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Abstract

We present a new method to reconstruct the shape of an un-
known object using tactile sensors without requiring object
immobilization. Instead, the robot manipulates the object
without prehension. The robot infers the shape, motion and
center of mass of the object based on the motion of the con-
tact points as measured by tactile sensors. Our analysis is
supported by simulation and experimental results.

1 Introduction
Robotic manipulation of objects of unknown shape and
weight is very difficult. To manipulate an object reliably
a robot typically requires precise information about the ob-
ject’s shape and mass properties. Humans, on the other hand,
seem to have few problems with manipulating objects of
unknown shape and weight. For example, Klatzky et al.
(1985) showed that blindfolded human observers identified
100 common objects with over 96% accuracy, in only 1 to 2
seconds for most objects. So somehow during the manipu-
lation of an unknown object the tactile sensors in the human
hand give enough information to find the pose and shape of
that object. At the same time some mass properties of the
object are inferred to determine a good grasp. These obser-
vations are an important motivation for our research. In this
paper we present a model that integrates manipulation and
tactile sensing. We derive equations for the shape and mo-

tion of an unknown object as a function of the motion of the
manipulators and the sensor readings.

Figure 1 illustrates the basic idea. There are two palms
that each have one rotational degree of freedom at the point
where they connect, allowing the robot to change the angle
between palm 1 and palm 2 and between the palms and the
global frame. As the robot changes the palm angles it keeps
track of the contact points through tactile elements on the
palms.

In the next section we will give an overview of related
work. In section 3 we derive the shape and motion of an
unknown object as a function of palm motions and sensor
values. In 4 we present simulation results for the same object
that we used in our experiments. Some preliminary experi-
mental results are presented in section 5. Finally, in section 6
we discuss briefly some directions we will explore in future
work.

2 Related Work
Our research builds on many different areas in robotics.
These areas can be roughly divided into four different cate-
gories: probing, nonprehensile manipulation, grasping, and
tactile sensing. We can divide the related work in tactile sens-
ing further into three subcategories: shape and pose recogni-
tion with tactile sensors, tactile exploration, and tactile sensor
design. We now briefly discuss some of the research in these
areas.
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Figure 1: Two possible arrangements of a smooth convex object resting on palms that are covered with tactile sensors.
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2.1 Probing
Detecting information about an object with sensors can be
phrased in a purely geometric way. Sensing is then often
called probing. One can define different kinds of probes that
correspond to abstractions of sensor devices. For instance,
a finger probecorresponds to a robotic finger moving along
a line until it contacts an object (or misses the object). The
probe outcome is then the point where the probe contacted
the object. Cole and Yap (1987) showed that we can re-
construct a convexn-sided polygon using no more than 3n
finger probes. Furthermore, they showed that 3n − 1 probes
are necessary. Shortly after (Cole and Yap, 1987) Dobkin
et al. (1986) investigated the complexity of determining the
shape and pose of convex polytopes for a variety of differ-
ent probes, and also probes with errors. Boissonnat and
Yvinec (1992) extended the probe model of Cole and Yap:
their probe outcome includes the normal at the contact point.
With this probe model they show that at most 3n − 3 probes
are needed for simplenon-convexpolygons with no collinear
edges.

Li (1988) gave algorithms that reconstruct convex poly-
gons with 3n+1 line probesor with 3n−2projection probes.
Line probes slide a straight line in a particular direction over
the plane until it hits the object. Projection probes consist of
two line probes that move in opposite directions towards each
other. Lindenbaum and Bruckstein (1994) gave an approx-
imation algorithm for arbitrary planar convex shapes using
line probes. In (Lindenbaum and Bruckstein, 1991) bounds
were given on the number ofparallel probes that are neces-
sary to recover the shape of a planar polygon. With parallel
probes,k probes (k > 1) are performed at the same time.
Skiena (1989) observed that the line probe can be general-
ized to a new kind of probe which is the dual of the finger
probe, so that there is a one-to-one correspondence between
algorithms that use finger probes and ones that use this gen-
eralized line probe.

Rao and Goldberg (1994) studied the problem of deter-
mining the shape of a convex polygon using diameter mea-
surements from a parallel jaw gripper. They showed that it
is possible to recognize a shape from a known (finite) set
of shapes. Arkin et al. (1998) proved that finding a mini-
mal length plan isNP-hard and give a polynomial-time ap-
proximation algorithm with a good performance guarantee.
Akella and Mason (1998) showed how to orient and distin-
guish (sets of) polygonal parts using diameter measurements.

2.2 Nonprehensile Manipulation
The basic idea behind nonprehensile manipulation is that
robots can manipulate objects even if the robots do not have
full control over these objects. This idea was pioneered by
Mason. In his Ph.D. thesis (Mason, 1982, 1985) nonprehen-
sile manipulation takes the form of pushing an object in the
plane to reduce uncertainty about the object’s pose. Subse-
quent work by others showed how to use pushing to design

fences for a conveyor belt system (Peshkin and Sanderson,
1988; Wiegley et al., 1996) and how to plan paths for pushing
objects among obstacles (Lynch, 1997). Lynch et al. (1998)
showed how to make a robotic manipulator perform a certain
juggling motion with a suitable parameterization of the shape
and motion of the manipulator. Much research on juggling
balls has been done in Koditschek’s research group (see e.g.
(Rizzi and Koditschek, 1993) and (Whitcomb et al., 1993)).

Erdmann and Mason (1988) described sensorless ma-
nipulation within the formal framework of the pre-image
methodology. In particular, Erdmann and Mason showed
how to orient a planar object by a tray tilting device. In
(Erdmann et al., 1993) the tray tilting idea is extended to
polyhedra.

One of the first papers in palmar manipulation is (Salis-
bury, 1987). Paljug et al. (1994) investigated the problem of
multi-arm manipulation. Erdmann (1998a) showed how to
manipulate a known object with two palms. Zumel (1997)
described a palmar system like the one shown in figure 1(b)
(but without tactile sensors) that can orient known polygonal
parts.

2.3 Grasping
The problem of grasping has been widely studied. This sec-
tion will not try to give a complete overview of the results in
this area, but instead just mention some of the work that is
most important to our problem. In order to grasp an object we
need to understand the kinematics of contact. Independently,
Montana (1988) and Cai and Roth (1986, 1987) derived the
relationship between the relative motion of two objects and
the motion of their contact point. In (Montana, 1995) these
results are extended to multi-fingered manipulation. Kao and
Cutkosky (1992) presented a method for dextrous manipu-
lation with sliding fingers.

Sudsang et al. (2000) looked at the problem of manipulat-
ing three-dimensional objects with a reconfigurable gripper.
The gripper consists of two horizontal plates, of which the
top one has a regular grid of actuated pins. Rao et al. (1994,
1995) show how to reorient a polyhedral object withpivoting
grasps: the object is grasped with two hard finger contacts
so that it pivots under gravity when lifted.

Trinkle and colleagues (Trinkle et al., 1993; Trinkle and
Hunter, 1991; Trinkle and Paul, 1990; Trinkle et al., 1988)
have investigated the problem of dexterous manipulation
with frictionless contact. They analyzed the problem of
lifting and manipulating an object with enveloping grasps.
Yoshikawa et al. (1993) do not assume frictionless contacts
and show how to regrasp an object using quasistatic slip mo-
tion. Nagata et al. (1993) describe a method of repeatedly
regrasping an object to build up a model of its shape.

In (Teichmann and Mishra, 2000) an algorithm is pre-
sented that determines a good grasp for an unknown object
using a parallel-jaw gripper equipped with some light beam
sensors. This paper presents a tight integration of sensing and
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manipulation. Recently, Jia (2000) showed how to achieve
an antipodal grasp of a curved planar object with two fingers.

2.4 Shape and Pose Recognition
The problem of shape and pose recognition can be stated as
follows: suppose we have a known set of objects, how can
we recognize one of the objects if it is in an unknown pose?
For an infinite set of objects the problem is often phrased
as: suppose we have a class of parametrized shapes, can we
establish the parameters for an object from that class in an
unknown pose? Schneiter and Sheridan (1990) developed a
method for determining sensor paths to solve the first prob-
lem. In Siegel (1991) a different approach is taken: the pose
of an object is determined by using an enveloping grasp.

Jia and Erdmann (1996) proposed a ‘probing-style’ so-
lution: they determined possible poses for polygons from a
finite set of possible poses. One method determined the pose
by bounding the polygon by supporting lines. The second
method they proposed is to sense by point sampling. They
proved that solving this problem isNP-complete and present
a polynomial time approximation algorithm.

Keren et al. (1998) proposed a method for recognizing
three-dimensional objects using curve invariants. Jia and
Erdmann (1999) investigated the problem of determining not
only the pose, but also the motion of a known object. The
pose and motion of the object are inferred simultaneously
while a robotic finger pushes the object.

2.5 Tactile Exploration
With tactile exploration the goal is to build up an accurate
model of the shape of an unknown object. One early pa-
per by Goldberg and Bajcsy (1984) described a system that
showed that very little information is necessary to reconstruct
an unknownshape. With some parametrizedshape models, a
large variety of shapes can still be characterized. In (Fearing,
1990), for instance, results are given for recovering general-
ized cylinders. In (Chen et al., 1996) tactile data are fit to a
general quadratic form. Finally, (Roberts, 1990) proposed a
tactile exploration method for polyhedra.

Allen and Michelman (1990) presented methods for ex-
ploring shapes in three stages, from coarse to fine: grasping
by containment, planar surface exploring and surface con-
tour following. Montana (1988) describes a method to esti-
mate curvature based on a number of probes. Montana also
presents a control law for contour following. Charlebois
et al. (1996, 1997) introduced two different tactile explo-
ration methods: one uses Montana’s contact equations and
one fits a B-spline surface to the contact points and normals
obtained by sliding multiple fingers along a surface.

Marigo et al. (1997) showed how to manipulate a known
polyhedral part by rollingbetween the two palms of aparallel-
jaw gripper. Recently, (Bicchi et al., 1999) extended these re-
sults to tactile exploration of unknown objects with a parallel-
jaw gripper equipped with tactile sensors. A different ap-

proach is taken by Kaneko and Tsuji (2000), who try to re-
cover the shape by pulling a finger over the surface. This idea
has also been explored by Russell (1992). In (Okamura and
Cutkosky, 1999) the emphasis is on detecting fine surface
features such as bumps and ridges.

Much of our work builds forth on (Erdmann, 1998b).
Erdmann derives the shape of an unknown object with an
unknown motion as a function of the sensor values. In our
work we restrict the motion of the object: we assume qua-
sistatic dynamics and we assume there is no friction. Only
gravity and the contact forces are acting on the object. As
a result we can recover the shape with fewer sensors. We
can realize these assumptions by moving the palms slowly
enough so that the object is always in a local potential energy
minimum.

2.6 Tactile Sensor Design
Despite the large body of work in tactile sensing and haptics,
making reliable and accurate tactile sensors has proven to
be very hard. Many different designs have been proposed.
For an overview of sensing technologies, see e.g. (Howe
and Cutkosky, 1992). Fearing and Binford (1988) describe
a cylindrical tactile sensor to determine the curvature of con-
vex unknown shapes. In our own experiments we will rely
on off-the-shelf components. The actual tactile sensors are
touchpads as found on many notebooks. Most touchpads use
capacitive technology, but the ones we are using are based
on force-sensing resistors, which are less sensitive to elec-
trostatic contamination.

3 Quasistatic Shape Reconstruction
In this section we will present a quasistatic method for re-
constructing the shape of an unknown smooth convex object.
The object is placed between the two palms, and we can vary
the angles between the palms and the world frame. We say
that the object is inforce/torque balance, if and only if all
forces and torques acting on the object add up to 0. Below,
we will show that if we assume that the object is always in
force/torque balance and if there is no friction between the
object and the palms, then we can reconstruct the shape with
two palms.

Figure 1(b) shows the two inputs and the two sensor out-
puts. The inputs areφ1, the angle between palm 1 and the
X-axis of the global frame, andφ2, the angle between palm 1
and 2. The tactile sensor elements return the contact pointss1
ands2 on palm 1 and 2, respectively. Gravity acts in the neg-
ative Y direction. If the object is at rest, there is force/torque
balance. In that case, since we assume there is no friction,
the lines through the normal forces at the contact points and
gravity acting on the center of mass intersect at a common
point. In other words, the sensor values tell us where the
X-coordinate of the center of mass is in the global frame.
Below we will show that this constraint on the position of
the center of mass and the constraints induced by the sensor
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values will allow us to derive an expression for the curva-
ture at the contact points. However, this expression depends
on the initial Y-coordinate of the center of mass. We can
search for this value by minimizing the error between what
the curvature expression predicts and what the sensor values
tell us.

A useful tool for recovering the shape of the object will be
the radius function (see e.g. (Santaló, 1976)). Figure 2 shows
the basic idea. We assume that the object is smooth and
convex. We also assume that the origin of the object frame
is at the center of mass. For every angleθ we can construct a
line `(θ) tangent to the object. This line makes contact with
the object atx(θ). Sox(θ) describes the shape of the object,
with θ varying over[0,2π). Letn(θ)be the outward pointing
normal andt(θ) be the tangent such that[t,n] constitutes a
right-handed frame. Thenn(θ) = (cosθ, sinθ)T andt(θ) =
(sinθ,− cosθ)T . Similarly, we can define frames at the
contact points with respect to the palms:

n̄1 = ( − sinφ1, cosφ1
)T

t̄1 = (
cosφ1, sinφ1

)T and
n̄2 = (sinφ12,− cosφ12)

T

t̄2 = −(cosφ12, sinφ12)
T

Here,φ12 = φ1 +φ2. Letψ be the angle between the object
frame and the global frame, such that a rotation matrixR(ψ)
maps a point from the object frame to the global frame:

R(ψ) =
(

cosψ − sinψ
sinψ cosψ

)

The object and palm frames are then related in the following
way:(

n̄1 t̄1
) = −R(ψ)

(
n(θ) t(θ)

)
(
n̄2 t̄2

) = −R(ψ)
(
n(θ + φ2 − π) t(θ + φ2 − π)

)
The different frames are shown in figure 3. From these rela-
tionships it follows that

θ = φ1 − ψ − π
2 (1)

We will use ‘̇ ’ to represent differentiation with respect
to time t and ‘′’ to represent differentiation with respect to
a function’s parameter. So, for instance,ẋ(θ) = x′(θ)θ̇ .

2
1

1
2

φ2
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2

2

1s

x −x

r r
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Figure 4: The dependencies between sensor values, the sup-
port function and the angle between the palms

From the Frenet formulas it follows that the parameterization
velocity v(θ) = ‖x′(θ)‖ is the radius of curvature of the
shape at the pointx(θ). We can writev(θ) as−x′(θ) · t(θ)
andx′(θ) as−v(θ)t(θ).

We now definer (θ) to be the distance between`(θ) and
the object origin:

r (θ) = x(θ) · n(θ)
This function is called aradius functionor support function.
For our shape recovery analysis it will be useful to define an-
other function,d(θ), to be the signed distance of the contact
point x(θ) to the foot of the supporting linè(θ):

d(θ) = x(θ) · t(θ)
We will refer to the pair(r (θ),d(θ)) as acontact support
function. The goal is now to derive a solution forx(θ) as
we change the palm anglesφ1 andφ2. Below we drop the
function arguments where it doesn’t lead to confusion, and
instead use subscripts ‘1’ and ‘2’ to denote the contact point
on palm 1 and 2. So we will write e.g.r2n2 for r (θ + φ2 −
π)n(θ+φ2−π). Note thatr ′(θ) = −d(θ), so it is sufficient
to reconstruct the radius function. If the object is in two-point
contact,d(θ) is redundant in another way as well. We can
write the two-point contact constraint in terms of the contact
support function:

(s1 + d1)t̄1 + r1n̄1 = (−s2 + d2)t̄2 + r2n̄2 (2)

Solving this constraint ford1 andd2 we get:

d1 = r1 cosφ2+r2
sinφ2

− s1 and d2 = − r2 cosφ2+r1
sinφ2

+ s2 (3)

See also figure 4. So a solution forr (θ) can be used in two
ways to arrive at a solution ford(θ): (1) using the prop-
erty d(θ) = −r ′(θ) of the radius function, or (2) using the
expressions above.

One final bit of notation we need is a generalizationof the
contact support function,which we will define as a projection
of the vector between the two contact points. We define
the generalized contact support function relative to contact
point 1as:

r̃1(θ) = (
x(θ)− x(θ + φ2 − π)

) · n(θ) (4)

d̃1(θ) = (
x(θ)− x(θ + φ2 − π)

) · t(θ) (5)

Similarly, we can definethe generalized contact support
function relative to contact point 2as:

r̃2(θ) = (
x(θ)− x(θ + φ2 − π)

) · n(θ + φ2 − π) (6)

d̃2(θ) = (
x(θ)− x(θ + φ2 − π)

) · t(θ + φ2 − π) (7)
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The generalized contact support functions have the prop-
erty that they can be expressed directly in terms of the palms
angles and sensor values (assuming the object is in two-point
contact):

r̃1 = s2 sinφ2

d̃1 = s2 cosφ2 − s1
and

r̃2 = −s1 sinφ2

d̃2 = s1 cosφ2 − s2
(8)

These equalities can be obtained by inspection from fig-
ures 1(b) and 5. By differentiating the generalized contact
support functions with respect to time we can obtain the fol-
lowing two expressions for the radii of curvature:

v1 = − ˙̃r2+(θ̇+φ̇2)d̃2
θ̇ sinφ2

and v2 = − ˙̃r1+θ̇ d̃1
(θ̇+φ̇2) sinφ2

(9)

So we can observe the curvature at the contact points if we
can derive an expression forθ̇ as a function of sensor values
and palm angles. Equivalently, we can derive an expression
for ψ̇ , since it follows from equation 1 thaṫθ = φ̇1 − ψ̇ . It
can be shown that the lines through the normals intersect at
s1t̄1−d̃2n̄1/ sinφ2. Therefore, if the object is in force/torque
balance, the distance between the center of mass and contact
point 1 along the X-axis can be written as

(Rx1) ·
(

1
0

)
= −d̃2

sinφ1
sinφ2

(10)

The left-hand side of this equation can be rewritten as

(Rx1) ·
(

1
0

)
= (R(r1n1 + d1t1)) ·

(
1
0

)
(11)

= r1 sinφ1 − d1 cosφ1 (12)

Differentiating expression 12 we get:
d
dt (r1 sinφ1 − d1 cosφ1) (13)

= (ṙ1 + d1φ̇1) sinφ1 + (r1φ̇1 − ḋ1) cosφ1 (14)

= d1(φ̇1 − θ̇ ) sinφ1 + r1(φ̇1 − θ̇ ) cosφ1

− ˙̃r2+(θ̇+φ̇2)d̃2
sinφ2

cosφ1 (15)

= ψ̇
(
d1 sinφ1 + r1 cosφ1 + d̃2

cosφ1
sinφ2

)
− ˙̃r2+(φ̇1+φ̇2)d̃2

sinφ2
cosφ1 (16)

The step in equation 15 follows from properties of the contact
support function:r ′(θ) = −d(θ) andd′(θ) = r (θ)− v(θ).
The derivative of the right-hand side of equation 10 can be
written as

(− ˙̃d2 sinφ1 − d̃2φ̇1 cosφ1 + d̃2φ̇2 sinφ1 cotφ2)/ sinφ2

(17)

Equating expressions 16 and 17,substituting expression 3 for
d1, and solving forψ̇ we arrive at the following expression
for ψ̇:

ψ̇ =
˙̃r2 cosφ1 − ˙̃d2 sinφ1 + d̃2φ̇2

sinφ12
sinφ2

r1 sinφ12 + (r2 + r̃2) sinφ1 + d̃2 cosφ1
(18)

This expression foṙψ depends on the control inputs, the sen-
sor values, their derivatives and the values of radius function
at the contact points. The system of differential equations
describing the (sensed) shape and motion can be summarized
as follows:

ṙ1 = −d1(φ̇1 − ψ̇) (19)

ṙ2 = −d2(φ̇12 − ψ̇) (20)

ψ̇ =
˙̃r2 cosφ1 − ˙̃d2 sinφ1 + d̃2φ̇2

sinφ12
sinφ2

r1 sinφ12 + (r2 + r̃2) sinφ1 + d̃2 cosφ1
(21)

In our current implementation we use a fourth-order Adams-
Bashforth-Moulton predictor-corrector method to integrate
this system of differential equations. This high-order method
tends to filter out most of the noise. More research is neces-
sary to determine the sensitivity of the system to noise.

The differential equations describe thelocal shape, but
they do not directly address the question whether it is always
possible to reconstruct theglobal shape. In (Moll and Erd-
mann, 2001) we prove that the shape of a random smooth
convex object is, in fact, globally observable. The stable
poses induce a two-dimensional subset of the(φ1, φ2, ψ)-
configuration space. We prove global observability by ana-
lyzing the boundary conditions of this subset.

So far we have assumed that we have sensor data that is
continuous and without any error. In practice sensors will be
discrete, both in time and space, and there will also be errors.
We would like to recover the shape of an unknown object in
such a setting as well. Locally we can observe two errors:

1. The difference between the predicted and actual posi-
tion of the X-coordinate of the center of mass. Here,
‘predicted’ means: found by integrating the differen-
tial equations 19– 21.

2. The difference between the predicted and actual con-
tact point vector.

By minimizing the sum of all locally observable errors we
search for the initial conditions.

4 Simulation Results
Figure 6 shows an example of the shape reconstruction pro-
cess. The results are based on numerical simulation. 270
measurements were used to reconstruct the shape. The mo-
tion of the palms is open-loop. Initially palm 1 and palm 2
are nearly horizontal; the object is squeezed (but without
friction!) between the palms. The motion of the palms can
roughly be described as sequence of squeeze-and-rotate mo-
tions and motions where one of the palms stays put and the
other palm opens up. Notice how in the penultimate frame
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 t=0.03  t=0.07  t=0.11

 t=0.14  t=0.18  t=0.22

 t=0.26  t=0.29

 t=0.33

 t=0.37  t=0.41  t=0.44

 t=0.48  t=0.52  t=0.55

 t=0.59  t=0.63  t=0.67

 t=0.70  t=0.74  t=0.78

 t=0.81  t=0.85  t=0.89

 t=0.93  t=0.96  t=1.00

Figure 6: The frames show the reconstructed shape after 10,
20,…,270 measurements. The three large dots indicate the
center of mass and the contact points at each time,the smaller
dots show the part of the shape that has been reconstructed
at that time.

(a) The actual shape and the observed shape.
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(b) The actual and observed values of the radius function.
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(c) The actual and observed orientation of the object.
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(d) The error in the norm of the contact point vector.

Figure 7: The differences between the actual and observed
shape.
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(a) Experimental setup
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(b) Partially reconstructed shape
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(c) Orientation measured by the vision system
and the observed orientation

Figure 8: Experimental Results

the simulator misgauges the shape, but has recovered in the
last frame.

In figure 7 the differences are shown between the recon-
structed and actual shape and motion of the object. We don’t
know the initial orientation, but in some sense the choice of
initial orientation is arbitrary. We use SVD to align the ori-
entation of the actual and observed shape (Golub and Loan,
1996, p. 601). The error in the norm of the contact point
vector is very small, but doesn’t appear to be completely
random, suggesting that there is still room for improvement
in the integration step.

5 Experimental Results
Our experimental setup is shown in figure 8(a). An Adept
SCARArobot arm holds the endpoint of palm 1. The endpoint
of palm 2 is attached to a fixed base. On each palm there is
one touchpad from Interlink Electronics. The touchpads use
so-called force sensing resistors to measure the location and
the applied pressure at the contact point. If there is more than
one contact point, the pad returns the centroid. The physical
pads have a resolution of 1000 counts per inch (CPI) in the
X and Y direction, but the firmware limits the resolution to
200CPI. The pads can report 128 pressure levels. The pads
measure 55.5 × 39.5mm2. Sensor data can be read out at
a rate of approximately 100Hz through aRS232 serial port
connection. The white arrows on the object and the palms
are tracked by an Adept vision system in order to establish
‘ground truth’, which can be compared with the shape and
motion inferred from the tactile data.

Figures 8(b) and 8(c) show the reconstructed shape and
motion, respectively. The observed motion is far from per-
fect, but the observed shape comes close to the actual shape.
This seems to suggest that the system of differential equa-
tions 19–21 is fairly stable in this case, i.e., the errors in the
motion did not cause the radius function to shoot off to in-
finity. The palms made back-and-forth motions in order to
cover the shape several times. This means that we can prune
those parts of the reconstructed shape that have been touched

only once. For instance, in figure 8(b) we can eliminate the
sparse point distribution in the top right and bottom middle.

6 Discussion
In this paper we have shown how to reconstruct the shape
of an unknown smooth convex planar shape using two tac-
tile sensors. We derived expressions for the curvature at the
contact points and the rotational speed of the object. The
simulation results showed that our approach works well, but
some work remains to be done on finding the initial condi-
tions. Also, it is possible that the object undergoes a discrete
change in orientation (when a local minimum of the potential
energy function becomes a local maximum). In that case we
may need to restart the integration and search again for the
initial conditions at that point. We will then also need to find
the most likely arrangement of the different shape segments.

In (Moll and Erdmann, 2001) we addressed the dynamic
case, where force/torque balance is no longer assumed. We
established that it is possible to reconstruct the shape in this
case as well as long as at least one of the palms is moving.
By moving the palms slowly enough, we can approximate
the quasistatic case, which seems to suggest that we may be
able to achieve global observability in the dynamic case as
well. Further research is needed to confirm this intuition.
If both palms are motionless, the shape is observable if the
robot can measure the contact forces.

In future work we hope to extend our analytic results in
the following ways. Firstly, we are planning to extend our
model of the dynamics to include friction. We hope to be
able to reconstruct the value of the friction coefficient using
a nonlinear observer (Isidori, 1995). Secondly, we will ana-
lyze the three-dimensional case. In 3D we cannot expect to
reconstruct the entire shape, since the contact point trace out
only curves on the surface of the object. Nevertheless, by
constructing a sufficiently fine mesh with these curves, we
can come up with a good approximation. The quasistatic ap-
proach will most likely not work in 3D, because in 3D the ro-
tation velocity has three degrees of freedom and force/torque
balance only gives us two constraints.
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Figure 9: Dragging an object over a tactile sensor with a
pivoting grasp

Figure 9 shows an entirely different sensing strategy. The
object is grasped by a robot arm using a pivoting gripper (Rao
et al., 1994, 1995). With such a gripper the object is free to
rotate around the line through the grasp contact points. The
sensing strategy consists of dragging or pushing the object
over a surface coated with tactile sensors. We think it would
be interesting to determine whether this system is observable
as well.
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