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Abstract—Hunrunepisodic memory provides a seemingly unlimited storage for everyday experiences, and a retrieval
system that allows us to access the experiences with partial activation of their components. The system is believed to
consist of afast, temporary storage in the hippocampus,and a slow, long-term storage within the neocortex. Thispaper
presents a neural network model of the hippocampal episodic memory inspired by Darnusio’s idea of Convergence
Zones. The model consists of a layer of perceptual feature maps and a binding layer. A perceptual feature pattern is
coarse coded in the binding layer, and stored on the weights between layers. A partial activation of the stored features
activates the bindingpattern, which in turn reactivates the entire storedpattem. For manyconfigurationsof the model, a
theoretical lower boundfor the memory capacity can be derived, and it can bean order of magnitudeor higher than the
number of all units in the model, and several orders of magnitude higher than the number of binding-layer units.
Computational simulationsfirther indicate that the average capacity is an order of magnitude larger than the theore-
tical lower bound, and making the connectivity between layers sparser causes an even further increase in capacity.
Simulationsalso show that ifntore descriptive bindingpatterns are used, the errors tend to be rnoreplausible (patterns
are confused with other similar patters), with a slight cost in capacity. The convergence-zone episodic memory there-
fore accounts for the immediate storage and associative retrieval capability and large capacity of the hippocampal
memory, and shows why the memory encoding areas can be much smaller than the perceptual maps, consist of rather
coarse computational units, and are only sparsely connected to the perceptual maps. 01997 Elsevier Science Ltd.

Keywords-Convergencezones,Episodicmemory,Associativememory,Long-termmemory,Content-addressable
memory,Memorycapacity,Retrievalerrors,Hippocarnpus.

1. INTRODUCTION

Human memory system can be divided into semantic
memoryof facts,rules,and generalknowledge,and epi-
sodic memory that records the individual’sday-to-day
experiences(Tulving, 1972, 1983).Episodicmemory
is characterizedby extremeefficiencyandhighcapacity.
Newmemoriesare formedeveryfew seconds,andmany
of those persist for years, even decades(Squire, 1987).
Another significantcharacteristicof human memory is
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content-addressability.Most of the memories can be
retrieved simply by activatinga partial representation
of the experience,such as sound, a smell, or a visual
image.

Despite a vast amount of research, no clear under-
standinghas yet emerged on exactly where and how
the episodic memory traces are represented in the
brain. Severalrecent results,however, suggestthat the
system consistsof two components:the hippocampus
servesas a fast, temporarystoragewhere the traces are
createdimmediatelyas the experiencescomein, and the
neocortex has the task of organizingand storing the
experiencesfor the lifetime of the individual(Alvarez
& Squire,1994;Halgren,1984;Marr, 1971;McClelland
et al., 1995;Milner,1989;Squire,1992).It seemsthatthe
tracesare transferredfrom the hippocampusto the neo-
cortex in a slow and tediousprocess, which may take
several days, or weeks, or even years. After that, the
hippocampusis no longer necessary for maintaining
thesetraces,andtheresourcescanbereusedforencoding
new experiences.
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Althcmgh severalartificialneural networkmodelsof
associative memoryhave been proposed(Ackleyet al.,
1985;/!m ari, 1977,1988;Anderson,1972;Andersonet
al., 191‘7; Cooper, 1973; Grossberg, 1983; Gardner-
Medwir1, 1976; Hinton & Anderson, 1981; Hopfield,
1982, 1984; Kairiss& Miranker,1997;Kanerva,1988;
Knapp & Anderson,1984;Kohonen,1971,1972,1977,
1989;K:ohonen& Miikisara,1986;Kortge, 1990;Little
& Shaw, 1975; McClelland & Rumelhart, 1986b;
Miikla.i.ainen, 1992;Steinbuch,1961;Willshawet al.,
1969), the fast encoding,reliable associativeretrieval,

capacityof even the hippocampalcomponent
of hum memoryhas been difficultto accountfor. For

n the Hopfieldmodelof N units,N141nN pat-
terns c:m be stored with a 99% probabilityof correct
retrieva1 when N is large (Amit, 1989; Hertz et al.,
1991;R:eeler, 1988;McElieceet al., 1986).This means
that storing and retrieving,for example, 106memories
wouldrequirein the orderof 108nodesand 1016connec-
tions, vIhich is unrealistic,given that the hippocamprd
formatim in higheranimalssuch as the rat is estimated
to have about 106primaryexcitatoryneuronswith 1010
connections (Amaral,Ishizuka,& Claibome,1990),and
the entire human brain is estimatedto have about 1011
neurons~and 1015synapses(Jessell,1991).

‘l%es~earliermodelshad a uniform,abstractstructure
andwe]“enotspecificallymotivatedby anyparticularpart
of thehumanmemorysystem.In thispaper,anew model
for asscwiativeepisodicmemoryis proposedthat makes
use of 1.hreeideas abouthow the hippocampalmemory“
mighttK put together.The model abstractsmost of the
low-level biologicalcircuitry,focusingon showingthat
with a biologicallymotivated overall architecture,an
episodi; memorymodelexhibitscapacityand behavior
very silnilar to that of the hippocampalmemorysystem.
Thethr>ecentralideasare:(1)value-unitencodingin the
inputfeaturemaps,(2)sparse,randomencodingof traces
in the 1uppocampus,and (3) a convergence-zonestruc-
ture bel,weenthem.

Sine: the input to the memory consists of sensory
experierice,in the modelit shouldhave a representation
similarto theperceptualrepresentationsin thebrain.The
low-level sensory representationsare organized into
maps, that is, similar sensoryinputsare representedby
nearbylocationson the corticalsurface(Knudsenet rd.,
1987).:1 is possiblethatalsohigher-levelrepresentations
have a map-likestructure.This is hard to verify,but at
least tkere is plenty of supportfor value-unitencoding,
that is, that the neuronsrespondselectivelyto only cer-
tain tyIEs of inputs, such as particularfaces, or facial
expressions,or particularwords (Hassehnoet al., 1989;
Heit et al., 1989;Rolls, 1984).

The structureof thehippocampusis quitewellknown,
and ref:ently its dynamicsin memory processinghave
alSO bxm observed. Wilson & McNaughton (1993)
found %at rats encode locations in the maze through
ensemtdes of seemingly random, sparse activation

patterns in the hippocampalarea CA1. When the rat
exploresnew locations,new activationpatternsappear,
and when it returns to the earlier locations, the same
pattern is activatedas during the firstvisit. O’Reilly&
McClelland(1994)showedthat the hippocampalcircui-
try is well-designedto form such sparse,diverseencod-
ings, and that it can also perform pattern completion
duringrecall.

Damasio(1989a,b)proposeda generalframeworkfor
episodicrepresentations,based on observationsof typi-
cal patterns of injury-relateddeficits.The idea is that
there is no multi-modalcortical area that would build
an integrated and independent representation of an
experiencefrom its low-level sensory representations.
Instead,the representationtakes place only in the low-
levelcortices,with the differentpartsboundtogetherby
a hierarchyof convergencezones.An episodicrepresen-
tation can be recreated by activatingits corresponding
bindingpatternin the convergencezone.

The convergence-zoneepisodic memory model is
looselybased on the above three ideas. It consistsof a
layerof perceptualmapsanda bindinglayer.Anepisodic
experienceappearsas a patternof localactivationsacross
the perceptualmaps,and is encodedas a sparse,random
patternin thebindinglayer.Theconnectionsbetweenthe
mapsand thebindinglayerstoretheencodingin a single
presentation,andthecompleteperceptualpatterncanlater
be regeneratedfrompartialactivationof theinputlayer.

Many details of the low-level neural circuitry are
abstractedin the model.The units in the model corre-
spond to functionalcolumns rather than neurons and
their activation levels are represented by integers.
Multi-stageconnectionsfrom the perceptual maps to
the hippocampusare modeledby directbinary connec-
tions that are bidirectional,and the connectionswithin
thehippocampusare not takenintoaccount.At this level
of abstraction,thebehaviorof themodelcanbe analyzed
both theoretically and experimentally, and general
resultscan be derivedaboutits properties.

A theoreticalanalysisshows that: (1) with realistic-
sizemapsand bindinglayer, the capacityof the conver-
gence-zonememorycan be very high, higher than the
numberof units in the model,and can be severalorders
of magnitudehigher than the number of binding-layer
units;(2) the majorityof the neuralhardwareis required
in the perceptualprocessing;the bindinglayer needs to
be onlya fractionof the sizeof the perceptualmaps;and
(3) the computationalunits could be very coarse in the
hippocampusand in the perceptualmaps; the required
capacityis achievedwith a very smallnumberof such
units. Computationalsimulationsof the model further
suggest that: (1) the average storage capacity may be
an orderof magnitudehigherthan the theoreticallower
bound; (2) the capacity can be further increased by
reducingthe connectivitybetweenfeaturemapsand the
binding layer, with best results when the connectivity
matches the sparsenessof the binding representations;
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FIGURE1. Storage.The weightson the connectionsbetweenthe
appropriatefeature units and tha binding represantstionof the
patternsre set to 1.

and(3) if thebindingpatternsfor similarinputsaremade
more similar, the errors that the model makes become
more plausible:the retrievedpatternsare similarto the
correct patterns. These results suggest how one-shot
storage, content-addressability,high capacity, and
robustnesscould all be achieved within the resources
of the hippocampalmemorysystem.

2. OUTLINE OF THE MODEL

The convergence-zonememory model consistsof two
layers of real-valuedunits (the feature map layer and
the bindinglayer), and bidirectionalbinaryconnections
betweenthe layers(Figure1).Perceptualexperiencesare
representedas vectorsof featurevalues,suchas color=
red,shape = round,size= small.Thevrduesare
encodedas unitson the featuremaps.Thereis a separate
map for each featuredomain,and each unit on the map
represents a particular value for that feature. For
instance, on the map for the color feature, the value
redcould be specifiedby turning on the unit in the
lower-rightquarter (Figure 1). The feature map units
are connected to the binding layer with bidirectional
binary connections(i.e. the weightis eitherOor 1). An
activation of units in the feature map layer causes a
numberof units to become active in the bindinglayer,
and viceversa.In effect,the bindinglayeractivationis a
compressed, distributed encoding of the perceptual
value-unitrepresentation.

Initially,allconnectionsare inactiveat O.A perceptual
experienceis stored in the memorythroughthe feature
map layer in three steps.First, thoseunits that represent
the appropriatefeaturevaluesare activatedat 1.Second,
a subsetof m bindingunitsare randomlyselectedin the
bindinglayeras thecompressedencodingfor thepattern,
and activatedat 1. Third, the weightsof all the correc-
tionsbetweentheactiveunitsin the featuremapsandthe
activeunits in the bindinglayer are set to 1 (Figure 1).
Note that only one presentationis necessaryto store a
patternthis way.

To retrievea pattern,firstallbindingunitsare set to O.
The pattern to be retrieved is partially specifiedin the
featuremaps by activatinga subsetof its featureunits.
For example,in Figure2a the memoryis cued with the
two leftmostfeatures.The activationpropagatesto the
binding layer through all connectionsthat have been
turnedon sofar. The setof bindingunitsthat a particular
featureunitturnson is calledthebindingconstellationof
thatunit.Allbindingunitsin thebindingencodingof the
patternto beretrievedareactiveat 2 becausetheybelong
to the binding constellation of bothretrievalcueunits.A
numberof other units are also activatedat 1, because
eachcueunittakespart in representingmultiplepatterns,
and therefore has several other active connectionsas
well. Only those units active at 2 are retained; units
with less activationare turnedoff (Figure2b).

The activationof the remainingbindingunits is then
propagatedbackto the featuremaps(Figure2c).A num-
berof unitsare activatedat variouslevelsin eachfeature
map, dependingon how well theirbindingconstellation
matchesthecurrentpatternin thebindinglayer.Chances
are that the unit that belongsto the samepattern as the
cues has the largest overlap and becomesmost highly
activated. Only the most active unit in each feature
mapis retained,andas a result,a complete,unambiguous
perceptual pattern is retrieved from the system
(Figure2d).

If thereare n unitsin thebindinglayerandm unitsare
chosenas a representationfor a pattern, the numberof
possibledifferentbindingrepresentationsis equalto

()n

m

If n is sufficientlylarge and m is relativelysmall com-
pared to n, this number is extremelylarge, suggesting
that the convergence-zonememory could have a very
largecapacity.

However,dueto theprobabilisticnatureof the storage
and retrievalprocesses,thereis alwaysa chancethat the
retrieval will fail. The binding constellationsof the
retrievalcueunitsmay overlapsignificantly,and several
spuriousunits may be turned on at the binding layer.
When the activationis propagatedback to the feature
maps, some randomunit in a feature map may have a
bindingconstellationthatmatchesthespuriousunitsvery
well (Figure3). This rogue unit may receivemore acti-
vation than the correctunit, and a wrong featurevalue
may be retrieved.As morepatternsare stored,the bind-
ing constellationsof the featureunitsbecomelarger,and
erroneousretrievalbecomesmore likely.

To determinethe capacity of the convergence-zone
memory,thechanceof retrievalerrormustbe computed.
Below,a probabilisticformulationof the model is first
given, and a lower bound for the retrieval error is
derived.
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. PROBABILISTICFORMULATION

>thesizeof thebindingconstellationof a feature
r i patternshavebeenstoredon it andlet Yibe its
after storingthe ith patternon it. Obviously,Y1
obtainthedistributionof Yiwheni >1, notethat
activeconnectionsbelongto the intersectionof a
y chosen subsetof m comections among all n

comectionsof the unit, and its remaininginactivecon-
nections(a set with n – zi–l elements,wherezi-l is the
binding constellationat the previous step). Therefore,
Yi$i >1 is hypergeometricallydistributed(Appendix
Al) with parametersm, n – zi-l, and n:

P(Yi=ylZi -1 = Zi- 1)=
(n-H(::Y)/()

BhdtngLayer (1)

k!lm
!MeII1 FeatureMap2 FeatureMaP3 FeahII’chhP4

LErroneousratrleval.A roguafeature unit Is retrieved,
# the correct one, whan its blndlng conatallatlon hae
b in common with the lnteraactlon oi the ratrlavalcue
tlonsthan the bindingconstallatlonof the correctunit.

The constellationsizeZi is then givenby

z
(2)

k= 1

Let Zbe the numberof patternsstoredon a particular
feature unit after p random feature patternshave been
storedin the entire memory.Zis binomiallydistributed
(AppendixAl) withparametersp and 1~ where~is the
numberof units in a featuremap:

Let Z be the bindingconstellationof a particularfea-
tureunitafterp patternshavebeen storedin thememory.
It can be shown(AppendixA.2) that
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“z)=n(’-(’-ap)ad‘4)

‘Ur(z)=n(%)p(+ap)
(+n(lz–1) 1–

)

m(2n – m – 1) p
(5)

n(n – 1)~ “

Initially,when no patternsare stored, the bindingcon-
stellationis zero and it will convergeto n as more pat-
ternsare stored(sinceO< 1– # < 1).Becausethebases
of the exponential in the varianceof Z are smallerthan
1, the variancewill go to zero whenp goes to infinity.
Therefore, in the limit the binding constellationwill
coverthe entirebindinglayer with probability1.

The bindingconstellationof a featureunit, giventhat
at leastonepatternhasbeenstoredon it, is denotedby ~.
This variable representsthe binding constellationof a
retrievalcue, which necessarilymust have at least one
patternstoredon it (assumingthat the retrievalcues are
valid).Theexpectedvalueandvarianceof~ followfrom
(4) and (5):

‘(z)=m+(n-m)(+a’)md“)
Var(2)

‘@-mH’-l(l-@-m(l-ap-’)
(+(n–m)(n–m–1) 1–

)

m(2n – m – 1) ‘–1
n(n – 1)~ “

(7)

Note that the expectedvalue of ~ is alwayslarger than
thatof Z. Initiallythe differenceis exactlym, and it goes
to zero asp goes to infinity(because2 alsoconvergesto
n).
Leti?!be the bindingconstellationof thejth retrieval

cueandletXjbe thenumberofunitsin theintersectionof
the tirstj retrievalcues.Clearly,Xl =21 = m. To getXj
forj >1, we removefrom considerationthem unitsall
retrievalcuesnecessarilyhavein common(becausethey
belongto the same storedpattern),and randomlyselect
2j – m units from the remainingset of n – m units and
seehow manyof thembelongto the currentintersection
of xj–l – m units.This is a hypergeometricdistribution
with parametersi] —m, xj–1– m, and n — m:

~(xj=Xjlzj=~j,Xj–1 ‘Xj - 1)

The sizeof the totalbindingconstellationactivateddur-
ing retrievalis obtainedby takingthis intersectionover
the bindingconstellationsof all c retrievalcues.

The numberof units in commonbetweena potential
rogueunitandthe c retrievalcuesis denotedby RC+land
is also hypergeometricallydistributed,however with
parametersz, XC,and n, becausewe cannotassumethat
the rogueunit has at least m units in commonwith the
cues:

P(RC+ ~= rlZ = Z,XC = xc) =

(’3(:3/(3

(9)

The correctunit in a retrievalmap (i.e. in a featuremap
where a retrieval cue was not presented and where a
featurevalueneedsto be retrieved)will receivean acti-
vationX.+l, becauseit also has at least m units in com-
mon with the retrieval cues. The correct unit will be
retrieved if XC+1> Rc+ 1. Now, XC+l and RC+l differ
only in the last intersectionstep, where XC+]depends
on ~ and XC,and Rc+l depends on Z and XC.Since
l?(~)> E(Z)((4) and (6)), E(XC+1)> E(R~+1),~d the
correctunit will be retieved mostof the time, although
this advantage gradually decreases as more patterns
are stored in the memory. In each feature map there
are (~ – 1) potential rogue units, so the conditional
probability of successful retrieval is (1 – P(RC+l>
xc+~Ixc+1,Z,xc))(f-1)>not addressing tie-breaking.
Unfortunately,it is very difficult to compute p~wce~~,
the unconditionalprobability of successful retrieval,
because the distributionfunctionsof Z, XC,XC+land
RC+l are not known. However,it is possibleto derive
bounds for p,ua$, and show that with reasonable
valuesfor n, m, f, andp, the memoryis reliable.

4. LOWER BOUNDFOR MEMORYCAPACITY

Memorycapacitycan be definedas the maximumnum-
ber of patternsthat can be storedin the memoryso that
the probabilityof correctretrievalwith a givennumber
of retrievalcues is greaterthana (a constantclose to 1).
In thissection,a lowerboundforthechanceof successful
retrievalwill be detived.The analysisconsistsof three
steps:(1) boundsfor the numberof patternsstoredon a
featureunit;(2)boundsforthebindingconstellationsize;
and (3)boundsfor the intersectionsof bindingconstella-
tions.Givenparticularvaluesfor the systemparameters,
and ignoring dependenciesamong constellations,it is
then possibleto derive a lower bound for the capacity
of the model.

4.1. Numberof PatternsStoredon a FeatureUnit

SinceZis binomiallydistributed(withparametersp and
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uationsgive the probabilitythat Zis more than
i32foff its mean. The parameters 61 and 62
e the tradeoff between the tightness of the
and the probability of satisfying them. If
re desiredwith a givenprobabilityf?,the right
ss of (10) and (11) are made equal to /3 and
mi$land 62. The lower and upper bound for
m of patternsstoredon a featureunit then are

{

(1– ~1)~if a solutionfor 61exists
(12)

Ootherwise

iu= (1+ ~z)~. (13)

it at least one patternhas been storedon a fea-
the boundsbecome

1+(1 -61)P; “If a solutionfor til exists

1 otherwise
(14)

i = 1+(1+ 62)P4.
f

*
4.2.Si of the BindingConstellation

(15)

t

Instead of choosing exactly m different binding units
for the indingconstellationof a featuremap unit, con-
siderth processof randomlyselectingknot-necessarily-
distinctunits in such a way that the expectednumberof
differe t unitsis m.This willmakethe analysiseasierat
the cos of larger variance,but the boundsderivedwill
alsobe validfor the actualprocess.To determinek,note
that thenumberof unitsthatdo notbelongto thebinding
represe tation is equalton – m on average

()
~k

n l—– = n —m.
n

dSolvin fork, we get

(16)

~= inn – ln(n– m)
inn –ln(n–1)”

(17)

$Note th t k is almostequaltom for largen.
Let assumei patternsare storedon the featuremap

M. h4011and R. iUiikkulainen

unit, which is equivalentto selectingki units from the
bindinglayerat random.Let ~E be the expectedsize of
the finalbindingconstellation,estimatedafter v binding
unitshavebeen selected.Then

@=z’,+@-z’+(l-Y-
()

~ki-v

=n – (n –Z’v) 1– ; , (18)

whereZ’Vis the sizeof the bindingconstellationformed
by the first v selectedunits. ObviouslyZ’v is equal to
Z’,-l or exactl one larger, and the expected increase

Jof Z’v is 1– ~. Since ~E–1 depends stochastically
onlyon Z’v–1,the expectedvalueof ~E, given~E–1,is

= J!@lz’,- ~= Z’v- ~)

‘n-(n-z’,-d+))(+’-’
()

~ ki-v+ 1

= n –(n–Z’v–1) 1– ;

=.$_,. (19)

Therefore,E(AEIZ$E.~)=zE- ~and the sequenceof vari-
ables GE,..., Z: is a martingale (see Appendix A.3).
Moreover, it can be shown (Appendix A.4) that
!~E–~B-ll s 1, so that bounds for the final binding
constellationZ can be obtainedfrom Azuma’sinequal-
ities. For the lower bound, the martingale2$E,...,Z~,
(with length kil) is used, and for the upper bound,
Z9 ...7Z~U(with lengthkiu). Using(18) and notingthat
Z=Z~, for the lower bound and Z=Z~ti for the upper
bound,Azuma’sinequalitiescan be writtenas

‘P(z+(+)’’)-’fi)
(20)

Se -h’n,A>0. (21)

After derivinga value for Abased on the desiredcon-
fidencelevel& thefollowinglowerandupperboundsfor
Z are obtained:

“=n(+r)- ’22)
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‘u=n(l-(1-3ki”)+A@’23)
The correspondingboundsfor ~ are
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After derivinga value for Xbased on the desiredcon-
fidence,the followingupperboundfor Xj is obtained:

(Xj- I,. – m)(~u– m)
Xj,~= m+

(n – m)
+A/Xj-~,~ –m. (31)

This bound is computedrecursively,with xl,. = m.
Comparingwith the probabilisticformulationof Section

~u=n(l-fl-:~k’”l+~lfi. (25)

3, note that

(xi- ~.U– m)(.Zu– m)
[ [ n) ) v ‘“

4.3. Intersection of Binding Constellations

The process of forming the intersectionof c binding
constellationsincrementallyone cue at a time can also
be formulatedas a martingaleprocess.To see how,con-
siderthe processof formingan intersectionof two sub-
sets of a common supersetincrementally,by checking
(one at a time) whether each element of the first set
occurs in the secondset. Assumethat v elementshave
been checked this way. Let X’, denote the numberof
elementsfound to be in the intersectionso far, and X:
the currentlyexpectednumber of elementsin the final
intersection.Then

XE=X, + (nl–v)(n2–X’V)
v v (26)

n$—v ‘

wherenl, nz and n, are the sizesof the first,second,and
the superset.As shownin AppendixA.5, the sequence
x;, ..., X:, is a martingale.In addition,if nl + nz – 1<
n,, IX:–X~-ll = 1, and Azuma’s inequalitiescan be
applied.

The aboveprocessappliesto formingthe intersection
of bindingconstellationsof retrievalcueswhenthe inter-
sectionin the previousstep is chosenas the firstset, the
bindingconstellationof thejth cue as the secondset, the
bindinglayeras thecommonsuperset,andthem unitsall
retrieval cues have in common are excludedfrom the
intersection.In this case

nl ‘Xj– 1,U — m (27)

nz = Zu—m (28)

n~= n —m, (29)

wherexj–l,Uis an upperboundforXj–l.Azuma’sinequal-
ity can be appliedifxj–l, U+ 2U– 1< n (whichneedsto
be checked).Using(27)–(29)in (26)andnotingthatX~,
= Xj – m, Azuma’sinequalitybecomes

P(x:’ 2X: – A@)=

( (Xj_1,. – m)(%–‘) + ~~xj-, ~ – m
P Xj km+

(n – m) )

< e–A2n, A > ().— (30)

(n – m)

is the expectedvalueof the hypergeometricdistribution
derivedfor Xj (8) when ~j and Xj-l are at their upper
bounds.

As the last step in the analysisof bindingconstella-
tions, the boundsfor XC+landR.+lmust be computed.
When X. is at its upper bound, the intersectionis the
largest,and a potentialrogueunithas the largestchance
of taking over. In this case, a lower bound for XC+lis
obtainedby carrying the intersectionprocess one step
further,and applyingAzuma’sinequality:

(px ~~ m+ (xc,u–m)(?j –m)
c+

)
– AJ~rn

(n – m)

(32)

whichresultsin

x +1~=m+ (xc,u–m)(.Z1–m)
c, – A&=7il. (33)

(n – m)

If the resultinglowerboundis smallerthan m, m can be
used instead.Similarly,to get the upperboundfor R.+l,
one more intersectionstep needs to be carried out, but
this time the m unitsare not excluded:

( JpR.+ 1 z ‘-+ A& s e- A2’2,A > (), (34)n

and the upperboundbecomes
xc,u Zu
—+ AK.‘C+1,U= ~ (35)

4.4. DependenciesBetweenBindingConstellations

Strictlyspeaking,the aboveanalysisis valid only when
thebindingconstellationsofeachcueare independent.If
the same partialpattern is stored many times, the con-
stellationswill overlap beyond the m units that they
necessarily have in common. Such overlap tends to
increasethe size of the finalintersection.

In mostcasesof realisticsize,however,the increaseis
negligible.Thenumberof featuresVin commonbetween
two randompatternsof c featureseach is given by the
binomialdistribution:
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$The ch ce that two randompatternsof c featureshave
more an one featurein commonis

P(v > )=1 –P(V=O)– ZJ(V=1)
F

~DÊ‹‘l-(l-;)C-C(;)(l-;)C-’>’37)
which~anbe rewrittenas

( a(+)’ ’38)ll(v>l)=l– 1+

FThisch ceisnegligible forsufficientlylargevaluesoff
For ex pie, already when~ = 5000 and c = 3, the
chance is 1.2 X 10–7,and can be safely ignoredwhen
compu$nga lowerboundfor the capacity.

~

4.5.0 taining the LowerBound

It is n possibleto use (10)-(15), (17) and (20)-(25)
and(3 )–(35)to derivea lowerboundfor theprobability
of suc essful retrievalwith given systemparametersn,
m, f, t, c, and p, where tis the total numberof feature
maps. e retrieval is successful if rC+l,U,the upper
bound for R.+l,is lower than x~+l,~,the lower bound
for XC.~l. Under this constraint, the probability that
none o:: the variablesin the analysisexceedsits bounds
is a lovverboundfor successfulretrieval.

Obtaining the upper boundfor Xcinvolvesbounding
‘c – 1 variables:Zand ~ for the c cues and Xcfor the
c—l intersections. Computing XC+l,land r=+l,~each
involvet bounding3 variables(Z,Z, and Xc+l;Z,~, and
R.+1).‘~ ere are t – c maps,each with onexC+l,lbound
and f -- 1 different r.+l,. bounds (one for each rogue
unit). :%e total number of bounds is therefore3C– 1
+ ‘f( t – c). Setting the righthand sides of the
inequa..ities (10), (11), (20), (21), (30), (32) and (34)
equalttoa smallconstant/3,a lowerboundfor successful
retriewJ is obtained:

Psuccess > U – 6)3’-1‘3f(’-c)7 (39)

which,lforsmall13,can be approximatedby
I p,ucce,,>1 – (3’–1+‘f(t–‘))/3. (40)

bOn e other hand, if it is necessaryto determinea

1

lower und for the capacityof a model with given n,
m,f, t, and c at a givenconfidencelevelp,-, /3is first
obtain d from (40),and the numberof patternsp is then
incre until one of the bounds(10), (11), (20), (21),
(30), ( 2) or (34) is exceeded,or rc+l,ubecomesgreater
thanx +1,1.

5. EX+MPLE:MODELINGTHE HIPPOCAMPAL
MEMORYSYSTEM

As an Iexample,let us apply the above analysisto the
hippodampalmemory system.It is difficultto estimate
how camrsethe representationsare in sucha system,and
howmanyeffectivecomputationalunitsandconnections

thereshouldbe.Thenumbersofneuronsandconnections
in the rat hippocampalformationhave been used as a
guidelinebelow. Althoughthe human hippocampusis
certainly larger than that of the rat, the hippocampus,
being phylogeneticallyone of the oldest areas of the
brain,is fairlysimilaracrosshighermammalsandshould
give an indicationof the ordersof magnitudeinvolved.
More importantly,the convergence-zonemodel can be
shownto applyto a widerangeof theseparameters.Two
cases at opposite ends of the spectrum are analyzed
below: one where the number of computationalunits
and connectionsis assumedto be limited, and another
that is based on a large number of effectiveunits and
connections.

5.1. A Coarse-GrainedModel

Firstnote that each unit in the modelis meantto corre-
spondto a verticalcolumnin the cortex.It is reasonable
to assume feature maps with 1Os of such columns
(Sejnowski& Churchland,1989).Each input activates
a local area on the map, includingperhaps102columns
abovethethreshold.Therefore,thefeaturemapscouldbe
approximatedwith 104computationalunits.Therewould
be a minimumof perhaps4 suchmaps,of which3 could
be used to cue the memory.

Thereare some 1Osprimaryexcitatorycells in the rat
hippocampalformation(Arnaralet al., 1990;Bosset al.,
1985,1987;Squireet al., 1989).If we assumethat func-
tionalunits contain 102of them, then the model should
have 104bindingunits.Onlyabout0.5–2.5%of thehip-
pocampal neurons are simultaneouslyhighly active
(0’Reilly& McClelland,1994),so a bindingpatternof
102unitswouldbe appropriate.Assurning that all com-
putationalunits in the featuremaps are connectedto all
unitsin thehippocampus,thereare a totalof 108afferent
connectionsto thehippocampus,andthenumberof such
connectionsper verticalcolumnin the featuremapsand
per excitatoryneuronin the hippocampusis 102,both of
which are small but possiblenumbers (Arnarrdet al.,
1990).

If we selectf= 17000,n = 11500,m= 150,andstore
1.5 x 104patternsin the memory,2*and Xj-l,u are less
thm (.@, the chance of partial overlapof more than 1
featureis lessthan 1.04X 10-8,andtheanalysisaboveis
valid.Settingd = 1.96 X 10-7 yieldsboundsrc+l,u<
Xc+l,lWithp~-~~ > 99%.In other words, 1.5 X 104
tracescan be storedin the memorywith99%probability
of successfulretrieval.Sucha capacityis approximately
equivalentof storing one new memory every 15s for
4 days, 16h a day, which is similarto what is required
from the humanhippocampalsystem.

5.2. A Fine-GrainedModel

It is possiblethat a lot moreneuronsand connectionsare
involved in the hippocampal memory system than
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assumedabove.For example,let us assumethat each of
the verticalcolumnsin the featuremapsis computation-
ally distinctive,that is, there are 106units in the feature
maps.Let us furtherassumethat the systemhas 15fea-
ture maps, 10of whichare used to cue the memory,and
the bindinglayerconsistsof 105units,with 150usedfor
each binding pattern. Assuming full connectivity
between the feature units and the binding units, there
are 1.5 X 1012connectionsin the system,whichmight
be possibleif it is assumedthat a large numberof col-
lateralsexiston the inputsto the hippocampus.

Applyingthe above analysisto this memoryconfig-
uration, 0.85 X 108patterns can be stored with 9970
probabilityof successfulretrieval. In this case, :U and
xj–l,vare less than ($n, the chanceof partialoverlapof
morethan 1featureis lessthan0.45 X 10–10,and setting
8 = 0.5X 10-’ yieldsboundsrc+l,u<x.+,,, withp,uu.,,
> 99%.In otherwords,a newtracecouldbe storedevery
15s for 62 years, 16h a day, without much memory
interference.

Thiskindof capacityis probablyenoughfor theentire
human lifetime, and exceeds the requirementsfor the
hippocampal formation. With such a capacity, there
wouldbe no need to transferrepresentationsto the neo-
corticalmemorysystem.One conclusionfrom this ana-
lysisis that thehippocampalformationis likelyto havea
morecoarse-grainedthanfine-grainedstructure.Another
conclusionis that it is possiblethat the neocorticalmem-
orycomponentmayalsobe basedon convergencezones.
Theresultis interestingalsofromthe theoreticalpointof
view,becausethe lowerboundis an orderof magnitude
higherthan the numberof units in the system,and three
ordersof magnitudehigher than the numberof binding
units. To our knowledge,this lower bound is already
higherthanwhatis practicallypossiblewithotherneural
networkmodelsof associativememoryto date.

6. EXPERIMENTALAVERAGECAPACITY

The analysisabovegivesus a lowerboundfor the capa-
city of the convergence-zonememory;the average-case
capacitymay be much higher.Althoughit is difficultto
derivetheaveragecapacitytheoretically,an estimatecan
be obtainedthroughcomputersimulation.Notall config-
urations of the model can be simulated,though. The
model has to be small enough to fit in the available
memory,while at the same time fulfillingthe assump-
tionsof theanalysisso thatlowerboundscanbe obtained
for the samemodel.

To findsuchconfigurations,firstthe featuremappara-
meters~,t, and c, and the confidencelevelP are fixedto
valuessuchthat,....,, = 99%(40).Second,a valuefor
n is chosen so that the model will fit in the available
memory.The connectionstake up most of the memory
space(evenif eachconnectionis representedby onebit)
and the amountof memoryallocatedfor the featuremap
and the bindinglayer activations,the array of patterns,

and the simulationprogramitself is negligible.Finally,
the sizeof thebindingpatternm andthe maximumnum-
berofpattemsp is foundsuchthatthe theoreticalbounds
yieldrC+l,U< XC+l,Iandthepartialoverlapis negligible.
In the models studied so far, the highest capacity has
been obtainedwhen m is only a few percentof the size
of the bindinglayer, as in the hippocampus.

The simulationprogramis straightforward.The acti-
vationsin eachmaparerepresentedas arraysof integers.
The connectionsbetweena featuremap and the binding
layerare encodedas a two-dimensionalarrayof bits,one
bit for each connection.Before the simulation,a set of
p- randompatternsare generatedas a two-dimensional
arrayofpw X t integers.A simulationconsistsof stor-
ingthepatternsoneat a timeandperiodicallytestinghow
manyof a randomly-selectedsubsetof themcan be cor-
rectly retrievedwith a partialcue.

The ‘fine-grained’exampleof Section5.2 is unfortu-
natelytoo largeto simulate.With 15 X 105X 106= 1.5
X 1012connections h would require 187.5 GB of
memory,which is not possiblewith the currentcompu-
ters. However, the ‘coarse-grained’model has 4 X
17000 X 11500 = 7.82 X 108 one-bit connections,
which amounts to approximately100MB, and easily
fitsin availablememory.

Several configurationswere simulated,and they all
gave qualitatively similar results (Figure 4). In the
coarse-grainedmodel, practically no retrieval errors
were produceduntil 370000 patternshad been stored.
With 375000 patterns, 99% were correctly retrieved,
and after that the performance degraded quickly to
94% with 400000 patterns, 71% with 460000, and
23% with 550000 (Figure4). Each run took about two
hoursof CPU time on a Cray Y-MP 8/864.From these
simulations,and those with other configurationsshown
in Figure4, it canbe concludedthat theaveragecapacity
of theconvergence-zoneepisodicmodelmaybe asmuch
as one order of magnitudelarger than the theoretical
lowerbound.

7. LESSIS MORE:THE EFFECTOF SPARSE
CONNECTIVITY

In the convergence-zonemodel so far, the featuremaps
have been fully connected to the binding layer. Such
uniformconfigurationmakesanalysisand simulationof
themodeleasier,butit is notveryrerdistic.Bothfromthe
pointof viewof modelingthe hippocampalmemoryand
building artificialmemory systems, it is important to
knowhow the capacityis affectedwhen the two layers
are only sparselyconnected.

A seriesof simulationswererun to determinehowthe
model would perform with decreasingconnectivity.A
givenpercentageof connectionswere chosenrandomly
anddisabled,andthe 99$10capacitypointof the resulting
model was found. The binding patterns were chosen
slightlydifferentlyto accountfor missingconnections:
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the m inding units were chosen among those binding experiments.At each level of comectivity from 100’ZO
layer “ts that were connected to all features in the down to 20%, five different simulationswith different
featurepattern.If there were less than m suchunits, the randomcomectivitywererun and the resultswere aver-
bindin patternconsistedof all availableunits. aged (Figure5). Sincethe main effectof sparseconnec-

Due o high computationalcost of the simulations,a tivity is to limit the number of binding units that are
small onvergence-zonememory with ~ = 1000,n = availablefor the bindingpattern,one wouldexpectthat
3000, = 20, t = 4, and c = 3 was used in these the capacitywouldgo down.However,just the opposite
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LFIGURE 5. Capacity with sparse connectivity.The horizontalaxis showe the percentageof connection that were available to form
Mnding s,andthavarticaiaxielndicateathacapeoityatthaW%co*- level.Aaconmctlvftydecraaaaa,theretrfevaipettams
bacomdrnora fooUaed, and the mtriavaibecomemoreratiabiauntii about 30% connactivlty,where there are no longer enough con-
nation* to form binding pattarneof m unite.The modelhad f= 1000,n = 3000,m= 20,t= 4, c = 3, andtheplotie an averageof five
Simufationa.
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turnsout to be true:the fewerconnectionsthemodelhad
available(downto 30%connectivity),the morepatterns
couldbe storedwith99~oprobabilityof correctretrieval.

Theintuitionturnsoutto be incorrectforan interesting
reason:sparseconnectivitycausesthe bindingconstella-
tionsto becomemore focused,removingspuriousover-
lap that is the maincauseof retrievalerrors.To see this,
considerhow~ (thesizeof thebindingconstellationof a
featureunit after at least one patternhas been storedon
it) growswhen a new patternis storedon the unit.A set
of bindingunitsis chosento representthe pattern.When
only a fractionr of the connectionsto the bindinglayer
are available,there are only r~nbindingunits to choose
from, comparedto n in the fully connectedmodel.It is
therefore more likely that a chosen binding unit is
already part of the bindingconstellationof the feature
unit, and this constellationthereforegrows at a slower
pace than in the fully connectedcase.The expectedsize
of the constellationafterp patternshave been storedin
the memorybecomes(from(6))

‘(z)=m+(r-+%)p)“’)
whichdecreaseswith comectivity r as long as thereare
at leastmbindingunitsavailable(i.e.rk > m). Whenthe
binding constellations are small, their intersections
beyondthem commonunitswillbe smallaswell.During
retrieval it is then less likely that a rogue unit will
become more active than the correct unit. The activity
patternsin the sparselyconnectedsystemare thusbetter
focused,and retrievalmorereliable.

When there are fewer than m bindingunits available,
the capacity decreases very quickly. In the model of
Figure5 (with m = 20), the averagenumberof binding
unitsavailableis45 for3590connectivity,24for3090,12
for25%,and5 for20%.In otherwords,theconvergenze-
zone episodic memory performs best when it is con-
nected just enough to support activationof the sparse
binding patterns. This is an interestingand surprising
result, indicatingthat sparse connectivityis not just a
necessitydue to limitedresources,but alsogivesa com-
putationaladvantage.In the contextof the hippocampal
memorysystemit makessensesinceevolutionwouldbe
likely to producea memoryarchitecturethat makesthe
best use of the availableresources.

8. ERRORBEHAVIOR

When the bindingpatternsare selectedat randomas in
the model outlined,when errors occur duringretrieval,
the resulting feature values are also random. Human
memory,however,rarelyproducessuchrandomoutput.
Humanmemoryperformanceis often approximate,but
robust and plausible.That is, when a featurecannotbe
retrievedexactly,a valueis generatedthat is closeto the
correctvalue.

To testwhethertheconvergence-zonearchitecturecan
modelsuch“human-like”memorybehavior,the storage
mechanismmustbe changedso that it takesintoaccount
similaritiesbetween stored patterns. So far the spatial
arrangementof the units has been irrelevant in the
model;let us nowtreat the featuremapsand the binding
layer as one-dimensionalmaps (Figure6). The binding
layer is dividedinto sections,one for each featuremap.
The bindingunitsare selectedstochasticallyfrom a dis-
tribution function that consists of one componentfor
each of the sections.Each componentis a flatrectangle
with a radiusof u units aroundthe unit whose location
correspondsto thelocationof theactivefeaturemapunit.
The distributionfunctionis scaledso that on averagem
unitswillbe chosenfor the entirebindingpattern.

The radius u of the distributioncomponentsdeter-
minesthe varianceof the resultingbindingpatterns.By
settingu a (n/t– 1)/2a uniformdistributionisobtained,
which gives us the basic convergence-zonemodel. By
makingu smaller,thebindingrepresentationsfor similar
inputpatternsbecomemore similar.

Severalsimulationswithvaryingdegreesof a wererun
to see how the error behaviorand the capacity of the
modelwouldbe affected(Figure7). A configurationof
4 featuremaps (3 cues) with 20000 bindingunits,400
feature map units, and a 20-rmitbinding pattern was
used. The results show that when the bindingpatterns
aremademoredescriptive,theerrorsbecomemoreplau-
sible:whenan incorrectfeatureis retrieved,it tendsto be
close to the correct one. When the binding units are
selectedcompletelyat random (u = (rzh– 1)/2), the
averagedistanceis 5000;whenu = 20, it dropsto 2500;
and whena = 5, to 700.Such ‘‘human-like”behavioris
obtainedwitha slightcostin memorycapacity.Whenthe
patternsbecomelessrandom,thereis moreoverlapin the
encodings, and the capacity tends to decrease. This
effect, however,appearsto be rather minor, at least in
the smallmodelssimulatedin our experiments.

Binding Layer and DistributionFunction

1 r J I 1 ul—
I [1- m I I I I I I I-III-111

uuLmnAu
Feature Map 1 Feature Map 2 Feature Map 3 Feature Map 4

FIGURE6. Selecting a binding rsprsssntstionfor an input pst-
tern. The binding layer Is dlvidsd into eeetlone. On average, m
blndlng unite wIII be selected from a dlatrlbutionfunction that
conaista of one rectangularcomponent for each section, csn-
tersdaroundthe unitwhoselocationeorrsapondatoths location
of the inputfeatureunit. If the center is closeto the boundaryof
the esetlon, the distributioncomponentwraps around the ssc-
tlon (aa for Feature Map 1). Ths parameter u determines the
radiuaof the components,and therebythe variance in the bind-
ing pattern.Thie particularfunctionhad u = 2, that la, the width
of the individual components was 2 x 2 + 1 = 5. Ths model
parameterswere f= 10, n = 40, m = 6.
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9. DISCUSSION

The co~vergence-zoneepisodicmodel as analyzedand

1

simula d aboveassumesthat the featurepatternsdo not
overlapmuch,andthat the patternis retrievedin a single
iteratio . Possiblerelaxationof these assumptionsand
the effe ts of suchmodificationsare discussedbelow.

9.1. PafternOverlap

The th~oreticallower-boundcalculationsassumedthat

$
the ch ce of overlapof more than one feature is very
small, d this was also true in the models that were
analyzedand simulated.However,this restrictiondoes
not limit the applicabilityof the model as much as it
mightfirstseem,for two reasons:

First, it mightappearthat certainfeaturevaluesoccur
more often than others in the real world,causingmore
overlap~than there currentlyis in the model.However,
notethdtthe inputto the modelis representedon feature
maps.One of the basicpropertiesof both computational
and biologicalmaps is that they adapt to the input dis-
tribution by magnifyingthe dense areas of the input
space.

t

other words, if someperceptualexperienceis
morefr uent,moreunitswillbe allocatedforrepresent-
ing it sp that each unit gets to respondequallyof?ento

i

inputs Kohonen, 1989;Merzenichet al., 1984;Ritter,
1991). erefore,overlapin the featuremap representa-
tions is, significantlymore rare than it may be in the
absolu~experience:the minordifferencesaremagnified
andtheImpresentationsbeeomemoredistinguishableand
more ~emorable.

Second, as discussed in Section 4.4, the chance of

overlapof more than one feature is clearly small if the
feature values are independent.For example in the
coarse-grainedmodel, at the 9990 capacity point, on
averagetherewere 88 otherpatternsthat sharedexactly
one commonfeaturewith a givenpattern,whereasthere
were only 0.0078 other patternsthat shared more than
one feature. To be sure, in the real world the feature
values across maps are correlated,which would make
overlap of more than one featmremore likely than it
currentlyis in the model. While it is hard to estimate
how common such correlationswould be, they could
grow quite a bit before they become significant.In
other words, the conclusionsdrawn from the current
model are valid for at least small amounts of such
correlations.

9.2. ProgressiveRecall

The retrievalprocessadoptedin the convergence-zone
model is a version of simple recall (Gardner-Medwin,
1976), where the pattern is retrieved based on only
direct associationsfrom the retrievalcues. In contrast,
progressive recall is an iterativeprocess that uses the
retrievedpattern at each step as the new retrievalcue.
Progressiverecall couldbe implementedin the conver-
gence-zonemodel.Supposefeaturesneedto be retrieved
in severalmaps.Afterthe firstretrievalattempt,the right
featureunit will be clearlyidentifiedin most maps.For
the secondretrievaliteration,all theseunitscan be used
ascues,andit is likelythata patternwillbe retrievedthat
is closerto the correctpatternthanthe oneobtainedwith
just simple recall. This way, progressiverecall would
cause an increase in the capacity of the model. Also,
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such a retrievalwouldprobablybe more robustagainst
invalid retrievalcues (i.e. cues that are not part of the
patternto be retrieved).The dynamicsof theprogressive
recall process are difficult to analyze (see Gibson &
Robinson(1992)for a possibleapproach)and expensive
to simulate,and simplerecall was thus used in this first
implementationof the convergence-zonemodel.

Above,a theoreticallower bound for the capacityof
simplerecallwithina givenerrortolerancewasderived,
and the averagecapacitywas estimatedexperimentally.
Two other types of capacitycan also be definedfor an
associativememorymodel(Amari, 1988).The absolute
capaci~ refers to the maximumnumberof patternsthat
the networkcan representas equilibriumstates,and the
relative capacity is themaximumnumberofpatternsthat
can be retrievedby progressiverecall.The lowerbound
for the simplerecallderivedin thispaperis also a lower
bound for the absolutecapacity,and thus also a lower
bound for the relative capacity, which may be rather
difficultto derivedirectly.

10. RELATEDWORK

Associativememoryis one of the earliestand stillmost
activeareas of neuralnetworkresearch,and the conver-
gence-zonemodel needs to be evaluatedfrom this per-
spective.Althoughthe architectureis mostlymotivated
by the neurosciencetheory of perceptualmaps, hippo-
campalencoding,andconvergencezones,it is mathema-
tically most closely related to statistical associative
memories and the sparse distributedmemory model.
Contrastingthe architecturewith the Hopfieldnetwork
and modified backpropagationis appropriatebecause
these are the best-knownassociativememorymodelsto
date.Eventuallyconvergence-zonememorymightserve
as a modelof humanepisodicmemorytogetherwiththe
trace featuremap modeldescribedbelow.Althoughit is
an abstractmodelof the hippocampalsystem,it is con-
sistentwith the morelow-levelmodelsof the hippocam-
pal circuitry,and complementsthem well.

10.L The HopfieldModel

The Hopfieldnetwork (Hopfield,1982)was originally
developedto modelthe computationalpropertiesof neu-
robiologicalsystemsfrom the perspectiveof statistical
mechanics(Amit et al., 1985a,b; Kirkpatrick& Sher-
nngton, 1988;Peretto& Niez, 1986).The Hopfieldnet-
workis characterizedby full connectivity,exceptfroma
unit to itself.Patternscan be storedoneat a time,but the
storagemechanismis rather involved.To storean addi-
tionalpatternin a networkof, say,Nunits, theweightsof
all the N X (N – 1)connectionshave to be changed.In
contrast,theconvergence-zonememoryismoresparsein
that only t X m < n <<~weightshave to be modified.

A pattern is retrieved from the Hopfield network
through progressive recall. The cues provide initial

activation to the network, and the unit activations
are updated asynchronouslyuntil they stabilize. The
finalstableactivationpatternis then taken as the output
of the network.In the convergence-zonemodel,on the
other hand, retrieval is a four-step version of simple
recall: first the activationis propagatedfrom the input
maps to the bindinglayer, thresholded,and then propa-
gated back to all feature maps, where it is thresholded
again. This algorithmcan be seen as a computational
abstractionof an underlyingasynchronousprocess.In a
more low-levelimplementation,thresholdingwould be
achieved through inhibitory lateral connections.The
neuronswould update their activationone at a time in
random order, and eventuallystabilize to a state that
representsretrievalof a pattern.

Thecapacityfor theHopfieldnetworkhasbeenshown
theoreticallyto be N/41nN(Amit, 1989; Hertz et al.,
1991; Keeler, 1988; McEliece et al., 1986) and
experimentallyabout 0.15N (Hopfield,1982).For the
convergence-zonemodelsucha simpleclosed-formfor-
mula is difficultto derive,becausethe modelhas many
more parametersand correlationsthat complicatethe
analysis.However,as was shownabove,a lowerbound
canbe derivedfora givensetofparameters.Suchbounds
andalsoexperimentalsimulationsshowthatthecapacity
for themodelcanbe ordersof magnitudehigherthanthe
numberofunits,whichis ratheruniquefor an associative
memoryneuralnetwork.

However,it shouldbe noted that in the convergence-
zone model, each pattern is much smaller than the
network.In a Hopfieldnetworkof size N each pattern
containsNbits of information,whilein theconvergence-
zonemodeleachpatternconsistsof onlyt features.Each
featurecan be seen as a numberbetween 1 andj corre-
spondingto its locationin the featuremap.To represent
sucha number,210g~bits are needed,and a featurepat-
tern thuscontainst210g~bits of information.Compared
to the Hopfield model and other similar associative
memorymodels,the informationcontentof each pattern
hasbeentradedoff forthecapacityto storemoreof them
in a networkof equal size.

10.2.Backpropagationand RelatedModels

Severalmodels of associativememory have been pro-
posedthatarebasedonbackpropagationor similarincre-
mental learning rules (Ackley et al., 1985; Anderson
et al., 1977;Knapp & Anderson,1984;McClelland&
Rumelhart, 1986a, b). However, these models suffer
from catastrophicinterference,which makes it difficult
to apply them to modelinghuman associativememory
(Grossberg,1987;McCloskey& Cohen, 1989;Ratcliff,
1990).If the patterns are to be learned incrementally,
withoutrepeatingthe earlier patterns,the later patterns
in the sequencemusterase the earlierassociationsfrom
memory.

Several techniqueshave been proposed to alleviate
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forgetti~g,includingusingweightswith differentlearn-
ing ratqs (Hinton & Plaut, 1987),gradually including
new eixamples and phasing out earlier ones
(Hether@gton& Seidenberg,1989),forcingsemidistrib-
uted hiqlden-layerrepresentations(French, 1991),con-
centra~g changeson novelparts of the inputs(Kortge,
1990), iusing units with localized receptive fields
(KmschMce,1992),and addingnew units and weightsto
encode~newinformation(Fahlman, 1991;Fahlman &
Lebiere~1990). In these models, one-shot storage is
stillnotlpossible,althoughthe numberof requireditera-
tions is !reduced,and old informationcan be relearned
very fast. At this point it is also unclearwhetherthese
architechueswould scale up to the numberof patterns
appropriatefor humanmemory.

10.3.S~tistical AssociativeMemoryModels

The convergence-zonemodel is perhaps most closely
related to the correlation matrix memory (Kohonen,
1971, 1P72;see also, Anderson, 1972;Cooper, 1973).
In this model there are a number of receptors (corre-
spondin~ to feature maps in the convergence-zone
model) i?hatare comected to a set of associators(the
bindingilayer).The receptorsare dividedinto key fields
wheret.lperetrievalcue is specified,anddatafieldswhere
the re~eved pattern appears. Each key and data field
correqxlmdsto a feature map in the convergence-zone
model.Insteadof one value for each field,a wholefea-
turemaprepresentsthe field,modelingvalue-unitencod-
ing in Ibiological perceptual systems. There is no
distinctjbnbetween key and data fields either; every
feature map can functionas a key in the convergence-
zone model.

othe~ related statisticalmodels include the learning
matrix @teinbuch,1961)and the associativenet (Will-
shawet Id., 1969),whichareprecursorsof thecorrelation
matrixmodel.Thesehad a uniformmatrixstructurecon-
nectinginputsto outputsin a singlestep.Suchmodelsare
simpleandeasyto implementin hardware,althoughthey
do not have a very high capacity(Faris& Maier, 1988;
Palm, 1980,1981).Otherassociativematrixmodelshave
relied on progressiverecall, and thereforeare similarin
spirittoltheHopfieldnetwork.Thenetworkof stochastic
neumnslof Little & Shaw (1975)and the modelsof the
hippocampus of Gardner-Medwin (1976) and Marr
(1971) fall into this category.Progressiverecall gives
them a potentially higher capacity, which with high
connectivity exceeds that of the Hopfield network
(Gibsod & Robinson, 1992). They are also more
plausibk in that they do not requireN*internalconnec-
tions (whereN is the numberof units in the network),
althoughthe capacitydecreasesrapidlywith decreasing
connectivity.

10.4.SparseDistributedMemory
*

TheSparseDistributedMemorymodel(SDM;Kanerva,
1988) was originally developed as a mathematical
abstractionof an associativememory machine.Keeler
(1988) developeda neural-networkimplementationof
the idea and showedthat the SDM comparesfavorably
with the Hopfield model; the capacity is larger and
the patterns do not have to include all units in the
network.

It is possibleto give the convergence-zonememory
model an interpretationas a special case of the SDM
model:A fully-connectedtwo-layernetworkconsisting
of a combinedinput/outputlayer and a hiddenlayer. In
alternatingsteps, activityis propagatedfrom the input/
outputlayerto thehiddenlayerandback.Seenthisway,
every unit in the input/outputlayer correspondsto one
feature map in the convergence-zonemodel, and the
hiddenlayer correspondsto the bindinglayer.

It can be shownthat the capacityof the SDMis inde-
pendentof thesizeof theinputioutputlayer.Moreover,if
the size of the input/outputlayer is fixed, the capacity
increaseslinearlywiththesizeof thehiddenlayer.These
results suggestthat similarpropertiesapply also to the
convergence-zoneepisodicmemorymodel.

10.5.TraceFeatureMaps

The Trace Feature Map model of Miikkulainen(1992,
1993)consistsof a self-organizingfeaturemapwherethe
spaceofallpossibleexperiencesis firstlaidout.Themap
is laterallyfullyconnectedwithweightsthat are initially
inhibitory.Tracesof experiencesare encodedas attrac-
tors usingthese lateralconnections.When a partialpat-
tern is presented to the map as a cue, the lateral
connections move the activation pattern around the
nearestattractor.

The Trace FeatureMap was designedas an episodic
memorycomponentofa storyunderstandingsystem.The
main emphasiswas not on capacity,but on psychologi-
cally valid behavior. The basins of attraction for the
tracesinteract,generatingmany interestingphenomena.
For example,the later traceshave largerattractorbasins
andareeasierto retrieve,anduniquetracesarepreserved
even in an otherwiseoverloadedmemory.On the other
hand,becauseeach basin is encodedthroughthe lateral
comectionsof severalunits,the capacityof the modelis
several times smaller than the number of units. Also,
there is no mechanismfor encodingtruly novel experi-
ences; only vectors that are already representedin the
map can be stored. In this sense, the Trace Feature
Map model can be seen as the cortical componentof
the human long-termmemory system.It is responsible
for many of the effects,but incorporatingnovelexperi-
encesintoits existingstructureis a lengthyprocess,as it
appearsto be in humanmemorysystem(Halgren,1984;
McClellandet al., 1995).

———–.—.—- -.
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10.6.Modelsof the Hippocampus

A largenumberof modelsof the hippocampalformation
and its role in memoryprocessinghave been proposed
(Alvarez & Squire, 1994; Gluck & Myers, 1993;
McNaughton & Morris, 1987; Marr, 1971; Murre,
1995;O’Reilly& McClelland,1994;Read et al., 1994;
Schmajuk& DiCarlo, 1992;Sutherland& Rudy, 1989;
Teyler & Discenna,1986;Treves& Rolls, 1991,1994;
Wickelgren, 1979). They include a more detailed
description of the circuitry inside hippocampus,and
aim at showinghow memorytracescouldbe createdin
such a circuitry.The convergence-zonemodel operates
at a higherlevelof abstractionthan thesemodels,and in
this senseis complementaryto them.

Man (1971)presenteda detailedtheoryof the hippo-
campalformation,includingnumericalconstraints,capa-
city analysis, and interpretationat the level of neural
circuitry.The input is based on local input fibersfrom
the neocortex,processedby an inputand outputlayerof
hippocampalneuronswithcollateralconnections.Recall
is based on recurrentcompletionof a pattern.The con-
vergence-zonememory can be seen as a high-level
abstractionof Marr’s theory, with the emphasison the
convergence-zonestructurethat allowsfor highercapa-
city than Marr predicted.

Several authorshave proposeda role for the hippo-
campus similar to the convergence-zoneidea (Alvarez
& Squire, 1994;McClellandet al., 1995;Murre, 1995;
Teyler & Discenna,1986;Treves& Rolls, 1994;Wick-
elgren, 1979).In thesemodels,hippocampusitselfdoes
not store a completerepresentationof the episode,but
acts as an indexingarea, or compressedrepresentation,
that binds togetherparts of the actual representationin
theneocorticalareas.Treves& Rolls(1994)alsopropose
backprojectioncircuitry for accomplishingsuch recall.
Convergence-zonememoryis consistentwithsuchinter-
pretations,focusingon analyzingthe capacity of such
structures.

One of the assumptionsof the convergence-zone
memory, motivated by recent results by Wilson &
McNaughton(1993), is that the binding encoding is
sparseand random.The modelby O’Reilly& McClel-
land (1994)showshow the hippocampalcircuitrycould
form such sparse,diverseencodings.They exploredthe
tradeoffbetweenpattern separationand completionand
showedthat the circuitrycouldbe setup to performboth
of these tasks simultaneously.The entorhinal-dentate–
CA3 pathwaycouldbe responsiblefor formingrandom
encodingsof traces in CA3, and the separationbetween
storageand recall couldbe due to overalldifferencein
the activitylevel in the system.

11. FUTUREWORK

Futurework on the convergence-zoneepisodicmemory
modelwill focuson three areas.First, the modelcan be

extendedin severalwaystowardsa moreaccuratemodel
of the actualneuralprocesses.For instance,lateral inhi-
bitory connectionsbetween units within a feature map
couldbe addedto selecttheunitwiththehighestactivity.
A similarextensioncouldbe appliedto thebindinglayer;
only insteadof a singleunit, multipleunits shouldstay
activein theend.Lateralconnectionsin thebindinglayer
couldalsobe usedto partiallycompletethe bindingpat-
tern evenbeforepropagationto the featuremaps.As the
next step, the bindinglayer could be expandedto take
into accountfinerstructurein the hippocampus,includ-
ing the encoding and retrieval circuitry proposed by
O’Reilly & McClelland (1994). A variation of the
Hebbian learning mechanism (Hebb, 1949; Miller &
MacKay, 1992)could then be used to implementthe
storageand recall mechanisms.In additionto providing
insight into the hippocampal memory system, such
researchcould lead to a practicalimplementationof the
convergence-zonememory,and perhapseven to a hard-
ware implementation.

Second,a numberof potentialextensionsto the model
couldbe studiedin more detail. It mightbe possibleto
takesparseconnectivityintoaccountin the analysis,and
obtain tighter lower boundsin this more realisticcase.
Recurrencecould be introducedbetween feature maps
and the bindinglayer, and capacitycould be measured
under progressiverecall. Possibilitiesfor extendingthe
modelto toleratemore overlapbetweenpatternsshould
also be studied.

Third, the model could be used as a steppingstone
towardsa morecomprehensivemodelofhumanepisodic
memory,includingmodulesforthehippocampusandthe
neocorticalcomponent.As discussedabove,the conver-
gence-zonemodel seems to fit the capabilitiesof the
hippocampalcomponentwell, whereas somethinglike
trace feature maps could be used to model the cortical
component.It wouldbe necessaryto observeand char-
acterizethe memoryinterferenceeffectsof the compo-
nents and compare them with experimentalresults on
human memory. However, the main challengeof this
researchwouldbe on the interactionof the components,
that is, how the hippocarnpalmemorycould transferits
contentsto the corticalcomponent.At thispointit is not
clearhowthisprocesscouldtakeplace,althoughseveral
proposalsexist(Alvarez& Squire,1994;Halgren,1984;
McClellandet al., 1995; Milner, 1989; Murre, 1995;
Treves & Rolls, 1994). Computationalinvestigations
could prove instrumentalin understandingthe founda-
tionsof this remarkablesystem.

12. CONCLUSION

Mathematical analysis and experimental simulations
show that a large numberof episodescan be stored in
the convergence-zonememory with reliable content-
addressableretrieval.For the hippocampus,a sufficient
capacitycan be achievedwith a fairly smallnumberof
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units and connections.Moreover,the convergencezone
itselfrequiresonlya fractionof thehardwarerequiredfor
perceptualrepresentation.Theseresultsprovidea possi-
ble explanationfor why human memory is so efficient
withsu~ha highcapacity,andwhymemoryareasappear
small aompared to the areas devoted to low-level
perceptualprocessing.It also suggeststhat the computa-
tionaluhitsof the hippocampusandthe perceptualmaps
can be quite coarse, and gives a computationalreason
why the maps and the hippocampusshouldbe sparsely
connected.

The model makes use of the combinatoricsand the
clean-up properties of coarse coding in a neurally-
inspireclarchitecture.The practical storagecapacityof
the modelappearsto be at leasttwo ordersof magnitude
higher than that of the Hopfieldmodel with the same
number of units, while using two orders of magnitude
fewerconnections.On the otherhand,the patternsin the
convergence-zonemodelare smallerthanin theHopfield
network. Simulationsalso show that psychologically
valid error behaviorcan be achievedif the bindingpat-
terns are made more descriptive:the erroneouspatterns
are closeto the correctones.The convergence-zoneepi-
sodic memory is a step towardsa psychologicallyand
neurophysiologicallyaccuratemodelof humanepisodic
memory,the foundationsof which are only now begin-
ning to be understood.
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APPENDIXA: PROBABILITYTHEORY
BACKGROUNDANDPROOFS

In this appendix, concepts from probability theory that are necessary for
understanding the main text are briefly reviewed, and details of the
probabilistic formulation and mmtingale analysis are presented (for
more background on probability theory and statistics, see e.g. Alon &
Spencer, 1992 or Bain & Engelhardt, 1987).

Al. Distributionsand Bounds

In the analysis of Sections 3 and4, two probability density functions are
used. Tbe first one is the binomial distribution with parameters n andp,
denoted as B(n#), and it gives the outcome of n independent trials
where ~e two possible alternatives have probability p and 1 – p.
This distribution has the expected value np and variance np(l – p).
The other one is the hypergeometric distribution with parameters n, m
and N, denoted as HYP(n,mM, and representing the number of ele-
ments in common between two independently-chosen subsets of n and
m elements of a common superset of N elements. The distribution has
the expected value ~ and variance Y(1– ~) H.

The Chemoff bounds can be used to estimate how likely a binomi-
ally distributed variable, X, is to have a value within a given distance 6
from its mean:

P(xs(1–a)np)s
()

e-’ w, 0<6<1,
(1 –/$-6 (Al)

()

e’ ‘,6>0
‘(x =‘1‘*)np) = (1 +6)1+6 “

(A.2)

Even if the trials are not independent (and therefore Xis not binomially
distributed), in some cases the sequence of variables XO,..., X“ can be
analyzed as a martingale, and bounds similar to Chemoff bounds
derived using Azrrma’s inequalities (see Appendix A.3).

A.2. Detailsof the ProbabilisticFormulation

Asin,%etion 3, let Zibethe size of the binding constellation of a featore
unit after i patterns have been stored on it, and let Yi be its increase after
storing the itb pattern on it. Then

i
Zi= ~~,Yk. (A.3)

Let Yi, i > 1 be hypergeometically distributed with parameters m,
n — zi-l), ad n:

‘(y=’’zi-l=zi-’)=(H(::Y)Y(:):) ‘A4)
and let ZI = YI = m with probability 1. Tben

‘(y’)=E(m(n-:-l))
i—1

=rn - ~E(z._l)=tn- ~,~lE(Yk)

—— (1– ~) E(Yi-,) =m(l – ~)’-]. (A.5)

Using (A.5), an expression for E(Zi) can be derived:

E(Z,)=k~,E(Y~)=,~lm(l -~)’ -’=n(l - (1- ~)i). (A.6)

i

This equation indicates that initially, when no patterns are stored, Zi =
O,and that Zi converges ton as i goes to infinity.

The variance of Zi can be computed in a similar way. First a recur-
rent expression for the variance of Yiis derived:

Var(Yt)=Ez-l IVarfYilZi - ~)]+ Varzi-, IE(YilZi_ 1)1

=%+(+:)’-’)(:):+HV’JHV-J
(A.7)

TOobti the variance of Zi, the covariance of Zi-l ~d Yineeds to k
computed:

COV(Zi- ~,Yi)=E(Zi - 1~) – E(Zi - l)E(yi)

=Ez,-, [E(Zi- ~Yil~- ~)]–E(Zi- ~)E(~)

( m(n – Zi- I )
=E Zi- ~ ~

)
– E(Zi - ~)E(Yi)

=mE(Zi-, ) – ~[(E(Zi - ~))z+ Var(Zi- ~)]– E(~- ,)E(Yi)

=— ~Var(Zi-l). (A.8)

The variance of Zi cm now be easily derived:

Var(Zi) = Var(Z’- ~+ Yi)

= Var(Zi- ~)+ Var(Yi)+ 2C0V(Zi_ 1,‘i)

= >Ivar(yk)+z$,c.v(zk-,,y
=,$1 Var(Yk)- ~j~ Var(Z~)

()
= Var(Yi)+ 1 – ~ Var(Zi-1)

=n(l-:)i(l-~(l- :)i)

( )’
+n(?l – 1) 1 – m(:(-–ml; 1) (A.9)

‘rhebase of every exponential in this expression is smaller tharr 1, so the
variance goes to Oas i goes to infinity. This makes sense in the model. If
many patterns are stored, it becomes very likely that Zi has a value close
to n, and hence its variance should go to zero.

So far it has been assumed that i is an ordinary variable. If it is
replaced by a stochastic variable I that is bioomially distributed with
parameters p and 1~, the previously computed expected values and
variances must be made conditional on 1.To compute the mrconditiomd
expected values and variances, the following lemma is needed:

LEMMAAl. ~X - B(n,p), thenE((l–a~)=(1–ap)n.

Proof.

E((l –aF)= ,.. (l –a~
()

n #(l-p)”-x
x

n n
= q )(p - ap~(l –p)n-x

.r=o x

= ((p – ap) + (1 -p))”

=(1 – ap)”
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Let Zdenote the unconditional value of Zi. The desired results follow
immediately from Lemma A.1 and the linearity of expected values:

“2’=”(1-(%)’)
Var(Z) = Varl[E(ZIII)]+E1[Var(Zrll)]

[( )]=n2Var 1 – ~ 1

[

+E “(1 - ~)r-nz(l - ~)”

(
+.(. – 1) 1– )1m(2n – m – 1) ‘

n(n – 1)

‘n(l-;)p(l-n(l-%)p)

(A.10)

In order to apply Azmna’s inequality, the Lipscbitz condition
l~E–Z~-l I= 1 must to be satisfied. The binding units are chosen
one at a time. and thev mav either alreadv be Dartof the constellation. .
or add one more tit to it. Therefore, tb~ diff~rence between Z’y and
Z’v-l is rdways either Oor 1:

Case 1: Z’v–Z’, - ~=0

‘z-z’-”=+-z’x’-+)ki-v+:)
.—Z’v–( )

fi-v

— —— 1–:
n n

=s1.

Case 2: Z’V=Z’, _ 1+ 1

(+n(n – 1) 1 –
)

m(2n – m – 1) p
(All)

n(n – 1)$ ‘~-z~-l’=l-(n-z’+:)ki-”(’-(’-i))
Let ~ be defined as Z-ZIIZ >1. Then, ~ will always be at least m.

Expressions sirniku to (All) and (A.12) can be derived for Z:

“2)=m+(n-m)(’-(1-%Y)> (A.12)

‘ar(2)=@-m’(1-%)p-’ (1-@-ml-; )’-1)

(
+ (n – m)(n –m– 1) 1 –

)

m(2n – m – 1) ‘–1
(A.13)

n(n – l)f
From (A.1O)and (A.12) it follows that on the average, ~is larger tbarrZ.
Initially the difference is exactly m, and the difference goes to zero asp
goes to infinity. This means that initially, when few patterns are stored,
the right units are very likely to be retrieved, since they have the advan-
tage of receiving activation from at least m binding units. However,
when more patterns are stored, rdmost every unit in a feature map
receives the same amount of activation. Units that have been used
most often are most likely to be retrieved.

It is difficult to derive an exact expression for the expected value and
variance of XC(the intersection of c retrieval cues) because the binding
constellations are correlated. Since the same partial patterns might have
been stored several times, certain combinations of retrieval cues can
give rise to spurious activity in the binding layer, which is difficult to
take into account in the analysis. For this reason, the analysis is carried
out under the assumption that the chance of partial patterns is negligi-
ble, which is reasonable in most cases and easy to check.

A.3. Martingales

Martingales give us a way to analyze the outcome of n trials with
limited dependencies. A martingale is a sequence of random variables
XO,..., Xn such that

E(X’IXO,...,Xi-, ) =Xi - ~, 1S i < n. (A.14)

If a martingale satisfies the Lipschitz condition, that is

IXi–Xi- ~I = 1, 1S i = n, (A.15)

then the following inequalities hold:

F’(Xis XO– Xti)s e-A’n (A.16)

These equations are called Azmna’s inequalities and they can beusedto
bound the final value of the sequence within a chosen confidence level.

A.4. The BindingConstellationMartingale

Let ~E be defined as in Section 4.2:

~=z’.+(n-z’+(+ki-v)
()

~ ki-.

= n – (n – Z’.) 1 – ; . (A.18)

()
ki–v+ 1

+ 1–!
n

. I-%+)ki-v+w”+’l
1(n–1 n–Z’v

)( )

ki-v
—— —— — l–~

n n n

– Z’v–l
–( )

b–v
— l–~

n n

(A.19)

<1. (A.20)

In both cases we have [~E– ~E-, I<1 and hence Azuma’s inequality
can be applied to obtain a bound for Z.

A.5. The IntersectionMartingale
Let X; be defined as in Appendix 4.3:

XE=X, + (., –v)(rrz –X’v)
““ ., —v

(.l – v)nz. HXf j
n. —v ‘ n, —v

(A.21)

First, X~,;.uxPEXE is shown to be a martingrde. The expected increase
of X’v is ; -,;;. The conditional expected value of X,B given X:-l
is

E(X; IX;- ~=$- ~)=E(X; IX’V- ~=x’j- ,)

rr.2—X’j-, (.l – v)rr~
= ~(x’j-l + n, –v+ ~)+ —

s n, – v

n. —nl (n, –nl)nz + (.l – v)nz.—~
n, – v + 1x j- 1+ (n, – v)(rr,– v+ 1) ., —v

., —n, (n, –nl)nz.— r
n, – v + 1x‘- 1+ (n, – v)(rr,– v + 1)
+ (., – v)(rrl– v)nz +(.l –v)nz

(., –v)(n, –v+ 1)
rr~—nl (n, – v + l)rr*= —X’j– ~+

n, – v + 1 rr$– v + 1

=2-,. (A.22)

Since E(X~lX~-~)=X~- ~, the sequence X:, ..., X~l is a martingale.
To a ply Azuma’s inequality, it is necessary to show that

IX! –X< ~I= 1forv = 1,...,nl. Unlike for the martingale of Appendix
A.4, this is not generally true, but true only when certain constraints on
nl, .2 md n, are satisfied. If these parameters are fixed, the difference
can be seen as a function of v, X’. and X’,-1. The function is monotonic
in these variables, and to find its maximum, it is sufficient to look only
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at the extreme values of v, X’, snd X .–l. The maximum in turn deter-
mines the consh-aintson nl, n2 and n..

As in Appendix A.4, the proof consists of two main cases: (1) X’, =
X’y-l and (2) X’v = X’v-l + 1. Each of these is divided into several
srrbcases.The following tables show the cases, the absolute difference
in each case between X.E and X~-l, and the constraint that follows from
thedifference.

case1: X’v = x’v-~.
In this case, using (A.21), IX! –X;- ~I can be rewritten

(.2–X1,)(., -n,) ~
(n, –,)(.” –v+ 1). ere are three subcases listed in the table below.

as

Subcaae Difference Resultingconstraint

v = 1,x’”=o n2(% – w)
rt=(n8– 1) n, >0 v n2 < ns

n2 if X’u = O
n, – nl + 1

v = n,, X’v = max(O,nl + nz – n,)
nl + nz —1s n~

n$ —nl
if X’ti = nl + n2 – n. no constraint

n. – nl + 1

n2 — nl
if X’v = nl

v= n,, X’v = min(nl,nz) n$ – nl + 1 no constraint
Oif X’. = nz

case 2: x’, = xd_l + 1.
Now IX: –Xv-, I can be rewritten as (“s~~’~~~j,~j~~)x’v).Again

there are three subcases listed in the table below.
To conclude, if nl + nz – 1 = n,, then [X?– X:+, I= 1 and

Azuma’s inequality can be applied.

Subcase Difference Resultingconstraint

v = 1,X’v=1
(n, – nl)(n, –nz)

n,(n. – 1)

n.– nl – nz+ 1IfX’v=1
v = nl, X’v = max(l ,nl + nz – n$) n, – nl + 1 no constraint

Oif X’. = nl + nz – n,

v= n,, X’v = min(nl,nz)

n8— n2
if X’v = nl

n. – n~ + 1
72$—nl

if X’v = nz
n. – nl + 1

no constraint

.–—.-


