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Abstract—We present new results on reconstruction of the shape and
motion of an unknown object using tactile sensors without requiring
object immobilization. A robot manipulates the object with two flat palms
covered with tactile sensors. We model the full dynamics and prove local
observability of the shape, motion and center of mass of the object based
on the motion of the contact points as measured by the tactile sensors.
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I. I NTRODUCTION

Robotic manipulation of objects of unknown shape and
weight is very difficult. To manipulate an object reliably a
robot typically requires precise information about the object’s
shape and mass properties. Humans, on the other hand, seem
to have few problems with manipulating objects of unknown
shape and weight. For example, Klatzky et al. [24] showed
that blindfolded human observers identified 100 common ob-
jects with over 96% accuracy, in only 1 to 2 seconds for most
objects. So somehow during the manipulation of an unknown
object the tactile sensors in the human hand give enough in-
formation to find the pose and shape of that object. At the
same time some mass properties of the object are inferred to
determine a good grasp. These observations are an important
motivation for our research. In this paper we present a model
that integrates manipulation and tactile sensing. We derive
equations for the shape and motion of an unknown object as
a function of the motion of the manipulators and the sensor
readings.

Figure 1 illustrates the basic idea. There are two palms that
each have one rotational degree of freedom at the point where
they connect, allowing the robot to change the angle between
palm 1 and palm 2 and between the palms and the global
frame. As the robot changes the palm angles it keeps track of
the contact points through tactile elements on the palms.
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Fig. 1. Two possible arrangements of a smooth convex object resting on
palms that are covered with tactile sensors.

In previous work [29] we showed that if we assume qua-
sistatic dynamics we can reconstruct the shape and motion
of unknown objects. Our experimental results established the
feasibility of this approach. Our long-term goal is to smoothly
interlace tactile sensing and manipulation. We wish our robots
to manipulate objects dynamically without requiring prehen-
sion, immobilization or artificially constrained motions. To
this end we have been investigating the observability of shape
and motion with full dynamics. In this paper we will prove
that the shape and motion are indeed observable.

II. RELATED WORK

Our research builds on many different areas in robotics.
These areas can be roughly divided into four different cate-
gories: probing, nonprehensile manipulation, grasping, and
tactile sensing. We can divide the related work in tactile sens-
ing further into three subcategories: shape and pose recogni-
tion with tactile sensors, tactile exploration, and tactile sensor
design. We now briefly discuss some of the research in these
areas.

Probing. Detecting information about an object with sen-
sors can be phrased in a purely geometric way. Sensing is then
often calledprobing. Most of the research in this area concerns
the reconstruction of polygons or polyhedra using different
probe models, but Lindenbaum and Bruckstein [25] gave an
approximation algorithm forarbitrary planar convex shapes
usingline probes. With a line probe a line is moved from in-
finity until it touches the object. Each probe reveals a tangent
line to the object. Lindenbaum and Bruckstein showed that
for an object with perimeterL no more thanO(

√
L/ε log L

ε
)

probes are needed to get an approximation error ofε.

Nonprehensile Manipulation. The basic idea behind non-
prehensile manipulation is that robots can manipulate objects
even if the robots do not have full control over these objects.
This idea was pioneered by Mason. In his Ph.D. thesis [27, 28]
nonprehensile manipulation takes the form of pushing an ob-
ject in the plane to reduce uncertainty about the object’s pose.

One of the first papers in palmar manipulation is [39].
Paljug et al. [36] investigated the problem of multi-arm ma-
nipulation. Erdmann [9] showed how to manipulate a known
object with two palms. Zumel [49] described a palmar system
like the one shown in figure 1(b) (but without tactile sensors)
that can orient known polygonal parts.
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Grasping. The problem of grasping has been widely stud-
ied. This section will not try to give a complete overview
of the results in this area, but instead just mention some of
the work that is most important to our problem. In order to
grasp an object we need to understand the kinematics of con-
tact. Independently, Montana [31] and Cai and Roth [3, 4]
derived the relationship between the relative motion of two
objects and the motion of their contact point. In [32] these
results are extended to multi-fingered manipulation. Kao and
Cutkosky [22] presented a method for dexterous manipulation
with sliding fingers.

Trinkle and colleagues [44–46] have investigated the prob-
lem of dexterous manipulation with frictionless contact. They
analyzed the problem of lifting and manipulating an object
with enveloping grasps. Yoshikawa et al. [47] do not assume
frictionless contacts and show how to regrasp an object using
quasistatic slip motion. Nagata et al. [33] describe a method
of repeatedly regrasping an object to build up a model of its
shape.

In [43] an algorithm is presented that determines a good
grasp for an unknown object using a parallel-jaw gripper
equipped with some light beam sensors. This paper presents
a tight integration of sensing and manipulation. Recently, Jia
[18] showed how to achieve an antipodal grasp of a curved
planar object with two fingers.

Shape and Pose Recognition. The problem of shape and
pose recognition can be stated as follows: suppose we have
a known set of objects, how can we recognize one of the ob-
jects if it is in an unknown pose? For an infinite set of objects
the problem is often phrased as: suppose we have a class of
parametrized shapes, can we establish the parameters for an
object from that class in an unknown pose? Schneiter and
Sheridan [41] and Ellis [8] developed methods for determin-
ing sensor paths to solve the first problem. In Siegel [42] a
different approach is taken: the pose of an object is deter-
mined by using an enveloping grasp. Jia and Erdmann [19]
proposed a ‘probing-style’ solution: they determined possible
poses for polygons from a finite set of possible poses by point
sampling. Keren et al. [23] proposed a method for recognizing
three-dimensional objects using curve invariants. Jia and Erd-
mann [20] investigated the problem of determining not only
the pose, but also the motion of a known object. The pose
and motion of the object are inferred simultaneously while a
robotic finger pushes the object.

Tactile Exploration. With tactile exploration the goal is to
build up an accurate model of the shape of an unknown object.
One early paper by Goldberg and Bajcsy [13] described a
system that showed that very little information is necessary to
reconstruct an unknown shape. With some parametrized shape
models, a large variety of shapes can still be characterized. In
[11], for instance, results are given for recovering generalized
cylinders. In [7] tactile data are fit to a general quadratic
form. Finally, [37] proposed a tactile exploration method for
polyhedra.

Allen and Michelman [1] presented methods for exploring
shapes in three stages, from coarse to fine: grasping by con-
tainment, planar surface exploring and surface contour follow-
ing. Montana [31] describes a method to estimate curvature
based on a number of probes. Montana also presents a control
law for contour following. Charlebois et al. [5, 6] introduced
two different tactile exploration methods: one uses Montana’s
contact equations and one fits a B-spline surface to the contact
points and normals obtained by sliding multiple fingers along
a surface.

Marigo et al. [26] showed how to manipulate a known poly-
hedral part by rolling between the two palms of a parallel-
jaw gripper. Recently, Bicchi et al. [2] extended these results
to tactile exploration of unknown objects with a parallel-jaw
gripper equipped with tactile sensors. A different approach is
taken by Kaneko and Tsuji [21], who try to recover the shape
by pulling a finger over the surface. This idea has also been
explored by Russell [38]. In [35] the emphasis is on detecting
fine surface features such as bumps and ridges.

Much of our work builds forth on [10] and [29]. Erdmann
derived the shape of an unknown object with an unknown
motion as a function of the sensor values. In [29] we restricted
the motion of the object: we assumed quasistatic dynamics
and we assumed there was no friction. Only gravity and the
contact forces were acting on the object. As a result the shape
could be recovered with fewer sensors than if the motion of
the object had been unconstrained. In this paper we remove
the quasistatic dynamics assumption and show that the shape
and motion of an unknown planar object are still observable
with just two palms.

Tactile Sensor Design. Despite the large body of work in
tactile sensing and haptics, making reliable and accurate tactile
sensors has proven to be very hard. Many different designs
have been proposed. For an overview of sensing technologies,
see e.g. [16] and [14]. In our own experiments [29] we relied
on off-the-shelf components. The actual tactile sensors were
touchpads as found on many notebooks. Most touchpads use
capacitive technology, but the ones we used were based on
force-sensing resistors, which are less sensitive to electrostatic
contamination.

III. N OTATION

We will use the same notation as in [29]. Figure 1(b) shows
the two inputs and the two sensor outputs. The inputs areφ1,
the angle between palm 1 and the X-axis of the global frame,
andφ2, the angle between palm 1 and 2. The tactile sensor
elements return the contact pointss1 ands2 on palm 1 and 2,
respectively. Gravity acts in the negative Y direction.

Frames. A useful tool for recovering the shape of the object
will be the radius function (see e.g. [40]). Figure 2(a) shows
the basic idea. We assume that the object is smooth and con-
vex. We also assume that the origin of the object frame is at
the center of mass. For every angleθ there exists a pointx(θ)
on the surface of the object such that the outward pointing
normaln(θ) at that point is(cosθ, sinθ)T . Let the tangent
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Fig. 2. The notation illustrated.

t(θ) be equal to(sinθ,− cosθ)T so that[t,n] constitutes a
right-handed frame. We can also define right-handed frames
at the contact points with respect to the palms:

n̄1 = (− sinφ1, cosφ1)
T

t̄1 = (cosφ1, sinφ1)
T and

n̄2 = (sinφ12,− cosφ12)
T

t̄2 = −(cosφ12, sinφ12)
T

Here,φ12 = φ1 + φ2. Letψ be the angle between the object
frame and the global frame, such that a rotation matrixR(ψ)
maps a point from the object frame to the global frame. The
object and palm frames are then related in the following way:(

n̄1 t̄1
)

= −R(ψ)
(
n(θ) t(θ)

)(
n̄2 t̄2

)
= −R(ψ)

(
n(θ + φ2 − π) t(θ + φ2 − π)

)
The different frames are shown in figure 2(b). From these
relationships it follows that

θ = φ1 − ψ −
π
2 (1)

Differentiation. We will use ‘̇ ’ to represent differentia-
tion with respect to timet and ‘′’ to represent differentia-
tion with respect to a function’s parameter. So, for instance,
ẋ(θ) = x′(θ)θ̇ . From the Frenet formulas it follows that the
parameterization velocityv(θ) = ‖x′(θ)‖ is the radius of cur-
vature of the shape at the pointx(θ). We can writev(θ) as
−x′(θ) · t(θ) andx′(θ) as−v(θ)t(θ).

Support Functions. We now definer (θ) to be the distance
betweeǹ (θ) and the object origin:

r (θ) = x(θ) · n(θ)
This function is called aradius functionor support function.
For our shape recovery analysis it will be useful to define
another function,d(θ), to be the signed distance of the contact
point x(θ) to the foot of the supporting linè(θ):

d(θ) = x(θ) · t(θ)
We will refer to the pair(r (θ),d(θ)) as acontact support
function. The goal is now to derive a solution forx(θ) as we
change the palm anglesφ1 andφ2. Below we drop the function
arguments where it doesn’t lead to confusion, and instead use
subscripts ‘1’ and ‘2’ to denote the contact point on palm 1
and 2. So we will write e.g.r2n2 for r (θ+φ2−π)n(θ+φ2−π).
Note thatr ′(θ) = −d(θ), so it is sufficient to reconstruct the
radius function. If the object is in two-point contact,d(θ) is
redundant in another way as well. We can write the two-point
contact constraint in terms of the contact support function:

(s1 + d1)t̄1 + r1n̄1 = (−s2 + d2)t̄2 + r2n̄2 (2)
Solving this constraint ford1 andd2 we get:

d1 =
r1 cosφ2+r2

sinφ2
− s1 and d2 = −

r2 cosφ2+r1
sinφ2

+ s2 (3)

See also figure 2(c). So a solution forr (θ) can be used in
two ways to arrive at a solution ford(θ): (1) using the prop-
erty d(θ) = −r ′(θ) of the radius function, or (2) using the
expressions above.

One final bit of notation we need is a generalization of the
contact support function, which we will define as a projection
of the vector between the two contact points. We definethe
generalized contact support function relative to contact point 1
as:

r̃1(θ) =
(
x(θ)− x(θ + φ2 − π)

)
· n(θ) (4)

d̃1(θ) =
(
x(θ)− x(θ + φ2 − π)

)
· t(θ) (5)

Similarly, we can definethe generalized contact support func-
tion relative to contact point 2as:

r̃2(θ) =
(
x(θ)− x(θ + φ2 − π)

)
· n(θ + φ2 − π) (6)

d̃2(θ) =
(
x(θ)− x(θ + φ2 − π)

)
· t(θ + φ2 − π) (7)

The generalized contact support functions have the property
that they can be expressed directly in terms of the palms angles
and sensor values (assuming the object is in two-point contact):

r̃1 = s2 sinφ2

d̃1 = s2 cosφ2 − s1
and

r̃2 = −s1 sinφ2

d̃2 = s1 cosφ2 − s2
(8)

These equalities can be obtained by inspection from fig-
ures 1(b) and 2(d). By differentiating the generalized con-
tact support functions with respect to time we can obtain the
following two expressions for the radii of curvature [30]:

v1 = −
˙̃r2+(θ̇+φ̇2)d̃2
θ̇ sinφ2

and v2 = −
˙̃r1+θ̇ d̃1

(θ̇+φ̇2) sinφ2
(9)

So we can observe the curvature at the contact points if we
can derive an expression forθ̇ as a function of sensor values
and palm angles. Equivalently, we can derive an expression
for ψ̇ , since it follows from equation 1 thaṫθ = φ̇1 − ψ̇ .

IV. DYNAMIC SHAPE RECONSTRUCTION

Below we will show that it is possible to simultaneously
observe the shape and motion. In order to do that we will
need to consider second-order effects. Our approach is to
construct anobserverfor our system. The first step is to write
our system in the following form:

q̇ = f (q)+ τ1g1(q)+ τ2g2(q), (10)

y = h(q) (11)
whereq is a state vector,f , g1 andg2 are vector fields, andh is
called the output function. In our case, the state is a vector of
sensor readings and the configuration of the robot. The output
function returns (a function of) the sensor readings. The vector
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fieldsg1 andg2 are called theinput vector fieldsand describe
the rate of change of our system as torques are being applied on
palm 1 and palm 2, respectively, at their point of intersection.
The vector fieldf is called thedrift vector field. It includes
the effects of gravity.

The second step is to find out whether the system described
by equations 10 and 11 isobservable. Informally, this notion
can be defined as: for any two states there exists a control
strategy such that the output function will return a different
value after some time.

The final step is then to construct the actual observer, which
is basically a control law. We can estimate the initial state and
if our estimate is not too far from the true initial state, the
observer will rapidly converge to the actual state. Moreover,
an observer should in general be able to handle noise in the
output as well. For more on nonlinear control and nonlinear
observers see, e.g., [17] and [34].

V. EQUATIONS OFMOTION

The dynamics of our simple model are very straightforward.
We assume the effect of gravity on the palms is negligible and
that there is no friction. The contact forces exert a pure torque
on the palms. LetFc1 = fc1n̄1 andFc2 = fc2n̄2 be equal to
the contact forces acting on the object. The torques generated
by the two contact forces on the object are then

τc1 = (Rx1)× Fc1 = − fc1d1 (12)

τc2 = (Rx2)× Fc2 = − fc2d2 (13)
Although we can show that the system is locally observable
for arbitrary motions of the palms [30], we restrict ourselves
to the case where the palms move at a constant rate. This will
simplify not only the analysis, but also the construction of an
actual observer. The observability tells us that an observer
exists, but constructing a well-behaved observer for a nonlin-
ear system is nontrivial and is still an active area of research.
Many observers (such as those proposed by Gauthier et al. [12]
and Zimmer [48]) rely on Lie derivatives of the drift field. This
means that the drift field needs to be differentiable with respect
to the state variables. If we want to use such an observer for
our system we have to constrain the motion of the palms to
make the drift field differentiable by restricting them to move
at a constant rate, i.e.,α1 = α2 = 0. Provided the palms are
sufficiently stiff compared to the object, we can easily real-
ize this. Note that this is anassumptionand that in general a
torque-based control system does not automatically translate
to a velocity-based or position-based control system. For sim-
plicity we will also assume that we already have recovered the
moment of inertia of the object. Under these assumptions the

dynamics of the system are then described by the following
equations (see also figure 3):

ma0 = Fz + Fc1 + Fc2 (14)

I0α0 = τc1 + τc2 = − fc1d1 − fc2d2, fc1, fc2 ≥ 0 (15)

0 = τ1 − fc1s1 (16)

0 = τ2 + fc2s2 (17)

Here the subscripti , (i = 0,1,2) refers to the object, palm 1
and palm 2, respectively.Fz = mg is the gravitational force
on the object. Solving fora0 andα0, we get

a0 =
τ1

ms1
n̄1 −

τ2
ms2

n̄2 + g (18)

α0 = −
τ1

mρ2s1
d1 +

τ2
mρ2s2

d2 (19)

whereρ =
√

I0/m is the radius of gyration of the object.
We can measure the massm by letting the object come to

rest. In that casea0 = 0 and we can solve form by using
m = −(Fc1 + Fc2)/g. We can observe the radius of gyration
by making it a state variable. This is described in [30]. The
mass properties of the palms are assumed to be known.

VI. L OCAL OBSERVABILITY

We will now rewrite the constraints on the shape and motion
of the object in the form of equation 10. We will introduce the
variablesω0, ω1 andω2 to denoteψ̇ , φ̇1 andφ̇2, respectively.
We can write the position constraint on contact point 1 as

s1t̄1 = cm + Rx1

We can differentiate this constraint twice to get a constraint on
the acceleration of contact point 1. The right-hand side will
contain a term with the curvature at contact point 1. The accel-
eration constraint can be turned into the following constraint
on the curvature at contact point 1:

v1 =
2ṡ1ω1−ω

2
0r1−a0·n̄1+α0d1

ω2
1−ω2

0
(20)

From before (equations 8 and 9) we had:

v1 = −
˙̃r2+(θ̇+φ̇2)d̃2
θ̇ sinφ2

= −
(−ṡ1 sinφ2−s1ω2 cosφ2)+(ω12−ω0)(s1 cosφ2−s2)

(ω1−ω0) sinφ2
, (21)

whereω12 is equal toω1 + ω2. We can equate these two
expressions forv1 and solve foṙs1:

ṡ1 =
ω2

0r1+a0·n̄1−α0d1
ω1−ω0

−
ω1+ω0
tanφ2

s1 +
(ω1+ω0)(ω12−ω0)
(ω1−ω0) sinφ2

s2

Similarly we can derive an expression forṡ2. Note that the
control inputsτ1 andτ2 are ‘hidden’ insidea0 andα0. The
expressiona0 · n̄1 − α0d1 can be rewritten using equations 18
and 19 as

a0 · n̄1 − α0d1 =
(ρ2

+d2
1)τ1

mρ2s1
+

(ρ2 cosφ2−d1d2)τ2
mρ2s2

+ g cosφ1.

Letq = (r1, r2, ω0, s1, s2, φ1, φ2)
T be our state vector. Recall

from section III thatd1 andd2, can be written in terms ofr1,
r2 andφ2. Therefored1 andd2 do not need to be part of the
state of our system. Leaving redundancies in the state would
also make it hard, if not impossible, to prove observability of
the system. Sinceτ1 andτ2 appear linearly in the previous
equation, our system fits the format of equation 10. The drift
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vector field is

f (q) =



−d1(ω1 − ω0)

−d2(ω12 − ω0)

0
ω2

0r1+g cosφ1
ω1−ω0

−
ω1+ω0
tanφ2

s1 +
(ω1+ω0)(ω12−ω0)
(ω1−ω0) sinφ2

s2
−ω2

0r2+g cosφ12
ω12−ω0

+
ω12+ω0
tanφ2

s2 −
(ω12+ω0)(ω1−ω0)
(ω12−ω0) sinφ2

s1

ω1
ω2


,

and the input vector fields are

g1(q) =



0
0

−
d1

mρ2s1
ρ2

+d2
1

mρ2s1(ω1−ω0)
ρ2 cosφ2−d1d2
mρ2s1(ω12−ω0)

0
0


and g2(q) =



0
0
d2

mρ2s2
ρ2 cosφ2−d1d2
mρ2s2(ω1−ω0)

ρ2
+d2

2
mρ2s2(ω12−ω0)

0
0


.

Finally, our output functionh(q) =
(
h1(q), . . . , hk(q)

)T is
simply

h(q) = (s1, s2, φ1, φ2)
T .

Before we can determine the observability of this system
we need to introduce some more notation. We define the
differentialdφ of a functionφ defined on a subset ofRn as

dφ(x) =
( ∂φ
∂x1
, . . . ,

∂φ
∂xn

)
The Lie derivative of a functionφ along a vector fieldX,
denotedL Xφ, is defined as

L Xφ = X · dφ
To determine whether the system above is observable we
have to consider theobservation spaceO. The observation
space is defined as the linear space of functions that includes
h1, . . . , hk, and all repeated Lie derivatives

L X1 L X2 · · · L Xl h j , j = 1, . . . , k, l = 1,2, . . .
where Xi ∈ {f ,g1,g2}, 1 ≤ i ≤ l . Let theobservability
codistributionat a stateq be defined as

dO = span{d H(q)|H ∈ O}.

Then a system of the form described by equation 10 is lo-
cally observable at stateq if dim dO(q) = n, wheren is the
dimensionality of the state space [15].

The differentials of the components of the output function
are

ds1 = (0,0,0,1,0,0,0)

ds2 = (0,0,0,0,1,0,0)

dφ1 = (0,0,0,0,0,1,0)

dφ2 = (0,0,0,0,0,0,1).
To determine whether the system is observable we need to
compute the differentials of at least three Lie derivatives. In
generaldLf s1, dLf s2, dLf L f s1 and the differentials above
will span the observability codistributiondO. Note that we
only used the drift vector field to show local observability,
since—as we mentioned before—this will facilitate observer
design. The results above show that in general we will be able
to observe the shape of an unknown object.

Let us now consider three special cases of the above system:
(1) ω1 = 0, palm 1 is fixed, (2)ω2 = 0, both palms move at
the same rate and (3)ω1 = ω2 = 0, both palms are fixed.
These special cases are described in more detail in [30]. We
will summarize the results below:
ω1 = 0 : We can eliminateφ1 from the state vector, because
it is now a known constant. It can be shown thatL f L f s1 = 0.
Fortunately, the Lie derivativesds1, ds2, dφ1, dLf s1, dLf s2
anddLf L f s2 still span the observability codistribution.
ω2 = 0 : Now we can eliminateφ2 from the state vector. The
same Lie derivatives as in the general case can be used to prove
observability.
ω1 = ω2 = 0 : Both φ1 andφ2 are now eliminated as state
variables. It can be shown that in this case the system is no
longer locally observable by taking repeated Lie derivatives
of the drift vector field alone; we need to consider the control
vector fields as well. The differentialsds1, ds2, dφ1, dLf s1,
dLf s2 anddLg1s1 generally span the observability codistri-
bution.
In this last case it is important to remember that the palms are
actively controlled, i.e., the palms are not clamped. Otherwise
we would not know the torques exerted by the palms. We need
the torques in order to integrate (by using an observer) the dif-
ferential equation 10. As mentioned before, the construction
of an observer that relies on the control vector fields is nontriv-
ial. Since the motion of the palms is so constrained, the system
is likely to observe only a small fraction of an unknown shape.
Therefore we suspect that if one were to construct an observer
for this case it would have very limited practical value.

VII. F UTURE WORK

In this paper we have set up a framework for reconstructing
the shape of an unknown smooth convex planar shape using
two tactile sensors. We have shown that the shape and mo-
tion of such a shape are locally observable. We are currently
constructing an observer to be used in the experimental setup
described in [29]. This setup proved to be very useful in ana-
lyzing the quasistatic case. In this paper we take into account
second order effects. We therefore expect that the performance
of our experimental system will be greatly enhanced by using
an observer.

To make the model more realistic we plan to model friction
as well. This may not fundamentally change the system: as
long as the contact velocities are non-zero the contact force
vectors are just rotated proportional to the friction angle. We
hope to be able to reconstruct the value of the friction coeffi-
cient using a nonlinear observer.

Finally, we will analyze the three-dimensional case. In 3D
we cannot expect to reconstruct the entire shape, since the
contact points trace out only curves on the surface of the object.
Nevertheless, by constructing a sufficiently fine mesh with
these curves, we can come up with a good approximation. We
can compute a lower bound on the shape by computing the
convex hull of the curves. An upper bound can be computed
by computing the largest shape that fits inside the tangent
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planes without intersecting them. The quasistatic approach
will most likely not work in 3D, because in 3D the rotation
velocity has three degrees of freedom and force/torque balance
only gives us two constraints. Instead, we intend to generalize
the dynamics results presented in this paper.
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