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Abstract tion of an unknown object as a function of the motion of the

We present a new method to reconstruct the shape of an unanipulators and the sensor readings.
known object using tactile sensors without requiring object ~ Figure 1 illustrates the basic idea. There are two palms
immobilization. Instead, the robot manipulates the object that €ach have one rotational degree of freedom at the point
without prehension. The robot infers the shape, motion andWhere they connect, allowing the robot to change the angle
center of mass of the object based on the motion of the conP&tween palm 1 and palm 2 and between the palms and the
tact points as measured by tactile sensors. Our analysis isd/obal frame. As the robot changes the palm angles it keeps
supported by simulation and experimental results. tralck of the contact points through tactile elements on the
palms.

. In the next section we will give an overview of related
1 Introduction work. In section 3 we derive the shape and motion of an
Robotic manipulation of objects of unknown shape and unknown object as a function of palm motions and sensor
weight is very difficult. To manipulate an object reliably values. In 4 we present simulation results for the same object
a robot typically requires precise information about the ob- that we used in our experiments. Some preliminary experi-
ject's shape and mass properties. Humans, on the other hanéhental results are presented in section 5. Finally, in section 6
seem to have few problems with manipulating objects of we discuss briefly some directions we will explore in future
unknown shape and weight. For example, Klatzky et al. work.
(1985) showed that blindfolded human observers identified
100 common objects with over 96% accuracy, inonly1to 2 2 Related Work
seconds for most objects. So somehow during the manipuQur research builds on many different areas in robotics.
lation of an unknown object the tactile sensors in the humanThese areas can be rough|y divided into four different cate-
hand give enough information to find the pose and shape ofyories: probing, nonprehensile manipulation, grasping, and
that object. At the same time some mass properties of theactile sensing. We can divide the related work in tactile sens-
object are inferred to determine a good grasp. These obseling further into three subcategories: shape and pose recogni-
vations are an important motivation for our research. In this tion with tactile sensors, tactile exploration, and tactile sensor
paper we present a model that integrates manipulation an@jesign. We now briefly discuss some of the research in these
tactile sensing. We derive equations for the shape and mogregs.

*This work was supported in part by the NSF under grants 11S-9820180 and IRI-9503648.
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Figure 1: Two possible arrangements of a smooth convex object resting on palms that are covered with tactile sensors.
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2.1 Probing fences for a conveyor belt system (Peshkin and Sanderson,

Detecting information about an object with sensors can be1988; Wiegley etal., 1996) and how to plan paths for pushing
phrased in a purely geometric way. Sensing is then oftenobjects among obstacles (Lynch, 1997). Lynch et al. (1998)
called probing. One can define different kinds of probes thatshowed how to make a robotic manipulator perform a certain
correspond to abstractions of sensor devices. For instancdUggling motion with a suitable parameterization of the shape
afinger probecorresponds to a robotic finger moving along and motion of the manipulator. Much research on juggling
a line until it contacts an object (or misses the object). Theballs has been done in Koditschek’s research group (see e.g.
probe outcome is then the point where the probe contactedRizzi and Koditschek, 1993) and (Whitcomb et al., 1993)).
the object. Cole and Yap (1987) showed that we can re- Erdmann and Mason (1988) described sensorless ma-
construct a conver-sided p0|ygon using no more than 3 nipulation within the formal framework of the pre—image
finger probes. Furthermore, they showed that-3L probes ~ methodology. In particular, Erdmann and Mason showed
are necessary. Shortly after (Cole and Yap, 1987) Dobkinhow to orient a planar object by a tray tilting device. In
et al. (1986) investigated the complexity of determining the (Erdmann et al., 1993) the tray tilting idea is extended to
shape and pose of convex polytopes for a variety of differ- polyhedra.
ent probes, and also probes with errors. Boissonnat and ©One of the first papers in palmar manipulation is (Salis-
Yvinec (1992) extended the probe model of Cole and Yap: bury, 1987). Paljug et al. (1994) investigated the problem of
their probe outcome includes the normal at the contact point multi-arm manipulation. Erdmann (1998a) showed how to
With this probe model they show that at most-33 probes ~ Manipulate a known object with two palms. Zumel (1997)
are needed for simpteon-conveyolygons with no collinear ~ described a palmar system like the one shown in figure 1(b)
edges. (but without tactile sensors) that can orient known polygonal
Li (1988) gave algorithms that reconstruct convex poly- parts.
gons with 3141 line probesor with 3n— 2 projection probes )
Line probes slide a straight line in a particular direction over 2-3  Grasping
the plane until it hits the object. Projection probes consist of The problem of grasping has been widely studied. This sec-
two line probes that move in opposite directions towards eacHion will not try to give a complete overview of the results in
other. Lindenbaum and Bruckstein (1994) gave an approx-his area, but instead just mention some of the work that is
imation algorithm for arbitrary planar convex shapes using mostimportantto our problem. In order to grasp an objectwe
line probes. In (Lindenbaum and Bruckstein, 1991) boundsheed to understand the kinematics of contact. Independently,
were given on the number parallel probes that are neces- Montana (1988) and Cai and Roth (1986, 1987) derived the
sary to recover the shape of a planar polygon. With para”e”ElationShip between the relative motion of two ObjeCtS and
probes,k probes K > ]_) are performed at the same time. the motion of their contact point. In (Montana, 1995) these
Skiena (1989) observed that the line probe can be genera|[eSU|tS are extended to multi-fingered manipulation. Kaoand
ized to a new kind of probe which is the dual of the finger Cutkosky (1992) presented a method for dextrous manipu-
probe, so that there is a one-to-one correspondence betweédation with sliding fingers.
algorithms that use finger probes and ones that use this gen- Sudsang etal. (2000) looked atthe problem of manipulat-
eralized line probe. ing three-dimensional objects with a reconfigurable gripper.
Rao and Goldberg (1994) studied the problem of deter- The gripper consists of two horizontal plates, of which the
mining the shape of a convex polygon using diameter mea-0op one has a regular grid of actuated pins. Rao et al. (1994,
surements from a parallel jaw gripper. They showed that it 1995) show how to reorient a polyhedral object wittoting
is possible to recognize a shape from a known (finite) setgrasps the object is grasped with two hard finger contacts
of shapes. Arkin et al. (1998) proved that finding a mini- SO that it pivots under gravity when lifted.
mal length plan iNP-hard and give a polynomial-time ap- Trinkle and colleagues (Trinkle et al., 1993; Trinkle and
proximation algorithm with a good performance guarantee.Hunter, 1991; Trinkle and Paul, 1990; Trinkle et al., 1988)
Akella and Mason (1998) showed how to orient and distin- have investigated the problem of dexterous manipulation

guish (sets of) polygonal parts using diameter measurementdvith frictionless contact. They analyzed the problem of
lifting and manipulating an object with enveloping grasps.

2.2 Nonprehensile Manipulation Yoshikawa et al. (1993) do not assume frictionless contacts
The basic idea behind nonprehensile manipulation is thatand show how to regrasp an object using quasistatic slip mo-
robots can manipulate objects even if the robots do not havdion. Nagata et al. (1993) describe a method of repeatedly
full control over these objects. This idea was pioneered byregrasping an object to build up a model of its shape.
Mason. In his Ph.D. thesis (Mason, 1982, 1985) nonprehen-  In (Teichmann and Mishra, 2000) an algorithm is pre-
sile manipulation takes the form of pushing an object in the sented that determines a good grasp for an unknown object
plane to reduce uncertainty about the object’s pose. Subselsing a parallel-jaw gripper equipped with some light beam
quent work by others showed how to use pushing to designsensors. This paper presents atightintegration of sensing and

693



manipulation. Recently, Jia (2000) showed how to achieveproach is taken by Kaneko and Tsuji (2000), who try to re-
an antipodal grasp of a curved planar object with two fingers.cover the shape by pulling afinger over the surface. Thisidea
has also been explored by Russell (1992). In (Okamura and
2.4 Shape and Pose Recognition Cutkosky, 1999) the emphasis is on detecting fine surface
The problem of shape and pose recognition can be stated af®atures such as bumps and ridges.
follows: suppose we have a known set of objects, how can  Much of our work builds forth on (Erdmann, 1998b).
we recognize one of the objects if it is in an unknown pose? Erdmann derives the shape of an unknown object with an
For an infinite set of objects the problem is often phrasedunknown motion as a function of the sensor values. In our
as: suppose we have a class of parametrized shapes, can weork we restrict the motion of the object: we assume qua-
establish the parameters for an object from that class in arsistatic dynamics and we assume there is no friction. Only
unknown pose? Schneiter and Sheridan (1990) developed gravity and the contact forces are acting on the object. As
method for determining sensor paths to solve the first prob-a result we can recover the shape with fewer sensors. We
lem. In Siegel (1991) a different approach is taken: the posecan realize these assumptions by moving the palms slowly
of an object is determined by using an enveloping grasp. enough so that the object is always in a local potential energy
Jia and Erdmann (1996) proposed a ‘probing-style’ so- minimum.
lution: they determined possible poses for polygons from a
finite set of possible poses. One method determined the posg.6  Tactile Sensor Design
by bounding the polygon by supporting lines. The second Despite the large body of work in tactile sensing and haptics,
method they proposed is to sense by point sampling. Theymaking reliable and accurate tactile sensors has proven to
proved that solving this problemiP-complete and present be very hard. Many different designs have been proposed.
a polynomial time approximation algorithm. For an overview of sensing technologies, see e.g. (Howe
Keren et al. (1998) proposed a method for recognizing and Cutkosky, 1992). Fearing and Binford (1988) describe
three-dimensional objects using curve invariants. Jia anda cylindrical tactile sensor to determine the curvature of con-
Erdmann (1999) investigated the problem of determining notvex unknown shapes. In our own experiments we will rely
only the pose, but also the motion of a known object. The on off-the-shelf components. The actual tactile sensors are
pose and motion of the object are inferred simultaneouslytouchpads as found on many notebooks. Mosttouchpads use

while a robotic finger pushes the object. capacitive technology, but the ones we are using are based
_ . on force-sensing resistors, which are less sensitive to elec-
2.5 Tactile Exploration trostatic contamination.

With tactile exploration the goal is to build up an accurate
model of the shape of an unknown object. One early pa-3 Quasistatic Shape Reconstruction
per by Goldberg and Bajcsy (1984) described a system thain this section we will present a quasistatic method for re-
showed that very little information is necessary to reconstructconstructing the shape of an unknown smooth convex object.
anunknownshape. With some parametrized shape models, @he object is placed between the two palms, and we can vary
large variety of shapes can still be characterized. In (Fearingthe angles between the palms and the world frame. We say
1990), for instance, results are given for recovering general+that the object is ifforce/torque balancef and only if all
ized cylinders. In (Chen et al., 1996) tactile data are fit to a forces and torques acting on the object add up to 0. Below,
general quadratic form. Finally, (Roberts, 1990) proposed awe will show that if we assume that the object is always in
tactile exploration method for polyhedra. force/torque balance and if there is no friction between the
Allen and Michelman (1990) presented methods for ex- object and the palms, then we can reconstruct the shape with
ploring shapes in three stages, from coarse to fine: graspingwo palms.
by containment, planar surface exploring and surface con-  Figure 1(b) shows the two inputs and the two sensor out-
tour following. Montana (1988) describes a method to esti- puts. The inputs arg;, the angle between palm 1 and the
mate curvature based on a number of probes. Montana alsX-axis of the global frame, angb, the angle between palm 1
presents a control law for contour following. Charlebois and 2. The tactile sensor elements return the contact gints
et al. (1996, 1997) introduced two different tactile explo- ands, on palm 1 and 2, respectively. Gravity acts in the neg-
ration methods: one uses Montana’s contact equations andtive Y direction. If the object is at rest, there is force/torque
one fits a B-spline surface to the contact points and normalspalance. In that case, since we assume there is no friction,
obtained by sliding multiple fingers along a surface. the lines through the normal forces at the contact points and
Marigo et al. (1997) showed how to manipulate a known gravity acting on the center of mass intersect at a common
polyhedral partby rolling between the two palms of a parallel- point. In other words, the sensor values tell us where the
jaw gripper. Recently, (Bicchi etal., 1999) extended these re-X-coordinate of the center of mass is in the global frame.
sults to tactile exploration of unknown objects with a parallel- Below we will show that this constraint on the position of
jaw gripper equipped with tactile sensors. A different ap- the center of mass and the constraints induced by the sensor
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Figure 4: The dependencies between sensor values, the sup-
port function and the angle between the palms

Fromthe Frenetformulas it follows that the parameterization
velocity v(0) = |X' ()] is the radius of curvature of the
shape at the point(9). We can writev(9) as—x'(9) - t(9)
andx’(9) as—v()t(9).

We now define (9) to be the distance betweé) and
the object origin:

r@) =x@)-n®)

This function is called aadius functioror support function.
For our shape recovery analysis it will be useful to define an-
other functiond(6), to be the signed distance of the contact

Figure 3: The different coordinate frames

values will allow us to derive an expression for the curva-
ture at the contact points. However, this expression depend
on the initial Y-coordinate of the center of mass. We can
search for this value by minimizing the error between what
:thla Sgrvature expression predicts and what the sensor Valueﬁointx(@) to the foot of the supporting lin&():
Ausefultool for recovering the shape of the object will be d@ = X(0) - 1(9) )

the radius function (see e.g. (Santal6, 1976)). Figure 2 showdVe will refer to the pair(r (9), d(9)) as acontact support
the basic idea. We assume that the object is smooth andunction. The goal is now to derive a solution fa6) as
convex. We also assume that the origin of the object frameWe change the palm anglgs and¢,. Below we drop the

is at the center of mass. For every amgjlge can construct a function arguments where it doesn't lead to confusion, and
line £(6) tangent to the object. This line makes contact with instead use subscripts ‘1’ and "2’ to denote the contact point
the object ak(6). Sox(#) describes the shape of the object, ©n palm 1 and 2. So we will write e.gznz forr (6 + ¢2 —

with 6 varying ovel{0, 2r). Letn(#) be the outward pointing
normal and () be the tangent such thgt n] constitutes a
right-handed frame. Them®) = (cos, sind)T andt(9) =
(sind, —cosH) . Similarly, we can define frames at the
contact points with respect to the palms:

Ay = (- singy. cospy)’ P = (singz. — cosp1o)”

t1 = (cosgu, Sin¢1)T to = —(cosg12, sing12) T
Here, 12 = ¢1+ ¢2. Lety be the angle between the object
frame and the global frame, such that a rotation maiixk)
maps a point from the object frame to the global frame:

__(cosy  —siny
R(I//)_(sim/f cosdx)

The object and palm frames are then related in the following

way:
(A1 t1) =—R@) (n©®) t(@®))
(2 t2) = —R@) (NO +¢2—71) O+ p2—m))

The different frames are shown in figure 3. From these rela-

tionships it follows that

_z

0=¢1— Y 2 (1)

We will use ' to represent differentiation with respect
to timet and ’ to represent differentiation with respect to
a function’s parameter. So, for instancgd) = x'(6)6.

)@ +¢o—m). Notethatr’(0) = —d(0), so itis sufficient

to reconstructthe radius function. If the objectis in two-point
contact,d(0) is redundant in another way as well. We can
write the two-point contact constraint in terms of the contact
support function:

(s1+ d)ts + 110y = (=2 + do)t2 + 2y 2
Solving this constraint fod; andd, we get:
oy = BEPH2 _ g and dy = —2582H 45 (3)

See also figure 4. So a solution fo¥) can be used in two
ways to arrive at a solution fait(6): (1) using the prop-
ertyd(9#) = —r’(0) of the radius function, or (2) using the
expressions above.

One final bit of notation we need is a generalization of the
contact support function, which we will define as a projection
of the vector between the two contact points. We define
the generalized contact support function relative to contact
point 1as:

F1(0) = (X(0) — X(6 + ¢2 — 7)) - n(O) (4)
di(0) = (X(©) —X(0 + ¢2 — 7)) - £() (5)
Similarly, we can definghe generalized contact support

function relative to contact point as:

F2(0) = (X(0) — X(0 + ¢2 — 7)) - NO + ¢ — 7)
d2(0) = (X(@) — X(O + ¢2 — 7)) - 10 + ¢ — 1)

(6)
()
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Jo F2 COSp1 — dp Singy + dzéz?ﬂ,ﬂf a8)
r1Sing12 + (r2 + f2) sing1 + do cosgy
This expression fof: depends on the control inputs, the sen-
sor values, their derivatives and the values of radius function
at the contact points. The system of differential equations

Figure 5: The generalized contact support functions. ~ describing the (sensed) shape and motion can be summarized

as follows:
The generalized contact support functions have the prop-

erty that they can be expressed d|_rectly in te_rms_ o_f the palms f1= —di(d1 — ) (19)
angles and sensor values (assuming the objectis in two-poinf . .
Contact): 2 = —da(p12 — V) (20)

'il = $sing, a f;2 = —s1Sing, 8) . I‘Lz CoSp1 — dz singy + dz(].ﬁz SSII?IQ;&ZZ

di = S COS¢2 — 1 dz = $1C0S¢2 — % " r1singi2+ (ra + ) singy + da cosep (1)
These equalities can be obtained by inspection from fig- ! 12 2T 2 1T !

ures 1(b) and 5. By differentiating the generalized contact|n our currentimplementation we use a fourth-order Adams-
support functions with respect to time we can obtain the fol- Bashforth-Moulton predictor-corrector method to integrate

lowing two expressions for the radii of curvature: this system of differential equations. This high-order method
vy = — 2100 gng g, - Tt0d (9) tends to filter out most of the noise. More research is neces-
0 sing (0+¢2) sing

Sowe can observe the curvature atthe contact points ifweSary to determine the sensitivity of the system to noise.
P The differential equations describe tloeal shape, but

can derie anexpression s unclon of Ensor VIS e oty adess o queston e 1 s
. ) ‘ T - ; . ibl reconstr Ish . In (Moll and Erd-
for ¢, since it follows from equation 1 that= ¢; — . It possible to reconstruct trgobal shape (Moll and Erd

can be shown that the lines through the normals intersect a?ann, 2001) we prove that the shape of a random smooth
s irough the nor onvex object is, in fact, globally observable. The stable
sit1—don1/ sing,. Therefore, if the objectis in force/torque

. pgses induce a two-dimensional subset of ig ¢2, ¥)-
ba!ance, the distance petween the'center of mass and contag nfiguration space. We prove global observability by ana-
point 1 along the X-axis can be written as

lyzing the boundary conditions of this subset.

(Rx1) - (é) = —d; zmg; (10) So far we have assumed that we have sensor data that is
The left-hand side of this equation can be rewritten as continuous and without any error. In practice sensors will be
1 1 discrete, both in time and space, and there will also be errors.
(Rxy) - (o) = (R(riny + dity)) - (o) (11)  we would like to recover the shape of an unknown object in
=ry1sing; — di cospy (12) such a setting as well. Locally we can observe two errors:
Differentiating expression 12 we get: 1. The difference between the predicted and actual posi-
%(rl sing; — di cosgr) (13) tion of the X-coordinate of the center of mass. Here,

‘predicted’ means: found by integrating the differen-

=t d1¢.1) s-,|n¢1 + (g1 = Fjl) COS1 (14) tial equations 19— 21.
= di(¢1 — 0) Sing1 + ra(é1 — 0) cosg 2. The difference between the predicted and actual con-
_ F2+§mi2)d2 cospr (15) tact point vector.
. . ~ cospy By minimizing the sum of all locally observable errors we
=y (disingy +ricosgs + da G2 ) search for the initial conditions.
_ fL2+(45_1+452)d~2 . .
sing, 0001 (16) 4 Simulation Results

The step in equation 15 follows from properties of the contact
support functionr’(9) = —d(9) andd’(9) = r (0) — v(H).

The derivative of the right-hand side of equation 10 can be
written as

Figure 6 shows an example of the shape reconstruction pro-
cess. The results are based on numerical simulation. 270
measurements were used to reconstruct the shape. The mo-
. o o tion of the palms is open-loop. Initially palm 1 and palm 2
(—=d2sing1 — d2g1 COSp1 + dagh2 Sing1 COteho) / Sing are nearly horizontal; the object is squeezed (but without
(17) friction!) between the palms. The motion of the palms can

Equating expressions 16 and 17, substituting expression 3 fofoUghly be described as sequence of squeeze-and-rotate mo-
d1, and solving fonj we arrive at the following expression 10ns and motions where one of the paims stays put and the
for vr: other palm opens up. Notice how in the penultimate frame
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(b) The actual and observed values of the radius function.
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(c) The actual and observed orientation of the object.
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Figure 6: The frames show the reconstructed shape after 10, 00 ‘ ‘ ‘ ‘
20,...,270 measurements. The three large dots indicate the ° 0z 04 06 08 '
center of mass and the contact points at each time, the smaller ~ (d) The error in the norm of the contact point vector.

dots show the part of the shape that has been reconstructedigure 7: The differences between the actual and observed
at that time. shape.
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(a) Experimental setup (b) Partially reconstructed shape (c) Orientation measured by the vision system
and the observed orientation

Figure 8: Experimental Results

the simulator misgauges the shape, but has recovered in thenly once. For instance, in figure 8(b) we can eliminate the
last frame. sparse point distribution in the top right and bottom middle.
In figure 7 the differences are shown between the recon- _ )

structed and actual shape and motion of the object. We don'6  Discussion

know the initial orientation, but in some sense the choice of In this paper we have shown how to reconstruct the shape
initial orientation is arbitrary. We use SVD to align the ori- of an unknown smooth convex planar shape using two tac-
entation of the actual and observed shape (Golub and Loantle sensors. We derived expressions for the curvature at the
1996, p. 601). The error in the norm of the contact point contact points and the rotational speed of the object. The
vector is very small, but doesn’'t appear to be completely simulation results showed that our approach works well, but
random, suggesting that there is still room for improvementsome work remains to be done on finding the initial condi-

in the integration step. tions. Also, itis possible that the object undergoes a discrete
) change in orientation (when alocal minimum of the potential
5 Experimental Results energy function becomes a local maximum). In that case we

Our experimental setup is shown in figure 8(a). An Adept may need to restart the integration and search again for the
ScARArobotarm holds the endpoint of palm 1. The endpoint initial conditions at that point. We will then also need to find
of palm 2 is attached to a fixed base. On each palm there ithe most likely arrangement of the different shape segments.
one touchpad from Interlink Electronics. The touchpadsuse In (Moll and Erdmann, 2001) we addressed the dynamic
so-called force sensing resistors to measure the location andase, where force/torque balance is no longer assumed. We
the applied pressure at the contact point. If there is more tharestablished that it is possible to reconstruct the shape in this
one contact point, the pad returns the centroid. The physicaktase as well as long as at least one of the palms is moving.
pads have a resolution of 1000 counts per inchiYin the By moving the palms slowly enough, we can approximate
X and Y direction, but the firmware limits the resolution to the quasistatic case, which seems to suggest that we may be
200cPI. The pads can report 128 pressure levels. The padsible to achieve global observability in the dynamic case as
measure 55 x 39.5mn?. Sensor data can be read out at well. Further research is needed to confirm this intuition.
a rate of approximately 100Hz througiras232 serial port  If both palms are motionless, the shape is observable if the
connection. The white arrows on the object and the palmsrobot can measure the contact forces.
are tracked by an Adept vision system in order to establish  In future work we hope to extend our analytic results in
‘ground truth’, which can be compared with the shape andthe following ways. Firstly, we are planning to extend our
motion inferred from the tactile data. model of the dynamics to include friction. We hope to be
Figures 8(b) and 8(c) show the reconstructed shape andble to reconstruct the value of the friction coefficient using
motion, respectively. The observed motion is far from per- a nonlinear observer (Isidori, 1995). Secondly, we will ana-
fect, but the observed shape comes close to the actual shaplyze the three-dimensional case. In 3D we cannot expect to
This seems to suggest that the system of differential equareconstruct the entire shape, since the contact point trace out
tions 19-21 is fairly stable in this case, i.e., the errors in theonly curves on the surface of the object. Nevertheless, by
motion did not cause the radius function to shoot off to in- constructing a sufficiently fine mesh with these curves, we
finity. The palms made back-and-forth motions in order to can come up with a good approximation. The quasistatic ap-
cover the shape several times. This means that we can prungroach will most likely notwork in 3D, because in 3D the ro-
those parts of the reconstructed shape that have been touchédaltion velocity has three degrees of freedom and force/torque
balance only gives us two constraints.
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robot gripper

object pivot

tactile sensor

Figure 9: Dragging an object over a tactile sensor with a

pivoting grasp

Figure 9 shows an entirely different sensing strategy. The
objectis grasped by arobot arm using a pivoting gripper (Rao

Cole, R. and Yap, C. K. (1987). Shape from probidgurnal of
Algorithms 8(1):19-38.

Dobkin, D., Edelsbrunner, H., and Yap, C. K. (1986). Probing
convex polytopes. IRroceedings of the Eighteenth Annual ACM
Symposium on Theory of Computipgges 424-432, Berkeley,
California.

Erdmann, M. A. (1998a). An exploration of nonprehensile two-
palm manipulation: Planning and executidntl. J. of Robotics
Researchl7(5).

Erdmann, M. A. (1998b). Shape recovery from passive locally
dense tactile data. Mlorkshop on the Algorithmic Foundations
of Robotics

Erdmann, M. A. and Mason, M. T. (1988). An exploration of
sensorless manipulatiodEEE J. of Robotics and Automation

et al., 1994, 1995). With such a gripper the object is free to 4(4):369-379.

rotate around the line through the grasp contact points. Thezrgmann, M. A., Mason, M. T., and Vaéek, Jr., G. (1993). Me-

sensing strategy consists of dragging or pushing the object chanical parts orienting: The case of a polyhedron on a table.
over a surface coated with tactile sensors. We think it would  Algorithmica 10:226—247.

be interesting to determine whether this system is observablé&earing, R. S. (1990). Tactile sensing for shape interpretation. In

as well.
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