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Abstract

For assembly tasks parts often have to be oriented be-
fore they can be put in an assembly. The results pre-
sented in this paper are a component of the automated
design of parts orienting devices. The focus is on ori-
enting parts with minimal sensing and manipulation.
We present a new approach to parts orienting through
the manipulation of pose distributions. Through dy-
namic simulation we can determine the pose distri-
bution for an object being dropped from an arbitrary
height on an arbitrary surface. By varying the drop
height and the shape of the support surface we can find
the initial conditions that will result in a pose distribu-
tion with minimal entropy. We are trying to uniquely
orient a part with high probability just by varying the
initial conditions. We will derive a condition on the
pose and velocity of an object in contact with a sloped
surface that will allow us to quickly determine the final
resting configuration of the object. This condition can
then be used to quickly compute the pose distribution.
We also present simulation and experimental results
that show how dynamic simulation can be used to find
optimal shapes and drop heights for a given part.

1 Introduction

In our research we are trying to develop strategies to
orient three-dimensional parts with minimal sensing
and manipulation. That is, we would like to bring
a part from an unknown position and orientation to
a known orientation (but possibly unknown position)
with minimal means. In general, it is not possible to
orient a part completely without sensors, but it is suffi-
cient if a particular orienting strategy can bring a part
into one particular orientation with high probability.
The sensing is then reduced to a binary decision: a
sensor only has to detect whether the part is in the
right orientation or not. If not, the part is fed back

to the parts orienting device. Assuming the orienting
strategy succeeds with high probability, on average it
takes just a few tries to orient the part. An alternative
view of this type of manipulation is to consider it as
manipulation of the pose distribution. The goal then
is to find the pose distribution with minimal entropy,
thereby maximally reducing uncertainty.

1.1 Example

In this paper we will discuss the use of dynamic sim-
ulation for the design of support surfaces that reduce
the uncertainty of a part’s resting configuration. As the
support surface is changed, the probability distribution
function (pdf) of resting configurations will change as
well. The pdf will also vary with the initial drop posi-
tion above the surface. The following figure and para-
graph illustrate the basic idea:
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Figure 1: A part with an initially unknown orientation is

dropped on a surface.

A part with an initially unknown orientation is re-
leased from a certain height and relative horizontal po-
sition with respect to the bowl. The only forces acting
on the part are gravity and friction. We assume the
bowl doesn’t move. We can compute the final resting
configuration for all possible initial orientations. This
will give us the pdf of stable poses. The goal is to find
the drop height, relative position and bowl shape that
will maximally reduce uncertainty. In this paper we
assume for simplicity that the initially unknown ori-
entation is uniformly random, but our approach also
works for different prior distributions.

Appeared in: B. Donald, K. Lynch, D. Rus, 2001, Algorithmic and Computational Robotics: New Directions (WAFR’00), pp. 127–141
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Stable Poses

Entropy
quasistatic approximation 0.20 0.13 0.16 0.21 0.14 0.16 1.78
dynamic, flat surface, drop height is h = 0 0.18 0.16 0.14 0.34 0.05 0.13 1.66
dynamic, bowl shape is y = 0.24x2, h = 0.28,
initial hor. pos. x0 = −0.41

0.24 0.03 0.03 0.50 0.08 0.15 1.35

Table 1: Probability distribution function of stable poses for two surfaces. The initial velocity is zero and the initial rotation

is uniformly random.

Table 1 shows three different pose distributions.
Each stable pose corresponds to a set of contact points
(marked by the black dots in the table). For an arbi-
trarily curved support surface the stable poses do not
necessarily correspond to edges of the convex hull of
the part. We therefore define a stable pose as a set of
contact points. This means that any two poses with
the same set of contact points are considered to be the
same as far as the pose distribution is concerned. In our
example the support surface is a parabola y = ax2 with
parameter a. Other parameters are the drop height, h,
and the initial horizontal position of the drop location,
x0. We limit the surface to parabolas for illustrative
purposes only; in general we would use a larger class
of possible shapes (see section 4.1).

The first row in the table shows the pdf assuming
quasistatic dynamics. In this case the surface is flat and
the part is released in contact with the surface. The
second row shows how the pdf changes if we model the
dynamics. The initial conditions are the same as for the
quasistatic case, yet the pdf is significantly different.
The third row shows the pdf for the optimized values
for a, h and x0.

The objective function over which we optimize is the
entropy of the pose distribution. If p1, . . . , pn are the
probabilities of the n stable poses, then the entropy is
−∑n

i=1 pi log pi. This function has two properties that
make it a good objective function: it reaches its global
minimum whenever one of the pi is 1, and its maximum
for a uniform distribution. By searching the parameter
space we can find the a, h and x0 that minimize the
entropy. In the third row of the table the pose distribu-
tion is shown with minimal entropy1. The table makes
it clear that even with a very simple surface we can

1This is a local minimum found with simulated anneal-
ing and might not be the global minimum.

reduce the uncertainty greatly by taking advantage of
the dynamics.

1.2 Outline

In section 3 we will explain the notion of capture re-
gions and introduce an extension and relaxation of this
notion in the form of so-called quasi-capture regions.
These quasi-capture regions allow for fast computation
of pose distributions. In section 4 we will present our
simulation and experimental results. Finally, in sec-
tion 5 we will discuss the results presented in this pa-
per. But first we will give an overview of related work
in the next section.

2 Related Work

2.1 Parts Feeding and Orienting

One of the most comprehensive works on the design
of parts feeding and assembly design is [12], which de-
scribes vibratory bowls as well as non-vibratory parts
feeders in detail. The APOS parts feeding system is
described by Hitakawa [26]. Berretty et al. [6] present
an algorithm for designing a particular class of gates
in vibratory bowls. Berkowitz and Canny [4, 5] use
dynamic simulation to design a sequence of gates for a
vibratory bowl. The dynamics are simulated with Mir-
tich’s impulse-based dynamic simulator, Impulse [35].
Christiansen et al. [16] use genetic algorithms to design
a near-optimal sequence of gates for a given part. Op-
timality is defined in terms of throughput. Here, the
behavior of each gate is assumed to be known. So, in
a sense [16] is complementary to [5]: the latter focuses
on modeling the behavior of gates, the former finds an
optimal sequence of gates given their behavior. Akella
et al. [1] introduced a technique for orienting planar
parts on a conveyor belt with a one degree-of-freedom
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(dof) manipulator. Lynch [32] extended this idea to
3D parts on a conveyor belt with a two dof manipula-
tor. Wiegley et al. [43] presented a complete algorithm
for designing passive fences to orient parts. Here, the
initial orientation is unknown.

Goldberg [22] showed that it is possible to orient
polygonal parts with a frictionless parallel-jaw gripper
without sensors. Marigo et al. [34] showed how to ori-
ent and position a polyhedral part by rolling it between
the two hands of a parallel-jaw gripper. Grossman and
Blasgen [25] developed a manipulator with a tactile
sensor to orient parts in a tray. Erdmann and Ma-
son [18] developed a tray-tilting sensorless manipulator
that can orient planar parts in the presence of friction.
If it isn’t possible to bring a part into a unique orienta-
tion, the planner would try to minimize the number of
final orientations. In [19] it is shown how (with some
simplifying assumptions) three-dimensional parts can
be oriented using a tray-tilting manipulator. Zumel
[45] used a variation of the tray tilting idea to orient
planar parts with a pair of moveable palms.

In recent years a lot of work has been done on pro-
grammable force fields to orient parts [9, 10, 28]. The
idea is that a kind of force ‘field’ (implemented using
e.g. MEMS actuator arrays) can be used to push the
part in a certain orientation. Kavraki [28] presented a
vector field that induced two stable configurations for
most parts. Böhringer et al. [9, 10] used Goldberg’s
algorithm [22] to define a sequence of ‘squeeze fields’
to orient a part. They also gave an example how pro-
grammable vector fields can be used to simultaneously
sort different parts and orient them.

2.2 Stable Poses

To compute the stable poses of an object quasistatic
dynamics is often assumed. Furthermore, usually it is
assumed that the part is in contact with a flat sur-
face and is initially at rest. Boothroyd et al. [11] were
among the first to analyze this problem. An O(n2) al-
gorithm for n-sided polyhedrons, based on Boothroyd
et al.’s ideas, was implemented by Wiegley et al. [44].
Goldberg et al. [21] improve this method by approx-
imating some of the dynamic effects. Kriegman [30]
introduced the notion of a capture region: a region in
configuration space such that any initial configuration
in that region will converge to one final configuration.
Note that his work doesn’t assume quasistatic dynam-
ics; as long as the part is initially at rest and in con-

tact, and the dynamics in the system are dissipative,
the capture regions will be correct. The capture re-
gions will in general not cover the entire configuration
space.

2.3 Collision and Contact Analysis

For rigid body collisions several models have been pro-
posed. Many of these models are either too restric-
tive (e.g., Routh’s model [39] constrains the collision
impulse too much) or allow physically impossible col-
lisions (e.g., Whittaker’s model [42] can predict arbi-
trarily high increases of system kinetic energy). Re-
cently, Chatterjee and Ruina [15] proposed a new colli-
sion rule, which avoids many of these problems. Chat-
terjee introduced a new collision parameter (besides the
coefficients of friction and restitution): the coefficient
of tangential restitution. With this extra parameter
a large part of allowable collision impulses can be ac-
counted for, and at the same time this collision rule
restricts the predicted collision impulse to the allow-
able part of impulse space. This is the collision rule we
will use (see [36] for details).

Instead of having algebraic laws, one could also try
to model object interactions during impact. This ap-
proach is taken, for instance, by Bhatt and Koechling
[7, 8], who modeled impacts as a flow problem. While
this might lead to more accurate predictions, it is obvi-
ously computationally more expensive. Also, in order
to get a good approximation of the pdf of resting config-
urations, this level of accuracy might not be required.
On the other hand, it is also possible to combine the
effects of multiple collisions that happen almost instan-
taneously. Goyal et al. [23, 24] studied these “clatter-
ing” motions and derived the equations of motion.

Given a collision model and the equations of motion,
one can simulate the motion of a part. In cases where
there are a large number of collisions or with contact
modes that change frequently one can simulate the dy-
namics using so-called impulse-based simulation [35].
However, there are limits to what systems one can sim-
ulate. Under certain conditions the dynamics become
chaotic [13, 20, 29]. We are mostly interested in sys-
tems that are not chaotic, but where the dynamics can
not be modeled with a quasistatic approximation. In
section 4.1 a number of ‘chaos plots’ are shown that
are very similar to the one in [29].



4 M. Moll and M. A. Erdmann

2.4 Shape Design

The shape of an object and its environment imposes
constraints on the possible motions of an object. Caine
[14] presents a method to visualize these motion con-
straints, which can be useful in the design phase of
both part and manipulator. In [31] the mechanics of
entrapment are analyzed. That is, Krishnasamy dis-
cusses conditions for a part to “get trapped” and “stay
trapped” in an extrusion in the context of the APOS
parts feeder. Sanderson [40] presents a method to char-
acterize the uncertainty in position and orientation of
a part in an assembly system. This method takes into
account the shape of both part and assembly system.
In [33] the optimal manipulator shape and motion are
determined for a particular part. The problem here was
not to orient the part, but to perform a certain juggler’s
skill (the “butterfly”). With a suitable parametrization
of the shape and motion of the manipulator, a solution
was found for a disk-shaped part that satisfied their
motion constraints. Although the analysis focuses just
on the juggling task, it shows that one can simulate
and optimize dynamic manipulation tasks using a suit-
able parametrization of manipulator (or surface) shape
and motion.

3 Analytic Results

3.1 Quasi-Capture Intuition

In our efforts to analyze pose distributions in a dynamic
environment, we have been working on a generalization
of so-called ‘capture regions’ [30] that we have termed
quasi-capture regions. Specifically, for a part in con-
tact with a sloped surface, we would like to determine
whether it is captured, i.e., whether the part will con-
verge to the closest stable pose. For simplicity, let the
surface be a tilted plane.

Definition 1 Let a pose be defined as a point in
configuration space such that the part is contact with
the surface.

We assume that friction is sufficiently high so that
a part cannot slide for an infinite amount of time. In
general capture depends on the whole surface and ev-
erything that happens after the current state, but the
friction assumption and our definition of pose allow us
to define quasi-capture (in section 3.2) of the part in

terms of local state. The closest stable pose can be
defined as follows:

Definition 2 We define a stable pose to be a pose
such that there is force balance when only gravity and
contact forces are acting on the part. The closest stable
pose is the stable pose found by following the gradient
of the potential energy function (using e.g. gradient
descent) from the current pose.

We can now define quasi-capture regions:

Definition 3 A quasi-capture region is the largest
possible region in configuration phase space such that
(a) all configurations in this region have the same clos-
est stable pose and (b) no configuration in a quasi-
capture region has enough (kinetic and potential) en-
ergy to leave this region either with a rolling motion or
one collision-free motion.

Ideally these quasi-capture regions would induce a
partition of configuration phase space, so that for each
point in phase space we would immediately know what
its final resting configuration is. Of course, this is not
the case in general, since with a sufficiently large ve-
locity an object can reach any stable pose. But if we
restrict the velocity to be small to begin with, then we
are able to quickly determine the pose distribution. It
has been our experience that without the use of quasi-
capture regions a lot of computation time is spent on
the final part/surface interactions (e.g, clattering mo-
tions) before the part reaches a stable pose. In other
words, with our analytic results it is possible to avoid
computing a potentially large number of collisions.

In our analysis we have focused on the two dimen-
sional case. To illustrate the notion of capture, we will
start with another example. Consider a rod of length
l with center of mass at distance R from each vertex.
One can visualize this rod as a disk with radius R and
uniform mass, but with contact points only at the ends
of the rod (see figure 2).

Note that the endpoints of the rod are numbered.
We will refer to these endpoints later. Let the ‘side’
of the rod where the center of mass is above the rod
be the high energy side, and the other side be the low
energy side. We can then define that the rod is ‘on’
the high energy side if and only if the center of mass is
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R Rα
l

Figure 2: A rod with an off-center center of mass.

between and above the endpoints of the rod. Suppose
the rod is in contact with a flat, horizontal surface. For
the rod to make a transition from one side to the other,
it will have to rotate, either by rolling or by bouncing.
At some point during the transition the center of mass
will pass over one of the endpoints of the rod. Its po-
tential energy at that point will always be greater than
or equal to the potential energy at the start of the tran-
sition. Hence, to make that transition the rod has to
have a minimum amount of kinetic energy. This can
be written more formally as

1
2m‖v‖2 > −mg∆h. (1)

Figure 3 illustrates this requirement.

(1 + sin   )θ
θ

R
R

h=R∆

Figure 3: Capture condition for a rod.

For a polygonal object in contact with a surface with
constant slope we will derive in section 3.2 a lower
bound on the norm of the velocity such that for all
velocities below that bound the part will be quasi-
captured. As we vary the position of the center of
mass with respect to the rod endpoints, the slope of
the support surface and the drop height, the bound for
the capture velocity will change. This bound will also
depend on the relative orientation of the contact point
with respect to the center of mass.

For a sloped surface the capture condition is not as
simple as for the horizontal surface. By bouncing and
rolling down the slope, the rod can increase its kinetic
energy. We have derived an upper bound on how far
the rod can bounce. This gives an upper bound on the
increase in kinetic energy. So the quasi-capture condi-
tion can now be stated as: the current kinetic energy

plus the maximum gain in kinetic energy has to be less
than the energy required to rotate to the other side.
To guarantee that the rod is indeed captured, we have
to make sure that the maximum gain in kinetic energy
is less than the decrease in kinetic energy due to a col-
lision. There are some additional complicating factors.
For instance, a change in orientation can increase the
kinetic energy, but to rotate to the other side the rod
has to rotate back, undoing the gain in kinetic energy.

3.2 Quasi-Capture Velocity

What we will prove is a sufficient condition on the pose
and velocity of the rod such that it is quasi-captured.
The condition will be of the following form: if the cur-
rent kinetic energy plus the maximal increase in ki-
netic energy is less than some bound, the rod is quasi-
captured. This bound depends on the current orienta-
tion, the current velocity, the slope of the surface and
the geometry of the rod. Because of the way we have
set up our generalized coordinates (see [36] for details),
the kinetic energy is 1

2m‖v‖2. In other words, the mass
is just a constant scalar. Without loss of generality we
can assume m = 2. That way the kinetic energy is
simply ‖v‖2. We will write v for ‖v‖.
Theorem 4 The rod with a velocity vector of length
v and in contact with the surface is in a quasi-capture
region if the following condition holds:

v2+
2v cos ξ sin φ

cos2 φ (v sin(ξ+φ)+
√

v2 sin2(ξ+φ)−2gdn cos φ)

− 2g( dn

cos φ + Rε) ≤ −2gR
(
1 + cos(α

2 + φ)
)
,

where ξ is the direction of the velocity vector that
will result in the largest increase of kinetic energy, θ
is the relative orientation of the contact point, dn =
R(cos α

2 − sin(θ + φ)) and ε = cos(α
2 + φ)− cos(α/2)

cos φ +
max

(
tanφ, 2 sin α

2 sin φ
)
.

Proof: See appendix A. 2

Note that for φ = 0 this bound reduces to v2 ≤
−2gR(1 + sinθ). In other words, this bound is as tight
as possible when the surface is horizontal.

One can compute ξ numerically, but the appendix
also gives a good analytic approximation. The theo-
rem above gives a sufficient condition on the velocity
and pose of the rod such that it cannot rotate to the
other side during one bounce. But suppose there is a
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Figure 4: Quasi-capture velocity as a function of the slope

of the surface and the orientation of the rod

sequence of bounces, each of them increasing the ki-
netic energy. It is possible that the rod satisfies the
quasi-capture condition, but is still able to rotate to
the other side in more than one bounce. Thus, the
theorem by itself is not enough to guarantee that the
rod will converge to its closest stable orientation. In
the analysis above we have ignored the dissipation of
kinetic energy during collisions. If in the case the cap-
ture condition is true the dissipation of kinetic energy
is larger than the increase due to the bounce, the rod
will indeed be captured after an arbitrary number of
bounces. To make sure this is the case the coefficients
of restitution can not be too large.

In figure 4 the quasi-capture velocity is plotted as a
function of the slope of the surface and the orientation
of the rod. The slope ranges from 0 to π

2 and the orien-
tation ranges from 0 to 2π. Note that the orientation
of the rod is not the same as the relative orientation
of the contact point. However, for each combination
of φ and θ the relative orientation of the contact point
can be easily computed. The other relevant parameter
values for this plot are: R = 1m, g = −9.81m/s2 and
α = π

2 . The little bump in the middle corresponds to
the rod being captured on the high-energy side. The
bigger bumps on the left and right correspond to being
captured on the low-energy side.

4 Simulation and Experimental Results

4.1 Dynamic Simulation

To numerically compute the pose distribution of parts,
we have written two dynamic simulators. One is based
is on David Baraff’s Coriolis simulator [2, 3], which
can simulate the motions of polyhedral rigid bodies.
Coriolis takes care of the physical modelling. Our sim-
ulator then computes pose distributions for different
(parametrized) support surfaces and different initial
conditions.

Our simulator uses simulated annealing to optimize
over the surface parameters and drop location with re-
spect to the surface. The objective function is to min-
imize the entropy of the pose distribution. Initially
the sampling of orientations of the object is rather
coarse, so that the resulting pose distribution is not
very accurate. But as the simulator is searching, the
simulated annealing algorithm is restarted with an in-
creased sample size and the best current solution as
initial guess. This way we can quickly determine the
potentially most interesting parameter values and re-
fine them later. Our implementation is based on the
one given in [37, pp. 444–455].

Surfaces are parametrized using wavelets [41, 17].
Wavelet transforms are similar to the fast Fourier
transform, but unlike the fast Fourier transform ba-
sis functions (sines and cosines) wavelet basis functions
are localized in space. This localization gives us greater
flexibility in modeling different surfaces compared with
the fast Fourier transform or, say, polynomials. There
are many classes of wavelet basis functions. We are
using the Daubechies wavelet filters [17] and in par-
ticular the implementation as given in [37, pp. 591–
606]. To reduce an arbitrary surface to a small number
of coefficients we first discretize the function describ-
ing the surface. We then perform a wavelet transform
and keep the largest components (in magnitude) in the
transform to represent the surface. When we minimize
the entropy, we optimize over these components. We
can either keep the smaller components of our initial
wavelet transform around or set them to zero.

Development of a second simulator was started, be-
cause Coriolis had some limitations. In particular, the
collision model could not be changed and we wanted to
experiment with Chatterjee’s collision model [15]. The
second simulator also allowed us to optimize for our
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specific dynamics model. In our model there is only
one moving object, and the only forces acting on it are
gravity and friction. Currently, the simulator only han-
dles two-dimensional objects, but in the future it might
be extended to handle three dimensions as well. It uses
the analytic results from the previous section to stop
simulating the motion of the part once it is captured.

Using the simulator we can compute the quasi-
capture regions for the rod. Figures 5(a)–(c) show the
quasi-capture regions for the low energy side after one,
three and five bounces. The dark areas correspond to
initial orientations and initial velocities that result in
the rod being quasi-captured. The zero orientation is
defined as the orientation where endpoint 1 is to the
right of the center of mass. The triangles below the
x-axes show the pose of the rod corresponding to the
orientation at that point of the x-axes.

Let the optimal drop height be defined as the drop
height that maximizes the probability of ending up
on the low energy side. Then dropping the rod with
uniformly random initial orientation from the optimal
drop height will reduce uncertainty about its orienta-
tion maximally (unless there exists a drop height that
will result in an even higher probability for the high
energy side). In figures 5(a)–(c) the drop height that
results in the maximum probability of ending up on
the low energy side is marked by a horizontal line. Af-
ter each successive bounce this drop height is likely to
be a better approximation of the optimal drop height.
In figure 5(d) the approximate optimal drop height and
lower bound on the probability of ending up on the low-
energy side after one through five bounces is shown.
One thing to note is that both the optimal drop height
and the lower bound on the probability of ending up on
low-energy side rapidly converge. This seems to sug-
gest that after only a small number of bounces we could
make a reasonable estimate of the optimal drop height
and uncertainty reduction. Further study is needed to
find out if this is true in general.

4.2 2D Results

To verify the simulations we also performed some ex-
periments. Our experimental setup was as follows. We
used an air table to effectively create a two-dimensional
world. By varying the slope of the air table we can vary
the gravity. At the bottom of the slope is the surface
on which the object will be dropped. The angle φ of

Prob. low energy side
g (m/s2) h (mm) φ Sim. Exp.

-0.68 58 20o 0.85 0.94
-0.68 122 20o 0.90 0.94
∗ -0.68 186 20o 0.91 0.93

-0.68 246 20o 0.93 0.96
-1.5 58 20o 0.85 0.93

∗ -1.5 122 20o 0.90 0.92
-1.5 186 20o 0.91 0.97
-1.5 246 20o 0.93 0.97
-2.6 58 20o 0.85 0.94
-2.6 122 20o 0.90 0.93
-2.6 186 20o 0.91 0.93

∗ -2.6 246 20o 0.91 0.94
-2.6 76 0o 0.75 0.75
-2.6 156 0o 0.88 0.83

∗ -2.6 220 0o 0.92 0.85
-2.6 284 0o 0.87 0.89

← optimal

← quasi-
static

Table 2: Simulation and experimental results for the rod.

Shown are the probabilities of ending up on the low-energy

side for different values for g, h and φ. The drop height is

measured from the center of the disk to the surface.

the surface in the plane defined by the air table can, of
course, be varied.

The rod of the previous section has been imple-
mented as a plastic disk with two metal pins sticking
out from the top at an equal distance from the center
of the disk. When released from the top of the air ta-
ble the disk can slide under the surface and will only
collide at the pins. Experimentally we determined the
pose distribution of the rod for different values for g,
h and φ by determining the final stable pose for 72
equally spaced initial orientations. Our simulation and
experimental results of some tests have been summa-
rized in table 2. The rows marked with an asterisk have
been used to estimate the moment of inertia of the rod
and the coefficients of friction and restitution. The es-
timated values for these parameters are: e = 0.404,
et = −0.136, ρ = 0.0376 and µ = 4.71. Note that for
a low drop height and a horizontal surface the pdf is
equal to a quasistatic approximation, as one would ex-
pect. More surprisingly, we see that the probability of
ending up on the low-energy side can be changed to ap-
proximately 0.95 by setting g, h and φ to appropriate
values. In other words, we can reduce the uncertainty
almost completely.

One can identify several error sources for the differ-
ences between the simulation and experimental results.
First, there are measurement errors in the experiments:
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(a) After one bounce (b) After three bounces

(c) After five bounces
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(d) Optimal drop height and lower bound on
probability of ending up on low-energy side

captured on the low energy side on the low energy side, but not captured on the high energy side

Figure 5: Quasi-capture regions for the low energy side of the rod on a 7o slope. The rod parameters are

α = π/2, R = 0.05m, gravity, g, equals −1.20m/s2, the coefficient of friction, µ, is 5 and the restitution parameters are:

e = 0.1, et = −0.2.

in some cases slight changes in the initial conditions will
change the side on which the rod will end up. Second,
since the simulations are run with finite precision, it
is possible that numerical errors affect the results. Fi-
nally, the physical model is not perfect. In particular,
the rigid body assumption is just false. The surface on
which the rod lands is coated with a thin layer of foam
to create a high-damping, rough surface. This is done
to prevent the rod from colliding with the sides of the
air table.

4.3 3D Results

We have not generalized our analytic results to three
dimensions yet, but we can still use our optimization
technique to find a good surface and drop height for a
given object. For the dynamic simulation we rely now
on Baraff’s Coriolis simulator. Figure 6(a) shows an
orange insulator cap2 at rest on flat, horizontal surface.
The contact points are marked by the little spheres.
In figure 6(b) the bowl resulting from the simulated

2This object has been used before as an example in [21,
30, 38].
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(a) Orange insulator cap on a flat surface (b) . . . and on an optimized bowl

Figure 6: Result of optimizing a surface for the orange insulator cap.

Figure 7: Entropy as a function of the two principal axes

of the searched five-dimensional parameter space.

annealing search process is shown. The initial shape
is a paraboloid: f(x, y) = (x2 + y2)/20. This shape
is reduced to a triangulation of a 8 × 8 regular grid.
The part is always released on the left-hand side of the
bowl.

We optimized over the four largest wavelet coeffi-
cients of the initial shape and the drop height. The
search for the optimal bowl and drop height is visual-
ized in figure 7. The five-dimensional parameter space
is projected onto a two-dimensional space using Princi-
pal Component Analysis [27]. Each point corresponds
to a bowl shape evaluation, i.e., for each point a pose
distribution is computed. The size of each point is pro-
portional to the sample size used to determine the pose

distribution. Computing a pose distribution by taking
600 samples takes about 40 minutes on a 500 MHz Pen-
tium III. The surface in figure 7 is a cubic interpolation
between the points. The dark areas correspond to ar-
eas of low entropy. Notice that most of the points are
in or near a dark area.

Table 3 compares the simulation results with exper-
imental data from [21]. The format is the same as
in table 1, except that the stable poses are now writ-
ten as vectors. These vectors are the outward pointing
normals (w.r.t. the center of mass) of the planes pass-
ing through the contact points. That way, a face with
many vertices in contact with the surface will always
be represented by the same vector, no matter which
subset of the vertices is actually in contact. In the
experimental setup of [21] the part was dropped from
one conveyer belt onto another. The initial drop height
was 12.0 cm. In the experiments the part had an initial
horizontal velocity of 5.0 cm/s. The second row cor-
responds to computing the pose distribution when the
part is dropped from 12.0 cm (but with initial velocity
set to 0). The third row corresponds to a local mini-
mum returned by the simulated annealing algorithm.

5 Discussion

We have shown a sufficient condition on the position
and velocity of the simplest possible ‘interesting’ shape
(i.e., the rod) that guarantees convergence to the near-
est stable pose under some assumptions. This condi-
tion gives rise to regions in configuration phase-space,
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Stable Poses
(−1, 0, 0) (0,−1, 0) (0, 1, 0) (.8, 0, .6) (.7, 0,−.7) (0, 0,−1) Entropy

Experimental, flat (1036 trials) 0.271 0.460 0.197 0.050 0.022 1.58
Dynamic simulation, flat surface 0.355 0.207 0.221 0.185 0.019 0.014 1.48
Dynamic simulation, optimal bowl 0.622 0.125 0.154 0.096 0.003 0.000 1.09

Table 3: Probability distribution function of stable poses for two surfaces. The initial velocity is zero and the initial rotation

is uniformly random. The experimental data is taken from [21]. There, (0,−1, 0) and (0, 1, 0) are counted as one pose.

where each point within such a region will converge to
the same stable pose. We have coined the term quasi-
capture regions for these regions, since they are very
similar to Kriegman’s notion of capture regions. In
simulations quasi-capture always seems to imply cap-
ture, but further research is needed to prove this claim.

The quasi-capture regions also apply to general
polygonal shapes. However, we can no longer use the
symmetry of the rod. So the quasi-capture expressions
for general polygonal shapes become more complex.
On the other hand, we might be able to orient pla-
nar parts by using a setup similar to the one described
in section 4 and attaching two pins to the top of the
part. Generalizing the quasi-capture regions to three
dimensions is non-trivial and is an interesting direction
for future research.

The simulation and experimental results show that
the simulator is not 100% accurate, but that it is a
useful tool for determining the most promising initial
conditions for uncertainty reduction. In other words,
the optimum predicted by the simulator will probably
be near-optimal in the experiments. We can then ex-
perimentally search for the true optimum.

Another area where quasi-capture regions may be
applied is in computer animation. Before a part comes
to rest, there are many interactions between the part
and the support surface. It turns out that these in-
teractions are computationally very expensive. With
our capture regions we can eliminate the last ‘clatter-
ing’ motions of the part, since we can predict what
the final pose will be. For applications where fast an-
imation is more important than physical accuracy, a
pre-computed motion can be substituted for the actual
motion.

With future research we hope to improve the con-
straints on the quasi-capture velocity by taking into
account more information, such as the direction of the
velocity vector. If improving the quasi-capture bounds

is impossible, it might be possible to get better ap-
proximations for pose distributions. As noted in sec-
tion 4.1 it is possible to get a good estimate of the max-
imal uncertainty reduction after only a small number
of bounces of the rod. So another interesting line of
research would be to find out how accurate these ap-
proximations are in general. We are also planning to
do more experiments to verify our current and future
analytic results.
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Appendix A: Proof of Theorem 4

Definition 5 Let a bounce be defined as the flight
path between two impacts.

The closest distance between the rod and the slope
during one bounce can be described by

d(t) = 1
2g(cosφ)t2 + (vy cosφ + vx sin φ)t− dθ(t), (2)

where vx and vy are the translational components of
the velocity and dθ(t) is a component that depends on
the orientation. Let the rod be in contact at t = 0.
Then d(0) = 0 (and therefore dθ(0) = 0). Let t̂ be the
smallest positive solution to d(t) = 0. The change in
height is then ∆h = 1

2gt̂2 + vy t̂, so that the change in
v2 is ∆v2 = 2g∆h = g2t̂2 + 2vygt̂. To find the max-
imum ∆v2 for all velocity vectors of length v we can
parametrize the translational velocity as vx = v cos ξ
and vy = v sin ξ, and maximize over ξ. This ignores
the rotational component of the velocity, but the fol-
lowing lemma shows that for a certain value of dθ(t̂)

the resulting solution for ∆v2 is an upper bound for
the true maximal increase of v2.

Definition 6 Let the ideal orientation be defined as
the orientation where the rod is parallel to the surface
and the center of mass is below the rod.

Lemma 7 We can always increase the rod’s kinetic
energy after a bounce by allowing it to rotate around
the center of mass ‘for free’ (i.e., without using en-
ergy) to the ideal orientation (ignoring penetrations of
the surface) and then letting it continue to fall while
maintaining this orientation. However, if the rod is
already in the ideal orientation after the bounce, its ki-
netic energy cannot be increased.

Proof: One can easily verify that rotating around the
center of mass to the ideal orientation of the bounce
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(a) Change in distance between the center of mass
and the surface in poses with the initial and ideal
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(b) Trajectory of the center of mass during a bounce

Figure 8: Increase in kinetic energy when rotating to the ideal orientation

maximizes distance between the rod and the surface.
This distance will always be greater than or equal to
0. If we allow the rod to continue to fall until it hits
the surface, its kinetic energy will increase. 2

From this lemma it follows that by assuming the rod
rotates ‘for free’ to the ideal orientation the increase in
kinetic energy due to one bounce is an upper bound on
the true increase of kinetic energy. With this lemma
computing the next contact point is a lot easier. Let
θ be the relative orientation of the contact point at
t = 0. θ = 0 corresponds to the contact point being
to the right of the center of mass. The signed distance
from the center of mass to the surface at t = 0 is then
−R sin(θ + φ), as shown in figure 8(a). One can easily
verify that in the ideal orientation the relative orienta-
tion of endpoint 1 is π

2 − α
2 − φ. Let θ̂ be equal to this

relative orientation. In the pose where the rod is in con-
tact with the surface and has the ideal orientation the
signed distance from the center of mass to the surface
is −R sin(θ̂ + φ) = −R cos α

2 . So in total the center of
mass travels at most a distance R(cos α

2 −sin(θ+φ)) in
the direction normal to the surface during one bounce.
Let dn be equal to this distance. To solve for the time of
impact we can treat the rod as a point mass centered at
the center of mass and replace dθ(t̂) in equation 2 with
−dn. Equation 2 is then simply a paraboloid in t. The
distance function now measures the distance between
the center of mass and the dotted line parallel to the
surface shown in figure 8(b). This approach is not lim-
ited to the case where our new orientation is the ideal
orientation. Suppose an oracle would tell us that the
new orientation is θ̃. Then we can solve for the time of

impact by substituting R(sin(θ̃ + φ) − sin(θ + φ)) for
dθ(t̂) in equation 2.

The following lemma gives a bound on the velocity
needed to roll to the other side.

Lemma 8 If the rod is in rolling contact, then to be
able to roll to the other side the following condition
has to hold: v2 > −2gR(1 + sin θ + (sign(cos θ) −
1) sin α

2 sin φ). We assume 0 ≤ φ < π
2 .

Proof: We can distinguish several cases: endpoint 1 of
the rod or endpoint 2 can be in contact with the slope,
and the rod can be on the low or high energy side. We
will prove the case where endpoint 1 is in contact and
the rod is on the high energy side. The proof for the
other cases is analogous. The case under consideration
is shown in figure 9(a). To roll counterclockwise over
to the left side, v2 > −2gh1. The distance h1 is simply
equal to R(1 + sin θ). If the rod rolls clockwise over to
two-point contact and continues to roll over endpoint 2,
the rod gains kinetic energy because the second contact
point is lower than the first contact point. This gain is
proportional to h2.

One can easily verify that for two-point contact the
relative orientations of contact points 1 and 2 are 3π

2 −
α
2 − φ and 3π

2 + α
2 − φ, respectively. The bound for

rolling over endpoint 2 is therefore

v2 >− 2g(h3 − h2)
=− 2gR(1 + sin θ − cos(α

2 − φ) + cos(α
2 + φ))

=− 2gR(1 + sin θ − 2 sin α
2 sin φ).

If the center of mass is to the left of the contact point
the last term will change sign. We can therefore com-
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Figure 9: Capture condition for rotation

bine the two bounds (one for rotating clockwise, and
for rotating counterclockwise) into this bound:

v2 > min(−2gR(1 + sin θ),
− 2gR(1 + sin θ + 2 sign(cos θ) sin α

2 sin φ))
=−2gR(1+sin θ+(sign(cos θ)−1) sin

α
2 sin φ). (3)

2

Theorem 4 The rod with a velocity vector of length
v and in contact with the surface is in a quasi-capture
region if the following condition holds:

v2+
2v cos ξ sin φ

cos2 φ (v sin(ξ+φ)+
√

v2 sin2(ξ+φ)−2gdn cos φ)

− 2g( dn

cos φ + Rε) ≤ −2gR
(
1 + cos(α

2 + φ)
)
,

where ξ is the direction of the velocity vector that will
result in the largest increase of kinetic energy, dn =
R(cos α

2 − sin(θ + φ)) and ε = cos(α
2 + φ)− cos(α/2)

cos φ +
max

(
tanφ, 2 sin α

2 sin φ
)
.

Proof: The path of the center of mass during a bounce
that increases the kinetic energy maximally is de-
scribed by 1

2gt2 cosφ+v(sin ξ cosφ+cos ξ sinφ)t+dn =

0. The smallest positive solution of this equation is

t̂ =−v(sin ξ cos φ+cos ξ sin φ)
g cos φ

−
√

v2(sin ξ cos φ+cos ξ sin φ)2−2gdn cos φ

g cos φ (4)

=−v sin(ξ+φ)−
√

v2 sin2(ξ+φ)−2gdn cos φ

g cos φ .

The maximum change in v2 is then bounded by

∆v2 =2g∆h ≤ 2g(1
2gt̂2 + v(sin ξ)t̂)

= 2v cos ξ sin φ
cos2 φ (v sin(ξ + φ)

+
√

v2 sin2(ξ + φ)− 2gdn cosφ)− 2gdn

cos φ . (5)

After one bounce the orientation is assumed to be such
that rod is parallel to the surface and the center of
mass is below the rod, as this will result in the largest
increase in kinetic energy according to lemma 1. This
means that endpoint 1’s relative orientation is equal to
θ̂ = π

2 − α
2 −φ. Substituting this value in equation 3 of

lemma 2 gives −2gR(1 + sin θ̂). In other words, if the
kinetic energy after the bounce is less than −2gR(1 +
sin θ̂) and the rod is in the ideal orientation, the rod
cannot roll to the other side.
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We can combine the two bounds to obtain a sufficient
condition to determine whether the rod can rotate to
the other side if its new orientation after one bounce is
equal to the ideal orientation. Unfortunately this con-
dition does not imply a similar condition for the general
case where the new orientation is not necessarily equal
to the ideal orientation.

Consider the case v = 0+. Substituting this value
in equation 5 and expanding the definition of dn shows
that the maximum increase in kinetic energy is then

− 2gdn

cos φ = − 2gR(sin(θ̂+φ)−sin(θ+φ))
cos φ . (6)

Therefore, when v = 0+ and the relative orientation
of the contact point after the bounce is equal to ideal
orientation the quasi-capture constraint is

−2gR sin(θ̂+φ)−sin(θ+φ)
cos φ ≤ −2gR(1 + sin θ̂). (7)

That is, if an upper bound on the kinetic energy after
one bounce is less than the energy needed to rotate to
the other side, the rod will not be able to rotate to
the other side. Now suppose the new orientation is not
equal to the ideal orientation. Then the increase of ki-
netic energy will be less, but the energy required to roll
to the other side will be less, too. Let θ̃ be the rela-
tive orientation of the contact point after the bounce.
Equation 7 is of the form f(θ̂) ≤ g(θ̂), where f(·) com-
putes the kinetic energy after one bounce for a given
new orientation and g(·) computes the energy needed
to roll to the other side for a given orientation3. Un-
fortunately, this bound does not imply ∀θ̃.f(θ̃) ≤ g(θ̃).
From the ‘oracle argument’ on page 13 it follows that
f(θ̃) is indeed an upper bound on the maximum in-
crease of the kinetic energy. Substituting θ̃ in lemma 2
shows that g(θ̃) is a lower bound on the kinetic en-
ergy needed to roll to the other side. We would like to
determine the smallest possible ε such that

f(θ̂)− 2gRε ≤ g(θ̂) ⇒ ∀θ̃.f(θ̃) ≤ g(θ̃).

It is not hard to see ε has to be equal to

max
θ̃

(g(θ̂)− g(θ̃)− f(θ̂) + f(θ̃))/(−2gR).

The difference between f(θ̂) and f(θ̃) is

−2gR sin(θ̂+φ)−sin(θ̃+φ)
cos φ .

3Analagous to expression 3, g(θ̃) equals

−2gR
�
1 + sin θ̃ + (sign(cos θ̃)− 1) sin α

2
sin φ

�
.

Similarly, the difference between g(θ̂) and g(θ̃) is

−2gR
(
sin θ̂ − sin θ̃ − (sign(cos θ̃)− 1) sin α

2 sin φ
)

.

The correction ε is therefore

ε = maxθ̃(sin θ̂ − sin θ̃ − (sign(cos θ̃)− 1) sin α
2 sin φ

− sin(θ̂+φ)−sin(θ̃+φ)
cos φ )

By differentiating the expression inside max(·) with re-
spect to θ̃ we find that there is a local maximum at
θ̃ = 0. Other local maxima occur when θ̃ approaches
−π

2 from below or π
2 from above. The correction ε

therefore simplifies to

ε =max
(

sin θ̂− sin(θ̂+φ)−sin φ
cos φ , sin θ̂+2 sin

α
2 sin φ− sin(θ̂+φ)

cos φ

)
=cos(α

2 + φ)− cos(α/2)
cos φ + max

(
tanφ, 2 sin α

2 sin φ
)
.

For v 6= 0+ the difference between f(θ̂) and f(θ̃) is even
larger and g(θ̃) does not depend on v, so the value for ε
is an upper bound for all v. Combining all the bounds
we arrive at the desired result. 2

Note that for φ = 0 this bound reduces to v2 ≤
−2gR(1 + sinθ). In other words, this bound is as tight
as possible when the surface is horizontal.

For an arbitrary dn it is not possible to compute the
optimal ξ analytically. Fortunately, we can analytically
solve for ξ if we assume that the bounce consists of
pure translation. The resulting ξ can be used as an
approximation. It can shown that the solution for ξ
can be written as

cos ξ = cos φ√
2
√

1−sin φ
∧ sin ξ =

√
1−sin φ√

2
.

Substituting these values in equation 4, we find that the
approximation for the bound for ∆v2 then simplifies to

∆v2 ≤ − 2gdn

cos φ + v2 sin φ
1−sin φ (1 +

√
1− 4dng 1−sinφ

v2 cos φ )

The relative error in this approximation depends on φ,
dn, v and g and can be computed numerically. Some-
what surprisingly, the relative error appears to be con-
stant in v, dn and g. The relative error does vary sig-
nificantly with φ, but is still fairly small (on the order
of 10−2).


