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Abstract—Protein folding refers to the process whereby a protein assumes its intri-
cate three-dimensional shape. is chapter reviews a class of methods for studying
the folding process called roadmap methods. e goal of these methods is not to
predict the folded structure of a protein, but rather to analyze the folding kinet-
ics. It is assumed that the folded state is known. Roadmap methods build a graph
representation of sampled conformations. By analyzing this graph one can predict
structure formation order, the probability of folding, and get a coarse view of the
energy landscape.

Keywords: protein folding, folding kinetics, roadmap methods, conformation
sampling techniques, energy landscape.

1 Introduction

Protein folding refers to the processwhereby a protein assumes its intricate three-dimensional
shape. Different aspects of this problem have attracted much attention in the last decade.
Both experimental and computational methods have been used to study protein folding and
there has been considerable progress [–]

is chapter reviews a class ofmethods for studying protein folding called roadmapmeth-
ods [–]. esemethods are relatively newand are still under active development. Roadmap
methods are computational methods that have been developed to understand the process or
the mechanism by which a protein folds or unfolds. It is typically assumed that the folded
state is already known. Note that this is not a comprehensive survey of all existing compu-
tational protein folding methods. In particular, it does not cover Molecular Dynamics ()
methods [], Monte Carlo methods () [], the use of coarse grain models in simulations
and many others.

Many papers (see for example [–]) have discussed the advantages and disadvantages
of traditional computational methods for studying protein folding. Some of the drawbacks
include the fact that classical / simulations typically compute only one trajectory, that
escaping local minima can be very difficult and that the process has no memory to recognize
whether conformations have been visited in the past or not. ese issues led some researchers
to develop enhanced versions of  and , which take advantage of laboratory data, non-
uniform or accelerated timescales, modified energy functions, parallelism, biases away from
previously generated conformations, and other modifications (for examples, see [–]).
Other researchers, inspired by advancements in robot modeling and by the need for alter-
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native protein modeling methods, began to build so-called roadmaps to explore the confor-
mational space of proteins. A roadmap is a representation of many conformations and the
transitions between them as a graph data structure. Roadmap-basedmethods were originally
developed in robotics [] where the configuration (conformation) space of a robot is ex-
plored in order to find a collision-free path that will take the robot from an initial position to
a final position. By taking advantage of the analogy between robots and molecules, in which
the main molecular chain of a protein corresponds to an articulated robot, roadmap meth-
ods were adapted to study how a protein can attain a known final shape. Roadmap methods
were significantlymodified and enhanced to address the folding problem. eir application to
the folding problem is still relatively new and not as well-understood as / simulations.
ey seem to offer vast computational improvements and potentially increased coverage of
the conformational space compared to traditional methods. is could mean that ‘interest-
ing’ areas of the conformational space can quickly be discovered, and—if necessary—further
explored with traditional methods. Yet, it is not clear how much (if anything) is lost by the
use of coarse approximations. is chapter surveys some of the most promising roadmap
methods for protein folding [–].

2 Background

2.1 Protein	Representation

e simplest representation of a protein is a vector that contains the Cartesian coordinates of
all atoms in a conformation. is is the representation used in / simulations; molecular
potential energy functions are almost always parameterized by atomic coordinates in Carte-
sian space (e.g., []).

e drastic changes in the conformation of a protein occur, however, with rotations about
certain bonds. Often, a vector of bond rotations is used as a more compact representation
of a protein. e amount of rotation about a single bond relative to some reference state is
called the dihedral angle. is representation ignores the stretching of bond lengths and bond
angles, but these effects are often negligible compared to the bond rotations. Efficient ways
to calculate the Cartesian coordinates of all atoms given the dihedral angles of a protein are
given in [].

Another way to represent a protein is to model flexibility at the level of secondary struc-
ture. A molecule is divided into α-helices, β-sheets, and connecting loops. e sequence of
secondary structure elements is represented by a sequence of vectors. Rotational degrees of
freedom are assigned at the junctions where the vectors meet. e α-helices and β-sheets
can twist about their axis, and the loop regions are allowed to extend in the direction of their
vector. In this representation, traditional energy functions cannot be used, but it is possible
to approximate molecular energy using a simple potential function [].

In roadmap methods for protein folding, all of the above representations have been used,
but the most popular one is the representation of conformations by dihedral angles. As will
be explained in the next section, roadmaps sample the conformation space of a protein. e
dihedral angle representation of a protein readily allows the generation of samples that have
properties desirable for roadmap-based methods.
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(a) A two-dimensional robotic configura-
tion space. Black shapes represent sets of con-
figurations that place the robot in collision
with obstacles.

(b) A two-dimensional molecular conformation
space, which could correspond to a molecule with
two rotatable bonds. White regions are low-energy,
black high-energy, and gray intermediate-energy.
e higher the energy of a conformation, the less
likely a molecule is to assume that conformation.

Figure : Robotic configuration space vs. molecular conformation space.

2.2 Roadmap	Algorithms	for	Robot	Motion	Planning

e idea of using a roadmap to represent properties of a complex space originated in robotic
motion planning [, ]. In motion planning, a collision-free path between a start and goal
configuration of a robot is computed. Consider a long articulated robot for the moment. e
degrees of freedom of such a robot correspond to moving its joints. e set of all configu-
rations of a robot is called its configuration space. Each point in this space corresponds to a
robot configuration. A simple, two-dimensional robotic configuration space is illustrated in
Figure (a). e subset of configurations where the robot does not collide with any obstacles
(including the robot itself ) is called the free space, and is drawn white in Figure (a). e set
of configurations in which the robot collides with itself or a workspace obstacle is called the
occupied space and is drawn in black in Figure (a). Motion planning can thus be phrased as
the problem of finding a curve (a path) that lies completely in the free part of the configuration
space.

Computing the free space exactly is a very hard problem. e size of the configuration
space and the complexity of the motion planning problem grow exponentially with the num-
ber of degrees of freedom []. Sampling based techniques called Probabilistic Roadmap
Methods (s) [] build a roadmap: a graph representation of the free space, where nodes
corresponds to configurations and edges to paths between them. is roadmap is computed
as follows. First, a large number of collision-free configurations are sampled. Next, for each
configuration, an attempt is made to find a path to some of its nearest neighbors. ese local
paths can simply be straight lines in the configuration space. If the path between two con-
figurations lies entirely in the free space, it is added to the roadmap. e motion planning
problem is now easily solved. e start and goal configuration are connected to their nearest
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neighbors in the roadmap. e path is then found by performing a simple graph search to
connect the start to the goal. Note that the roadmap has to be computed only once for a given
robot, and that many motion planning queries can be solved with the same roadmap. Ps
are able to solve motion planning problems in very high-dimensional configuration spaces,
but they do not guarantee completeness, i.e., they do not always find a path if one exists. In-
stead, they have been shown to be probabilistically complete, i.e., if a path exists, then with
high probability the  algorithm will find it. is probability goes to one as the number of
sampled configurations increases. Many variations of the basic  algorithm have been pro-
posed to increase the sampling of configurations in difficult areas (such as narrow passages).
A discussion of the  algorithm and its variations can be found in [].

For certain applications it is known a priori that only onemotion planning query will need
to be solved, so sampling the entire configuration spacemay be unnecessary. is observation
lead to a different class of sampling-based path planning algorithms in which a tree of config-
urations is grown from the start to the goal configuration and/or vice versa. e three main
variations within this class are called Rapidly-exploring Random Trees (s) [], Expan-
sive Spaces Trees (s) [], and Path-Directed Subdivision Trees (s) []. Rs grow a
tree of configurations as follows. First, a random configuration, which may be in collision, is
sampled. Next, the nearest configuration in the existing tree to the one just sampled is found.
Initially, the tree consists of just the start configuration. From the nearest configuration, a new
configuration is found some distance in the direction of the randomly sampled configuration.
is process is repeated until the tree is close to the goal configuration. is algorithm tends
to ‘pull’ the tree growth in the direction of unexplored parts of the configuration space. Es,
on the other hand, can be thought of as ‘pushing’ the tree growth in promising areas. During
each iteration of the  algorithm, a previously sampled configuration is selected at random
and a new configuration is sampled in a neighborhood of it. e key in the algorithm is the
probability distribution function used to sample the previous configurations. e  assigns
a probability to each configuration that is proportional to the distance to the k nearest neigh-
bors and inversely proportional to the number of times the configuration has been selected
before. Sampling using this distribution expands the trees towards unexplored areas of the
configuration space. Ps represent the trees somewhat differently from other tree-based
and roadmap methods. Rather than maintaining a set of nodes and edges, a  consists of
a set of edges, representing paths, joined at branches. It also maintains a cell decomposition
of the configuration space and assigns paths to cells. At each step of the  exploration,
an edge is selected based on an estimate of how well the area around each edge has already
been explored (measured using the cell decomposition), and a new edge is created starting
from a random point along the selected edge. In this way, the tree expands outward from
its origin and the updating of the cell decomposition leads the expansion of the tree to less
well-sampled areas.

Both roadmap and tree-based path planning and exploration algorithms have been used
to study the dynamic properties of proteins, including their folding behavior but also their
interactions with other molecules [–]. In order to apply these robotics-based methods
to complex molecular systems, however, some adaptations of the algorithms are necessary, as
will be presented in the following sections.
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3 Roadmaps	for	Protein	Folding

Conceptually, there is an analogy between high-energy areas in the conformation space of
a molecular system and obstacles, and between low-energy areas and free space (see fig-
ure (b)). ere may not be a single cut-off energy threshold, however, to separate the con-
formation space in black and white regions. Molecular conformation spaces therefore have
a fuzzier notion of collision and free space than robotic configuration spaces, as is shown in
Figure (b), and there are other important differences between exploring the free space of a
robot and the free space of a biomolecule. In a biochemical context, low-energy paths are of
specific interest, rather than paths in general. In folding, in particular, if it is assumed that the
folded state of a protein is known, then researchers would like to find how the protein unfolds
and refolds and determine some aggregate properties of these pathways, such as the overall
folding rate and probability of any given structure to proceed to a folded state. It is important
to note that the goal of roadmap methods is not to predict the folded state from a sequence
of amino acids. e interest is in folding kinetics: the aim is to get a better understanding of
the process or mechanism by which a protein folds and unfolds. It is assumed that the folded
state has already been determined.

e essential ingredients of any roadmapmethod are the choice of degrees of freedom, the
conformation sampling technique, and the way to connect conformations to form a roadmap.
Another important ingredient for roadmaps of molecular systems is the energy model. So far
simplified energy models have been used. It remains to be seen how accurate these models
are for complex problems. is section will review how roadmap based methods can provide
new insights into folding kinetics.

Before getting into the details of specific methods, it is worth mentioning that the idea
of using roadmap methods to study problems in molecular biology originated with Singh et
al. [], who adapted the  algorithm to study the docking of a ligand to a protein. Nodes
in the roadmap represented conformations and poses of the ligand, and were sampled at ran-
dom around the protein and kept or rejected based on their energy. Neighboring nodes were
connected with an edge if a set of conformations sampled on a straight line in configuration
space between them were all below an energy cutoff, and edges were labeled with transition
probabilities depending on the energy difference between the nodes at either end. is work
permitted the identification of active sites in proteins.

Several research groups extended and adapted this work, refocusing it on protein fold-
ing mechanisms [–]. e general trends of this ongoing research include tweaking the
energy function, edge weights and/or node sampling schemes. e goal of such work is ul-
timately to develop methods in which the final energy distribution of the set of nodes and
paths in the roadmap corresponds to the energy distribution predicted by statistical mechan-
ics (Boltzmann-like). Given a high-quality roadmap, it should be possible to determine prop-
erties of the protein’s motion and folding behavior from all-path analyses.

In general, the folding kinetics can be analyzed by looking at many paths in the roadmap.
ere are three fundamentally different ways to construct and interpret the roadmap. In the
first method (described in section .), the object is to compute the most energetically favor-
able paths between the folded state and denatured states and to consider those the folding
pathways. is is the approach taken by Amato et al. [–]. In the second method, the
weights of edges in a roadmap are interpreted as probabilities and the roadmap gives rise
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to a Markov chain. e folding pathways are analyzed by performing random walks on the
roadmap or by computing the limit distribution from the matrix of state transition proba-
bilities. is is the approach taken by Apaydin et al. [–] and is described in section ..
Finally, in section ., we describe the third method, proposed by Singhal et al. [,], which
combines roadmap methods with / methods.

3.1 PRMs	for	Protein-Folding	Pathways

In the work of Amato et al. [–] the backbone ϕ and ψ dihedral angles are taken to be the
degrees of freedom. e side chains are assumed to be rigidly attached to the backbone. For
a protein consisting of n residues there are 2(n− 1) degrees of freedom (the first and last ro-
tational angle do not contribute). Conformations can be sampled by randomly picking angles
from the allowable range. e sampling can be based on Ramachandran plots [], but this
approach has a very small probability of producing of conformations without steric clashes.
In early work, Amato et al. [] used Gaussian sampling around the folded state with various
standard deviations to create new conformations. is works well for proteins with approx-
imately  residues, but it still does not scale up to larger proteins with over  residues. A
more successful strategy is the following: Instead of sampling only around the native state,
conformations are sampled around all previously sampled conformations. is is done in a
way that creates a ‘wavefront’ of conformations growing outwards from the native state. e
conformations are partitioned into bins based on the number of native contacts. A native con-
tact is defined as a pair of Cα atoms that are within  Å of each other in the native state. e
bins are equal-sized and the number of bins is proportional to the number of native contacts
in the native state. A conformation q is accepted based on its energy E(q). When a structure
is generated, it is checked for collision of side chains, and rejected if any are found. If it passes
that test, the energy consists of a term favoring documented secondary structure via known
backbone hydrogen and disulfide bonds, and a term for hydrophobic interactions.

e probability of accepting a conformation q is:

P(accept q) =


1 if E(q) < Emin,
Emax−E(q)
Emax−Emin

if Emin ≤ E(q) ≤ Emax,
0 if E(q) > Emax.

us, all low-energy conformations are kept, as well as some of the medium-energy confor-
mations, in order to connect the low-energy areas. e energy thresholds Emin and Emax are
set at , kJ and , kJ, respectively. e accepted conformations are put in the appro-
priate bin. e sampling process iteratively tries to fill all bins, starting with the bin with 
native contacts. Once a neighboring bin has at least n conformations, sampling is performed
around conformations in that bin, in order to fill the succeeding bins. Although this sampling
method does not seem to correspond to a Boltzmann distribution of states, it still may capture
some of the essential folding properties such as contact formation order [].

e second phase in the roadmap construction is the connection of the sampled confor-
mations. For each conformation the method attempts to connect each node to its k nearest
neighbors. e ϕ and ψ angles are linearly interpolated and energy is checked along the line
in conformation space connecting a conformation q0 and one of its neighbors q1. If the en-
ergy does not exceed some threshold, the edge connecting q0 and q1 is added to the roadmap.
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e edge is given a weight that depends on the energy along the line connecting q0 and q1.
Suppose the energy of the sequence of conformations q0 = c0, c1, c2, . . . , cn−1, cn = q1 along
the line connecting q0 and q1 has been computed. e probability of moving from ci to ci+i is

Pi =

{
e
−∆Ei

kT if ∆Ei > 0,
1 if ∆Ei ≤ 0.

Here, ∆Ei = E(ci+1)− E(ci). e weight of the edge between q0 and q1 is then defined as

w(q0, q1) =
n−1

∑
i=0

− log Pi.

e edge weight is intended to encode the likelihood of going from one conformation to an-
other given the energy profile of the path.

After the roadmap is constructed, the folding pathways can be extracted. Starting from the
native structure, the shortest path to every other conformation can be found using Dijkstra’s
algorithm [].

is roadmap construction method was tested on  proteins with  to  residues,
including Protein G and Protein A []. Roadmaps were constructed in – hours. From
this, many folding pathways can be extracted and their properties analyzed. Of particular
interest is the order of secondary structure formation along each path between the stable
unfolded states and the folded state. is order provides a rough overview of the folding
mechanism of the protein, and can often be determined by laboratory experiment, thereby
providing a criterion by which to validate the roadmap method.

Using a constructed roadmap, the order of secondary structure formation for a single
path from an unfolded to folded state is determined by, for each native contact in a secondary
structure element, finding the first conformation along the path that contains that contact.
Along a single path, the appearance time for a secondary structure element is computed as
the mean of the appearance times for all of its contacts. Overall, the predicted secondary
structure formation order is the order with the greatest frequency over all paths. For the
experimental set of  proteins, this analysis of the roadmap correctly predicted the formation
order of secondary structure in all cases where laboratory data was available for comparison.

In later work [], the same group that developed the originalmethods did amore detailed
study of Proteins L and G. ese proteins both consist of an α-helix and one four-stranded
β-sheet. In spite of this structural similarity, the secondary structures are experimentally
documented to form in different orders. PRM analysis correctly predicted these differences
in secondary structure formation order.

In their latestwork [],omas et al.noticed that even the bin-based constructionmethod
described above often requires , or more samples to construct a complete roadmap for
relatively small (- residue) proteins. For more typical protein sizes, this poor scaling
rapidly becomes prohibitive. As a result, omas et al. [] developed a new sampling method
based on rigidity analysis of each sampled conformation. Using information about constraints
on motion such as disulfide bridges and hydrogen bonds, this analysis classifies each bond as
independently flexible, dependently flexible, or rigid. Independently flexible bonds may be
rotated without any effect on other degrees of freedom. Dependently rotatable bonds may
rotate but necessarily cause other related bonds to rotate also. Rigid bonds, as the name
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suggests, generally cannot rotate because they are part of a fully-constrained cluster of atoms.
Dependently flexible bonds form sets with fewer than the expected number of degrees of
freedom.

Under rigidity-based sampling, new samples are generated by perturbing the dihedral
angles of existing conformations in a non-uniform way. Specifically, independently flexible
bonds are rotated with a high probability, Pflex. Rigid bonds are rotated with a low but non-
zero probability Prigid. For sets of dependently flexible bonds with k internal degrees of free-
dom, k are selected at random and rotated with probability Pflex, and the remaining bonds are
rotated with probability Prigid. omas et al. found that allowing rigid bonds to rotate helps
the method attain better coverage of the conformation space, while biasing rotations to occur
most often for flexible bonds focuses the sampling on regions of the conformation spacemost
likely to be accessible to a real protein.

When tested on a set of  proteins, it is reported [] that rigidity-based sampling yielded
roadmaps with substantially better connectivity (measured as edges per node) than earlier
sampling methods. In many cases, this could often be accomplished using a quarter to half as
many nodes as were necessary to produce the roadmap under Gaussian sampling. In addition
to correctly predicting the secondary structure formation order of Proteins G and L, analysis
of roadmaps created using rigidity sampling also correctly predicted the order of secondary
structure formation of NuG and NuG. P analysis byomas et al.without rigidity sam-
pling had previously failed to predict the order of structure formation in these proteins.

3.2 Stochastic	Roadmap	Simulation

Stochastic Roadmap Simulation (), developed by Apaydin et al. [–] is a general tech-
nique to study molecular motion. e method derived its early inspiration from the work of
Singh et al. [], who were attempting to find a way to predict active sites in proteins using
roadmap methods.

e roadmap construction in  is straightforward. First, a number of conformations
is sampled independently at random from the conformation space. Each conformation is
connected to its k nearest neighbors. e transition probability Pij of an edge connecting
nodes vi and vj is defined as

Pij =

 1
dj

e
−∆Eij

kBT if ε j/dj
εi/di

< 1,
1
di

otherwise,

where ε i and ε j are the Boltzmann factors for conformations ci and cj, and di and dj are the
number of neighbors for vi and vj. e Boltzmann factor of a conformation c is defined as
ε = exp(−E(c)/kbT). A self-transition is added with probability Pii = 1− ∑i ̸=j Pij, so that
all transition probabilities of a node add up to . e energy E(c) is a hydrophobic-polar
(H-P) energy function [], in which each amino acid residue is classified as hydrophobic or
polar, and favorable energy is computed for hydrophobic residues in contact with (within a
cutoff distance of) each other. Conformations are also checked for steric clashes (overlapping
atoms), and rejected if necessary.
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A random walk on this roadmap is defined as follows. Starting at node vi, a neighbor vj
is chosen uniformly at random. A move from vi to vj is accepted with probability

Aij =

 di
dj

e
−∆Eij

kBT if ε j/dj
εi/di

< 1,

1 otherwise.

Each neighbor of vi has a probability of 1/di of being chosen. So the probability of a transition
from vi to vj is 1

di
Aij = Pij.

If a random walk is made on this roadmap, then each state i has a probability πi of be-
ing visited. As a random walk continues for an infinitely long time, assuming the Markov
chain is ergodic, the probabilities πi converge to fixed values that are the same for any ran-
dom walk. Moreover, if the conformation space is sampled more and more finely, it can be
shown that the limit distribution of the roadmap is the same as the limit distribution of an
 simulation []. In other words, the resulting distribution is theoretically consistent with
the Boltzmann distribution of energies predicted by statistical mechanics, and, equivalently,
with the results of a large number of Monte Carlo simulations.

Once constructed, the roadmap can be interpreted as aMarkov chain, and therefore be an-
alyzed using techniques from Markov-chain theory. is can be used to calculate a quantity
for each node called Pfold, the probability that the structure at that node will become com-
pletely folded before it becomes completely unfolded. is quantity can be used to estimate
which structures constitute the transition state of the folding process, as well as to estimate
the folding time for the protein.

Let F denote the set of nodes that correspond to conformations that are considered
folded. Now suppose there is another stable state called the unfolded state. Let U denote
the set of nodes corresponding to conformations close to the unfolded state. e probability
of folding, Pfold, also called the transmission coefficient [], for a given node vi can be written
as

P(i)
fold = ∑

vj∈F
Pij · 1 + ∑

vj∈U
Pij · 0 + ∑

vj ̸∈(F∪U)

Pij · P(j)
fold.

e probability of folding is conditional on the first transition. If a node in F is reached, then
F has been reached before U with probability . Similarly, if a node in U is reached, then F
has been reached before U with probability . Otherwise, P(i)

fold depends on the probability
of P(j)

fold. Fast iterative solvers for linear systems can be used to compute Pfold for all nodes.
For their initial work, Apaydin et al. used the Jacobi method as their linear system solver, but
noted that other approaches might provide faster performance.

S has been applied to theColE repressor of primer and the homeodomain of Engrailed,
a developmental protein, which are stored in the Protein Data Bank [] as rop and hdd,
respectively []. e vector model described in section . was used to represent the de-
grees of freedom. With this model, rop has  degrees of freedom and hdd has  degrees of
freedom. Energy was computed by the H-P energy model [] mentioned previously. Pfold,
was computed for about  randomly selected conformations using  and using  simu-
lations. e correlation between the Pfold values of the two methods quickly converged to 
as the number of nodes was increased, but  was roughly four orders of magnitude faster
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than the  simulations. With  the roadmap captures a substantial sampling of all folding
and unfolding pathways simultaneously, and Pfold was computed for all nodes, not just the
 that were randomly selected. us,  appears to be a promising alternative to running
many independent  simulations for examining protein folding behavior.

In recent work, it has been demonstrated that  can be used to estimate the transition
state ensemble and () and folding rate of proteins, as well as the Φ-values of residues [].
All of these values are of interest because they are quantities that can be measured by labo-
ratory experiment, and thus can be used to verify how well a simulation method such as 
models the true behavior of a protein. Additionally, the , if accurately determined, can
provide insight into the overall folding mechanism of the protein.

e  is the set of conformations that represent the peak of the energy barrier that must
be crossed by the protein in transitioning between the unfolded and native states. Alterna-
tively, they are the states whose true Pfold is 0.5, the structures that have an equal probability
of proceeding either to the folded or unfolded state. To account for modeling error, the 
is taken to be the set of all conformations with Pfold between . and ..

Apaydin et al. tested the method’s ability to calculate the folding rate on a test set of 
proteins, and compared the results with the dynamic programming algorithm of Garbuzin-
skiy et al. []. Intuitively, the folding rate is the fraction of unfolded molecules in some bulk
set that transition to the folded state per unit of time. S-based estimates of the folding rate
were found to correlate well with experimentally-determined values, and were consistently
lower than those found by the other method. is indicates a consistent and significant dif-
ference between the transition state ensembles found by the twomethods, and therefore, their
predicted folding rates. e difference appeared to be due to a less restrictive definition of the
 by the dynamic programmingmethod.  percent of the structures identified asmembers
of the  by the dynamic programming method were not considered part of the  by .
e more restricted set found by  led to more accurate estimation of measurable folding
properties.

Φ-values are per-residue numbers between  and  indicating the degree to which the
corresponding residue has reached its native conformation in the transition state of the pro-
tein []. ey are measured in the laboratory by mutating specific residues of the protein
and determining the effect of each mutation on its folding rate, and therefore, indirectly, the
free energies of intermediate structures in the folding process. A Φ-value of  indicates that
the mutation affects the folded state and transition state by the same amount, and that the
transition state of that residue therefore is essentially the same as the folded state. A Φ-value
of  means the residue is unfolded in the transition state.

e developers of  found Φ-values for each residue of their -protein test set [].
e results weremixed, but promising. For some proteins, such as CheY and the  binding
domain of UA, their results correlated well with experiment, but their average error for Φ-
values of the whole set of proteins was ., which is quite large given the  to  range of
Φ-values. Some of this error may be accounted for by the difference between the true free
energy variation of folding, as measurable in a laboratory, versus the approximation of free
energy used in simulations.
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3.3 Markovian	State	Models

A different way to construct a roadmap is by sampling small / trajectories rather than
individual conformations, generating aMarkovian StateModel () []. euse of /
simulations for sampling suggests, among other things, that it is reasonable to expect that the
resulting samples will have a realistic distribution of energies consistent with the predictions
of statistical mechanics.

Suppose an initial  or  simulation trajectory starts in the folded state and ends in the
unfolded state. Let {c0, c1, . . . , cn} be a sequence of conformations along this trajectory sep-
arated by some fixed time step. A conformation ci is selected uniformly at random from this
sequence and a new / simulation is started from here. If the simulation does not reach
the folded or unfolded state within some time limit, the trajectory is rejected. Otherwise,
the trajectory is kept and a new current trajectory is created. Let the generated trajectory
be denoted by {c′0, c′1, . . . , c′m}. If c′m is in the folded state, the current trajectory becomes
{c′m, c′m−1, . . . , c′0, ci, . . . , cn}. If c′m is in the unfolded state, the current trajectory becomes
{c1, c2, . . . , ci, c′0, c′1 . . . , c′m}. Again, a conformation is selected uniformly at random from the
current trajectory and this procedure of generating new trajectories is repeated a set number
of times.

Each conformation and each transition in each sampled trajectory is represented by a
node and an edge, respectively, in the roadmap. Each edge has associated with it a simulation
time tij required to make the corresponding transition. e trajectories are simulated such
that this timestep between adjacent conformations in the trajectory is constant. How this is
done depends on the type of simulation being run. Each edge also has a probability Pij that is
initialized to . e next step is to merge nodes that are within some cut-off distance of each
other, because they represent the same conformation. is step amounts to clustering of the
nodes into conformational substates. To merge two nodes, one of the nodes is removed from
the roadmap and all of its edges are added to the node it is merged with. If this results in
multiple edges between a pair of nodes, the edges need to be merged as well. e probability
and time of the merged edge are defined as:

Pnew
ij = P1

ij + P2
ij , tnewij =

P1
ijt

1
ij + P2

ijt
2
ij

P1
ij + P2

ij
.

After all nodes are merged that are within the cut-off distance of each other, the probabilities
are renormalized so that the sum of the probabilities of all outgoing edges at a node is equal
to . Singhal et al. [] show that it is possible to derive a roadmap for a different temperature
simply by reweighting the edges.

As with , one can apply standard Markov chain techniques to compute Pfold from the
roadmap. One can also compute the average time it takes to reach the folded state. e
validity of this roadmap construction method was tested on a -dimensional artificial model
system and on a small protein, the -residue tryptophan zipper beta hairpin, TZ. TZ has
previously been simulated on Folding@Home []. Some of this data was used to build a
stochastic roadmap. e predicted Pfold values and the average times to reach the folded state
were in agreement with experimental data.

One problem with both the  and the  method is that, because a roadmap of a
conformation space is a discretization of a continuous space, the transition probabilities be-
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tween nodes are only an approximation of reality. In a finite set of simulations, some states
and transitions that occur with relatively low probability may never be sampled. Because the
transition probabilities out of each node are forced to sum to , the transitions that are found
are overrepresented due to the absence of others. is can lead to error in the computation
of ensemble properties, including the predicted folding rate.

e developers of the  method proposed a method to estimate the error in the set of
transition probabilities found by their sampling, and therefore the error (or uncertainty) in
their calculated folding rates []. Furthermore, by isolating which states contribute the most
to this uncertainty, it becomes possible to adaptively select which states to generate sample
simulations from at each step in building the roadmap so as to minimize the final uncertainty
of the folding rate.

In analysis of s, the folding rate is measured by estimating themean first passage time
() from the unfolded state, x1, to the folded state. is requires estimation of the ,
xi, for all nodes in the roadmap, as follows:

xi =

{
∆t + ∑K

j=1 xj pij i ̸= K,
0 i = K,

where K is the index of the folded state, ∆t is the size of the time interval between successive
structures in the simulations used to construct the , and pij is the probability of transi-
tioning from state i to state j in time ∆t. e  from the first state, x1, can be used to
estimate the folding rate of the protein under the simulated conditions.

e problem is that it is not possible to determine the exact values of pij, and therefore
not possible to calculate exact values of . e maximum likelihood estimate, given the
roadmap built through series of simulations, is p̂ij = zij

ni
, where zij is the observed number

of transitions from state i to state j, and ni is the total number of transitions out of state i.
e observations zij follow a multinomial distribution that depends on the true transition
probabilities. Ideally, the method would be able to estimate not just the most likely transition
probabilities for a state, but also the distribution of all possible sets of transition probabilities,
and therefore, our uncertainty of these estimates. Singhal et al. [] show that this uncer-
tainty follows a Dirichlet distribution, and based on that observation, provide a number of
algorithms for finding the distribution of x1, and therefore estimating the error of the calcu-
lated .

e basic idea of all of the algorithms is to sample a set of transition probabilities from a
Dirichlet or approximation of a Dirichlet distribution whose parameters are based on the ob-
served transition counts. Distributions for xi, and, for , specifically x1, are then inferred
from the distributions of these samples. For details of the algorithms, please see the original
paper [].

e resulting uncertainty distribution for x1 is a multivariate normal distribution, with
calculable mean and variance. is distribution expresses how much confidence may be
placed in the estimate of , but it also has implications for the construction of s.
It is possible to break the variance down into contributions from each state in the roadmap,
and furthermore, to estimate the amount by which the variance due to any given state will
decrease given some number of new / simulations starting from that state. e selec-
tion of which state to use for the next simulation need no longer be uniform at random, as
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described initially, but can instead be based on which choice of state is most likely to reduce
the overall uncertainty of the  by the greatest amount. is greatly increases the confi-
dence of folding rate estimates and other properties calculated from an  generated by a
set number of / simulations, versus undirected sampling.

Singhal et al. validated their error analysis method by again testing it on a set of simula-
tions of TZ, with a total of  distinct states. Using this example, they verified that all error
estimation methods give comparable results for the mean and variance of the  and that
using the error estimates for adaptively focusing their sampling gave them a -fold improve-
ment in certainty of their estimate of the  for a given number of samples.

4 Discussion

Roadmap methods have been developed in recent years to study how a protein folds into
its final known configuration. ese roadmaps are generated by sampling conformations of a
protein and connecting the sampled configurations in a number of ways. e variety of meth-
ods for generating and connecting roadmap nodes can only be expected to increase as time
goes on. e same kind of growth was observed when roadmap methods became popular
in robotics for solving the robot motion planning problem as researchers began to under-
stand how to better target their methods to the characteristics of the problems being address
(see []). All existing approaches struggle to understand how to use energy estimates in the
construction of the roadmap and the interpretation of the results. A number of questions is
raised about how to compute the free energy for proteins of interest, which is a serious issue
and a topic in need of further study.

Although the performance of roadmapmethods is often compared to/methods, for
now roadmaps are not necessarilymeant to be a substitute for/ simulations. Rather, the
hope is that with a simplified energy model and clever sampling techniques roadmap meth-
ods could quickly provide a coarse view of the energy landscape. Of course, much depends
on the energy function used. e areas of interest identified in this landscape can provide a
starting point for traditional / simulations.

Roadmap methods have also been applied to the study of other biological problems, in-
cluding docking. In docking, the goal is to find low-energy conformations of a receptor-ligand
complex. Recent examples of this work include [, ]. Structure prediction is another area
where roadmap methods have been applied [, ]. By a combination of cleverly sampling
and pruning conformations Brunette and Brock [, ] build up a compact model of the
molecular energy landscape for a given protein. Finally, a roadmap-based method for the
generation of loop conformations was developed in []. Clearly, there are attractive features
in a roadmap-based approach for exploring high-dimensional spaces arising from geometric
problems which has prompted researchers to use them in a variety of biological problems.
Although roadmap-based methods are well understood in robotic problems, it is the authors’
belief that a number of issues that mainly relate to the interplay of energy and geometry are
still poorly understood for biological problems. Nevertheless, promising results are emerging
that will no doubt fuel further advancements.
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