowed computational budget increases.

B. Designing Loss Functions

Let the loss L for an algorithm configuration c on a single
motion planning problem p be denoted by L(c, p, t). Here, t

is a maximum time budget to solve p. For non-deterministic
motion planning algorithms (such as sampling-based planners)
L is actually a random variable and it is more meaningful
to define a loss function over the distribution of L. The
mean and median could be used, but they do not capture any
aspect of the variance of the distribution. In many practical
scenarios it is useful to guarantee that planning times remain
below some limit with high probability. Also, when given
two planning algorithm configurations with the same mean
(or median) in their loss distributions, we generally prefer
the one with smaller variance so that planning time is more
consistent. There is a trade-off, however: fewer runs are
necessary to accurately estimate the mean/median than, say,
a 99% percentile of the distribution. The latter is useful to
bound worst-case performance.

As will become clearer in the next subsection, when
minimizing loss functions, it is desirable to have loss functions
with the following properties:

• The time spent on evaluating the loss for a planning
configuration should be bounded.

• Accuracy of loss estimates is more important for well-
performing planning configurations than for poorly-
performing planning configurations.

• At the same time, it is helpful if a loss function is highly
discriminative, even when planning configurations are
poorly performing. In hyperparameter optimization, a
large fraction of the search space consists of poorly
performing configurations. A loss function that is discrim-
inative is more helpful in directing the search towards
more promising areas in the search space.

1) Optimizing for planning speed: Suppose we are inter-
ested in finding a motion planning algorithm configuration
that is the fastest at reliably solving a set of representative
problems P = {p1, . . . , pn}. Let mt,i(c) denote the number of
times that we can solve problem pi using configuration c
within time budget t. The actual solve times s j, j = 1, . . . ,mt,i,
can be thought as samples drawn from s j ∼ L(c, pi, t −
∑

j−1
k=1 sk). Using a slight abuse of notation, we treat these

samples as all being drawn from L(c, pi, t). In many cases
(e.g., a small time budget, a difficult planning problem, or
poor planning configuration), mt,i = 0 and thus we have no
samples that could help decide which configuration is better
than others. In those cases, we can treat the distance dt,i to
the goal of the best partial solution path found by a planner
configuration as a fallback metric that can be used to help
discriminate between different algorithm configurations. We
propose to combine these elements in a loss function of this
form:

Lq(c, pi, t) =

{
Qq({s1, . . . ,smt,i}) mt,i > 0,
t +d2

t,i mt,i = 0.

Here, Qq(·) is the q-quantile over a set of samples. With q =
0.5, Lq(c, pi, t) estimates the median solve time (if t is large
enough). As q is increased the loss function captures more
of the expected worst-case performance. In our experiments
we used q = 0.7 to balance capturing worst-case performance



with the number of samples required to get a good estimate
for the quantile of the underlying distribution from which
the samples as drawn1. Note the addition of t when mt,i = 0
to ensure that the loss is always greater when no solution
is found than when one or more solutions are found. The
loss over the entire set P is simply defined as the average of
individual losses:

Lq(c,P, t) = 1
n

n

∑
i=1

Lq(c, pi, t)

It is straightforward to verify that this function has the three
desirable properties stated above:

• The time to compute Lq(c,P, t) is bounded and roughly
equal to n · t (there is some additional computational
overhead in initializing a motion planning problem).

• For a sufficiently large time budget, a good planner
configuration is likely to solve a given problem more
often than a bad one, leading to a more accurate estimate
of the loss for a good configuration.

• It is discriminative: for a small time budget (where
a planner configuration may not be able to solve a
problem), a good configuration is more likely to get
closer to the goal than a bad one. Note that if mt,i > 0,
Qq({s1, . . . ,smt,i}) ≤ t, which means that the loss for
configurations with mt,i = 0 is always strictly larger than
the loss for configurations with mt,i > 0.

2) Optimizing combined planning time and execution
time: In online planning, motion planning and execution are
typically interleaved: while a robot is executing a plan, it is
already planning a new path starting from an (expected) future
state. This is often done at a certain frequency. Obviously,
the planner needs to be fast enough that a trajectory is
found before the expected start state is reached. At the same
time, a shorter trajectory length is preferable, so a planner
configuration that is slightly slower than others, but produces
very short trajectories could be considered more optimal.
A way to optimize both is to consider optimization of the
combined planning time and execution time, where execution
time is simply the duration of the trajectory produced by the
planner. Let the loss of a single run be defined as

D j(c, pi, t) =

{
si + ℓi si ≤ t,
t + ℓmax +d2

t,i otherwise,

Here, si is the time the planner configuration c took to solve
problem pi and produce a trajectory with duration ℓi, if it
could be solved within the time limit t. If the problem could
not be solved, the loss is equal to the time limit plus ℓmax,
a user-defined upper bound on path length, plus the square
of the distance to the goal for the best approximate solution
found. The loss functions Dq(c, pi, t) and Dq(c,P, t) can again

1The variance of Qq(·) is equal to q(1−q)
mt,i f (t) , where f (t) is the probability

density of the (unknown) true distribution of solve times [16].

be defined analogous to Lq(·):

Dq(c, pi, t) = Qq({D j(c, pi, t)| j = 1, . . . ,mt,i}),

Dq(c,P, t) =
1
n

n

∑
i=1

Dq(c, pi, t).

By inspection we can verify that the loss function Dq(c,P, t)
also has the desirable properties stated at the start of the
section.

3) Optimizing for convergence to optimality: In some
applications it is not only important to quickly find a feasible
solution, but ideally find one that is close to optimal. Many
sampling-based planning algorithms have been proposed that
guarantee asymptotic (near-)optimality (see, e.g., [17]–[19]):
as time approaches infinity the solution path converges on the
optimal path (or a constant factor approximation thereof in
the case of near-optimality). Many such planners can be run
as anytime algorithms: they can return the best found solution
at any given time. The ideal anytime planner would quickly
find a feasible solution and thereafter quickly converge to
the optimal solution. Suppose t0 is the time at which a
particular planner configuration finds an initial feasible path.
Let ℓ(t), t ≥ t0 be the cost of the path at time t. The cost of a
solution path can be defined in various ways, but for simplicity
it is often assumed to be path length. For asymptotically
optimal planners we can now define the loss for a single run
j of a planner configuration as the area under the curve of
path cost as a function of time:

C j(c, pi, t) =


1
t

(
t0 · ℓ(t0)+

∫ t
τ=t0 ℓ(τ)

)
dτ t0 ≤ t,

ℓmax +d2
t,i dt,i is finite

2ℓmax otherwise.

Here, ℓmax is a user-defined maximum cost constant to be
used when no solution was found within time t seconds
and dt,i denotes distance to the goal as before. Note that
asymptotically optimal planners typically do not terminate
until the maximum solve time is exceeded: they keep running,
trying to find a better solution. We therefore use the time
budget t for mt runs of exactly t

mt
seconds each. The number

of runs mt can be a function of t, but in our experiments we
simply fixed it to a constant equal to 10. The loss functions
Cq(c, pi, t) and Cq(c,P, t) can now be defined analogous to
Lq(·):

Cq(c, pi, t) = Qq({C j(c, pi, t)| j = 1, . . . ,mt}),

Cq(c,P, t) = 1
n

n

∑
i=1

Cq(c, pi, t).

By inspection we can verify that the loss function Cq(c,P, t)
also has the desirable properties stated at the start of the
section.

C. Optimizing Loss Functions

In this work, we use a framework for hyperparameter
optimization called Bayesian Optimization and Hyperband
(BOHB) [7], although other frameworks could be used as well.
As the name suggests, BOHB combines the strengths of two
previously proposed hyperparameter optimization techniques:



Bayesian Optimization [8] and Hyperband [9]. Hyperband
optimizes hyperparameters by evaluating configurations in a
sequence of stages with budgets that increase by a scaling
factor η with each successive stage (the default value of
η = 3 was used in this paper). The best 1

η
configurations

of each stage are then advanced to the next stage. The total
number of configurations considered at each stage is reduced
by a factor of 2 from the previous stage. The initial set of
configurations and a ( 1

2 −
1
η
) fraction of configurations in

subsequent stages are randomly sampled. BOHB improves on
this basic scheme by replacing random sampling in each stage
with Bayesian optimization. The method has been shown to
have strong anytime and final performance [7]. Moreover,
it lends itself well to a parallel implementation: the loss
values for many different hyperparameter settings can be
evaluated independently. The particular implementation of
BOHB we used, HpBandster2, supports different types of
hyperparameters (e.g., categorical, integer, and continuous)
as well as constraints between them (e.g., certain hyperpa-
rameters might only be relevant for specific values of other
hyperparameters). All of these features are essential for the
problem of motion planning algorithm selection and parameter
tuning. For example, the motion algorithm type is a categorical
variable and a parameter for the number of nearest neighbors
to connect to is an integer variable, but that parameter is only
relevant for planners like PRM.

D. Greedy Planning Portfolio Selection

A by-product of running BOHB is that we get a diverse
set of planning configurations that (at least in the last stages
of Hyperband) tend to perform quite well. Additionally, we
can also easily log the loss value for each of these planning
configurations on individual planning problems (in addition
to the aggregate loss value). This can be useful to synthesize
a portfolio of planning configurations that has the potential to
outperform the best one found. Suppose we run n planning
threads in parallel, all solving the same problem and terminat-
ing as soon as one finds a solution. This has been shown to
give superlinear speedups over a single planning thread when
using randomized algorithms [20]–[22]. However, the best
configuration overall may not necessarily be the best planner
for every individual planning problem. Creating a portfolio
of algorithms to be run in parallel is complementary to the
question of how any individual algorithm can be effectively
parallelized. There are some fundamental differences between
these problems, however. With a portfolio of randomized
algorithms, randomness is exploited to achieve speedups
rather than explicit coordination among threads. Furthermore,
the portfolio approach essentially selects and tunes a set of
search heuristics that optimizes performance across some set
of problems.

Note that when combining randomized algorithms into a
portfolio, a higher variance in run times is not necessarily a
problem. In fact, it can actually be an advantage. Suppose we
have two algorithm configurations with identical mean and

2See https://automl.github.io/HpBandSter.

median in their run times, but significantly different variances.
Then a portfolio with n configurations of the higher variance
configuration will likely outperform one with n configurations
of the lower variance configuration, since the probability that
at least 1 of the n threads finds a solution in a time that is
significantly below the mean/median is much higher in the
former case. Of course, this advantage needs to be balanced
with bounding the worst-case behavior and depends both
on the exact distribution of solve times and the number
of threads available. By using a quantile threshold that is
significantly below 0.5 in the loss functions defined above,
the hyperparameter optimization will effectively optimize
configurations for best-case performance, which may be useful
in generating configurations for high-performing portfolios
of planning algorithms run in parallel. More sophisticated
schemes for running multiple algorithms in parallel have been
proposed (e.g., using time allocation based on multi-armed
bandits [23]). Investigating portfolio selection and effectively
leveraging such a portfolio is left for future work.

IV. EVALUATION

Experimental setup: The HyperPlan framework has
been implemented in an extensible way. The results in this
section were obtained using HpBandSter as the hyperparam-
eter optimization framework. The algorithms included for
optimization are all available in the Open Motion Planning
Library (OMPL) [15]. A generic helper program benchmarks
a particular planner configuration on a particular motion
planning problem and returns a log file of performance
characteristics. This output is parsed by HyperPlan and
aggregated into a loss value. The helper program relies on
OMPL’s benchmarking capabilities [24] and MoveIt [25],
which makes it possible to benchmark algorithms in realistic
settings. Other helper programs for different robotics software
frameworks can easily be added.

Fig. 1 shows a number of test cases used to evaluate
HyperPlan. In each case, the motion planning problem is
to find a collision-free path between two joint states of
manipulator. In the top row (Fig. 1(a)–(e)), test cases are
based on planning for the 7-DOF arm and 1-DOF torso of a
Fetch mobile manipulator, while in the bottom row (Fig. 1(f)–
(j)) a 7-DOF arm of a Baxter manipulator is used. Each image
shows the start and goal state of the robot superimposed.
The start state is either a configuration in a folded “home”
position or a configuration where the gripper is at a lower
height than the goal. The base remains in the same place.
Each example shown is actually representative of a class of
problems. The base pose of the robot as well as the exact
positions of the objects on the shelves and table are uniformly
randomly sampled (see [26] for details). For each class we
generated 20 different motion planning problems this way.
Hyperparameter optimization was applied to the first three
problems of each class, while the remaining 17 problems
and all other motion planning problems from other classes
were used to evaluate how performance generalizes. We also
conducted an experiment where HyperPlan was run using one
motion planning problem each from the Box, Shelf, and Table



(a) Box (b) Shelf (c) Table (d) Tall pick (e) Narrow pick

(f) Box (g) Shelf (h) Table (i) Tall pick (j) Narrow pick

Fig. 1. Test cases used for evaluating HyperPlan.
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Fig. 2. Visualization of the hyperparameter search space exploration for two test cases. Lower loss values are better. (a) Aggregate performance across
three problems instances of the Box class where planning speed is optimized for the Fetch. (b) Aggregate performance across one problem each from the
Box, Shelf, and Table classes where combined planning and execution time is optimized for the Fetch.

classes. This is useful to evaluate whether a more diverse
set of motion planning problems as input to HyperPlan also
results in better generalization behavior on other problems.

As a baseline for performance we use the default planner
configuration used in the Fetch MoveIt configuration package.
This happens to be RRTConnect [27], with parameters
heuristically selected by OMPL. The hyperparameter search
space explored during optimization includes many planning
algorithms and many parameters; a detailed description can
be found in the appendix.

Visualization of hyperparameter space exploration:
Fig. 2 shows a visualization of the hyperparameter optimiza-
tion process for two different test cases. On the X-axis the
different rounds of hyperband optimization are shown with
the corresponding budget in seconds. Each dot represents a
planner configuration sampled by BOHB. The Y-axis shows the
corresponding loss value on a log scale. The dots are colored
by planner type and the planners are ordered in the legend by
how often they were sampled. Planner configurations with the
fewest samples are all colored in gray. The number of sampled
configurations decreases exponentially with increasing budget
size. Initial loss values tend to vary significantly in part
because HpBandSter does not have a good model yet, but also
because the loss values themselves are coarse estimates of loss

values for the same planner configurations at higher budgets.
In Fig. 2(a) HyperPlan quickly discovers many configurations
of RRTConnect with low loss values, but a single configuration
each for SBL and BKPIECE maintain a slight advantage over
RRTConnect in the last rounds of optimization. In Fig. 2(b)
LBKPIECE is found to be optimal from the beginning. The
optimization process will still sample other types of planners,
but almost all of them perform significantly worse.

Results for optimizing planning speed and combined
planning and execution time: Table I summarizes the results
from a large suite of experiments. Each row corresponds to
the environments shown in Fig. 1. The first two groups of
rows show results for the Fetch and Baxter, respectively, when
optimizing for planning speed. The last two groups of rows
show results for the Fetch and Baxter, respectively, when
optimizing for combined planning and execution time. The
optimized planner configuration is described in the second
column and the corresponding loss value is shown in the
next column. This loss value can interpreted as follows: in
the “Box” test case in the very first row, any of of three
sample problems used during optimization can be solved
within 0.17 seconds 70% of the time (since a quantile of
0.7 was used). In contrast, the baseline performance for
that same setting is almost twice as large at 0.27 seconds.



TABLE I
HYPERPLAN RESULTS FOR FETCH AND BAXTER WHEN OPTIMIZING FOR Lq (PLANNING SPEED) AND Dq (COMBINED PLANNING AND EXECUTION

SPEED) ACROSS A RANGE OF PROBLEM CLASSES. ALL ENTRIES CORRESPOND TO LOSS VALUES FOR DIFFERENT PLANNER CONFIGURATIONS EVALUATED

ON DIFFERENT SETS OF MOTION PLANNING PROBLEMS.

baseline, within across
problem class optimized planner configuration optimized baseline octomap octomap class classes

F
E

T
C

H
,L

q

Box BKPIECE, shoulder proj., range=1.17 0.17 0.27 0.30 1.51 0.12 2.51
Shelf LBKPIECE, shoulder proj., range=2.01 1.21 51.21 43.03 282.70 2.51 2.25
Table LBKPIECE, shoulder proj., range=1.02 0.07 0.82 0.35 24.00 0.09 0.53
Tall pick LBKPIECE, shoulder proj., range=1.28 1.57 64.14 6.06 353.24 2.36 0.79
Narrow pick LBKPIECE, shoulder proj., range=327 11.91 495.04 356.29 572.84 9.84 7.20
Box/shelf/table LBKPIECE, shoulder proj., range=1.03 0.13 3.19 0.57 33.67 0.29 0.70

B
A

X
T

E
R

,L
q Box RRTconnect, no intermediate states, range=2.35 0.10 0.15 0.22 0.37 0.12 18.82

Shelf LBKPIECE, shoulder projection, range=341 4.99 52.47 33.04 334.98 4.59 16.18
Table RRTconnect, keep intermediate states, range=1.93 0.25 0.95 4.28 245.52 0.28 26.42
Tall pick RRTconnect, no intermediate states, range=2.45 2.70 18.85 8.69 153.25 3.70 22.14
Narrow pick RRTconnect, no intermediate states, range=344 N/A 512.55 487.74 487.87 598.67 142.15
Box/shelf/table LBKPIECE, shoulder proj., range=1.18 0.38 7.87 0.88 80.40 0.38 2.00

F
E

T
C

H
,D

q

Box SBL, shoulder proj., range=1.02 2.83 3.86 3.41 5.98 2.78 3.41
Shelf LBKPIECE, shoulder proj., range=1.37 3.57 76.30 10.99 N/A 3.79 3.81
Table LBKPIECE, shoulder proj., range=1.14 2.55 3.79 3.50 27.82 2.63 3.68
Tall pick LBKPIECE, shoulder proj., range=260 26.73 55.33 87.62 N/A 27.79 10.40
Narrow pick LBKPIECE, shoulder proj., range=373 20.11 137.45 103.05 N/A 12.23 13.39
Box/shelf/table LBKPIECE, shoulder proj., range=1.06 2.76 6.12 3.75 40.46 2.98 3.54

B
A

X
T

E
R

,D
q Box RRTConnect, keep intermediate states, range=1.57 1.47 1.81 1.96 2.33 1.74 N/A

Shelf LBKPIECE, shoulder proj., range=401 7.93 75.03 35.05 N/A 6.80 N/A
Table RRTConnect, no intermediate states, range=3.52 2.66 3.27 15.40 122.69 2.75 N/A
Tall pick LBKPIECE, shoulder proj., range=3.81 5.10 25.06 12.11 149.65 6.58 N/A
Narrow pick LBKPIECE, shoulder proj., range=29.6 68.88 N/A 45.44 N/A N/A 18.51
Box/shelf/table LBKPIECE, shoulder proj., range=1.36 2.52 6.36 3.16 52.44 2.64 7.57

The remaining columns characterize generalization. First, for
each environment we generated an artificial octomap [28]
of each environment and evaluated the optimized planner
configuration on this representation. (Octomaps are a common
environment representation created by a perception pipeline.)
The loss value for this setting is shown in the “octomap”
column. We can also evaluate the loss value for the baseline on
the same octomap examples, shown in the “baseline, octomap”
column. The octomap representation is more complex than
the original mesh representation, which tends to increase the
cost of collision checking, often the dominant computational
cost in motion planning. The octomap representation also
slightly inflates the obstacle size, which makes the motion
planning problems even harder. As can be seen in Table I, the
planner configuration that was optimized for simple mesh en-
vironments also offers significant performance improvements
when the environment is represented by an octomap. The
“within class” column shows the loss value when the optimized
planner configuration is used on the remaining 17 sample
problems from that class. Finally, the last column shows the
loss value when using all motion problems except the ones
during hyperparameter optimization. Loss values greater than
600 are listed as “N/A,” since they correspond to cases where
the planner configuration found by HyperPlan timed out on
one or more of the test cases (in which case the loss values
are not very meaningful). The results in the last column
suggest that in general (across robots and loss functions)
optimizing performance using a diverse set of motion planning
problems (i.e., the “box/shelf/table” rows), results in planning

configurations with (near-)best overall performance across all
classes. Furthermore, performance improvements generally
transfer well to the octomap representation. Optimizing over
simpler problems (such as the “box” and “table” test cases)
typically also results in good generalization behavior, but this
is not as robust.

Results for optimizing for convergence: In a second
experiment, the convergence to optimality is optimized using
three instances of the Box class for the Fetch manipulator.
HyperPlan arrive at AIT* with 1347 samples per batch and
using k-nearest neighbors (rather than r-nearest neighbors)
as the best-performing planning configuration with the
following losses:

optimized baseline octomap baseline,
octomap w/in class

2.01 N/A 2.26 N/A 2.30
Note that loss values do not represent time but area under
a curve, and are thus harder to interpret. Nevertheless,
performance on the three examples used for optimization
seems to generalize to the other 17 examples. Surprisingly,
performance on the corresponding octomap representations
for the three scenes used during optimization is only
marginally worse. Performance across other problem classes
is not reported, because the optimized configurations were
not able to solve many problem instances from other classes.
Note that for this loss function is not clear what algorithm
should be used for baseline performance. RRT*, one of
the first asymptotically optimal algorithms, would a be
reasonable choice, except that with default parameter settings



it is not able to solve many problem instances within five
minutes.

V. CONCLUSION

We have presented an approach to cast motion planning
algorithm selection and parameter tuning as a hyperparameter
optimization problem. This is a difficult problem since there
are many algorithms to choose from, and the best one for
a particular class of problems is highly dependent on those
problems, the particular parameter settings, and the notion
of optimality used. The focus in this paper has been on
sampling-based planners, where this problem of algorithm
selection is further complicated by the stochastic nature
of these algorithms. We presented general guidelines for
constructing loss functions to characterize the performance of
planning algorithm configurations and present results for two
different manipulators on a variety of problems. We showed
that optimized planner configurations generally perform well
on other problem classes not considered during optimization.

The results in this paper indicate that performance improve-
ments of optimized planner configurations generalize broadly.
This suggests that a way to bootstrap optimization over hard,
time-consuming motion planning problems is to seed the
initial set of planner configurations with ones optimized for
simpler problems that require only a small time budget. In
future work, we plan to explore this type of curriculum
learning to accelerate hyperparameter optimization. We also
plan to further investigate how the output from hyperparameter
optimization can be used for algorithm portfolio selection and
how a such portfolio can be used effectively during online
planning.

APPENDIX

A. Optimizing Planning Speed

The hyperparameter configuration space consisted of the
following sampling-based planning algorithms: PRM [29],
Lazy PRM [30], RRT [27], RRTConnect [27], EST [31], bi-
directional EST, KPIECE [32] (including bidirectional and lazy
versions), SBL [33], and STRIDE [34]. The following planner
parameters were also included:

• Max. number of nearest neighbors: This determines
the number of states that PRM and LazyPRM attempt to
connect to any new valid sampled state. It is an integer
value in the range [1,20].

• Goal bias: This controls how aggressively exploration is
biased towards expanding a roadmap/tree directly toward
a goal state. This is a real-valued parameter in the range
[0,1].

• Range: This controls the maximum distance that a
tree is extended before creating a new state. This is a
real-valued parameter in the range [1,500].

• Intermediate states: This boolean flag controls whether
to keep intermediate states that are checked for collisions
during the extension of a tree.

• Type of projection: Low-dimensional projections are
often useful for kinematic chains and other high-
dimensional systems to keep track of search space cover-

age. Many planners [31]–[33] rely on such projections to
guide the exploration. While infinitely many projections
could be defined, we restricted the projection to two
possible options: (1) a projection onto the first two joint
angles (as the joints closest to the base tend to cause the
largest displacement of the arm) and (2) a projection onto
the end effector position, as computed by the forward
kinematics.

These parameters are not applicable to all planning algorithms.
HpBandster includes the ability to capture dependencies
between hyperparameters so that, e.g., the maximum number
of neighbors is only used for PRM and Lazy PRM and the
intermediate states are only used for RRT and RRTConnect.

B. Optimizing Combined Planning and Execution Speed

Other than the loss function, the experimental setup is the
same as in the optimization for planning speed.

C. Optimizing for Convergence to Optimality

The hyperparameter configuration space consisted of the
following sampling-based planning algorithms: RRT* [17],
RRTX [35], BIT* [19], AIT* [36], LBTRRT [37], and SST [38].
Note that we cannot use the same planning algorithms as
in the previous example, since those do not provide any
optimality guarantees. The following planner parameters were
also included:

• Goal bias: See definition above.
• Range: See definition above.
• Whether to use k-nearest or r-nearest neighbors: This

boolean parameter determines which variant is used for
selecting the optimal neighborhood for connecting to
nearby states and rewiring a tree.

• Samples per batch: This is an integer parameter used
by BIT* and AIT*. Values were sampled on a logarithmic
scale over the range [1,10000].

• Delay collision checking: A boolean flag for RRT*
that delays collision checking between a state and its
neighbors.

• Rejection variant: A categorical variable that selects
one of four variants of a subroutine for RRTX.

• Selection and pruning radii: Two parameters for SST,
sampled over the range [.01,5].
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