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Abstract—Human episodic memory provides a seemingly unlimited storage for everyday experiences, and a retrieval
system that allows us to access the experiences with partial activation of their components. The system is believed to
consist of a fast, temporary storage in the hippocampus, and a slow, long-term storage within the neocortex. This paper
presents a neural network model of the hippocampal episodic memory inspired by Damasio’s idea of Convergence
Zones. The model consists of a layer of perceptual feature maps and a binding layer. A perceptual feature pattern is
coarse coded in the binding layer, and stored on the weights between layers. A partial activation of the stored features
activates the binding pattern, which in turn reactivates the entire stored pattern. For many configurations of the model, a
theoretical lower bound for the memory capacity can be derived, and it can be an order of magnitude or higher than the
number of all units in the model, and several orders of magnitude higher than the number of binding-layer units.
Computational simulations further indicate that the average capacity is an order of magnitude larger than the theore-
tical lower bound, and making the connectivity between layers sparser causes an even further increase in capacity.
Simulations also show that if more descriptive binding patterns are used, the errors tend to be more plausible (patterns
are confused with other similar patterns), with a slight cost in capacity. The convergence-zone episodic memory there-
fore accounts for the immediate storage and associative retrieval capability and large capacity of the hippocampal
memory, and shows why the memory encoding areas can be much smaller than the perceptual maps, consist of rather
coarse computational units, and are only sparsely connected to the perceptual maps. © 1997 Elsevier Science Ltd.

Keywords—Convergence zones, Episodic memory, Associative memory, Long-term memory, Content-addressable

memory, Memory capacity, Retrieval errors, Hippocampus.

1. INTRODUCTION

Human memory system can be divided into semantic
memory of facts, rules, and general knowledge, and epi-
sodic memory that records the individual’s day-to-day
experiences (Tulving, 1972, 1983). Episodic memory
is characterized by extreme efficiency and high capacity.
New memories are formed every few seconds, and many
of those persist for years, even decades (Squire, 1987).
Another significant characteristic of human memory is
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content-addressability. Most of the memories can be
retrieved simply by activating a partial representation
of the experience, such as sound, a smell, or a visual
image.

Despite a vast amount of research, no clear under-
standing has yet emerged on exactly where and how
the episodic memory traces are represented in the
brain. Several recent results, however, suggest that the
system consists of two components: the hippocampus
serves as a fast, temporary storage where the fraces are
created immediately as the experiences come in, and the
neocortex has the task of organizing and storing the
experiences for the lifetime of the individual (Alvarez
& Squire, 1994; Halgren, 1984; Marr, 1971; McClelland
et al., 1995; Milner, 1989; Squire, 1992). It seems that the
traces are transferred from the hippocampus to the neo-
cortex in a slow and tedious process, which may take
several days, or weeks, or even years. After that, the
hippocampus is no longer necessary for maintaining
these traces, and the resources can be reused for encoding
new experiences.
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, 1975; McClelland & Rumelhart, 1986b;
Miikkulainen, 1992; Steinbuch, 1961; Willshaw et al.,
1969), the fast encoding, reliable associative retrieval,
and large capacity of even the hippocampal component
of human memory has been difficult to account for. For
example in the Hopfield model of N units, N/4In N pat-
terns can be stored with a 99% probability of correct
retrieval when N is large (Amit, 1989; Hertz et al.,
1991; Keeler, 1988; McEliece et al., 1986). This means
that storing and retrieving, for example, 10° memories
would require in the order of 10® nodes and 10'® connec-
tions, which is unrealistic, given that the hippocampal
formation in higher animals such as the rat is estimated
to have about 10° primary excitatory neurons with 101
connections (Amaral, Ishizuka, & Claiborne, 1990), and
the entire human brain is estimated to have about 10"’
neurons and 10'° synapses (Jessell, 1991).

These earlier models had a uniform, abstract structure
and were not specifically motivated by any particular part
of the human memory system. In this paper, a new model
iative episodic memory is proposed that makes
ec ideas about how the hippocampal memory
put together. The model abstracts most of the

The three central ideas are: (1) value-unit encoding in the
input feature maps, (2) sparse, random encoding of traces
in the hippocampus, and (3) a convergence-zone struc-
ture between them.

Since the input to the memory consists of sensory
experience, in the model it should have a representation
similar to the perceptual representations in the brain. The
low-level sensory representations are organized into
maps, that is, similar sensory inputs are represented by
nearby [locations on the cortical surface (Knudsen et al.,
1987). It is possible that also higher-level representations
have a|map-like structure. This is hard to verify, but at
least there is plenty of support for value-unit encoding,
that is, [that the neurons respond selectively to only cer-
tain types of inputs, such as particular faces, or facial
expressions, or particular words (Hasselmo et al., 1989;
Heit et|al., 1989; Rolis, 1984).

The structure of the hippocampus is quite well known,
and recently its dynamics in memory processing have
also been observed. Wilson & McNaughton (1993)
found that rats encode locations in the maze through
ensembles of seemingly random, sparse activation

ohonen & Mikisara, 1986; Kortge, 1990; Little '
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patterns in the hippocampal area CAl. When the rat
explores new locations, new activation patterns appear,
and when it returns to the earlier locations, the same
pattern is activated as during the first visit. O’Reilly &
McClelland (1994) showed that the hippocampal circui-
try is well-designed to form such sparse, diverse encod-
ings, and that it can also perform pattern completion
during recall.

Damasio (1989a,b) proposed a general framework for
episodic representations, based on observations of typi-
cal patterns of injury-related deficits. The idea is that
there is no multi-modal cortical area that would build
an integrated and independent representation of an
experience from its low-level sensory representations.
Instead, the representation takes place only in the low-
level cortices, with the different parts bound together by
a hierarchy of convergence zones. An episodic represen-
tation can be recreated by activating its correspoding
binding pattern in the convergence zone.

The convergence-zone episodic memory model is
loosely based on the above three ideas. It consists of a
layer of perceptual maps and a binding layer. An episodic
experience appears as a pattern of local activations across
the perceptual maps, and is encoded as a sparse, random
pattern in the binding layer. The connections between the
maps and the binding layer store the encoding in a single
presentation, and the complete perceptual pattern can later
be regenerated from partial activation of the input layer.

Many details of the low-level neural circuitry are
abstracted in the model. The units in the model corre-
spond to functional columns rather than neurons and
their activation levels are represented by integers.
Multi-stage connections from the perceptual maps to
the hippocampus are modeled by direct binary connec-
tions that are bidirectional, and the connections within
the hippocampus are not taken into account. At this level
of abstraction, the behavior of the model can be analyzed
both theoretically and experimentally, and general
results can be derived about its properties.

A theoretical analysis shows that: (1) with realistic-
size maps and binding layer, the capacity of the conver-
gence-zone memory can be very high, higher than the
number of units in the model, and can be several orders
of magnitude higher than the number of binding-layer
units; (2) the majority of the neural hardware is required
in the perceptual processing; the binding layer needs to
be only a fraction of the size of the perceptual maps; and
(3) the computational units could be very coarse in the
hippocampus and in the perceptual maps; the required
capacity is achieved with a very small number of such
units. Computational simulations of the model further
suggest that: (1) the average storage capacity may be
an order of magnitude higher than the theoretical lower
bound; (2) the capacity can be further increased by
reducing the connectivity between feature maps and the
binding layer, with best results when the connectivity
matches the sparseness of the binding representations;
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FIGURE 1. Storage. The weights on the connections between the
appropriate feature units and the binding representation of the
pattern are set to 1.

and (3) if the binding patterns for similar inputs are made
more similar, the errors that the model makes become
more plausible: the retrieved patterns are similar to the
correct patterns. These results suggest how one-shot
storage, content-addressability, high capacity, and
robustness could all be achieved within the resources
of the hippocampal memory system.

2. OUTLINE OF THE MODEL

The convergence-zone memory model consists of two
layers of real-valued units (the feature map layer and
the binding layer), and bidirectional binary connections
between the layers (Figure 1). Perceptual experiences are
represented as vectors of feature values, such as color =
red, shape = round, size = small. The values are
encoded as units on the feature maps. There is a separate
map for each feature domain, and each unit on the map
represents a particular value for that feature. For
instance, on the map for the color feature, the value
red could be specified by turning on the unit in the
lower-right quarter (Figure 1). The feature map units
are connected to the binding layer with bidirectional
binary connections (i.e. the weight is either 0 or 1). An
activation of umits in the feature map layer causes a
number of units to become active in the binding layer,
and vice versa. In effect, the binding layer activation is a
compressed, distributed encoding of the perceptual
value-unit representation.

Initially, all connections are inactive at 0. A perceptual
experience is stored in the memory through the feature
map layer in three steps. First, those units that represent
the appropriate feature values are activated at 1. Second,
a subset of m binding units are randomly selected in the
binding layer as the compressed encoding for the pattern,
and activated at 1. Third, the weights of all the connec-
tions between the active units in the feature maps and the
active units in the binding layer are set to 1 (Figure 1).
Note that only one presentation is necessary to store a
pattern this way.
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To retrieve a pattern, first all binding units are set to 0.
The pattern to be retrieved is partially specified in the
feature maps by activating a subset of its feature units.
For example, in Figure 2a the memory is cued with the
two leftmost features. The activation propagates to the
binding layer through all connections that have been
turned on so far. The set of binding units that a particular
feature unit turns on is called the binding constellation of
that unit. All binding units in the binding encoding of the
pattern to be retrieved are active at 2 because they belong
to the binding constellation of both retrieval cue units. A
number of other units are also activated at 1, because
each cue unit takes part in representing multiple patterns,
and therefore has several other active connections as
well. Only those units active at 2 are retained; units
with less activation are turned off (Figure 2b).

The activation of the remaining binding units is then
propagated back to the feature maps (Figure 2c). A num-
ber of units are activated at various levels in each feature
map, depending on how well their binding constellation
matches the current pattern in the binding layer. Chances
are that the unit that belongs to the same pattern as the
cues has the largest overlap and becomes most highly
activated. Only the most active unit in each feature
map is retained, and as a result, a complete, unambiguous
perceptual pattern is retrieved from the system
(Figure 2d).

If there are » units in the binding layer and m units are
chosen as a representation for a pattern, the number of
possible different binding representations is equal to

n
)
If n is sufficiently large and m is relatively small com-
pared to n, this number is extremely large, suggesting
that the convergence-zone memory could have a very
large capacity.

However, due to the probabilistic nature of the storage
and retrieval processes, there is always a chance that the
retrieval will fail. The binding constellations of the
retrieval cue units may overlap significantly, and several
spurious units may be turned on at the binding layer.
When the activation is propagated back to the feature
maps, some random unit in a feature map may have a
binding constellation that matches the spurious units very
well (Figure 3). This rogue unit may receive more acti-
vation than the correct unit, and a wrong feature value
may be retrieved. As more patterns are stored, the bind-
ing constellations of the feature units become larger, and
erroneous retrieval becomes more likely.

To determine the capacity of the convergence-zone
memory, the chance of retrieval error must be computed.
Below, a probabilistic formulation of the model is first
given, and a lower bound for the retrieval error is
derived.
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activates feature units. (d) Less active feature units are turned off.

. PROBABILISTIC FORMULATION

Let Z; be the size of the binding constellation of a feature
unit after i patterns have been stored on it and let ¥, be its
increase after storing the ith pattern on it. Obviously, Y,
= m. To obtain the distribution of Y; when i > 1, note that
the new active connections belong to the intersection of a
randomly chosen subset of m connections among all n

Binding Layer
‘ . Rogue unit
consteliation
Intersection of
retrieval cue

L\‘Ml

Feature Map1 Feature Map2 Feature Map3 Feature Map 4

FIGURE 3. Erroneous retrieval. A rogue feature unit is retrieved,
instead of the correct one, when its binding constellation has
more units in common with the intersection of the retrieval cue
constellations than the binding constellation of the correct unit.
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connections of the unit, and its remaining inactive con-
nections (a set with n — z;_; elements, where z;_; is the
binding constellation at the previous step). Therefore,
Y, i > 1 is hypergeometrically distributed (Appendix
A.1) with parameters m, n — z;_;, and n:

n—2zi_ %G-1 "
P(Yi=ylZi_1=z_1)= ( ) ( >/< )
y m-—y m

(¢Y)

The constellation size Z; is then given by

=D Y. )
k=1

Let 7 be the number of patterns stored on a particular
feature unit after p random feature patterns have been
stored in the entire memory. / is binomially distributed
(Appendix A.1) with parameters p and 1/f, where fis the
number of units in a feature map:

i (V- Ad)]
we ()06 o

Let Z be the binding constellation of a particular fea-
ture unit after p patterns have been stored in the memory.
It can be shown (Appendix A.2) that
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E(Z)=n<1 - (1 - %),,) and @)
Var(Z)=n<1 - ;l'f‘f)p (1 —n(l - %)F>

mQn—m—1)\?
n(n—1)f ) ®

Initially, when no patterns are stored, the binding con-
stellation is zero and it will converge to » as more pat-
terns are stored (since 0 < 1 — % < 1). Because the bases
of the exponentials in the variance of Z are smaller than
1, the variance will go to zero when p goes to infinity.
Therefore, in the limit the binding constellation will
cover the entire binding layer with probability 1.

The binding constellation of a feature unit, given that
at least one pattern has been stored on it, is denoted by Z.
This variable represents the binding constellation of a
retrieval cue, which necessarily must have at least one
pattern stored on it (assuming that the retrieval cues are
valid). The expected value and variance of Z follow from
(4) and (5):

+n(n—1)(1—

- m\?
E(Z)=m+(n—m)<l—<1——> ) and (6)
nf

Var(Z)

-1 -1
—e-m(=5) (i-e-m(-3))

mQ2n—m— 1))"’_l

+(n—m)(n—m—1)(1— nn—1)f

)

Note that the expected value of Z is always larger than
that of Z. Initially the difference is exactly m, and it goes
to zero as p goes to infinity (because Z also converges to
n). )
Let Z' be the binding constellation of the jth retrieval
cue and let X; be the number of units in tt{e intersection of
the first j retrieval cues. Clearly, X; =Z" = m. To get X
for j > 1, we remove from consideration the m units all
retrieval cues necessarily have in common (because they
belong to the same stored pattern), and randomly select
7/ — m units from the remaining set of n — m units and
see how many of them belong to the current intersection
of x;_; — m units. This is a hypergeometric distribution
with parameters Z/ —m, x;_; —m, and n — m:
PX=x12' =7, X;_1=x_1)

(xj_l —m) n—Xj_1

Xj -m

o
X
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The size of the total binding constellation activated dur-
ing retrieval is obtained by taking this intersection over
the binding constellations of all ¢ retrieval cues.

The number of units in common between a potential
rogue unit and the ¢ retrieval cues is denoted by R, and
is also hypergeometrically distributed, however with
parameters z, x., and n, because we cannot assume that
the rogue unit has at least m units in common with the
cues:

X n—x, n
e =rz=ex=n=(7) (127) /(1)
r z—r z

®

The correct unit in a retrieval map (i.e. in a feature map
where a retrieval cue was not presented and where a
feature value needs to be retrieved) will receive an acti-
vation X, because it also has at least m units in com-
mon with the retrieval cues. The correct unit will be
retrieved if X, > R.,,. Now, X.;; and R, differ
only in the last intersection step, where X..; depends
on_Z and X, and R, depends on Z and X.. Since
E(Z) > E(Z) ((4) and (6)), E(X.+1) > E(R.41), and the
correct unit will be retrieved most of the time, although
this advantage gradually decreases as more patterns
are stored in the memory. In each feature map there
are (f — 1) potential rogue units, so the conditional
probability of successful retrieval is (1—-P(R..,>
X, 11X 41,Z,X )Y ™D, not addressing tie-breaking.
Unfortunately, it is very difficult to compute pgccesss
the unconditional probability of successful retrieval,
because the distribution functions of Z, X, X..; and
R4 are not known. However, it is possible to derive
bounds for pg..ss and show that with reasonable
values for n, m, f, and p, the memory is reliable.

4. LOWER BOUND FOR MEMORY CAPACITY

Memory capacity can be defined as the maximum num-
ber of patterns that can be stored in the memory so that
the probability of correct retrieval with a given number
of retrieval cues is greater than « (a constant close to 1).
In this section, a lower bound for the chance of successful
retrieval will be derived. The analysis consists of three
steps: (1) bounds for the number of patterns stored on a
feature unit; (2) bounds for the binding constellation size;
and (3) bounds for the intersections of binding constella-
tions. Given particular values for the system parameters,
and ignoring dependencies among constellations, it is
then possible to derive a lower bound for the capacity
of the model.

4.1. Number of Patterns Stored on a Feature Unit

Since 1 is binomially distributed (with parameters p and
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1/f), Chernoff bounds (Appendix A.1) can be applied:

p
e ™ j_°
P( <~(1—61)f) (m) , 0<é, <1,

(10)

p
P(1=>1+a)) “ ) 5>0
= ( 2)7 PR - (D

These equations give the probability that I is more than
61§ and 6,8 off its mean. The parameters §, and 5,
determine the tradeoff between the tightness of the
bounds| and the probability of satisfying them. If
bounds| are desired with a given probability 3, the right
hand sides of (10) and (11) are made equal to 8 and
solved for 8, and 8,. The lower and upper bound for
the number of patterns stored on a feature unit then are

a- 81)2 if a solution for §; exists
ij= f 12)
0 otherwise
i,=(1 +52)5“:' (13)

Given that at least one pattern has been stored on a fea-
ture unjt the bounds become

- 1+(1— 61)p —1 if a solution for §; exists
= f .
1 otherwise
14)
1 pP— 1
Ju=1+(1+46,) (15)
| f
4.2. Size of the Binding Constellation

Instead| of choosing exactly m different binding units
for the binding constellation of a feature map unit, con-
sider the process of randomly selecting k not-necessarily-
distinct| units in such a way that the expected number of
different units is m. This will make the analysis easier at
the cost of larger variance, but the bounds derived will
also be valid for the actual process. To determine &, note
that the number of units that do not belong to the binding
representation is equal to n — m on average

1\ *
n(l—-—) = n—m. (16)
n

Solving for &, we get
_Inn—In(n—m)

T Inn—-In(n—-1) an

Note that & is almost equal to m for large n.
Let us assume i patterns are stored on the feature map
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unit, which is equivalent to selecting ki units from the
binding layer at random. Let ZE be the expected size of
the final binding constellation, estimated after v binding
units have been selected. Then

ki—v
Zf:Z",+(n-—Z’v)(l—(1—%) )
1 ki—v
=n—(n—-Z’v)<1 - ;) , (18)

where 7’ is the size of the binding constellation formed
by the first v selected units. Obviously Z’, is equal to

Z’,_, or exactly one larger, and the expected increase
of Z,is 1— —Ll Since ZE_, depends stochastrcally
onlyonZ',_,, the expected value of ZF, given ZE_ |, is

EZIZE | =72_))
=EZZ',_1=2,_})

' ki—v
Zy-1 1
=n—(n-z,_;—(1=-2=21))(1--
= (= (-52)) (-3)
lki—v+1
=n—-(n—z’v_1)(1—;)

=£ .. (19)

Therefore E(Zv |Zv D=2ZE_ 1 and the sequence of vari-
ables Z, WZE is a martingale (see Appendix A.3).
Moreover, it can be shown (Appendix A.4) that
1ZE—ZF_ 1 =<1, so that bounds for the final binding
constellation Z can be obtained from Azuma’s 1nequal-
ities. For the lower bound, the martingale Z, .. Zk,l
(with length ki) is used, and for the upper bound
z, .. z,“ (with length ki,). Using (18) and noting that
Z= Zk,l for the lower bound and Z= Zk, for the upper
bound, Azuma’s inequalities can be written as

P(Zg, = Zs — Nk
kiy
=P(Z$n<1— (1 - %) ) —M/kip)

= e"‘z’z, A>0, (20)
P(Zg = Z5 +\/Ki,)
kiu
=PZ= n(l - (1 - i) ) +ME,
=e M2 A>0. 1)

After deriving a value for A based on the desired con-
fidence level B, the following lower and upper bounds for
Z are obtained:

z;=n<1—(1—'—l) ) Mk (22)
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ki,
z,,=n(1—<1—-r1;) )+>\\/l?'u. (23)

The corresponding bounds for Z are

1\ % -

4.3. Intersection of Binding Constellations

The process of forming the intersection of ¢ binding
constellations incrementally one cue at a time can also
be formulated as a martingale process. To see how, con-
sider the process of forming an intersection of two sub-
sets of a common superset incrementally, by checking
(one at a time) whether each element of the first set
occurs in the second set. Assume that v elements have
been checked this way. Let X', denote the number of
elements found to be in the intersection so far, and XvE
the currently expected number of elements in the final
intersection. Then

(n —v)(n, — X',)

XE=X/
v vt ng—v

(26)
where n,, n, and n, are the sizes of the first, second, and
the superset. As shown in Appendix A.S5, the sequence
Xg‘, ...,X,lfl is a martingale. In addition, ifn;+ n, — 1<
n, IXE—XE_|I=1, and Azuma’s inequalities can be
applied.

The above process applies to forming the intersection
of binding constellations of retrieval cues when the inter-
section in the previous step is chosen as the first set, the
binding constellation of the jth cue as the second set, the
binding layer as the common superset, and the m units all
retrieval cues have in common are excluded from the
intersection. In this case

m=X_1,—m 27
np=z-—m (28)
ng=n—m, (29)

where x;_y, is an upper bound for X;_;. Azuma’s inequal-
ity can be applied if x;_; , +Z, — 1 < n (which needs to
be checked). Using (27)—(29) in (26) and noting that Xfl
= X; — m, Azuma’s inequality becomes

P(XE = X5 — \/m)=

(x'—l,u _m)(zu —m)
P(X]Zm+ L (n_m) +)\,/xj_1’u—m)
=e N2 \>0. (30)
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After deriving a value for \ based on the desired con-
fidence, the following upper bound for X; is obtained:

)+>\m. G1)

This bound is computed recursively, with x;, = m.
Comparing with the probabilistic formulation of Section
3, note that

O_1,u—m)Z,—m
(n—m)

Xju=m+

(G _1,u —m)Z, —m)
(n—m)

is the expected value of the hypergeometric distribution
derived for X; (8) when Z; and X, ; are at their upper
bounds.

As the last step in the analysis of binding constella-
tions, the bounds for X, and R.,; must be computed.
When X, is at its upper bound, the intersection is the
largest, and a potential rogue unit has the largest chance
of taking over. In this case, a lower bound for X_,, is
obtained by carrying the intersection process one step
further, and applying Azuma’s inequality:

(xc,u - m)(zl —m

)
—m) —)\,/xc,u—m)

=e N2 \>0, (32)

P(Xc+1 =m+

which results in

(xc,u - m)(zl —m

)
i—m) — A/, —m. (33)

If the resulting lower bound is smaller than m, m can be
used instead. Similarly, to get the upper bound for R,
one more intersection step needs to be carried out, but
this time the m units are not excluded:

M) e TV A>0, (39)

n

Xe+1,1=m+

Xe,

P(RC+1 =

and the upper bound becomes

Festu= 2N /R, (35)

4.4. Dependencies Between Binding Constellations

Strictly speaking, the above analysis is valid only when
the binding constellations of each cue are independent. If
the same partial pattern is stored many times, the con-
stellations will overlap beyond the m units that they
necessarily have in common. Such overlap tends to
increase the size of the final intersection.

In most cases of realistic size, however, the increase is
negligible. The number of features V in common between
two random patterns of ¢ features each is given by the
binomial distribution:

pv=v=|° (1)v<1—1>c_v. 36)
 J\7 7
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The chance that two random patterns of ¢ features have
more than one feature in common is

P(V>1)=1-P(V=0)—P(V=1)

1 c 1 1 c—1
=1“(“f) ‘C(f>(1‘f> . B

which c¢an be rewritten as

(V>1)=1-(1+f—i—1)(1—}>c. (38)

This chance is negligible for sufficiently large values of f.
For example, already when f = 5000 and ¢ = 3, the
chance|is 1.2 X 10'7, and can be safely ignored when
compuﬂing a lower bound for the capacity.

|

a v}

4.5. Obtaining the Lower Bound

It is now possible to use (10)—(15), (17) and (20)-(25)
and (30)—(35) to derive a lower bound for the probability
of successful retrieval with given system parameters n,
m, f, t,|c, and p, where ¢ is the total number of feature
maps. The retrieval is successful if r..;,, the upper
bound for R, is lower than x.;;,, the lower bound
for X..;. Under this constraint, the probability that
none of the variables in the analysis exceeds its bounds
is a lower bound for successful retrieval.

Obtaining the upper bound for X, involves bounding
3¢ — 1| variables: I and Z for the ¢ cues and X, for the
¢—1 intersections. Computing x..; and 7.4y, €ach
involve bounding 3 variables (/, Z, and X,.s; I, Z, and
R.;1). There are t — ¢ maps, each with one x,;; bound
and f — 1 different r ., bounds (one for each rogue
unit). The total number of bounds is therefore 3¢ — 1
+ 3f(t — c). Setting the righthand sides of the
inequalities (10), (11), (20), (21), (30), (32) and (34)
equal to a small constant 3, a lower bound for successful
retrieval is obtained:

Pauccess > (L= B)* 71 7¥¢79), (39)
which, for small 8, can be approximated by
Psuccess > 1 — (Bc— 1+ 3f(t— c))B. 40)

On the other hand, if it is necessary to determine a
lower bound for the capacity of a model with given n,
m, f, t,\and c at a given confidence level pgyccess, B is first
obtained from (40), and the number of patterns p is then
increa}fd until one of the bounds (10), (11), (20), (21),

(30), (32) or (34) is exceeded, or r 4, becomes greater
than x4+,

\
5. EXAMPLE: MODELING THE HIPPOCAMPAL
| MEMORY SYSTEM

As an |example, let us apply the above analysis to the
hippocampal memory system. It is difficult to estimate
how coarse the representations are in such a system, and
how many effective computational units and connections
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there should be. The numbers of neurons and connections
in the rat hippocampal formation have been used as a
guideline below. Although the human hippocampus is
certainly larger than that of the rat, the hippocampus,
being phylogenetically one of the oldest areas of the
brain, is fairly similar across higher mammals and should
give an indication of the orders of magnitude involved.
More importantly, the convergence-zone model can be
shown to apply to a wide range of these parameters. Two
cases at opposite ends of the spectrum are analyzed
below: one where the number of computational units
and connections is assumed to be limited, and another
that is based on a large number of effective units and
connections.

5.1. A Coarse-Grained Model

First note that each unit in the model is meant to corre-
spond to a vertical column in the cortex. It is reasonable
to assume feature maps with 10® of such columns
(Sejnowski & Churchland, 1989). Each input activates
a local area on the map, including perhaps 102 columns
above the threshold. Therefore, the feature maps could be
approximated with 10* computational units. There would
be a minimum of perhaps 4 such maps, of which 3 could
be used to cue the memory.

There are some 10° primary excitatory cells in the rat
hippocampal formation (Amaral et al., 1990; Boss et al.,
1985, 1987; Squire et al., 1989). If we assume that func-
tional units contain 10% of them, then the model should
have 10* binding units. Only about 0.5-2.5% of the hip-
pocampal neurons are simultaneously highly active
(O’Reilly & McClelland, 1994), so a binding pattern of
102 units would be appropriate. Assuming that all com-
putational units in the feature maps are connected to all
units in the hippocampus, there are a total of 10 afferent
connections to the hippocampus, and the number of such
connections per vertical column in the feature maps and
per excitatory neuron in the hippocampus is 102, both of
which are small but possible numbers (Amaral et al.,
1990).

If we select f = 17 000, n = 11 500, m = 150, and store
1.5 X 10* patterns in the memory, Z, and x;_y, are less
than (%)n, the chance of partial overlap of more than 1
feature is less than 1.04 X 10‘8, and the analysis above is
valid. Setting 8 = 1.96 X 1077 yields bounds 741, <
Xeyt) With Paceess > 99%. In other words, 1.5 X 10
traces can be stored in the memory with 99% probability
of successful retrieval. Such a capacity is approximately
equivalent of storing one new memory every 15s for
4 days, 16 h a day, which is similar to what is required
from the human hippocampal system.

5.2. A Fine-Grained Model

It is possible that a lot more neurons and connections are
involved in the hippocampal memory system than
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assumed above. For example, let us assume that each of
the vertical columns in the feature maps is computation-
ally distinctive, that is, there are 105 units in the feature
maps. Let us further assume that the system has 15 fea-
ture maps, 10 of which are used to cue the memory, and
the binding layer consists of 10° units, with 150 used for
each binding pattern. Assuming full connectivity
between the feature units and the binding units, there
are 1.5 X 10'? connections in the system, which might
be possible if it is assumed that a large number of col-
laterals exist on the inputs to the hippocampus.

Applying the above analysis to this memory config-
uration, 0.85 X 103 patterns can be stored with 99%
probability of successful retrieval. In this case, Z, and
Xj_1, are less than (%)n, the chance of partial overlap of
more than 1 feature is less than 0.45 X 10"10, and setting
B = 0.5 X 10~° yields bounds 7c;1, < Xcp1; With Pauccess
> 99%. In other words, a new trace could be stored every
15s for 62 years, 16 h a day, without much memory
interference.

This kind of capacity is probably enough for the entire
human lifetime, and exceeds the requirements for the
hippocampal formation. With such a capacity, there
would be no need to transfer representations to the neo-
cortical memory system. One conclusion from this ana-
lysis is that the hippocampal formation is likely to have a
more coarse-grained than fine-grained structure. Another
conclusion is that it is possible that the neocortical mem-
ory component may also be based on convergence zones.
The resuit is interesting also from the theoretical point of
view, because the lower bound is an order of magnitude
higher than the number of units in the system, and three
orders of magnitude higher than the number of binding
units. To our knowledge, this lower bound is already
higher than what is practically possible with other neural
network models of associative memory to date.

6. EXPERIMENTAL AVERAGE CAPACITY

The analysis above gives us a lower bound for the capa-
city of the convergence-zone memory; the average-case
capacity may be much higher. Although it is difficult to
derive the average capacity theoretically, an estimate can
be obtained through computer simulation. Not all config-
urations of the model can be simulated, though. The
model has to be small enough to fit in the available
memory, while at the same time fulfilling the assump-
tions of the analysis so that lower bounds can be obtained
for the same model.

To find such configurations, first the feature map para-
meters f, t, and ¢, and the confidence level 8 are fixed to
values such that pecess = 99% (40). Second, a value for
n is chosen so that the model will fit in the available
memory. The connections take up most of the memory
space (even if each connection is represented by one bit)
and the amount of memory allocated for the feature map
and the binding layer activations, the array of patterns,
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and the simulation program itself is negligible. Finally,
the size of the binding pattern m and the maximum num-
ber of patterns p is found such that the theoretical bounds
yield ro41, < x.41; and the partial overlap is negligible.
In the models studied so far, the highest capacity has
been obtained when m is only a few percent of the size
of the binding layer, as in the hippocampus.

The simulation program is straightforward. The acti-
vations in each map are represented as arrays of integers.
The connections between a feature map and the binding
layer are encoded as a two-dimensional array of bits, one
bit for each connection. Before the simulation, a set of
Pmax Tandom patterns are generated as a two-dimensional
array of pn,; X t integers. A simulation consists of stor-
ing the patterns one at a time and periodically testing how
many of a randomly-selected subset of them can be cor-
rectly retrieved with a partial cue.

The ‘fine-grained’ example of Section 5.2 is unfortu-
nately too large to simulate. With 15 X 10° X 10° = 1.5
X 10" connections it would require 187.5 GB of
memory, which is not possible with the current compu-
ters. However, the ‘coarse-grained’ model has 4 X
17000 X 11500 = 7.82 X 10°® one-bit connections,
which amounts to approximately 100MB, and easily
fits in available memory.

Several configurations were simulated, and they all
gave qualitatively similar results (Figure 4). In the
coarse-grained model, practically no retrieval errors
were produced until 370000 patterns had been stored.
With 375000 patterns, 99% were correctly retrieved,
and after that the performance degraded quickly to
94% with 400000 patterns, 71% with 460000, and
23% with 550000 (Figure 4). Each run took about two
hours of CPU time on a Cray Y-MP 8/864. From these
simulations, and those with other configurations shown
in Figure 4, it can be concluded that the average capacity
of the convergence-zone episodic model may be as much
as one order of magnitude larger than the theoretical
lower bound.

7. LESS IS MORE: THE EFFECT OF SPARSE
CONNECTIVITY

In the convergence-zone model so far, the feature maps
have been fully connected to the binding layer. Such
uniform configuration makes analysis and simulation of
the model easier, but it is not very realistic. Both from the
point of view of modeling the hippocampal memory and
building artificial memory systems, it is important to
know how the capacity is affected when the two layers
are only sparsely connected.

A series of simulations were run to determine how the
model would perform with decreasing connectivity. A
given percentage of connections were chosen randomly
and disabled, and the 99% capacity point of the resulting
model was found. The binding patterns were chosen
slightly differently to account for missing connections:
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using the first three as cues. The modeis differed in the sizes of the feature maps £, binding layer size n, and binding pattern size
m. The p indicate averages over three simulations. The theoretical capacity C of the first model with pyuccess = 99% was 35 000, that of
the second 15000, and that of the third 70 000.

the m ﬂinding units were chosen among those binding experiments. At each level of connectivity from 100%
layer units that were connected to all features in the down to 20%, five different simulations with different
feature pattern. If there were less than m such units, the random connectivity were run and the results were aver-
binding pattern consisted of all available units. aged (Figure 5). Since the main effect of sparse connec-

Due to high computational cost of the simulations, a tivity is to limit the number of binding units that are
small convergence-zone memory with f = 1000, n = available for the binding pattern, one would expect that
3000, m = 20, t = 4, and ¢ = 3 was used in these the capacity would go down. However, just the opposite

capacity

1 1 1

o
100 80 60 40 20 o

connectivity rate (%)

FIGURE 5. Capacity with sparse connectivity. The horizontal axis shows the percentage of connections that were avaiiabie to form
binding s, and the vertical axis indicates the capacity at the 99% confidence level. As connectivity decreases, the retrieval patterns
become more focused, and the retrieval becomes more reliable until about 30% connectivity, where there are no longer enough con-
nections to form binding patterns of m units. The model had f= 1000, n = 3000, m = 20, t= 4, ¢ = 3, and the plot is an average of five
simulations.
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turns out to be true: the fewer connections the model had
available (down to 30% connectivity), the more patterns
could be stored with 99% probability of correct retrieval.

The intuition turns out to be incorrect for an interesting
reason: sparse connectivity causes the binding constella-
tions to become more focused, removing spurious over-
lap that is the main cause of retrieval errors. To see this,
consider how Z (the size of the binding constellation of a
feature unit after at least one pattern has been stored on
it) grows when a new pattern is stored on the unit. A set
of binding units is chosen to represent the pattern. When
only a fraction r of the connections to the binding layer
are available, there are only r'n binding units to choose
from, compared to n in the fully connected model. It is
therefore more likely that a chosen binding unit is
already part of the binding constellation of the feature
unit, and this constellation therefore grows at a slower
pace than in the fully connected case. The expected size
of the constellation after p patterns have been stored in
the memory becomes (from (6))

- , m\?
E(Z)=m+<rn—-m)(1—(l—-rt—nf) ) 1

which decreases with connectivity r as long as there are
at least m binding units available (i.e. r'n > m). When the
binding constellations are small, their intersections
beyond the m common units will be small as well. During
retrieval it is then less likely that a rogue unit will
become more active than the correct unit. The activity
patterns in the sparsely connected system are thus better
focused, and retrieval more reliable.

When there are fewer than m binding units available,
the capacity decreases very quickly. In the model of
Figure 5 (with m = 20), the average number of binding
units available is 45 for 35% connectivity, 24 for 30%, 12
for 25%, and 5 for 20%. In other words, the convergenze-
zone episodic memory performs best when it is con-
nected just enough to support activation of the sparse
binding patterns. This is an interesting and surprising
result, indicating that sparse connectivity is not just a
necessity due to limited resources, but also gives a com-
putational advantage. In the context of the hippocampal
memory system it makes sense since evolution would be
likely to produce a memory architecture that makes the
best use of the available resources.

8. ERROR BEHAVIOR

When the binding patterns are selected at random as in
the model outlined, when errors occur during retrieval,
the resulting feature values are also random. Human
memory, however, rarely produces such random output.
Human memory performance is often approximate, but
robust and plausible. That is, when a feature cannot be
retrieved exactly, a value is generated that is close to the
correct value.
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To test whether the convergence-zone architecture can
model such ‘‘human-like’’ memory behavior, the storage
mechanism must be changed so that it takes into account
similarities between stored patterns. So far the spatial
arrangement of the units has been irrelevant in the
model; let us now treat the feature maps and the binding
layer as one-dimensional maps (Figure 6). The binding
layer is divided into sections, one for each feature map.
The binding units are selected stochastically from a dis-
tribution function that consists of one component for
each of the sections. Each component is a flat rectangle
with a radius of ¢ units around the unit whose location
corresponds to the location of the active feature map unit.
The distribution function is scaled so that on average m
units will be chosen for the entire binding pattern.

The radius o of the distribution components deter-
mines the variance of the resulting binding patterns. By
setting ¢ = (n/t — 1)/2 a uniform distribution is obtained,
which gives us the basic convergence-zone model. By
making o smaller, the binding representations for similar
input patterns become more similar.

Several simulations with varying degrees of o were run
to see how the error behavior and the capacity of the
model would be affected (Figure 7). A configuration of
4 feature maps (3 cues) with 20000 binding units, 400
feature map units, and a 20-unit binding pattern was
used. The results show that when the binding patterns
are made more descriptive, the errors become more plau-
sible: when an incorrect feature is retrieved, it tends to be
close to the correct one. When the binding units are
selected completely at random (¢ = (n/t — 1)/2), the
average distance is 5000; when ¢ = 20, it drops to 2500;
and when o = 5, to 700. Such ‘‘human-like’’ behavior is
obtained with a slight cost in memory capacity. When the
patterns become less random, there is more overlap in the
encodings, and the capacity tends to decrease. This
effect, however, appears to be rather minor, at least in
the small models simulated in our experiments.

Binding Layer and Distribution Function
1

[ 11
ENENNNAE NN EESN _ EEENE

Feature Map 1  Feature Map2  Feature Map3  Feature Map 4

FIGURE 6. Selecting a binding representation for an input pat-
tern. The binding layer is divided into sections. On average, m
binding units will be selected from a distribution function that
consists of one rectangular component for each section, cen-
tered around the unit whose location corresponds to the location
of the input feature unit. if the center is close to the boundary of
the section, the distribution component wraps around the sec-
tion (as for Feature Map 1). The parameter o determines the
radius of the components, and thereby the variance in the bind-
ing pattern. This particular function had ¢ = 2, that is, the width
of the individual components was 2 X 2 + 1 = 5. The model
parameters were f= 10, n =40, m=8.
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FIGURE ‘f Error behavior with descriptive binding patterns. The lower curve (with scale at left) shows the average distance of incorrectly-

ratrloved\ features as a function of the distribution radius ¢. The upper curve (with scale at right) indicates the corresponding capacity at

the 99% confidence level. When the binding pattern is less random, the erroneous units tend to be closer to the correct ones. The model

had n = 20,000,f= 400, m = 20, t= 4, c = 3. Retrieval of all stored patterns was checked. The plots indicate averages over six simulations.
|

| 9. DISCUSSION

The coﬁvergence-zone episodic model as analyzed and
simulated above assumes that the feature patterns do not
overlap much, and that the pattern is retrieved in a single
iteration. Possible relaxation of these assumptions and
the effects of such modifications are discussed below.

9.1. Pattern Overlap

The theJ‘oretical lower-bound calculations assumed that
the chance of overlap of more than one feature is very
small, and this was also true in the models that were
analyzed and simulated. However, this restriction does
not limit the applicability of the model as much as it
might first seem, for two reasons:

First, it might appear that certain feature values occur
more often than others in the real world, causing more
overlap| than there currently is in the model. However,
note that the input to the model is represented on feature
maps. One of the basic properties of both computational
and bioPogical maps is that they adapt to the input dis-
tribution by magnifying the dense areas of the input
space. In other words, if some perceptual experience is
more frequent, more units will be allocated for represent-
ing it so that each unit gets to respond equally often to
inputs (Kohonen, 1989; Merzenich et al., 1984; Ritter,
1991). Therefore, overlap in the feature map representa-
tions is| significantly more rare than it may be in the
absolute experience: the minor differences are magnified
and the representations become more distinguishable and
more memorable.

Second, as discussed in Section 4.4, the chance of

overlap of more than one feature is clearly small if the
feature values are independent. For example in the
coarse-grained model, at the 99% capacity point, on
average there were 88 other patterns that shared exactly
one common feature with a given pattern, whereas there
were only 0.0078 other patterns that shared more than
one feature. To be sure, in the real world the feature
values across maps are correlated, which would make
overlap of more than one feature more likely than it
currently is in the model. While it is hard to estimate
how common such correlations would be, they could
grow quite a bit before they become significant. In
other words, the conclusions drawn from the current
model are valid for at least small amounts of such
correlations.

9.2. Progressive Recall

The retrieval process adopted in the convergence-zone
model is a version of simple recall (Gardner-Medwin,
1976), where the pattern is retrieved based on only
direct associations from the retrieval cues. In contrast,
progressive recall is an iterative process that uses the
retrieved pattern at each step as the new retrieval cue.
Progressive recall could be implemented in the conver-
gence-zone model. Suppose features need to be retrieved
in several maps. After the first retrieval attempt, the right
feature unit will be clearly identified in most maps. For
the second retrieval iteration, all these units can be used
as cues, and it is likely that a pattern will be retrieved that
is closer to the correct pattern than the one obtained with
just simple recall. This way, progressive recall would
cause an increase in the capacity of the model. Also,
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such a retrieval would probably be more robust against
invalid retrieval cues (i.e. cues that are not part of the
pattern to be retrieved). The dynamics of the progressive
recall process are difficult to analyze (see Gibson &
Robinson (1992) for a possible approach) and expensive
to simulate, and simple recall was thus used in this first
implementation of the convergence-zone model.

Above, a theoretical lower bound for the capacity of
simple recall within a given error tolerance was derived,
and the average capacity was estimated experimentally.
Two other types of capacity can also be defined for an
associative memory model (Amari, 1988). The absolute
capacity refers to the maximum number of patterns that
the network can represent as equilibrium states, and the
relative capacity is the maximum number of patterns that
can be retrieved by progressive recall. The lower bound
for the simple recall derived in this paper is also a lower
bound for the absolute capacity, and thus also a lower
bound for the relative capacity, which may be rather
difficult to derive directly.

10. RELATED WORK

Associative memory is one of the earliest and still most
active areas of neural network research, and the conver-
gence-zone model needs to be evaluated from this per-
spective. Although the architecture is mostly motivated
by the neuroscience theory of perceptual maps, hippo-
campal encoding, and convergence zones, it is mathema-
tically most closely related to statistical associative
memories and the sparse distributed memory model.
Contrasting the architecture with the Hopfield network
and modified backpropagation is appropriate because
these are the best-known associative memory models to
date. Eventually convergence-zone memory might serve
as a model of human episodic memory together with the
trace feature map model described below. Although it is
an abstract model of the hippocampal system, it is con-
sistent with the more low-level models of the hippocam-
pal circuitry, and complements them well.

10.1. The Hopfield Model

The Hopfield network (Hopfield, 1982) was originally
developed to model the computational properties of neu-
robiological systems from the perspective of statistical
mechanics (Amit et al., 1985a, b; Kirkpatrick & Sher-
rington, 1988; Peretto & Niez, 1986). The Hopfield net-
work is characterized by full connectivity, except from a
unit to itself. Patterns can be stored one at a time, but the
storage mechanism is rather involved. To store an addi-
tional pattern in a network of, say, N units, the weights of
all the N X (N — 1) connections have to be changed. In
contrast, the convergence-zone memory is more sparse in
that only t X m < n < f weights have to be modified.
A pattern is retrieved from the Hopfield network
through progressive recall. The cues provide initial
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activation to the network, and the unit activations
are updated asynchronously until they stabilize. The
final stable activation pattern is then taken as the output
of the network. In the convergence-zone model, on the
other hand, retrieval is a four-step version of simple
recall: first the activation is propagated from the input
maps to the binding layer, thresholded, and then propa-
gated back to all feature maps, where it is thresholded
again. This algorithm can be seen as a computational
abstraction of an underlying asynchronous process. In a
more low-level implementation, thresholding would be
achieved through inhibitory lateral connections. The
neurons would update their activation one at a time in
random order, and eventually stabilize to a state that
represents retrieval of a pattern.

The capacity for the Hopfield network has been shown
theoretically to be N/4InN (Amit, 1989; Hertz et al,,
1991; Keeler, 1988; McEliece et al., 1986) and
experimentally about 0.15N (Hopfield, 1982). For the
convergence-zone model such a simple closed-form for-
mula is difficult to derive, because the model has many
more parameters and correlations that complicate the
analysis. However, as was shown above, a lower bound
can be derived for a given set of parameters. Such bounds
and also experimental simulations show that the capacity
for the model can be orders of magnitude higher than the
number of units, which is rather unique for an associative
memory neural network.

However, it should be noted that in the convergence-
zone model, each pattern is much smaller than the
network. In a Hopfield network of size N each pattern
contains N bits of information, while in the convergence-
zone model each pattern consists of only ¢ features. Each
feature can be seen as a number between 1 and f, corre-
sponding to its location in the feature map. To represent
such a number, 2log f bits are needed, and a feature pat-
tern thus contains #log f bits of information. Compared
to the Hopfield model and other similar associative
memory models, the information content of each pattern
has been traded off for the capacity to store more of them
in a network of equal size.

10.2. Backpropagation and Related Models

Several models of associative memory have been pro-
posed that are based on backpropagation or similar incre-
mental learning rules (Ackley et al., 1985; Anderson
et al., 1977; Knapp & Anderson, 1984; McClelland &
Rumelhart, 1986a, b). However, these models suffer
from catastrophic interference, which makes it difficult
to apply them to modeling human associative memory
(Grossberg, 1987; McCloskey & Cohen, 1989; Ratcliff,
1990). If the patterns are to be learned incrementally,
without repeating the earlier patterns, the later patterns
in the sequence must erase the earlier associations from
memory.

Several techniques have been proposed to alleviate
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forgetting, including using weights with different learn-
ing rates (Hinton & Plaut, 1987), gradually including
new examples and phasing out earlier ones
(Hetherington & Seidenberg, 1989), forcing semidistrib-
uted hidden-layer representations (French, 1991), con-
centrating changes on novel parts of the inputs (Kortge,
1990), jusing units with localized receptive fields
(Kruschke, 1992), and adding new units and weights to
encode new information (Fahlman, 1991; Fahlman &
Lebiere; 1990). In these models, one-shot storage is
still not|possible, although the number of required itera-
tions is|reduced, and old information can be relearned
very fast. At this point it is also unclear whether these
architectures would scale up to the number of patterns

appropriate for human memory.
|

10.3. StJPtistical Associative Memory Models

The convergence-zone model is perhaps most closely
related ito the correlation matrix memory (Kohonen,
1971, 1972; see also, Anderson, 1972; Cooper, 1973).
In this model there are a number of receptors (corre-
sponding to feature maps in the convergence-zone
model) ithat are connected to a set of associators (the
bindinglayer). The receptors are divided into key fields
where the retrieval cue is specified, and data fields where
the retrieved pattern appears. Each key and data field
corresponds to a feature map in the convergence-zone
model. Instead of one value for each field, a whole fea-
ture map represents the field, modeling value-unit encod-
ing in | biological perceptual systems. There is no
distinction between key and data fields either; every
feature map can function as a key in the convergence-
zone model.

Other related statistical models include the learning
matrix (Steinbuch, 1961) and the associative net (Will-
shaw etjal., 1969), which are precursors of the correlation
matrix model. These had a uniform matrix structure con-
necting inputs to outputs in a single step. Such models are
simple and easy to implement in hardware, although they
do not have a very high capacity (Faris & Maier, 1988;
Palm, 1980, 1981). Other associative matrix models have
relied on progressive recall, and therefore are similar in
spirit to the Hopfield network. The network of stochastic
neurons of Little & Shaw (1975) and the models of the
hippocampus of Gardner-Medwin (1976) and Marr
(1971) fall into this category. Progressive recall gives
them a. potentially higher capacity, which with high
connectivity exceeds that of the Hopfield network
(Gibsori & Robinson, 1992). They are also more
plausible in that they do not require N ? internal connec-
tions (where N is the number of units in the network),
although the capacity decreases rapidly with decreasing
connectivity.

M. Moll and R. Miikkulainen

10.4. Sparse Distributed Memory

The Sparse Distributed Memory model (SDM; Kanerva,
1988) was originally developed as a mathematical
abstraction of an associative memory machine. Keeler
(1988) developed a neural-network implementation of
the idea and showed that the SDM compares favorably
with the Hopfield model; the capacity is larger and
the patterns do not have to include all units in the
network.

It is possible to give the convergence-zone memory
model an interpretation as a special case of the SDM
model: A fully-connected two-layer network consisting
of a combined input/output layer and a hidden layer. In
alternating steps, activity is propagated from the input/
output layer to the hidden layer and back. Seen this way,
every unit in the input/output layer corresponds to one
feature map in the convergence-zone model, and the
hidden layer corresponds to the binding layer.

It can be shown that the capacity of the SDM is inde-
pendent of the size of the input/output layer. Moreover, if
the size of the input/output layer is fixed, the capacity
increases linearly with the size of the hidden layer. These
results suggest that similar properties apply also to the
convergence-zone episodic memory model.

10.5. Trace Feature Maps

The Trace Feature Map model of Miikkulainen (1992,
1993) consists of a self-organizing feature map where the
space of all possible experiences is first laid out. The map
is laterally fully connected with weights that are initially
inhibitory. Traces of experiences are encoded as attrac-
tors using these lateral connections. When a partial pat-
tern is presented to the map as a cue, the lateral
connections move the activation pattern around the
nearest attractor.

The Trace Feature Map was designed as an episodic
memory component of a story understanding system. The
main emphasis was not on capacity, but on psychologi-
cally valid behavior. The basins of attraction for the
traces interact, generating many interesting phenomena.
For example, the later traces have larger attractor basins
and are easier to retrieve, and unique traces are preserved
even in an otherwise overloaded memory. On the other
hand, because each basin is encoded through the lateral
connections of several units, the capacity of the model is
several times smaller than the number of units. Also,
there is no mechanism for encoding truly novel experi-
ences; only vectors that are already represented in the
map can be stored. In this sense, the Trace Feature
Map model can be seen as the cortical component of
the human long-term memory system. It is responsible
for many of the effects, but incorporating novel experi-
ences into its existing structure is a lengthy process, as it
appears to be in human memory system(Halgren, 1984;
McClelland et al., 1995).
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10.6. Models of the Hippocampus

A large number of models of the hippocampal formation
and its role in memory processing have been proposed

(Alvarez & Squire, 1994; Gluck & Myers, 1993; .

McNaughton & Morris, 1987; Marr, 1971; Murre,
1995; O’Reilly & McClelland, 1994; Read et al., 1994;
Schmajuk & DiCarlo, 1992; Sutherland & Rudy, 1989;
Teyler & Discenna, 1986; Treves & Rolls, 1991, 1994;
Wickelgren, 1979). They include a more detailed
description of the circuitry inside hippocampus, and
aim at showing how memory traces could be created in
such a circuitry. The convergence-zone model operates
at a higher level of abstraction than these models, and in
this sense is complementary to them.

Marr (1971) presented a detailed theory of the hippo-
campal formation, including numerical constraints, capa-
city analysis, and interpretation at the level of neural
circuitry. The input is based on local input fibers from
the neocortex, processed by an input and output layer of
hippocampal neurons with collateral connections. Recall
is based on recurrent completion of a pattern. The con-
vergence-zone memory can be seen as a high-level
abstraction of Marr’s theory, with the emphasis on the
convergence-zone structure that allows for higher capa-
city than Marr predicted.

Several authors have proposed a role for the hippo-
campus similar to the convergence-zone idea (Alvarez
& Squire, 1994; McClelland et al., 1995; Murre, 1995;
Teyler & Discenna, 1986; Treves & Rolls, 1994; Wick-
elgren, 1979). In these models, hippocampus itself does
not store a complete representation of the episode, but
acts as an indexing area, or compressed representation,
that binds together parts of the actual representation in
the neocortical areas. Treves & Rolls (1994) also propose
backprojection circuitry for accomplishing such recall.
Convergence-zone memory is consistent with such inter-
pretations, focusing on analyzing the capacity of such
structures.

One of the assumptions of the convergence-zone
memory, motivated by recent results by Wilson &
McNaughton (1993), is that the binding encoding is
sparse and random. The model by O’Reilly & McClel-
land (1994) shows how the hippocampal circuitry could
form such sparse, diverse encodings. They explored the
tradeoff between pattern separation and completion and
showed that the circuitry could be set up to perform both
of these tasks simultaneously. The entorhinal—dentate-
CA3 pathway could be responsible for forming random
encodings of traces in CA3, and the separation between
storage and recall could be due to overall difference in
the activity level in the system.

11. FUTURE WORK

Future work on the convergence-zone episodic memory
model will focus on three areas. First, the model can be
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extended in several ways towards a more accurate model
of the actual neural processes. For instance, lateral inhi-
bitory connections between units within a feature map
could be added to select the unit with the highest activity.
A similar extension could be applied to the binding layer;
only instead of a single unit, multiple units should stay
active in the end. Lateral connections in the binding layer
could also be used to partially complete the binding pat-
tern even before propagation to the feature maps. As the
next step, the binding layer could be expanded to take
into account finer structure in the hippocampus, includ-
ing the encoding and retrieval circuitry proposed by
O’Reilly & McClelland (1994). A variation of the
Hebbian learning mechanism (Hebb, 1949; Miller &
MacKay, 1992) could then be used to implement the
storage and recall mechanisms. In addition to providing
insight into the hippocampal memory system, such
research could lead to a practical implementation of the
convergence-zone memory, and perhaps even to a hard-
ware implementation.

Second, a number of potential extensions to the model
could be studied in more detail. It might be possible to
take sparse connectivity into account in the analysis, and
obtain tighter lower bounds in this more realistic case.
Recurrency could be introduced between feature maps
and the binding layer, and capacity could be measured
under progressive recall. Possibilities for extending the
model to tolerate more overlap between patterns should
also be studied.

Third, the model could be used as a stepping stone
towards a more comprehensive model of human episodic
memory, including modules for the hippocampus and the
neocortical component. As discussed above, the conver-
gence-zone model seems to fit the capabilities of the
hippocampal component well, whereas something like
trace feature maps could be used to model the cortical
component. It would be necessary to observe and char-
acterize the memory interference effects of the compo-
nents and compare them with experimental results on
human memory. However, the main challenge of this
research would be on the interaction of the components,
that is, how the hippocampal memory could transfer its
contents to the cortical component. At this point it is not
clear how this process could take place, although several
proposals exist (Alvarez & Squire, 1994; Halgren, 1984;
McClelland et al., 1995; Milner, 1989; Murre, 1995;
Treves & Rolls, 1994). Computational investigations
could prove instrumental in understanding the founda-
tions of this remarkable system.

12. CONCLUSION

Mathematical analysis and experimental simulations
show that a large number of episodes can be stored in
the convergence-zone memory with reliable content-
addressable retrieval. For the hippocampus, a sufficient
capacity can be achieved with a fairly small number of
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units and connections. Moreover, the convergence zone
itself requires only a fraction of the hardware required for
perceptual representation. These results provide a possi-
ble explanation for why human memory is so efficient
with such a high capacity, and why memory areas appear
small compared to the areas devoted to low-level
perceptual processing. It also suggests that the computa-
tional units of the hippocampus and the perceptual maps
can be quite coarse, and gives a computational reason
why the maps and the hippocampus should be sparsely
connected.

The model makes use of the combinatorics and the
clean-up properties of coarse coding in a neurally-
inspired architecture. The practical storage capacity of
the model appears to be at least two orders of magnitude
higher than that of the Hopfield model with the same
number of units, while using two orders of magnitude
fewer connections. On the other hand, the patterns in the
convergence-zone model are smaller than in the Hopfield
network. Simulations also show that psychologically
valid error behavior can be achieved if the binding pat-
terns are made more descriptive: the erroneous patterns
are close to the correct ones. The convergence-zone epi-
sodic memory is a step towards a psychologically and
neurophysiologically accurate model of human episodic
memory, the foundations of which are only now begin-
ning to be understood.
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APPENDIX A: PROBABILITY THEORY
BACKGROUND AND PROOFS

In this appendix, concepts from probability theory that are necessary for
understanding the main text are briefly reviewed, and details of the
probabilistic formulation and martingale analysis are presented (for
more background on probability theory and statistics, see e.g. Alon &
Spencer, 1992 or Bain & Engelhardt, 1987).

A.l. Distributions and Bounds

In the analysis of Sections 3 and 4, two probability density functions are
used. The first one is the binomial distribution with parameters » and p,
denoted as B(n,p), and it gives the outcome of » independent trials
where the two possible alternatives have probability p and 1 — p.
This distribution has the expected value np and variance np(l — p).
The other one is the hypergeometric distribution with parameters n, m
and N, denoted as HYP(n,m,N), and representing the number of ele-
ments in common between two independently-chosen subsets of n and
m elements of a common superset of N elements. The distribution has
the expected value 22 and variance Z2%(1— %) ¥=2,

The Chernoff bounds can be used to estimate how likely a binomi-
ally distributed variable, X, is to have a value within a given distance &
from its mean:

_5 np
PX=(1-8)mp)= (afﬁ) ,0<8<1, (A1)
é »
P(X = (1+8)np) < ((T;E)m) ,6>0. (A2)

Even if the trials are not independent (and therefore X is not binomially
distributed), in some cases the sequence of variables X,..., X, can be
analyzed as a martingale, and bounds similar to Chernoff bounds
derived using Azuma’s inequalities (see Appendix A.3).

A.2. Details of the Probabilistic Formulation

As in Section 3, let Z; be the size of the binding constellation of a feature
unit after i patterns have been stored on it, and let Y; be its increase after
storing the ith pattern on it. Then

= Z Y. (A.3)
k=1

Let Y;, i > 1 be hypergeometrically distributed with parameters m,
n — z;.y}, and n:

n—2z-1 Zi-1 n
P(Yi=ylzi—1=zi—l)=( )( )/( ), (Ad4)
y m—y m

and let Z; = Y; = m with probability 1. Then

i-1
E(Yi)=E('"__("—_Zi~1_)) —m—"EZ_)=m-" 2 E¥y)
n n nk=1

=(1——g)E(Y,-_1)=m(l—%)i_l. (AS5)
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Using (A.5), an expression for E(Z;) can be derived:

EZ)= kg E(Y)= kglm(l - %)H =n(1 ~(1- %)) (A6)

This equation indicates that initially, when no patterns are stored, Z; =
0, and that Z; converges to n as i goes to infinity.

The variance of Z; can be computed in a similar way. First a recur-
rent expression for the variance of Y, is derived:

Var(Y,)=E;_ [Var(Y,|Z,_ )]+ Vars_ [E(Y|Z;_1)]

=Ez,-_,[ "- Z' La- n-Zic l)n m]+Varz [mn————_fi_l]

n n—1

B e e

Vm’(zx 1)

(A7)

To obtain the variance of Z;, the covariance of Z;_, and Y; needs to be
computed:

Cov(Z,; -\, Y))=E(Z;_Y)) — E(Z;_)E(Y))
=Ez_,[E(Z;_1Y/|Z;_ )] - E(Z; - )E(Y)

=E(Z.~ ﬁ(”—z—ﬂ) — B DEY)
=mE(Z; ) — ;[(E(Zi— D + Var(Z;_ V] — E(Zi - DE(Y)

= - Zvar(z;_). (A8)
The variance of Z; can now be easily derived:
Var(Z;)=Var(Z;_, +Y)
=Var(Z;_,)+ Var(Y;)+2Cov(Z; _,, Y;)

t 1]
= D Var(¥)+2 2. CovZ_1, o)
k=1 k=2
i 2 i—1
m
= kgl Var(Yy) — —r—l—kgl Var(Z,)

=Var(Y)) + (1 - —2:;) Var(Z;_,)

(-2 (1-1(1-2)

m2n—m— 1))i

D) (A.9)

+n(n—1) (1 -
The base of every exponential in this expression is smaller than 1, so the
variance goes to 0 as i goes to infinity. This makes sense in the model. If
many patterns are stored, it becomes very likely that Z; has a value close
to n, and hence its variance should go to zero.

So far it has been assumed that i is an ordinary variable. If it is
replaced by a stochastic variable I that is binomially distributed with
parameters p and 1/f, the previously computed expected values and
variances must be made conditional on /. To compute the unconditional
expected values and variances, the following lemma is needed:

LeEMMA A.l. If X ~ B(n,p), then E(1 — a¥)=(1 — ap)".

Proof.

L n
E«l—a)")=x§)(1—a>*(

X

“o/n
- ZO< )(p—ap)‘(l —pyE
*=U\x

=((-ap)+1-p)
=(1—ap)".

)p"(l -p
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Let Z denote the unconditional value of Z;. The desired results follow
immediately from Lemma A.1 and the linearity of expected values:

m\?
E(Z)=n<1— (I— E) ),

Var(Z) = Var{E(Z;\I)] + E[[Var(Z;|])]

=n2Var[(1 - %)']
+E[n(1_ g)’_nz(l_ ¥

m2n—m— 1\’
+n(n— 1)(1— —m—‘) ]

m\? m\*
=(-5) (=(-3))
m2n—m—1)\?
+"("_1)(1_ nn—Df )

Let Z be defined as Z~Z|I = 1. Then, Z will always be at least m.
Expressions similar to (A.11) and (A.12) can be derived for Z:

(A.10)

(A.11)

E(Z)=m+(n—m)(1 - (1 - %)p> (A.12)
-1 -1
Var(2)=(n—m)(1—§)p <1—(n—m)<1—%)p )
m2n—m—1)\""!
+(n—m)(n——m——1)(1——————n(n_1)f ) . (A.13)

From (A.10) and (A.12) it follows that on the average, Z is larger than Z.
Initially the difference is exactly m, and the difference goes to zero as p
goes to infinity. This means that initially, when few patterns are stored,
the right units are very likely to be retrieved, since they have the advan-
tage of receiving activation from at least m binding units. However,
when more patterns are stored, almost every unit in a feature map
receives the same amount of activation. Units that have been used
most often are most likely to be retrieved.

It is difficult to derive an exact expression for the expected value and
variance of X, (the intersection of ¢ retrieval cues) because the binding
constellations are correlated. Since the same partial patterns might have
been stored several times, certain combinations of retrieval cues can
give rise to spurious activity in the binding layer, which is difficult to
take into account in the analysis. For this reason, the analysis is carried
out under the assumption that the chance of partial patterns is negligi-
ble, which is reasonable in most cases and easy to check.

A.3. Martingales

Martingales give us a way to analyze the outcome of »n trials with
limited dependencies. A martingale is a sequence of random variables
Xo,-.., X, such that

EX\Xy, ... Xi_)=X;_;, 1<i=n. (A.14)
If a martingale satisfies the Lipschitz condition, that is
X, — X, /=<1, l<i=n, (A.15)
then the following inequalities hold:
P&, <X, -N\i)=e M7 (A.16)
P, <Xo+ M) =e N2, (A7)

These equations are called Azuma’s inequalities and they can be used to
bound the final value of the sequence within a chosen confidence level.

Ad4. The Binding Constellation Martingale
Let ZE be defined as in Section 4.2:

ki—v
zf:Z'v+(n—z'v)<1— <1— %) )
ki—v
=n—(n—Z",)<1—l) .
n

(A.18)
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In order to apply Azuma’s inequality, the Lipschitz condition
|Zv —ZE ,1=1 must to be satisfied. The binding units are chosen
one at a time, and they may either already be part of the constellation
or add one more unit to it. Therefore, the difference between Z', and
Z',_, is always either O or 1:

Casel: Z2',—-2',_,=0

ki—v
|Z§—Zf_1|=‘—(n—2’v)(l—% (1-(1-1))

n
n-2,( 1 ki=v
n n

=l1. (A.19)

Case2: Z',=2Z',_+1

E 5 , 1 ki—v 1
lzi-zi | =|-(n-2Z')[1- = (=-{1--p
n n
1 ki-v+1
+(1_-)
n

_7 1\K-v kK—v+1
=_’Lﬁ<1——) +<1—1)

n n n
_|(n=1 n-2, . ey
- n n n
= Z’L1<1_1>ki_v

n n

=1. (A.20)

In both cases we have IZE — ZE_ || < 1 and hence Azuma’s inequality
can be applied to obtain a bound for Z.

A.5. The Intersection Martingale
Let XE be defined as in Appendix 4.3:
=) —X'y)

X=X+
ng—v
=5 X’v+( 0 (A21)
ng—v g — V

First, X5, ... X,, is shown to be a martingale. The expected i mcrease

f’f X', is —:—’%hl The conditional expected value of X,° given XE,
is

EXIXE_ =2 )=EXSIX',_1=x';_))

ns ny —~
= X1t
n, — ( j—1

-1, (m—vny
v+1)+ ng—v
n,—ng , (ng—ny)ny (n —viny
x]-_1+
n,—v+1 (n,—v)(n,—v+1) n;,—v
ng—ny X' (n:_nl)n2
na—v+1 77V (=), —v+ 1)
(ns =) = vVIny +(ny —Vmy
(n,—v)(n,—v+1)
n,—n +( 1—v+1Dn,
—v+1 i1 n,—v+1

=%

Since EXEIXE_)=XT |, the sequence X5, ..., X% is a martingale.

Epply Azuma’s inequality, it is necessary to show that
|XE _1l = 1forv=1,...,n,. Unlike for the martingale of Appendix
Ad, thlS is not generally true, but true only when certain constraints on
ny, ny and n, are satisfied. If these parameters are fixed, the difference
can be seen as a function of v, X’ , and X’ ;. The function is monotonic
in these variables, and to find its maximum, it is sufficient to look only

+

(A.22)
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at the extreme values of v, X’, and X’ ,_;. The maximum in turn deter-
mines the constraints on n,, n, and n,.

As in Appendix A 4, the proof consists of two main cases: (1) X*, =
X',yand 2) X', = X’,_; + 1. Each of these is divided into several
subcases. The following tables show the cases, the absolute difference
in each case between X, F and X f_l, and the constraint that follows from
the difference.

Casel:X’V=X’v_1.
In this case, using (A.21), IXE—XE || can be rewritten as

E—;’f—:—v’g—(ﬁx—’fv'—:% There are three subcases listed in the table below.

M. Moll and R. Miikkulainen

Resulting constraint

Subcase Difference
_ y n2(ns _ nl)
V—1!XV— ns(ns_l)
— i X', =0
ng—ny+1

v=ny, X’y =max(0,ny + n, — ng)

ng—mn .
m 1 1 Xo= A,
g — 141
N~ . ' _
- n_n+11fX,,—n1
v=ny, X'y, = min(ny,ny) s — T

0if X', =n,

n >0 V ny < ng

m+n—1=n,

no constraint

no constraint

Case2: X', =X, ,+ 1. ,

Now X2 — XE_ || can be rewritten as Q‘% Again
there are three subcases listed in the table below.

To conclude, if ny + n, — 1 < n,, then IXE —XE_|I=1 and

Azuma’s inequality can be applied.

Resulting constraint

Subcase Difference
(ns — )(ns - n2)
v=1X,=1 e AR T T2l
v ns(ns - 1)
Rt v g
v=ny, X', =max(1,ny + Ny — ny) n,—n +1

0if X'y=n,+n, —n,

M2 e ox =n,
A ns—n1+1 v
v=n;, X', = min(ny,ny)
g — N : ’
: ———if X', =n,
ns—n;+1

n>0yn=>0

no constraint

no constraint




