
RICE UNIVERSITY
Temporal Logic Motion Planning in Partially Unknown

Environments
by

Matthew R. Maly
A THESIS SUBMITTED

IN PARTIAL FULFILLMENT OF THE
REQUIREMENTS FOR THE DEGREE

Master of Science

Approved, Thesis Committee:

Dr. Lydia E. Kavraki, Chair
Noah Harding Professor
Department of Computer Science

Dr. Moshe Y. Vardi
Karen Ostrum George Professor
Department of Computer Science

Dr. James McLurkin
Assistant Professor
Department of Computer Science

Houston, Texas
April 3, 2013

ABSTRACT

Temporal Logic Motion Planning in Partially Unknown Environments

by

Matthew R. Maly

This thesis considers the problem of a robot with complex dynamics navigating

a partially discovered environment to satisfy a temporal logic formula consisting of

both a co-safety formula component and a safety formula component. We employ a

multi-layered synergistic framework for planning motions to satisfy a temporal logic

formula, and we combine with it an iterative replanning strategy to locally patch the

robot’s discretized internal representation of the workspace whenever a new obstacle

is discovered. Furthermore, we introduce a notion of “closeness” of satisfaction of a

linear temporal logic formula, defined by a metric over the states of the corresponding

automaton. We employ this measure to maximize partial satisfaction of the co-safety

component of the temporal logic formula when obstacles render it unsatisfiable. For

the safety component of the specification, we do not allow partial satisfaction. This

introduces a general division between “soft” and “hard” constraints in the temporal

logic specification, a concept we illustrate in our discussion of future work.

The novel contributions of this thesis include (1) the iterative replanning strategy,

(2) the support for safety formulas in the temporal logic specification, (3) the method

to locally patch the discretized workspace representation, and (4) support for partial

satisfaction of unsatisfiable co-safety formulas. As our experimental results show,

these methods allow us to quickly compute motion plans for robots with complex

dynamics to satisfy rich temporal logic formulas in partially unknown environments.

Acknowledgements

I would first like to thank my advisers, Dr. Lydia Kavraki and Dr. Moshe Vardi,

for their constant support, both intellectually and otherwise. This thesis, and the

work leading up to it, would not have been possible without them challenging and

encouraging me along the way.

I would also like to thank Dr. James McLurkin, the third member of my com-

mittee, for his invaluable suggestions for this work, beginning from the moment I

proposed the idea to him in his office almost a year ago.

Finally, I would like to thank the members of the Physical and Biological Com-

puting Group at Rice University, especially Devin Grady, Morteza Lahijanian, Ryan

Luna, and Mark Moll, for many fruitful discussions, and for their willingness to listen

to me incrementally present this work week after week.

This work was supported in part by NSF Expeditions 1139011, NSF CCF 1018798,

and the Shared University Grid at Rice funded by NSF under grant EIA-0216467 and

a partnership between Rice University, Sun Microsystems, and Sigma Solutions, Inc.

I dedicate this thesis to Maddy Sanders, without whom my successes in graduate

school would feel aimless and less meaningful.

Contents

1 Introduction 1
1.1 Contributions . 3

2 Related Work 9
2.1 Classifying this Work . 10

2.1.1 On Partially Satisfying a Specification 11
2.2 Motion Planning . 12
2.3 Sampling-Based Motion Planning . 13

2.3.1 Planning with Differential Constraints 15
2.3.2 Discrete Guides for Continuous Motion 18

2.4 On Logic Specifications for Robots 22
2.4.1 Synthesis-Based Approaches 22
2.4.2 Motion-Planning Approaches 26

3 Temporal Motion Planning in Partially Unknown Environments 28
3.1 Preliminaries . 28

3.1.1 Motion Planning Problem with a Temporal Logic Specification 29
3.1.2 Syntactically Co-safe and Safe LTL 30

3.2 Problem Description and Overall Approach 34
3.2.1 Overall Approach . 35

3.3 Planning Framework . 38
3.3.1 Abstraction . 40
3.3.2 Initializing the Product Automaton 43
3.3.3 Planning . 45
3.3.4 Discovering an Obstacle and Replanning 49

4 Framework Implementation and Experimentation 52
4.1 Implementation . 52

iv

4.2 Experiments . 54
4.2.1 The Office-Like Environment 55
4.2.2 The Maze-Like Environment 61

5 Possible Extensions 67
5.1 Hard and Soft Constraints . 67
5.2 Beyond Co-safe and Safe LTL . 69

6 Conclusion and Future Work 73

v

List of Figures

1.1 Continuum of tasks to be solved by robotic motion planning. 2
1.2 Schematic of an office building consisting of a lobby and five rooms. . 5

2.1 A roadmap in two dimensions. 14
2.2 A tree of motions in two dimensions. 15
2.3 The SyCLoP architecture. 17
2.4 A SyCLoP lead with tree of motions 19
2.5 A ML-LTL-MP lead with tree of motions 21
2.6 A bisimilar environment abstraction with example GR(1) specification. 23
2.7 An example hybrid controller . 24
2.8 The receding horizon approach. 25

3.1 Multi-layered synergistic motion planning framework. 40
3.2 A DFA corresponding to a sequencing formula. 47

4.1 An office-like environment map. 57
4.2 A sample robot trajectory that satisfies a co-safe specification. 59
4.3 Various initial maps of the office-like environment. 60
4.4 Experimental data for office with formula ϕ5 and varied initial maps. 62
4.5 A maze-like environment map. 63
4.6 The minimal DFA corresponding to ϕcosafe. 65
4.7 The minimal DFA corresponding to ϕsafe. 66

5.1 A maze-like environment map. 70
5.2 The minimal DFA corresponding to the liveness formula ψ. 71

vi

List of Tables

4.1 Experimental data for office with full and partial initial maps. 56
4.2 Experimental data for maze with full and partial initial maps. 65

5.1 Experimental data for maze with a partial initial map. 72

vii

Chapter 1

Introduction

Classical motion planning solves for “A to B” movement, in which a robot is asked

to move from position A to position B and to avoid obstacles along the way. Much

work has been done in the robotics community to solve this problem very efficiently,

often for robots with very high-dimensional state spaces and differential constraints,

and in the presence of complex obstacles [13, 16, 28, 29, 31, 45, 46, 60].

However, to one day have autonomous robots working in the presence of humans,

we must go beyond this foundational step of “A to B” motion planning. One even-

tual dream, of course, is a helper robot that can robustly satisfy commands such as

“empty the dishwasher” or “deliver medication to all patients on the third floor”. One

can imagine a wide continuum between this dream and the foundational “A to B”

algorithms we have today, as illustrated in Figure 1.1.

Taking an incremental step along the planning continuum, we arrive at motion

planning under a temporal logic specification. This is similar to classical motion

1

Figure 1.1: Continuum of tasks to be solved by robotic motion planning.

planning, except the “A to B” query is generalized to a richer set of goals that can be

expressed as temporal logic formulas. Temporal logic significantly increases our task

expressivity, allowing us to specify missions using connectives such as

• disjunction: “visit A or B”,

• coverage: “visit A, B, and C in any order”,

• sequencing: “visit A, B, and C in that order”,

• avoidance: “never visit A”, and

• conditional execution: “if condition C occurs, then perform task T”, where T

is some combination of the above connectives.

This thesis focuses on a framework that encodes both a task to complete and

behaviors to avoid for motion planning given a linear temporal logic (LTL) specifica-

2

tion. LTL is an instantiation of the type of expressiveness described above, and it has

proven to be very popular in the robotics research community for high-level robotic

control.

1.1 Contributions

Most of the existing works in motion planning with temporal logic specifications

consider static workspaces with full knowledge of their maps [3–5, 61–63]. Such as-

sumptions, however, do not usually hold in real-world scenarios. For instance, a

mobile robot in a warehouse setting may not be aware of a fallen box from a shelf

that has blocked an aisle, or a mobile robot in an office environment may not know

about the states of the office doors before its deployment. In such scenarios, it is

reasonable to assume some information about the environment (e.g., the floor plan

of the warehouse or the office building), but the motion-planning framework needs

to have the capability of dealing with unforeseen obstacles in the environment. With

complex specifications, it is imperative to consider the cases where the environment

changes [52].

Recent works in synthesis-based approaches to robotic control have begun to con-

sider such cases (e.g., [49, 50, 68]). In these works, synthesis involves the creation

of a control strategy that can account for every possible uncertainty. However, for

the cases in which the number of environmental uncertainties is large, the problem

becomes too complex. In these cases, it can be advantageous to adopt an iterative

temporal planning approach, in which online replanning is performed when unex-

3

pected environmental features are discovered. The difference between synthesis-based

approaches and the iterative temporal planning approach proposed by this thesis is

discussed further in Section 2.4. In short, synthesis can theoretically support all types

of unknowns, but the approach becomes computationally infeasible as the number of

unknowns grows large. The iterative temporal planning approach, as proposed in [52]

and presented in this thesis, can only deal with one specific type of unknown (undis-

covered obstacles in the robot’s workspace), but the approach can support a very

high number of potential unknowns, i.e., the possibility of any shape of obstacle

being discovered anywhere in the environment at any time.

Additionally, the iterative temporal planning approach poses the extra question

of what to do in case components of the specification cannot be satisfied due to

newly discovered obstacles in the environment. For example, the robot may discover

a closed door preventing access to a region of interest which the specification requires

the robot to visit, rendering the specification unsatisfiable. This gives rise to the need

for a formal definition of a measure of satisfaction of a specification, a topic which is

partially addressed in this thesis as well as in [52].

Consider, for instance, a janitor robot in an office building whose schematic repre-

sentation is shown in Figure 1.2. The office environment consists of a lobby and five

rooms, each with a door. The regions of interest in this office environment are shown

as orange, purple, red, green, yellow, and brown rectangles. The first five rectangles

represent desks in the office that the robot must clean, and the brown rectangle rep-

resents a region that the obstacle should avoid. An example of a motion specification

is as follows:

4

Figure 1.2: A schematic representation of an office building consisting of a lobby and five
rooms. Each room has a door, of which three are open and two are closed. The robot
is shown as a blue rectangle in the lobby. The regions of interest in this environment are
represented by the red, orange, purple, yellow, green, and brown rectangles.

5

Specification 1 Visit the red, green, orangle, purple, and yellow regions to clean the

desks in any order. Do not touch the brown region.

In this example, the robot initially has no knowledge of the state of the office

doors. It discovers them as it moves in the environment. In this case, the robot

will not be able to visit the red and green regions since the doors of their rooms are

closed. Thus, there are components of the above specification that cannot be satisfied.

Nevertheless, for such tasks, we should allow the robot to continue with the mission

even if it fails to satisfy parts of the specification due to unforeseen environmental

constraints. Specifically, we allow the robot to partially satisfy an unachievable task

(“visit the red, green, orange, purple, and yellow regions”) as long as it does not

violate a safety condition (“avoid the brown region”). In this example, the robot

should be expected to satisfy Specification 1 as closely as possible by visiting the

orange, purple, and yellow regions and not touching the brown region.

This thesis considers such cases in the context of planning for a robot with com-

plex dynamics to satisfy a linear temporal logic specification. We assume the robot

is equipped with a range sensor, allowing it to perfectly detect obstacles within some

radius ρ of its center. When a new obstacle is discovered by the robot as it moves

along a trajectory, the robot performs a braking operation to come to a stop. Then

the robot “patches” its internal discrete representation of its workspace to reflect the

new obstacle. Finally, the robot computes a new solution trajectory and resumes

execution. It is possible that the newly discovered obstacle renders components of

the temporal logic specification unsatisfiable. As will be defined in Section 3.1.2, the

temporal logic specification consists of a co-safety formula and a safety formula, cor-

6

responding to a set of tasks to complete and a set of behaviors to avoid, respectively.

As long as the unsatisfiability of the temporal logic specification stems from an un-

achievable task (i.e., an unsatisfiable co-safety formula) and not a forced violation of

a safety condition, we will allow planning to proceed. In such cases, the co-safety

formula is satisfied as closely as possible, using a metric defined over the states of the

corresponding automaton.

The novel contributions of this thesis are as follows:

• An iterative technique for replanning in the presence of unforeseen obstacles in

the environment [52],

• a method to maximize the partial satisfaction of a co-safe formula [52],

• a method to identify and patch only the components of the robot’s discrete

representation of its workspace (called the abstraction) that are affected by a

newly discovered obstacle, and

• an integration of safety formulas into the temporal logic planning framework.

The first two contributions, concerning unforeseen obstacles and partial satisfac-

tion of co-safe formulas, were first presented in [52]. The latter two contributions are

new to this thesis.

We have implemented the framework as part of The Open Motion Planning Li-

brary (ompl) [17] and have tested it on a second-order car-like robot in multiple

environments in which the regions of interest are known a priori.

The remainder of the thesis is organized as follows. Chapter 2 contains related

work. Chapter 3 describes our robot model and the type of temporal logic that we

7

use, and then details the problem we consider and gives an overview of our approach

to solving it. In Chapter 4, we introduce our implementation of the framework and

discuss the results of our experiments. In Chapter 5, we discuss possible extensions

to our framework’s use of temporal logic specifications. The thesis concludes with

final remarks and a discussion of future work in Chapter 6.

8

Chapter 2

Related Work

This thesis presents a framework that uses sampling-based motion planning to

compute trajectories for a robot with arbitrarily complex dynamics to satisfy a linear

temporal logic specification (consisting of co-safe and safe components) in a partially

unknown environment. The purpose of this chapter is to explain the related research

that has been done in this area and to place this thesis in context of the related

work. We begin by describing at a high level the key differences between this work

and related works. We then describe all related works, beginning with a historical

description of motion planning, leading to sampling-based motion planning with dif-

ferential constraints and with logical specifications. We then describe synthesis-based

approaches to a similar problem to the one considered in this thesis.

9

2.1 Classifying this Work

This work is most closely related to [3–5, 52, 61] in that we are taking a motion-

planning approach instead of using synthesis. Synthesis-based approaches require

knowledge of all possible environmental uncertainties [21,34–37,48,50]. In real-world

applications, it may not be feasible to obtain the amount of information of the en-

vironment required for synthesis. In addition, when there are too many unknowns,

synthesizing a plan can be intractable. In this thesis, we propose an online iterative

planning approach to deal with one specific type of unknown: undiscovered obsta-

cles in the robot’s environment. Rather than accounting for everything that can go

wrong, we plan based on what we know and deal with environmental changes only

when they are discovered. In other words, we plan a trajectory given the currently

known state of the environment. During execution of the trajectory, if an unforeseen

problem is encountered, we replan a new trajectory from the current state on-the-fly.

This framework is inspired by replanning scenarios in robotics [1, 2].

A key advantage of our approach lies in the high-level structure through which we

guide a low-level continuous motion planner. This high-level structure is a product

of the workspace abstraction and a pair of automata that derive from the compo-

nents of the temporal logic specification. The abstraction is quickly computed by

a triangulation of the robot’s workspace. However, the automata from the specifi-

cation can be very expensive to compute [4, 44]. By keeping the automata and the

abstraction separate, we prevent changes to the environment from requiring us to

recompute the automata. Changes to the environment simply require modifications

10

to the corresponding abstraction, which is an inexpensive operation to perform. This

is in contrast to other works that use synthesis-based approaches to plan for robots to

satisfy temporal logic specifications. In these works, typically the task specification

and assumptions on the environment and the robot’s dynamics must be encoded into

a single hybrid controller that can be expensive to change [36, 49, 50].

Another advantage of our framework is the use of motion planning, which supports

systems with any type of high-dimensional complex (possibly nonlinear) dynamics.

Synthesis-based approaches deal with a restricted class of robot systems that typically

involve linear dynamics. When the dynamics of the system are sufficiently complex,

it is difficult (if not impossible) to synthesize provably correct controllers [5]. In

general, our motion-planning framework supports arbitrary “black box” dynamics

at the expense of bisimilarity, which is impossible with synthesis. Moreover, our

framework’s high-level structure, which we use to guide a low-level motion planner,

does not depend on the continuous dynamics of the robot. The dynamics only come

into play during planning.

2.1.1 On Partially Satisfying a Specification

One additional distinguishing feature of our framework is how we compute trajec-

tories to partially satisfy the co-safe component of the specification in situations in

which it is unsatisfiable. The issue of what to do when a specification is determined to

be unsatisfiable has been explored before. In [64], an algorithm was defined to report a

reason as to why a GR(1) LTL specification is unrealizable. The work in [32] and [33]

presents a method of changing an unsatisfiable nondeterministic Büchi automaton

11

into the “closest” satisfiable one, where all actions of the robot are represented using

a finite state machine. Our approach to unsatisfiable specifications differ in that we

do not change the corresponding automata; instead, we provide a simple metric to

define partial satisfaction that is meaningful for many interesting scenarios.

Next, in the following sections, we will describe in detail the related works in

motion planning and synthesis for robotics.

2.2 Motion Planning

Classical motion planning began with the notion of a configuration space to com-

pute trajectories of rigid body objects through environments with obstacles [51]. The

configuration space, also called the state space, is the space of all states that a robot

can achieve. The dimension of a robot’s state space is equivalent to the number of

degrees of freedom of the robot. Complete motion-planning algorithms were created

to compute collision-free paths for geometric planning but did not scale well [65].

Specifically, the motion-planning problem was shown to be PSPACE-complete with

respect to the numbers of degrees of freedom of the robot [10]. Early solutions include

(1) cell decomposition methods that partition the state space into a connected set

of convex cells and consequently do not scale well with dimension, and (2) potential

fields approaches, in which the goal state is assigned an attractive force and the ob-

stacles a repulsive force, but overcoming the issue of local minima in the state space

is quite difficult [13].

12

2.3 Sampling-Based Motion Planning

In response to the intractability of exact solutions, much of the motion planning

research community shifted its focus to sampling-based approaches, which trade com-

pleteness guarantees for tractable time complexity. Such approaches offer probabilistic

completeness, which means that the probability that such an algorithm will find a

solution (assuming one exists) approaches 1 as the algorithm spends more time on

the problem. A probabilistically complete motion planner cannot in general detect if

a solution does not exist [13].

Sampling-based motion planning algorithms can be roughly divided into two cat-

egories: roadmap-based and tree-based. The roadmap-based planners are best repre-

sented by PRM, which was also the first sampling-based motion planning algorithm in

general [31]. PRM proceeds by sampling a large number of collision-free points from the

state space, and connects each point to its nearby neighboring points with the use of

a local planner. The resulting roadmap is a graph that approximates the connectivity

of the free configuration space. Once a roadmap is built, it can be used for solving

multiple planning queries in the future. For each pair of start and goal configurations,

the states are connected into the roadmap, and then a solution path is generated using

a graph search, such as Dijkstra’s shortest path algorithm or A∗ search. Figure 2.1

contains an example of a roadmap in a two-dimensional configuration space, with the

start and goal configurations connected.

The second category of sampling-based motion-planning algorithms, the tree-

based planners, are meant for single-query motion planning, in which a pair of start

13

Figure 2.1: A roadmap in two dimensions.

and goal configurations are known beforehand. One-way motions are simulated as

edges of a tree, rooted at the start configuration. The growth of the tree halts once the

planner creates a leaf sufficiently close to the goal configuration. Following the edges

back from the leaf to the root of the tree yields a solution path. Tree-based plan-

ners include the seminal RRT [45] and EST [28] planners, and their many extensions,

e.g., [9, 38, 56, 66, 70], which vary primarily in (1) what areas of the tree are chosen

for expansion in each step, and (2) how expansion in a given area of the tree is per-

formed [14]. Figure 2.2 contains an example of a tree of motions in a two-dimensional

configuration space. The tree is rooted at the start configuration and has successfully

reached the goal configuration. For additional details, a rigorous survey of tree-based

planners can be found in [15].

14

Figure 2.2: A tree of motions in two dimensions.

2.3.1 Planning with Differential Constraints

The success of sampling-based motion planning algorithms has prompted re-

searchers to apply them to increasingly difficult problems. One class of such problems

includes robotic systems with differential constraints [13]. In these systems, robots

can only exhibit motions that are realized by the application of a sequence of controls.

The classic motion planning problem can be generalized to incorporate robotic dy-

namics by including the additional requirement that the computed trajectory satisfies

the differential constraints imposed by the robot’s equations of motion. Many tree-

based planners can easily be generalized to solve such problems, where a tree state q

not only holds a pointer to its parent state p(q) but also stores the necessary controls

to realize a motion from p(q) to q. Typically these controls are not computed as a

function of p(q) and q; instead, a control is generated (often randomly) and applied to

15

p(q) to obtain its child state q. For roadmap-based planners, solving such problems

is less natural. Specifically, it is in general very difficult to construct a local planner

capable of generating a control to connect two specific nearby states.

Planning with differential constraints is much more difficult than with simple

geometric constraints. In general, it is not known if the problem is even decidable [12].

With a complex enough problem (say, more than five degrees of freedom), planning

with simple algorithms such as RRT or EST can quickly become infeasible. More

advanced sampling-based motion-planning algorithms are needed to more efficiently

guide the search toward a solution, instead of naively covering the state space. Three

such algorithms that have been shown to be successful are KPIECE [16], PDST [41], and

SyCLoP [60]. All three of these planners use low-dimensional projections to guide the

tree of motions. KPIECE chooses where to expand its tree of motions by considering the

tree’s coverage of a space determined by some low-dimensional projection [16]. PDST

dynamically subdivides a projected subspace of the state space in order to estimate

coverage without the use of a metric [41]. SyCLoP, an extension of an older planner

called DSLX [58,59] creates sequences of neighboring regions (called high-level guides or

leads) through a discretization of the workspace along which a low-level planner guides

a tree of motions [60]. In general, SyCLoP can operate over a discretization of any low-

dimensional projected subspace of the robot’s state space, but the choice of projection

can be problem-specific and does not yield significant benefits to performance [53].

As the low-level planner gathers information of the success or failure of a given lead,

this information is sent back up to the high-level planner to inform the creation of

future leads. The architecture diagram in Figure 2.3 illustrates SyCLoP’s information

16

flow. SyCLoP has been shown to give performance improvements of up to two orders

of magnitude over efficient implementations of RRT and EST [60].

Figure 2.3: The SyCLoP architecture, taken from [53].

Figure 2.4 illustrates how SyCLoP guides a tree of motions along a lead. Here, a

robot with second-order car-like dynamics begins at the bottom center of an office-like

environment. Its goal is to move to the purple region in the top-left of the environ-

ment. SyCLoP accepts as input a geometric partition (often called a decomposition or

abstraction) of the workspace, which in this example is a triangulation that respects

obstacles. To quickly reach the goal, SyCLoP calculates a sequence of neighboring

regions, beginning with the triangle containing the start state and ending with a tri-

angle in the goal region. Then, a low-level sampling-based tree planner is executed

along the lead. In Figure 2.4, the lead is denoted by red arrows, and the states of the

tree are denoted by blue points. In the case of this example, the low-level planner

was able to quickly find a solution trajectory with only one lead. With more difficult

17

problems, SyCLoP will guide the low-level tree along a lead for some time ∆t, use

information gathered from that exploration to compute a new lead, and then repeat

the process. Leads are computed using a shortest-path graph search, where the ver-

tices of the graph correspond to regions in the abstraction, and the edges correspond

to adjacencies between regions. An edge between two regions r1 and r2 is assigned

an edge weight of the form

w(r1, r2) =
numsel(r1) · numsel(r2)

cov(r1) · cov(r2) · vol(r1) · vol(r2)
, (2.1)

where numsel(ri) is the number of times SyCLoP has expanded the tree of motions

in region ri, cov(ri) is the number of tree vertices associated with region ri (an

estimate of coverage), and vol(ri) is the free area of the workspace contained by

region ri. There are many variants of edge weight formulas for planners similar to

SyCLoP (e.g., [4,5,60–62]). In general, edge weight functions that incorporate at least

the information used in (2.1) seem to perform well. A rigorous survey of edge weight

functions remains a topic of future work.

2.3.2 Discrete Guides for Continuous Motion

We now introduce the planning framework that is the subject of this thesis. As

discussed in the previous section, the SyCLoP framework has been shown to success-

fully guide a tree of motions along a high-level lead. In its original conception, the

high-level lead is simply a sequence of regions from the region containing the start

state to the region containing the goal state; i.e., the framework solves the classic

18

Figure 2.4: A lead (denoted by red arrows) and tree of motions (denoted by blue points)
from one run of SyCLoP, where the robot’s start state is at the bottom center of the envi-
ronment, and the goal state is the purple region.

19

“A to B” planning problem. To leverage this framework for planning with temporal

logic constraints, SyCLoP was extended to form the multi-layered LTL motion planner

(ML-LTL-MP) [4]. ML-LTL-MP guides a low-level tree of motions along a high-level lead

as before. What has changed is that the high-level lead is no longer simply a sequence

of regions through a workspace discretization. Instead, the workspace discretization

is combined with the automaton corresponding to the temporal logic specification to

form a product automaton. The start state of this product automaton is the pairing

(d0, z0) of the discrete workspace region d0 containing the robot’s start state, and

the automaton’s start state z0. A product automaton state (also called a high-level

state) is accepting if its component automaton state is accepting. A high-level lead

is any sequence of high-level states that ends in an accepting state. In Figure 2.5, a

second-order car begins at the bottom center of an office-like environment. Its goal

is to satisfy a temporal logic specification representing the task “visit the purple and

green regions in any order” (often called a coverage formula). As before, ML-LTL-MP

computes a lead that satisfies the specification, and a tree of motions is guided along

that lead until a solution trajectory is found.

ML-LTL-MP has been shown to improve performance over RRT by orders of mag-

nitude when computing trajectories to satisfy temporal logic specifications [4, 5, 62].

The framework we present in this thesis is an extension of ML-LTL-MP; we will discuss

it in more detail in Chapter 3.

20

Figure 2.5: A lead (denoted by red arrows) and tree of motions (denoted by blue points)
from one run of SyCLoP, where the robot’s start state is at the bottom center of the en-
vironment, and the goal is to satisfy the task “visit the purple and green regions in any
order”.

21

2.4 On Logic Specifications for Robots

Our framework is not the only one in the literature for computing robot motions

to satisfy logical specifications more complex than “A to B” reachability. Much work

has been done toward the problem of planning for robotic systems to satisfy high-

level temporal logic specifications. We divide all such work into two categories: (1)

synthesis-based approaches and (2) motion-planning approaches.

2.4.1 Synthesis-Based Approaches

Synthesis-based approaches for controlling robotic systems to satisfy high-level

specifiactions require strong assumptions on the robot’s dynamics and the existence of

bisimilar controllers to move between workspace regions [21,34–37,48,50]. Moreover,

a special subset of LTL, called GR(1) (generalized reactivity formulas of rank 1) is

typically used in such approaches [7, 57]. Generally, a GR(1) formula is of the form

∧

i

ϕi →
∧

j

ψj ,

where ϕi and ϕj are LTL formulas that are representable by deterministic Büchi au-

tomata. The left side of the implication is meant to encode all possible environment

behaviors, which includes not only adjacency information of regions in the environ-

ment, but also any environment features that can be sensed by the robot. The right

side of the implication encodes all robot behavior. Figure 2.6(b), taken from [22],

contains an excerpt of a GR(1) specification written in structured English. This

22

specification corresponds to the environment abstraction given in Figure 2.6(a). This

abstraction must be bisimilar to the dynamics model of the robot; that is, given any

two adjacent regions in the abstraction (for example, the living room and the bed-

room), there must exist a controller that is guaranteed to take the robot from any

point in the first region to somewhere within the second region [36].

(a)

(b)

Figure 2.6: (a) a bisimilar abstraction of a robot’s environment; (b) a GR(1) specification
written in structured English; both figures taken from [22].

Given a robot model, a GR(1) specification, and a bisimilar environment abstrac-

tion, a provably correct hybrid controller can be generated as a state machine that

encodes the robot actions necessary to satisfy the task [36]. An example of such a

hybrid controller, taken from [34], is contained in Figure 2.7.

23

Figure 2.7: An example hybrid controller synthesized from a GR(1) specification, taken
from [34].

The synthesis of the hybrid controller requires time and space polynomial in the

size of the reachable state space of the system. This is often called the state explosion

problem [37]. One way to address this problem is to use a coarser abstraction, which

requires a stronger assumption on the robot’s controllers, an assumption that is often

difficult to guarantee. Other suggestions include receding horizon techniques, in which

the set of desired liveness properties encoded in the GR(1) specification is partitioned

into a sequence of short-horizon plans, which can replace a very large hybrid controller

with a connected sequence of small hybrid controllers [74]. Figure 2.8 contains such

24

a sequence, taken from [75]. Here, the sets W4, . . . ,W0 form a partition of the states

of the hybrid controller, and each vi is an individual state. The initial state of the

system may be any one of the states in W4 = {v1, v2, v3, v4}. The goal state of the

system is v10. The partitioning scheme W4, . . . ,W0 is chosen so that the original

GR(1) specification of the system is split into a sequence of realizable short-horizon

specifications. Unfortunately, the partition and the path horizon must be manually

chosen in this approach.

Figure 2.8: A sequence of hybrid controllers, illustrating the receding horizon approach.
The sequence is defined by the sets W4, . . . ,W0 which form a partition of the states of the
hybrid controller. Each vi is an individual state of the controller. W4 contains the initial
states, and v10 is the goal state. Taken from [75].

Work has also been done to address the issue of controller uncertainty in this

context, modeling the robot as a Markov decision process [19, 42, 43].

In an Unknown or Changing Environment

The synthesis techniques in the works discussed so far require a predictable en-

vironment [21, 22, 34–37]. In addition, much work has been done on synthesis for

problems in which the predictability of the environment cannot be guaranteed. The

25

issue of synthesis from high-level specifications in an unknown or dynamic environ-

ment has been studied both for abstract systems (e.g., [6]) and specifically for robotics

(e.g., [11, 33, 49, 50, 68]). If the geometry of the environment changes, whether due

to an unknown region becoming reachable [68] or a known region becoming unreach-

able [49, 50], then the hybrid controller must be updated to incorporate the change.

As global resynthesis of the hybrid controller is expensive, there exist approaches to

locally patch the controller to incorporate the changes in less time [49, 50]. In such

works, the states and transition edges of the hybrid controller corresponding to chang-

ing region must be identified, removed, and then replaced with states and transitions

that reflect the new properties of the region. Initial work in this area has shown

that patching the hybrid controller can still require significant time to complete, in

some cases requiring as much time as resynthesizing the entire hybrid controller from

scratch [49, 50].

2.4.2 Motion-Planning Approaches

Our framework, which has been extended from ML-LTL-MP [4, 5] is one more step

in a long chronology of planning methods for robotic systems and hybrid systems

to satisfy co-safe LTL specifications [3–5, 52, 61–63]. However, this chronology is

not the only work that has been done on motion-planning approaches for satisfying

temporal logic formulas. For general robot models with nonlinear dynamics, static

workspaces, and temporal goals, a motion-planning approach has been proposed to

solve the problem using deterministic µ-calculus specifications [30]. In that work, the

authors propose a planner called the rapidly-exploring random graph (RRG), which

26

can be seen as a tree-based motion planner with cycles in the graph. The authors

assume the existence of a local steering method to maneuver between nearby points.

To compute a trajectory that satisfies a given deterministic µ-calculus specification,

the RRG algorithm incrementally builds a graph in the state space until it contains a

path that satisfies the specification. Though deterministic µ-calculus, is more expres-

sive than LTL and easy to model-check, it is very difficult to write. Moreover, the

specification does not affect how the graph is built - such an approach (often called a

monitor-based approach) has been shown to not perform well with a high-dimensional

state space and a complex specification [4].

27

Chapter 3

Temporal Motion Planning in

Partially Unknown Environments

3.1 Preliminaries

In Section 3.1.1, we formally define the problem statement for motion planning in

a partially unknown environment with a temporal logic specification. Section 3.1.2

defines the two subsets of LTL that we use. Section 3.2 describes at a high level our

approach to solving the problem, and Section 3.3 describes our planning framework

in detail.

28

3.1.1 Motion Planning Problem with a Temporal Logic Spec-

ification

In this thesis, we consider a general mobile robot with complex dynamics in a

partially unknown environment and a temporal logic specification consisting of co-

safety formula and safety formula components. We assume that the robotic system

consists of

1. Q ⊂ Rn, a bounded n-dimensional state space, an element of which completely

determines the robotic system’s state,

2. U ⊂ Rc, a bounded c-dimensional control space consisting of control variables

that can be applied to the system to change its state,

3. Flow : Q × U → Q̇, a differential equation that captures the system’s con-

straints,

4. Valid : Q → {0, 1}, a boolean function describing whether a state is valid

(used for collision avoidance),

5. qinit ∈ Q, a start state for the system,

6. W ⊂ R2, a bounded 2-dimensional representation of the workspace in which the

robot resides,

7. Proj : Q → W, a projection function to extract the workspace location of the

robot given its full state,

29

8. Sense : Q → {0, 1}, a sensing function that returns 1 if a previously unknown

obstacle is discovered at a given state,

9. Π = {p1, . . . , pk}, a set of atomic propositions, and

10. L : W → 2Π, a state-labeling function assigning to each robot system state a

set of atomic propositions that hold true at that state.

3.1.2 Syntactically Co-safe and Safe LTL

We use syntactically co-safe and syntactically safe LTL to write the specifications

of robotic tasks. Co-safe LTL will be used to encode tasks for the robot to achieve,

and safe LTL will be used to encode behaviors for the robot to avoid. Their syntax

and semantics are defined below.

Definition 1 (Co-safe Syntax) Let Π = {p1, . . . , pk} be a set of boolean atomic

propositions. A syntactically co-safe LTL formula over Π is inductively defined as

follows:

ϕ := p | ¬p |ϕ ∨ ϕ |ϕ ∧ ϕ | Xϕ |ϕUϕ | Fϕ

where p ∈ Π, ¬ (negation), ∨ (disjunction), and ∧ (conjunction) are boolean opera-

tors, and X (“next”), U (“until”), and F (“eventually”) are temporal operators.

Definition 2 (Safe Syntax) A syntactically safe LTL formula over Π is inductively

30

defined as follows:

ϕ := p | ¬p |ϕ ∨ ϕ |ϕ ∧ ϕ | Xϕ | Gϕ

where p ∈ Π, ¬ (negation), ∨ (disjunction), and ∧ (conjunction) are boolean opera-

tors, and X (“next”) and G (“always”) are temporal operators.

Definition 3 (Semantics) The semantics of syntactically co-safe and safe LTL for-

mulas are defined over infinite traces over 2Π. Let σ = {τi}∞
i=0 with τi ∈ 2Π be an

infinite trace, and define σi = τ0, τ1, . . . , τi−1 and σi = τi, τi+1, Then σi is a prefix

of the trace σ, and σi is a suffix of σ. The notation σ |= ϕ indicates that σ satisfies

formula ϕ and is inductively defined as follows.

• σ |= π if π ∈ τ0;

• σ |= ¬π if π < τ0;

• σ |= ϕ1 ∨ ϕ2 if σ |= ϕ1 or σ |= ϕ2;

• σ |= ϕ1 ∧ ϕ2 if σ |= ϕ1 and σ |= ϕ2;

• σ |= Xϕ if σ1 |= ϕ;

• σ |= ϕ1Uϕ2 if ∃k ≥ 0, s.t. σk |= ϕ2, and ∀i ∈ [0, k), σi |= ϕ1;

• σ |= Fϕ if ∃k ≥ 0, s.t. σk |= ϕ.

• σ |= Gϕ if ∀k ≥ 0, σk |= ϕ.

31

An important property of syntactically co-safe LTL formulas is that, even though

they have infinite-time semantics, finite traces are sufficient to satisfy them. Simi-

larly, finite traces are sufficient to violate syntactically safe LTL formulas. Hence, we

can capture desired robot behavior as a pair of co-safe and safe LTL specifications,

where the co-safe component describes tasks for the robot to complete, and the safe

component describes behaviors to avoid. We then say that a trajectory satisfies the

pair of specifications if it satisfies the co-safe component and does not violate the safe

component. This combination of co-safe and safe LTL formula components will allow

us to describe many rich types of robotic tasks which can be realized in a finite time

horizon in a safe manner.

To evaluate robotic trajectories against LTL formulas, we use deterministic fi-

nite automata [27]. A deterministic finite automaton (DFA) is given by a tuple

(Z,Σ, δ, z0, F), where

• Z is a finite set of states,

• Σ = 2Π is the input alphabet, where each input symbol is a truth assignment

to the propositions in Π,

• δ : Z × Σ→ Z is the transition function,

• z0 ∈ Z is the initial state, and

• F ⊆ Z is the set of accepting states.

A run of a DFA A is a sequence of states w = w0w1 . . . wn, where w0 = z0 and

wi ∈ A.Z for i = 1, . . . , n. A run w is called an accepting run if wn ∈ A.F .

32

From a syntactically co-safe LTL formula ϕcosafe, a DFAAϕcosafe
can be constructed

that accepts precisely all of the formula’s satisfying finite traces [40]. Each input

symbol to Aϕcosafe
(and, in general, to any DFA generated from a logical specification)

is a set σ ∈ 2Π of propositions that are currently true in the system. Similarly, from

a syntactically safe LTL formula ϕsafe, a DFA A¬ϕsafe
can be constructed that accepts

precisely all of the formula’s violating finite traces [40]. To accept precisely all of the

finite traces that do not violate ϕsafe, we flip the acceptance condition of this DFA

to obtain ¬A¬ϕsafe
, which we minimize [27] and refer to simply as Asafe. Specifically,

given A¬ϕsafe
= (Z,Σ, δ, z0, F), we define

Aϕsafe
= (Z,Σ, δ, z0, Z \ F)

and then minimize Aϕsafe
. The DFA Aϕsafe

accepts a finite trace w if and only if there

exists an infinite trace extension to w that satisfies ϕsafe; that is, the language of

Aϕsafe
is given by

L (Aϕsafe
) = {u ∈ Σ∗ | ∃v ∈ Σω such that uv |= ϕsafe} .

Here Σω denotes the set of all infinite traces over the alphabet Σ.

Throughout this thesis, we will loosely say that a finite trace w “satisfies the safety

formula ϕsafe” to mean that w has an infinite trace extension that satisfies ϕsafe, or

equivalently, that w does not violate ϕsafe.

If a finite robot trajectory corresponds to a trace accepted by Aϕsafe
, then that

trajectory does not violate the safety condition defined in ϕsafe. Similarly, if a finite

33

robot trajectory corresponds to a trace accepted by Aϕcosafe
, then that trajectory

correctly completes the task defined in ϕcosafe. We use our framework to generate

robot trajectories that are accepted by both Aϕsafe
and Aϕcosafe

.

3.2 Problem Description and Overall Approach

In this thesis, we consider a mobile robot with complex and possibly non-linear dy-

namics moving in an environment to satisfy a pair of specifications ϕ = (ϕcosafe, ϕsafe).

We assume that while the robot has full information of the propositional regions and

their locations in the environment, it has only partial a priori knowledge of the ob-

stacles of the environment. This assumption is motivated by scenarios such as the

one described in Section 1.1, in which the robot has a blueprint of a floor of an of-

fice building, but small details in the environment are unknown, such as the specific

locations of furniture or the statuses of doors.

Due to possible unknown obstacles in the environment, the satisfaction of the

specification cannot be guaranteed. Nevertheless, we do not want the robot to abort

the mission if it realizes that fragments of the specification cannot be met. Instead,

we require the robot to satisfy the co-safe component of the specification as closely as

possible. We envision many scenarios where this can be an advantageous approach

(e.g., the janitor robot example in Chapter 1). We formally define and discuss the

definition of satisfying a specification as closely as possible below and in Section 3.3.3.

We now focus on the following problem.

Problem: Given a partially unknown environment and a task specification

34

expressed as a syntactically co-safe LTL formula ϕcosafe and a syntactically safe LTL

formula ϕsafe over Π, find a robot motion plan that does not violate ϕsafe and satisfies

ϕcosafe as closely as possible.

We assume that the robot has partial a priori knowledge of the obstacles in its

workspace. In other words, some of the obstacles could be unknown before the deploy-

ment of the robot. We also assume that the robot can detect an unknown obstacle

when it comes within some proximity of it. This is represented by the function Sense

in the definition of our planning problem in Section 3.1.1. In practice, Sense can

be viewed as a range sensor with a fixed radius ρ, as is commonly seen in related

work [2].

3.2.1 Overall Approach

We employ a multi-layered synergistic framework [4,61] to solve the motion plan-

ning problem by using the initial knowledge of the workspace. The framework consists

of three main layers: a high-level search layer, a low-level search layer, and a synergy

layer that facilitates the interaction between the high-level and the low-level search

layers (see Figure 3.1). The high-level planner uses an abstraction of the workspace

and the specification ϕ to suggest high level plans. The low-level planner uses the

dynamics of the robotic system and the suggested high-level plans to explore the

state space for feasible solutions. In our work, the low-level layer is a sampling-based

planner and does not assume the existence of a controller [60].

To satisfy a specification in a partially undiscovered environment, an iterative

high-level planner is employed. Every time an unknown obstacle is encountered,

35

the high-level planner modifies the coarse high-level plan online by accounting for

the geometry of the discovered obstacle, the path traveled to that point, and the

remaining segment of the specification that is yet to be satisfied. This replanning is

achieved in four steps.

1. First, a “braking” operation is applied to prevent the robot from colliding with

the newly discovered obstacle. We assume that the robot’s sensing radius is

sufficiently large to ensure that the robot will not collide with the obstacle.

2. Second, the workspace abstraction is “patched” to reflect the new changes to

the environment. These changes are propagated to the product automaton. All

feasibility estimates for high-level states and edges that are not affected by the

changed portion of the workspace are preserved.

3. Finally, the path traveled by the robot so far is mapped onto the updated

product automaton. A new satisfying plan is generated as a continuation of the

explored portion of the old plan.

Thus, the robot does not need to return to its starting point every time it encounters

an unknown environmental feature. Moreover, the robot’s progress in satisfying the

specification is preserved. This iterative motion-planning framework is discussed in

detail in Section 3.3.

Recall that from ϕ = (ϕcosafe, ϕsafe), a pair of DFAs, Aϕcosafe
and Aϕsafe

, can be

constructed that accept all of the satisfying finite traces for ϕcosafe and ϕsafe, respec-

tively, as discussed in Section 3.1.2 [40,61]. We use these DFAs to design a satisfying

36

high-level plan. We also utilize Aϕcosafe
to define a metric to measure the “distance-

to-satisfaction” of a specification in cases in which the co-safe component ϕcosafe is

unsatisfiable. This measure is used to produce a high-level plan that completely sat-

isfies ϕsafe (i.e., does not violate ϕsafe) and satisfies ϕcosafe as closely as possible. The

definition of this metric is described in Section 3.3.3.

In general, a contingency maneuver can be used instead of a “braking” operation

as the first step of the approach. Our framework is by no means limited to a stopping

maneuver, and the exploration for the “best” contingency plan is left for future work.

A description of general contingency plans can be found in [2, 23].

Moreover, it is important to note that our method of generating a new high-level

plan is fast. This is for the following two reasons:

1. We are not recomputing the two DFAs, which do not need to change since the

specification does not change following the discovery of an obstacle.

2. We generate the workspace abstraction by triangulating the two-dimensional

environment, which has been shown to be computationally inexpensive [5] (a

fact we will verify in our experimental results in Chapter 4. Our method to

“locally patch” the changed region of the workspace abstraction essentially boils

down to a retriangulation of the smaller portion.

For instance, the computation time for recomputing the workspace abstraction for

the janitor robot example moving in the office environment shown in Figure 1.2 is on

the order of a hundredth of a second on a modern PC.

37

3.3 Planning Framework

In this section, we describe our iterative planning framework, which consists of

three main layers: a high-level planner, a low-level search layer, and a synergy layer

as shown in Figure 3.1. The high-level planner generates a set of coarse satisfying

plans by searching over a structure called a product automaton (Section 3.3.2). This

structure is the product of the following three structures:

1. The discrete abstraction M of the robot’s workspace (see Section 3.3.1),

2. the DFA Acosafe corresponding to the formula ϕcosafe, and

3. the DFA Asafe corresponding to the formula ϕsafe, as defined in detail in Sec-

tion 3.1.2.

Each of these plans is a sequence of states of the product automaton. Since the two

DFAs in the product automaton run on input propositions defined in the workspace

and respected by the boundaries ofM, a high-level plan can be completely described

by the corresponding underlying sequence of regions of M.

The low-level search layer produces continuous trajectories that follow a satisfying

high-level plan. This is achieved by expanding a sampling-based motion tree in the

direction of a suggested high-level plan in the workspace. The synergy layer facilitates

the two-way interaction between the high-level and the low-level search layers (see

Sections 3.3.2 and 3.3.3). Algorithm 3.3.1 contains the framework pseudocode; it

relies on subroutines detailed in Algorithms 3.3.2, 3.3.3, 3.3.4, 3.3.5, and 3.3.6. In the

following sections, we describe these algorithms in detail.

38

Algorithm 3.3.1 Framework for planning for a robotic system with an LTL specifi-
cation in a partially unknown environment

Input: A motion planning problem mpp = (Q,U ,Flow,Valid, qinit,W,Proj,Sense,Π, L),
as described in Section 3.1.1),
a set of initially known obstacles O ⊂ W,
a pair ϕ = (ϕcosafe, ϕsafe) of co-safe and safe LTL formulas defined over mpp.Π,
and a time bound tmax.

Output: Returns true if successful in moving the robot through the workspace to
satisfy ϕsafe and satisfy ϕcosafe as closely as possible; returns false otherwise.

1: M← ComputeAbstraction(W, O,Π, L)
2: Aϕcosafe

← ComputeMinDFA(ϕcosafe,W, L)
3: Aϕsafe

← ComputeMinDFA(ϕsafe,W, L)
4: P ← ComputeProduct(M,Aϕcosafe

,Aϕsafe
,Π, L)

5: {xi}i≥0 ← Plan(mpp, O,P, tmax)
6: tplan ← time spent by Plan in line 5
7: tmax ← tmax − tplan

8: j ← 1
9: while j < |{xi}| do

10: Move robot from state xj−1.s to state xj .s
11: if Sense(xj.s) = 1 then
12: Apply braking operation to reach stopped robot state s′

13: qinit ← s′

14: Add discovered obstacle onew to O
15: P ← PatchProduct(P,Q,W, onew,Π, L)
16: {xi}i≥0 ← Plan(mpp, O,P, tmax)
17: if Plan was unsuccessful then
18: return false

19: tplan ← time spent by Plan in line 16
20: tmax ← tmax − tplan

21: j ← 1
22: j ← j + 1
23: return true

39

Figure 3.1: Multi-layered synergistic motion planning framework.

3.3.1 Abstraction

To produce a high-level plan, we first, in line 1 of Algorithm 3.3.1, abstract the

workspace W to a discrete model M = (D, d0,→D,Π, LD), where D is a set of

discrete regions in W, d0 ∈ D is the initial region, →D⊆ D × D is the transition

relation, and LD : D → 2Π is a labeling function. We refer to the model M as the

abstraction of the workspace. In this work, M is constructed as a geometry-based

conforming Delaunay triangulation of W that respects the propositional regions and

the boundaries of the known obstacles [69]. We construct the transition relation →D

to reflect the geometric adjacencies between regions in W.

40

Algorithm 3.3.2 Plan: Temporal planning algorithm

Input: A motion planning problem mpp = (Q,U ,Flow,Valid, qinit,W,Proj,Sense,Π, L),
a set of known obstacles O ⊂ W,
a product automaton P,
and a time bound tmax.

Output: Returns a sequence of triplets, each containing a robot system state, con-
trol, and corresponding high-level state, representing a system trajectory that
satisfies the specification. Reports an error and aborts if no such trajectory could
be found within time tmax.

1: T ← InitializeTree(qinit)
2: while Time Elapsed < tmax do
3: K = ((d1, z

c
1, z

s
1), . . . , (dk, zck, z

s
k))← ComputeLead(P, qinit)

4: C ← ComputeAvailableCells(K)
5: v ← Explore(H,W,O, T , C,K,P,∆t)
6: if v , NULL then
7: Follow v.parent to construct trajectory {xi}i
8: return {xi}i
9: Report unsuccessful and exit

Algorithm 3.3.3 ComputeLead: Subroutine to compute high-level guides

Input: A product automaton P and a starting high-level state (d0, z
c
0, z

s
0) ∈ P.

Output: Returns a lead, which is a sequence of high-level states beginning with the
given start (d0, z

c
0, z

s
0) and ending with a state that is accepting in Aϕsafe

and as
close as possible to an accepting state in Aϕcosafe

.

1: S ← {(d, zc, zs) ∈ P | zs is accepting in P.Aϕsafe
}

2: F ← arg min(d,zc,zs)∈S (DistFromAcc(z,P.Aϕcosafe
))

3: Run Dijkstra’s all-pairs shortest-path algorithm on P with source (d0, z
c
0, z

s
0); store

parent map parent and weight map weight

4: (dg, zcg, z
s
g)← arg min(d,zc,zs)∈F{weight[(d, zc, zs)]}

5: Construct lead K = ((d0, z
c
0, z

s
0), . . . , (dg, zcg, z

s
g)) using parent map

6: return K

It should be noted that the initial construction ofM is based on the initial knowl-

edge of the environment map. As the robot discovers unknown obstacles, the map

is updated and M is patched to reflect the new workspace information. Given that

41

Algorithm 3.3.4 Explore: Tree-exploration subroutine

Input: A motion planning problem mpp = (Q,U ,Flow,Valid, qinit,W,Proj,Sense,Π, L),
a set of known obstacles O ⊂ W,
a tree of motions T ,
a set of available high-level states C,
a lead K,
a product automaton P,
and an exploration time ∆t.

Output: Returns a tree vertex that reaches a goal high-level state if such a vertex
was found; returns NULL otherwise.

1: while Time Elapsed < ∆t do
2: (d, zc, zs)← C.sample()

3: v ← SelectAndExtend(T ,mpp, (d, zc, zs), O,P)
4: if v.zc , ∅ and v.cs , ∅ then
5: if v.zc.isAccepting() and v.zs.isAccepting() then
6: return v
7: if (v.d, v.zc, v.zs) ∈ L \ C then
8: C ← C ∪ {(v.d, v.zc, v.zs)}
9: return NULL

Algorithm 3.3.5 PatchProduct: Subroutine to locally patch product automaton
given a newly discovered obstacle
Input: A product automaton P,

a robot state space representation Q,
a workspace representation W,
a newly discovered obstacle onew,
a set of atomic propositions Π, and
a state labeling function L : Q→ 2Π.

Output: Returns a patched version of P that respects the newly discovered obstacle.

1: R← GetIntersectingRegions(P.M, onew)
2: (V,E)← ComputeBoundary(R)
3: N ← DecomposePortion(V,E,Q,Π, L)
4: P ← PatchAbstraction(P, R,N)
5: return P

42

Algorithm 3.3.6 ComputeBoundary: Subroutine to compute the boundary of a
connected set of triangles in the workspace abstraction

Input: A connected set R of triangles in the workspace.
Output: Returns a planar straight-line graph representing the boundary

1: B ← ∅
2: for each triangle T ∈ R do
3: B ← B∪{u, v ∈ T | triangle edge (u, v) faces an obstacle or a triangle not in R}
4: return B

this method is based on a triangulation of a two-dimensional space, patching the

abstraction is fast. Furthermore, we initially assume transitions between all adjacent

partitions of the workspace are realizable even though the dynamics of the robot may

prevent some transitions. This does not create a problem in our planning framework

because the synergistic framework will bias its discrete search against unrealizable

transitions. In fact, one of the advantages of our planning framework is that it does

not require a bisimilar abstraction as was described in Section 2.4.1 and therefore

allows for inexpensive and fast construction of an approximate abstraction model.

Next, we describe how M is utilized in generating satisfying high-level plans.

3.3.2 Initializing the Product Automaton

The structure we use to guide the tree of system trajectories is a product automa-

ton, which is computed as

P =M×Aϕcosafe
.Z ×Aϕsafe

.Z.

43

In lines 2-3 of Algorithm 3.3.1, we compute the minimal DFAs Aϕcosafe
and Aϕsafe

corresponding to the formulas ϕcosafe and ϕsafe, respectively, as defined in Section 3.1.2

[40,44]. Though each translation can require time doubly exponential with respect to

the number of propositions in the formula, we only compute each DFA once, and so

the translations can be seen as an offline step. Then, in line 4 of Algorithm 3.3.1, we

compute the product automaton P. We refer to elements of the product automaton

P as high-level states. The product automaton P is a directed graph in which there

exists an edge from high-level state (d1, z
c
1, z

s
1) to (d2, z

c
2, z

s
2) if and only if

1. d1 and d2 are adjacent inM,

2. Aϕcosafe
.δ (zc1,M.LD(d2)) = zc2, and

3. Aϕsafe
.δ (zs1,M.LD(d2)) = zs2,

where Aϕcosafe
.δ is the deterministic transition function for Aϕcosafe

, and Aϕsafe
.δ is the

deterministic transition function for Aϕsafe
. We call a high-level state (d, zc, zs) ∈ P

an accepting state (or a goal state) if zc is an accepting state in Aϕcosafe
and zs is an

accepting state in Aϕsafe
.

For each high-level state (d, zc, zs) ∈ P, we assign a weight defined by

w(d, zc, zs) =
(cov(d, zc, zs) + 1) · vol(d)

max{DistFromAcc(zc),DistFromAcc(zs)} · (numsel(d, zc, zs) + 1)2

(3.1)

where cov(d, zc, zs) is the number of tree vertices associated with (d, zc, zs) (an es-

timate of coverage). and vol(d) is the area of the workspace corresponding to the

abstraction state d, and numsel(d, zc, zs) is the number of times (d, zc, zs) has been

44

selected for tree expansion in line 2 of Algorithm 3.3.4. DistFromAcc(zc) is the

minimum distance from automaton state zc to an accepting state in Aϕcosafe
. Sim-

ilarly, DistFromAcc(zs) is the minimum distance from automaton state zs to an

accepting state in Aϕsafe
.

Finally, to each directed edge e = (h1, h2) between high-level states h1, h2 ∈ P,

we assign the weight

w(e) =
1

w(h1) · w(h2)
(3.2)

The estimates in (3.1) and (3.2) have been shown to work well in previous work [4]. In

general, a weighing scheme that incorporates more than just number-of-edge distance

is useful to promote expansion in unexplored areas (i.e., where cov and numsel are

both small) and to discourage expansion in areas where attempts at exploration have

repeatedly failed (i.e., where numsel≫ cov).

3.3.3 Planning

Once the product automaton has been computed, line 5 of Algorithm 3.3.1 com-

putes a trajectory for the system that completely satisfies the safe formula ϕsafe and

satisfies the co-safe formula ϕcosafe as closely as possible. The details of this approach

are given in Algorithm 3.3.2. Many details are similar to the framework discussed

in past works [3–5]. We differ from them by (1) locally patching the product au-

tomaton and replanning new trajectories in light of newly discovered obstacles in

Algorithm 3.3.1, by (2) supporting specifications that include not only co-safe formu-

las but also safe formulas, and by (3) partially satisfying an unsatisfiable specification

45

when computing a lead in Algorithm 3.3.3.

The core loop of our planning algorithm is shown in lines 3, 4, and 5 of Algo-

rithm 3.3.2. The subroutine ComputeLead in Algorithm 3.3.3 creates leads that

reach as close as possible to an accepting high-level state. Each lead computed in

line 3 is a suggested sequence of contiguous high-level states through which Explore

attempts to guide the tree of motions.

Measure of Satisfiability We present a measure of satisfiability that uses the

graph-based distance to an accepting state in the DFA Aϕcosafe
. Each high-level state

(d, zc, zs) is annotated with the graph-based distance value DistFromAcc(zc) cor-

responding to the automaton state zc ∈ Aϕcosafe
.Z. Our framework computes trajec-

tories that end in a high-level state (dg, zcg, z
s
g) such that

1. zsg is accepting in Aϕsafe
, and

2. DistFromAcc(zcg) is minimized.

If ϕcosafe is satisfiable in the current environment, then DistFromAcc(zcg) = 0, i.e.,

(dg, zcg, z
s
g) is an accepting state. On the other hand, if ϕcosafe is unsatisfiable, then

zcg is as close as possible to accepting state in Aϕcosafe
. In all cases, our framework

requires that ϕsafe is satisfiable and should abort in cases in which ϕsafe is determined

to be unsatisfiable. In many cases, there are multiple candidate high-level states that

tie under the DistFromAcc metric over the co-safe automaton states. To break ties,

we choose the high-level state with minimal edge-weight distance from the starting

high-level state, using the edge-weight function defined in (3.2).

46

The function DistFromAcc is an intuitive measure on the co-safe automaton

that translates to a reasonable high-level plan for many formulas that we have en-

countered, such as the example specification in Section 1.1. For such a specification, a

trajectory that minimizes DistFromAcc takes the robot to all reachable regions of

interest, while a non-optimal trajectory with respect to DistFromAcc would miss

some reachable regions.

There exist other specifications in which our method of minimizing DistFromAcc

does not necessarily yield the most intuitive plans. For example, consider the co-safe

formula to visit regions R1, R2, and R3 in that specific order:

ψ = F
(

R1 ∧ F (R2 ∧ FR3)
)

.

The formula ψ is often called a sequencing formula. The minimal DFA corresponding

to ψ is illustrated in Figure 3.2. If the region R1 is inaccessible, then our approach of

0

!R1

1
R1

!R2

2
R2

!R3

3
R3

t r u e

Figure 3.2: A DFA corresponding to a sequencing formula. Cases in which the proposi-
tional region R1 is inaccessible demonstrate a weakness of our partial satisfaction approach
using DistFromAcc.

minimizing DistFromAcc would yield a plan for the robot to not perform any tasks

at all. Specifically, since the first task of the specification, to visit R1, is impossible,

the closest the framework can get to an accepting state in the automaton is the

47

initial state. In many situations, a more reasonable approach would be for the robot

to “skip” the edge in the DFA corresponding to the first task, and to then visit R2

and R3 in order. Our current approach does not support such approximations. In a

sense, our approach only allows for “skipping” of automaton edges only if they are at

the end of a finite trace and conclude at an accepting state.

The topic of “approximating” temporal properties is a subject of ongoing research.

Generally, it requires making the satisfaction relation quantitative rather than quali-

tative. For example, the satisfaction value can be an arbitrary lattice element rather

than a boolean value; cf. [39]. In addition, the authors in [73] describe a synthe-

sis algorithm to minimize quantitative satisfaction error given a set of contradictory

specifications.

Guiding the Low-Level Tree Planner The subroutine ComputeAvailable-

Cells in line 4 of Algorithm 3.3.2 creates a set of high-level states from the current

lead that are nonempty (i.e., there exist vertices in the tree of motions that are an-

notated with these high-level states). To promote progress, we favor high-level states

that are closest to the accepting state of the lead. Specifically, moving backwards

along the lead, for each nonempty high-level state (d, zc, zs) we encounter, we add

(d, zc, zs) to the set C of available high-level states and then quit early with probabil-

ity 0.5. By quitting the process early with probability 0.5, we are biasing expansion

toward the areas of the tree that have made the most progress along the lead, and

therefore have made the most progress completing the task specification.

The subroutine Explore, given in Algorithm 3.3.4, corresponds to the low-level

48

search layer of our framework. This function promotes tree expansion in high-level

states from the set C. In line 2 of Explore, a high-level state (d, zc, zs) is sampled

with probability
w(d, zc, zs)

∑

(d′,zc′,zs′)∈C w(d′, zc′, zs′)
.

Then, in line 3, a low-level tree planner attempts to create a new tree vertex corre-

sponding to both a robot state s that maps to abstraction state d and a trajectory

from the tree root that maps to automaton states zc and zs in Aϕcosafe
and Aϕsafe

,

respectively. Any tree-based motion planner can be used in this step; in our imple-

mentation, we are using an EST-like approach [28].

If zc and zs are accepting states in their respective automata, then v is returned as

the endpoint of a solution trajectory, which is constructed by Plan in line 7 (zc can

just be as close as possible to an accepting state if ϕcosafe is unsatisfiable). Otherwise,

if the new vertex v corresponds to a newly reached high-level state that is in the

current lead, then the high-level state is added to the set of available cells in line 8

of Explore to be considered in future iterations. We make no attempt in Plan

to smooth or shorten the continuous solution trajectory. Shortening a trajectory to

satisfy both differential constraints and a logical specification remains a topic of future

work.

3.3.4 Discovering an Obstacle and Replanning

Once a system trajectory that satisfies ϕ is computed, we begin moving the robot

along the trajectory. At each state in the trajectory, we query the robot’s range

49

sensor in line 11 of Algorithm 3.3.1. We assume that the robot’s range sensor checks

for obstacles within radius ρ of the center of the robot and reports a polygonal model

of any previously unknown obstacle that it finds. If no new obstacles are discovered

along the trajectory, then the robot reaches the final state of the planned trajectory

and stops, having completed its mission. If an obstacle is discovered by the range

sensor from some state s along the trajectory, then we apply a braking operation to

the robot to reach some stopped state s′ in line 12 of Algorithm 3.3.1. The braking

operation should respect the dynamics of the system. In the general case, the robot

should perform a contingency maneuver to avoid the newly discovered obstacle [1,23].

The radius ρ of the range sensor is assumed to be large enough for the braking

or contingency maneuver to safely be performed. Once the braking maneuver is

complete, we patch the portion of the discrete abstractionM that intersects the new

obstacle by calling the subroutine PatchProduct defined in Algorithm 3.3.5, and

we obtain an updated instance ofM that ignores all known obstacles. After patching

the discrete abstraction, PatchProduct patches the corresponding elements of P.

The PatchProduct routine operates in four steps, given in lines 1 through 4 of

Algorithm 3.3.5:

1. Compute the set R of workspace regions of M that intersect with the new

obstacle.

2. Compute the exterior boundary of the set R as a planar straight-line graph

(V,E), using Algorithm 3.3.6.

3. Compute a new triangulation N of the section of the workspace enclosed by

50

(V,E).

4. Insert the new triangulation N into the abstraction M and propagate the

changes to the product automaton P.

After the product automaton has been patched, we replan a trajectory from s′ in

line 16 of Algorithm 3.3.1, following the same planning approach described in Sec-

tion 3.3.3. Once a new trajectory is found by the planner, we resume moving the

robot from s′ along the new trajectory. It is important to note that only the high-

level states of P that intersect with the new obstacle are replaced, and their incident

edge weights are lost and recomputed in the next planning iteration. All other high-

level states and edge weights in P are retained. Specifically, the counters represented

by cov and numsel in (3.2) for high-level states are do not intersect with the new

obstacle are not reset to 0.

51

Chapter 4

Framework Implementation and

Experimentation

To test our approach, we have created two experiments for a second-order car to

explore an office-like environment and a maze-like environment. The full map of the

office is shown in Figure 4.1(a). The full map of the maze is shown in Figure 4.5(a).

For the office and maze environments, we will experiment with different combinations

of co-safe and safe formula specifications.

We first briefly discuss the implementation of our framework.

4.1 Implementation

We have implemented our framework and experiments in C++ using the Open

Motion Planning Library (ompl) [17]. The main components of the implementation

52

are the following.

1. World - an assignment of boolean values to propositions. A World can be

partially restrictive. For example, {p0,¬p3} is a World in which p0 is true, p3

is false, and the other propositions can have any value. Our notion of a World

is similar to a truth assignment in propositional logic.

2. Propositional Decomposition - a geometry-using triangulation of the workspace

that ignores obstacles and respects propositional regions. Each triangle is an-

notated with the values of the propositional regions to which it belongs, if any;

in other words, each triangle in the decomposition has a corresponding World.

3. Automaton - a deterministic finite automaton with a single start state and any

number of accepting states. An Automaton runs over sequences of Worlds.

4. Product Graph - a Cartesian product of a Propositional Decomposition and an

Automaton. A Product Graph is referred to as a product automaton in this

thesis. Internally, a Product Graph is implemented using the Boost Graph

Library for efficiency [71].

5. Planner - a multi-layered motion planner that computes trajectories by search-

ing the Product Graph for discrete guides.

For the co-safe LTL formulas considered in our experiments, we have converted

them to minimal DFAs by using scheck [44]. As discussed in Section 3.1.2, ϕcosafe and

ϕsafe are converted into the minimum DFAs Aϕcosafe
and Aϕsafe

, where Aϕcosafe
accepts

precisely all finite traces that satisfy ϕcosafe, and Aϕsafe
accepts precisely all finite

53

traces that do not violate ϕsafe. To triangulate environments, we use Triangle [69].

All experiments were run on the Shared University Computing Grid at Rice. Each

experiment used a 2.83 Ghz Intel Xeon processor with 16 GB RAM. For each set of

input parameters, we average our timing measurements over 50 independent runs.

All experimental results presented in this section are meant as a proof of concept

of our framework, as well as a demonstration of robustness. As was shown in previous

works described in Section 2.3.2, the algorithm from which our framework extends has

been shown to improve performance over monitor-based solutions (using tree-based

planners without high-level guides) by orders of magnitude. It is difficult to fairly

make a direct comparison between this framework and synthesis-based approaches

described in Section 2.4.1, as synthesis-based approaches are assuming specific types

of robotic dynamics and are not using motion planning.

4.2 Experiments

In all experiments, we use a second-order car-like robot. The robot’s state is repre-

sented by q = (x, y, θ, v, ψ), which includes the planar position (x, y) ∈ [0, 10]2, head-

ing θ ∈ [−π, π], forward velocity v ∈ [−1/2, 1/2], and steering angle ψ ∈ [−π/6, π/6].

The car is controlled with the input pair u = (u0, u1), where u0 ∈ [−1/2, 1/2] is

the forward acceleration and u1 ∈ [−π/18, π/18] is the steering angle velocity. The

54

dynamics of the car are given by

































ẋ

ẏ

θ̇

v̇

ψ̇

































=

































v cos θ

v sin θ

v
l

tanψ

u0

u1

































,

where l is the length (the distance between the front and rear axles) of the car [47].

The car is given a sensing radius of 1. If, when executing a solution trajectory, it

discovers a new obstacle within its sensing radius, the car switches to an “emergency”

mode in which it applies a deceleration sufficient to reduce its velocity to ǫ > 0

before colliding with the obstacle. It then patches the abstraction and the product

automaton and computes a new trajectory to follow.

4.2.1 The Office-Like Environment

In this experiment, the robot is asked to visit N randomly chosen regions p0, . . . , pN−1

of interest in any order, where N ∈ {1, . . . , 5}, and to always avoid the sixth region

p5. Formally, the robot is given the LTL specification ϕoffice = (ϕcosafe, ϕsafe), where

ϕcosafe =
N−1
∧

i=0

Fpi (4.1)

and

ϕsafe = G¬p5.

55

Each pi corresponds to a propositional region in the office environment. Specifically,

p0, . . . , p5 correspond to the red, green, orange, purple, yellow, and brown regions,

respectively.

The robot’s initial map includes the walls of the office. However, the robot is

unaware that the doors to two of the rooms are closed (we model this as rectangular

obstacles filling the doorways). Figure 4.1(a) contains the actual map of the office,

and Figure 4.1(b) contains the robot’s initial map. We include the triangulations in

the maps in Figure 4.1 to demonstrate granularity. A triangulation always respects

the currently known obstacles and the geometry of the propositional regions.

Table 4.1: Experimental data for office experiment with a full initial map and a partial
initial map. All times are computed in seconds and are averaged over 50 independent runs.

Initial Map N Solution Time (s)
Time (s) Computing and
Patching Product P = M × Aϕ

Full 1 1.08 0.005
2 2.36 0.006
3 5.44 0.007
4 12.43 0.01
5 16.44 0.012

Partial 1 2.69 0.014
2 9.0 0.036
3 23.08 0.102
4 49.18 0.226
5 80.01 0.395

Table 4.1 contains experimental data for satisfying the formula ϕoffice =
(

∧N−1
i=0 Fpi,G¬p5

)

in the office environment, comparing the full initial map (Figure 4.1(a)) to a partial

initial map (Figure 4.1(b)). With a fully accurate initial map, the robot does not

encounter any unanticipated obstacles, and so our method behaves equivalently to

the past method presented in [3–5]. We are including data for the full initial map

for comparison. For the partial map, planning times increase significantly with the

number of regions of interest in the coverage formula. Visiting more regions causes

56

(a)

(b)

Figure 4.1: (a) an office-like environment with propositional regions of interest; (b) the
robot’s initial map, in which 3 obstacles are unknown.

57

the robot to discover more unknown obstacles, each of which requires the robot to

brake. Every time the robot comes to a stop near a newly discovered obstacle, plan-

ning a solution trajectory from that stopped point is often time-consuming for the

low-level motion-planning layer. This is due to the close proximity of the robot and

the obstacle. With longer-range sensors, this problem can be alleviated. For all ex-

periments, times spent computing and subsequently patching the product automaton

P remain very small. Figure 4.2 contains an example trajectory for the robot, given

a co-safe specification to visit three regions of interest (green, orange, and yellow),

one of which is unreachable (green) due to a closed door, and a safe specification

to avoid the brown region. This is a “raw” trajectory returned by our motion plan-

ning framework. No post-processing has been performed on the trajectory (i.e., no

smoothing). First, the robot drives toward the room containing the green region.

When it encounters the door, it brakes and patches the abstraction and the product

automaton. The planning framework uses our measure of satisfiability to generate

another trajectory that satisfies the co-safe specification as closely as possible, which

is to visit the two remaining regions.

To test the importance of the initial map, we have also run experiments with

initial maps of varying accuracy, ranging from a completely known environment to a

completely unknown environment in which no obstacles or walls are initially known

by the robot (except for the bounding box of the environment). The four types of

initial maps are shown in Figure 4.3. As before, all propositional regions are initially

known. Figure 4.4(a) contains average total planning times for this set of experiments.

Figure 4.4(b) contains average total times spent building and patching the product

58

Figure 4.2: A sample trajectory that satisfies the co-safe specification “Visit the green,
orange, and yellow regions in any order” as closely as possible.

59

(a) (b)

(c) (d)

Figure 4.3: Office-like environments in which (a) all obstacles are known; (b) 3 obstacles
are unknown; (c) 6 obstacles are unknown; (d) all 16 obstacles are unknown.

60

automaton. In these experiments, we focus on solving ϕ5, the most difficult of the

formulas to consider. The time spent building and patching the product automaton

is negligible compared to the time spent planning solution trajectories. Moreover, all

solution times scale with the number of unknown obstacles that are discovered in the

environment.

In Section 2.1, we described our framework’s ability to efficiently deal with a

large number of potential environmental unknowns as an advantage over synthesis-

based approaches which become intractable with many unknowns. The timing data

in Figure 4.4(a) reveals a weakness in our framework, specifically that the planning

time scales with the number of discovered obstacles. Based on this data, we conclude

that this framework is most effective when the robot’s initial map of the environment

is mostly accurate. The robot must recompute a solution trajectory for every obstacle

that is discovered, and with a completely unknown environment (the rightmost bar

in which 15 obstacles are unknown), the wasted planning time can add up.

4.2.2 The Maze-Like Environment

In this experiment, the robot is given a more complex goal. The maze-like envi-

ronment contains six propositional regions, p0 through p5, corresponding to the red,

green, orange, purple, yellow, and brown regions in Figure 4.5.

The robot is given the LTL specification ϕmaze = (ϕcosafe, ϕsafe), where

ϕcosafe = Fp0 ∧ Fp5,

61

(a)

(b)

Figure 4.4: Average total time spent (a) planning and (b) building and patching the
product automaton with the office environment using formula ϕ5 and varied initial maps.
All times are computed in seconds and are averaged over 50 independent runs.

62

(a)

(b)

Figure 4.5: (a) a maze-like environment with propositional regions of interest; (b) the
robot’s initial map of the maze, in which one obstacle is unknown.

63

which specifies that the robot should visit the red and brown regions in any order,

and

ϕsafe = G¬p3 ∧ G
(

p2 → G¬p4

)

,

which specifies that if the robot should always avoid p3, and if it ever visits p2, then it

should subsequently always avoid p4. With ϕsafe, we are giving the robot two options

on how to deal with the “fork in the road” in the middle of the maze environment.

If the robot takes the left path and drives through p1, the green region, then it must

take special care to avoid visiting p3, the purple region which is nearby. If, on the

other hand, the robot takes the right path and drives through p2, the orange region,

then the robot cannot touch p4 (the yellow region) on its way to p5. The DFA Aϕcosafe
,

which accepts precisely all finite traces that satisfy ϕcosafe, is given in Figure 4.6. The

DFA Aϕsafe
, which accepts precisely all finite traces that do not violate ϕsafe, is given

in Figure 4.7. Figure 4.7 also illustrates how we obtain Aϕsafe
: by computing the DFA

corresponding to ¬ϕsafe, flipping its acceptance condition, and minimizing.

The robot’s initial map of the maze, given in Figure 4.5(b), includes all obstacles

except for the wall blocking the red region (p0). Figure 4.5(a) contains the actual

map of the maze.

Table 4.2 contains experimental data for satisfying the formula ϕmaze in the maze

environment, comparing the full initial map (Figure 4.5(a) to the partial initial map

Figure 4.5(b). As with the office environment, with a fully accurate initial map,

our method behaves equivalently to ML-LTL-MP [3–5]. The maze environment is an

example in which our framework does quite well, as the robot’s initial map of the

64

0

!p5 & !p0 2
p 5

1

p 0

! p 0

3

p 0

! p 5
p 5

t r u e

Figure 4.6: The minimal DFA Aϕsafe
, corresponding to the safe component ϕcosafe of the

LTL specification ϕmaze.

environment is almost completely accurate. Beginning with a partial initial map, once

the robot discovers the wall blocking the red region, it must brake and recompute one

more trajectory to execute, finishing with a solution time approximately twice that

of when the robot has a full initial map.

Table 4.2: Experimental data for the maze experiment with a full initial map and a partial
initial map. All times are computed in seconds and are averaged over 50 independent runs.

Initial Map Solution Time (s)
Time (s) Computing and
Patching Product P = M × Aϕ

Full 9.54 0.008
Partial 23.1 0.062

65

0

!p2 & !p3
1p 2

2p 3

!p3 & !p4

p3 | p4
t r u e

0

!p2 & !p3
1p 2

2p 3

!p3 & !p4

p3 | p4
t r u e

0

!p2 & !p3

1
p 2

!p3 & !p4

Figure 4.7: The conversion from the DFA corresponding to ¬ϕsafe to the minimal DFA
Aϕsafe

.

66

Chapter 5

Possible Extensions

In this chapter we discuss one immediate possible extension to our framework,

related to our use of logical specifications. As we discuss in the following section, the

product automaton used by our framework is general enough to easily be extended

to multiple types of temporal logic formulas.

5.1 Hard and Soft Constraints

The formula ϕsafe, as we have used it in our framework, does not actually have

to be a safety formula. Instead, it can just be the components of the temporal logic

specification that we wish to treat as a “hard” constraint. Similarly, ϕcosafe, as we

have used it, just needs to encode the “soft” constraints of the specification.

The issue of hard versus soft constraints is a very rich area of research. For

one, in the area of classical AI planning, a constraint satisfaction problem (CSP) is

67

a graph-based search problem with a set of rigid (hard) constraints [67]. Flexible

CSPs are an extension of CSPs in which a solution is allowed to violate some (soft)

constraints [20, 24, 55]. Typically, solutions to flexible CSPs are ranked according to

how many soft constraints they violate, and each constraint can be assigned a weight

value to control its priority of satisfaction. Additionally, preference-based planning is

a type of classical planning in which all constraints are soft [8, 18, 25, 72]. Typically,

as with flexible CSPs, paths in preference-based planning are ranked according to

the number of preferences they satisfy. The Planning Domain Definition Language

(PDDL) is an example of an AI planning language that supports preference-based

planning [26, 54].

In the case of our framework, we imagine a simple extension of our framework

that accepts as input an arbitrary number of hard and soft constraint LTL formulas.

We assume that the hard constraint formulas are ones that cannot be violated by the

robot, and the soft constraint formulas are ones that we allow to violate if necessary,

but will satisfy as closely as possible. The product automaton through which we

guide a low-level planner would then be computed as

P =M×
∏

H∈Hard

H×
∏

S∈Soft

S.

Assuming Hard = {H1, . . . ,Hk} and Soft = {S1, . . . ,Sl}, where each Hi ∈ Hard

is a DFA encoding a hard constraint formula, and each Sj ∈ Soft is a DFA encoding

a soft constraint formula, a lead through the product automaton P would then be a

68

sequence of high-level states

((

d0, {h
i
0}
k
i=1, {s

j
0}
l
j=1

)

, . . . ,
(

dg, {h
i
g}
k
i=1, {s

j
g}
l
j=1

))

such that hig is accepting in Hi for each i, and DistFromAcc(sjg,Sj) is minimized

for each j.

5.2 Beyond Co-safe and Safe LTL

It is important to note that because our framework accepts arbitrary DFAs as

inputs to represent specifications, we can support more than just co-safety and safety

formulas. To illustrate this, we adapt the maze experiment from Section 4.2.2; we

move the yellow region of interest to the top-left corner of the map. As before, the

robot’s initial map does not contain the wall blocking the red region. Figures 5.1(a)

and 5.1(b) contain the actual map of the maze environment and the robot’s initial

map, respectively.

We generalize the specifications given to the robot in terms of “soft” and “hard”

constraints as described in the previous section. As before, the soft constraint speci-

fication component is for the robot to “visit the red and brown regions in any order”,

given by the formula

ϕ = Fp0 ∧ Fp5.

We change the hard constraint specification to be the following command: “Always

avoid the purple region. Each time you visit the orange region, then you should

69

(a)

(b)

Figure 5.1: (a) A maze-like environment with propositional regions of interest; (b) the
robot’s initial map of the maze, in which one obstacle is unknown.

70

immediately visit the yellow region afterwards.” This command is given by the formula

ψ = G(¬p3) ∧ G
(

p2 → ¬(p0 ∨ p1 ∨ p3 ∨ p4 ∨ p5)Up4)
)

.

Notice that ψ is neither a co-safety formula nor a safety formula. For one, any finite

trace that satisfies ψ can be extended with behavior that visits the purple region,

which sets p3 to true and violates ψ. Additionally, there exist finite traces that violate

the right conjunct of ψ (such as visiting orange region and staying there) which can

be extended with behavior to satisfy ψ (such as leaving the orange region and then

immediately visiting the yellow region). The formula ψ is a liveness property. Even

though ψ is neither a co-safety or safety formula, we can still manually construct a

minimal DFA that accepts precisely all finite traces that satisfy ψ (here we loosely

use the term satisfy to mean satisfies over finite semantics, i.e., ends in an accepting

state). Figure 5.2 contains such a DFA. Our framework works well with such a DFA.

Table 5.1 contains experimental data for the robot satisfying the specification (ϕ, ψ)

in the maze-like environment.

0

!p2 & !p3

1
 p2

 p4

!p0 & !p1 & !p3
& !p4 & !p5

Figure 5.2: The minimal DFA Aψ, corresponding to the liveness formula ψ.

71

Table 5.1: Experimental data for maze with a partial initial map.

Solution Time
Time Computing
Product P = M × Aϕ

18.34 0.3

72

Chapter 6

Conclusion and Future Work

In this thesis, we have presented an iterative motion planning framework for a

robotic system with complex and possibly nonlinear dynamics given a partially un-

known environment and a temporal logic specification consisting of co-safe and safe

formula components. We have also presented a measure of satisfiability which we can

optimize in cases where obstacles in the environment prevent full satisfaction of the

co-safe component of the given temporal logic specification. In such cases, the robotic

system satisfies the co-safe specification as closely as possible, while still guaranteeing

that the robotic system does not violate the safe specification.

For future work, we plan to add support for obstacles to disappear from the robot’s

initial map (the current framework only supports obstacles appearing). We could

also assume a probabilistic distribution on where and when obstacles will appear,

and then generate trajectories that maximize probability of successful satisfaction of

the specification. In addition, we would like to consider a “greedy” temporal motion

73

planning approach that begins executing a partial trajectory along a lead in the

product automaton. This is to prevent the framework from wasting time generating

an entire solution trajectory for a large specification, only to discover an obstacle

early in that trajectory, stop, and recompute another solution trajectory. As seen in

our experiments, when the robot’s initial map is sufficiently inaccurate, this wasted

planning time can add up.

One strength of our framework lies in our ability to consider any type of polygonal

obstacle being discovered in any part of the environment. With alternative synthesis-

based approaches, to consider such a large number of unknowns would be intractable.

However, as we discussed in our experimental results in Chapter 4, our solution times

scale with the number of obstacles that are discovered by the robot, and therefore our

framework will perform best when only a few obstacles are missing from the robot’s

initial map of the environment. Additionally, our approach is novel in how we deal

with a newly discovered obstacle. Because the product automaton, the high-level

structure we use for planning, keeps the task specification and the workspace ab-

straction separate, reworking the product automaton to incorporate the new obstacle

does not require recomputing the automata corresponding to the specifications, which

is the most time-intensive task.

At the same time, our framework should not be viewed as completely separate

from the synthesis-based approaches discussed in Section 2.4.1. The two approaches

can certainly be connected. For one, a robot with known dynamics and a bisimilar

abstraction of the environment can certainly be used in our framework. The high-level

layer, where the product automaton consists of a product of the workspace abstraction

74

and the automata corresponding to the task specifications, would remain exactly the

same. The low-level layer would be significantly simpler. Because of the bisimilarity

property between the robot’s dynamics and the discrete workspace abstraction, any

high-level guide computed through the product automaton would be realizable by the

robot. So, the first high-level guide computed by our framework could be sent to the

robot, and the corresponding controllers could be generated to take the robot through

each region in the guide. When a new obstacle is discovered and the abstraction is

recomputed, it is likely that the bisimilarity property can no longer be preserved. In

such cases, the framework could “fall back” on motion planning to complete the task.

It is clear that robotic planning with temporal logic specifications remains a fertile

area for research. Referring back to the continuum in Figure 1.1 in Chapter 1, plan-

ning for tasks such as “cook dinner” requires strong notions of logical and dynamical

constraints, as well as support for dealing with uncertainties both internally and ex-

ternally. This thesis touches upon several of these issues, specifically how to satisfy

logical constraints in light of external uncertainties. Together with the related work

being done on these and the other issues in constraints and uncertainties, many of

which we have discussed in Chapter 2, we as a research community are incrementally

moving along the planning continuum from Figure 1.1. As robots become increas-

ingly ubiquitous, the research done in this area will prove to be one of the many key

foundations in designing autonomous robots to work in the presence of humans.

75

Bibliography

[1] Kostas E. Bekris, Devin K. Grady, Mark Moll, and Lydia E. Kavraki. Safe
distributed motion coordination for second-order systems with different planning
cycles. Intl. J. of Robotics Research, 31(2):129–149, February 2012.

[2] Kostas E. Bekris and Lydia E. Kavraki. Greedy but safe replanning under kin-
odynamic constraints. In IEEE Intl. Conf. on Robotics and Automation, pages
704–710, 2007.

[3] A. Bhatia, L.E. Kavraki, and M.Y. Vardi. Motion planning with hybrid dynamics
and temporal goals. In Decision and Control (CDC), 2010 49th IEEE Conference
on, pages 1108 –1115, Dec. 2010.

[4] A. Bhatia, L.E. Kavraki, and M.Y. Vardi. Sampling-based motion planning with
temporal goals. In Robotics and Automation (ICRA), 2010 IEEE International
Conference on, pages 2689 –2696, May 2010.

[5] A. Bhatia, M.R. Maly, L.E. Kavraki, and M.Y. Vardi. Motion planning with
complex goals. Robotics Automation Magazine, IEEE, 18(3):55 –64, Sep. 2011.

[6] R. Bloem, K. Greimel, T.A. Henzinger, and B. Jobstmann. Synthesizing robust
systems. In Formal Methods in Computer-Aided Design, 2009. FMCAD 2009,
pages 85–92. IEEE, 2009.

[7] Roderick Bloem, Barbara Jobstmann, Nir Piterman, Amir Pnueli, and Yaniv
SaÊĳar. Synthesis of reactive (1) designs. Journal of Computer and System
Sciences, 78(3):911–938, 2012.

[8] Ronen I Brafman and Yuri Chernyavsky. Planning with goal preferences and
constraints. In Proceedings of ICAPS, pages 182–191, 2005.

76

[9] B. Burns and O. Brock. Single-query motion planning with utility-guided random
trees. In IEEE Intl. Conf. on Robotics and Automation, pages 3307–3312, April
2007.

[10] John Canny. Some algebraic and geometric computations in PSPACE. In Annual
ACM Symposium on Theory of Computing, pages 460–469, Chicago, Illinois,
United States, 1988. ACM Press.

[11] Yushan Chen, J. Tumova, and C. Belta. LTL robot motion control based on
automata learning of environmental dynamics. In Robotics and Automation
(ICRA), 2012 IEEE International Conference on, pages 5177 –5182, May 2012.

[12] Peng Cheng, George Pappas, and Vijay Kumar. Decidability of motion planning
with differential constraints. In IEEE Intl. Conf. on Robotics and Automation,
pages 1826–1831, 2007.

[13] Howie Choset, Kevin M. Lynch, Seth Hutchinson, George Kantor, Wolfram Bur-
gard, Lydia E. Kavraki, and Sebastian Thrun. Principles of Robot Motion:
Theory, Algorithms, and Implementations. MIT Press, 2005.

[14] Ioan A. Şucan. Task and Motion Planning for Mobile Manipulators. PhD thesis,
Rice University, Department of Computer Science, Houston, TX, August 2011.

[15] Ioan A. Şucan and Lydia E. Kavraki. On the implementation of single-query
sampling-based motion planners. In IEEE Intl. Conf. on Robotics and Automa-
tion, pages 2005–2011, may 2010.

[16] Ioan A. Şucan and Lydia E. Kavraki. A sampling-based tree planner for systems
with complex dynamics. IEEE Trans. on Robotics, 28(1):116–131, 2012.

[17] Ioan A. Şucan, Mark Moll, and Lydia E. Kavraki. The Open Motion Planning
Library. IEEE Robotics & Automation Magazine, 2012. Accepted for publication.

[18] James P Delgrande, Torsten Schaub, and Hans Tompits. A general framework
for expressing preferences in causal reasoning and planning. Journal of Logic and
Computation, 17(5):871–907, 2007.

[19] X.C. Ding, S.L. Smith, C. Belta, and D. Rus. MDP optimal control under tempo-
ral logic constraints. In Decision and Control and European Control Conference
(CDC-ECC), 2011 50th IEEE Conference on, pages 532–538. IEEE, 2011.

77

[20] Didier Dubois, Helene Fargier, and Henri Prade. Possibility theory in constraint
satisfaction problems: Handling priority, preference and uncertainty. Applied
Intelligence, 6(4):287–309, 1996.

[21] G. Fainekos, A. Girard, H. Kress-Gazit, and G. J. Pappas. Temporal logic motion
planning for dynamic robots. Automatica, 45:343–352, 2009.

[22] Cameron Finucane, Gangyuan Jing, and Hadas Kress-Gazit. Ltlmop: Experi-
menting with language, temporal logic and robot control. In IEEE/RSJ Int’l.
Conf. on Intelligent Robots and Systems, pages 1988 – 1993, 2010.

[23] T. Fraichard. A short paper about motion safety. In Proc. 2007 IEEE Intl. Conf.
on Robotics and Automation, pages 1140–1145, April 2007.

[24] Eugene C Freuder, Richard J Wallace, and Robert Heffernan. Partial constraint
satisfaction. In Artificial Intelligence, 1992.

[25] Alfonso Gerevini and Derek Long. Plan constraints and preferences in pddl3. The
Language of the Fifth International Planning Competition. Tech. Rep. Technical
Report, Department of Electronics for Automation, University of Brescia, Italy,
2005.

[26] Alfonso Gerevini and Derek Long. Preferences and soft constraints in pddl3. In
ICAPS workshop on planning with preferences and soft constraints, pages 46–53,
2006.

[27] John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. Introduction to
Automata Theory, Languages, and Computation (3rd Edition). Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 2006.

[28] D. Hsu, J.C. Latombe, and R. Motwani. Path planning in expansive configuration
spaces. Intl. J. of Computational Geometry and Applications, 9(4-5):495–512,
1999.

[29] David Hsu, Robert Kindel, Jean-Claude Latombe, and Stephen Rock. Random-
ized kinodynamic planning with moving obstacles. Intl. J. of Robotics Research,
21(3):233–255, March 2002.

[30] Karaman and Frazzoli. Sampling-based motion planning with deterministic µ-
calculus specifications. In IEEE Conference on Decision and Control (CDC),
Shanghai, China, Dec. 2009.

78

[31] L. E. Kavraki, P. Švestka, J.-C. Latombe, and M. H. Overmars. Probabilistic
roadmaps for path planning in high-dimensional configuration spaces. IEEE
Trans. on Robotics and Automation, 12(4):566–580, August 1996.

[32] Kangjin Kim, G.E. Fainekos, and S. Sankaranarayanan. On the revision problem
of specification automata. In Robotics and Automation (ICRA), 2012 IEEE
International Conference on, pages 5171 –5176, may 2012.

[33] Kangjin Kim and Georgios Fainekos. Approximate solutions for the minimal
revision problem of specification automata. In Proceedings of the IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems, pages 265–271, 2012.

[34] H. Kress-Gazit, G.E. Fainekos, and G.J. Pappas. From structured english to
robot motion. In Intelligent Robots and Systems, 2007. IROS 2007. IEEE/RSJ
International Conference on, pages 2717 –2722, 29 2007-nov. 2 2007.

[35] H. Kress-Gazit, G.E. Fainekos, and G.J. Pappas. Where’s waldo? Sensor-based
temporal logic motion planning. In Robotics and Automation, 2007 IEEE Inter-
national Conference on, pages 3116 –3121, Apr. 2007.

[36] H. Kress-Gazit, G.E. Fainekos, and G.J. Pappas. Temporal-logic-based reactive
mission and motion planning. Robotics, IEEE Transactions on, 25(6):1370–1381,
Dec. 2009.

[37] H. Kress-Gazit, T. Wongpiromsarn, and U. Topcu. Correct, reactive, high-level
robot control. Robotics Automation Magazine, IEEE, 18(3):65 –74, Sep. 2011.

[38] James Kuffner and Steven M. LaValle. RRT-Connect: An efficient approach
to single-query path planning. In Proc. 2000 IEEE Intl. Conf. on Robotics and
Automation, pages 995–1001, San Francisco, CA, April 2000.

[39] O. Kupferman and Y. Lustig. Lattice automata. In Proc. 8th International
Conference on Verification, Model Checking, and Abstract Interpretation, volume
4349 of Lecture Notes in Computer Science, pages 199 – 213. Springer-Verlag,
2007.

[40] O. Kupferman and M. Y. Vardi. Model checking of safety properties. Formal
Methods in System Design, 19:291 – 314, 2001.

[41] A. M. Ladd and L. E. Kavraki. Fast tree-based exploration of state space
for robots with dynamics. In M. Erdmann, D. Hsu, M. Overmars, and A. F.

79

van der Stappen, editors, Algorithmic Foundations of Robotics VI, pages 297–
312. Springer, STAR 17, 2005.

[42] M. Lahijanian, J. Wasniewski, S.B. Andersson, and C. Belta. Motion plan-
ning and control from temporal logic specifications with probabilistic satisfac-
tion guarantees,. In IEEE International Conference on Robotics and Automation,
pages 3227–3232, Anchorage, Alaska, 2010.

[43] Morteza Lahijanian, Sean B. Andersson, and Calin Belta. Temporal logic motion
planning and control with probabilistic satisfaction guarantees. IEEE Transac-
tions on Robotics, 28(2):396–409, Apr. 2012.

[44] T. Latvala. Efficient model checking of safety properties. In Model Checking
Software, pages 74–88. Springer, 2003.

[45] S. M. LaValle. Rapidly-exploring random trees: A new tool for path planning.
Technical Report 98-11, Computer Science Dept., Iowa State University, October
1998.

[46] S. M. LaValle and J. J. Kuffner. Randomized kinodynamic planning. Intl. J. of
Robotics Research, 20(5):378–400, May 2001.

[47] Steven M. LaValle. Planning Algorithms. Cambridge University Press, 2006.

[48] Scott C. Livingston and Richard M. Murray. Just-in-time synthesis for motion
planning with temporal logic. In IEEE Intl. Conf. on Robotics and Automation,
2013. To appear.

[49] Scott C. Livingston, Richard M. Murray, and Joel W. Burdick. Backtracking
temporal logic synthesis for uncertain environments. In ICRA, pages 5163–5170,
2012.

[50] Scott C. Livingston, Pavithra Prabhakar, Alex B. Jose, and Richard M. Murray.
Patching task-level robot controllers based on a local µ-calculus formula. In
IEEE Intl. Conf. on Robotics and Automation, 2013. To appear.

[51] Tomás Lozano-Pérez. Spatial planning: A configuration space approach. IEEE
Trans. Computing, 32(2):108–120, 1983.

[52] Matthew R. Maly, Morteza Lahijanian, Lydia E. Kavraki, Hadas Kress-Gazit,
and Moshe Y. Vardi. Iterative temporal motion planning for hybrid systems in

80

partially unknown environments. In Proceedings of the 16th ACM International
Conference on Hybrid Systems: Computation and Control, 2013. To appear.

[53] M.R. Maly and L.E. Kavraki. Low-dimensional projections for syclop. In Intelli-
gent Robots and Systems (IROS), 2012 IEEE/RSJ International Conference on,
pages 420 –425, oct. 2012.

[54] Drew M McDermott. The 1998 ai planning systems competition. AI magazine,
21(2):35, 2000.

[55] Ian Miguel. Dynamic flexible constraint satisfaction and its application to AI
planning. Springer-Verlag New York Incorporated, 2004.

[56] J. M. Phillips, N. Bedrosian, and L. E. Kavraki. Guided expansive spaces trees:
A search strategy for motion- and cost-constrained state spaces. In Proc. 2004
IEEE Intl. Conf. on Robotics and Automation, pages 3968–3973, New Orleans,
LA, April 2004. IEEE Press.

[57] Nir Piterman, Amir Pnueli, and Yaniv SaâĂŹar. Synthesis of reactive (1) designs.
In Verification, Model Checking, and Abstract Interpretation, pages 364–380.
Springer, 2006.

[58] E. Plaku, L. E. Kavraki, and M. Y. Vardi. Discrete search leading continuous
exploration for kinodynamic motion planning. In Robotics: Science and Systems,
Atlanta, Georgia, 2007.

[59] E. Plaku, L.E. Kavraki, and M.Y. Vardi. Impact of workspace decompositions
on discrete search leading continuous exploration (dslx) motion planning. In
Robotics and Automation, 2008. ICRA 2008. IEEE International Conference
on, pages 3751 –3756, may 2008.

[60] E. Plaku, L.E. Kavraki, and M.Y. Vardi. Motion planning with dynamics
by a synergistic combination of layers of planning. IEEE Trans. on Robotics,
26(3):469–482, Jun. 2010.

[61] E. Plaku, Lydia E. Kavraki, and Moshe Y. Vardi. Falsification of LTL safety
properties in hybrid systems. In Proc. of the Conf. on Tools and Algorithms for
the Construction and Analysis of Systems (TACAS 2009), York, UK, 2009.

[62] E. Plaku, Lydia E. Kavraki, and Moshe Y. Vardi. Hybrid systems: from verifi-
cation to falsification by combining motion planning and discrete search. Formal
Methods in System Design, 34:157–182, 2009.

81

[63] Erion Plaku, Lydia Kavraki, and Moshe Vardi. Falsification of ltl safety proper-
ties in hybrid systems. International Journal on Software Tools for Technology
Transfer (STTT), 2012.

[64] Vasumathi Raman and Hadas Kress-Gazit. Analyzing unsynthesizable specifi-
cations for high-level robot behavior using LTLMoP. In Proceedings of the 23rd
International Conference on Computer Cided Verification, CAV’11, pages 663–
668, Berlin, Heidelberg, 2011. Springer-Verlag.

[65] J. Reif. Complexity of the mover’s problem and generalizations. In Proc. 20th
IEEE Symp. Foundations of Computer Science, pages 421–427, 1979.

[66] S. Rodriguez, Xinyu Tang, Jyh-Ming Lien, and N.M. Amato. An obstacle-based
rapidly-exploring random tree. In Robotics and Automation, 2006. ICRA 2006.
Proceedings 2006 IEEE International Conference on, pages 895 –900, may 2006.

[67] Stuart Jonathan Russell, Peter Norvig, John F Canny, Jitendra M Malik, and
Douglas D Edwards. Artificial intelligence: a modern approach, volume 74.
Prentice hall Englewood Cliffs, 1995.

[68] Shahar Sarid, Bingxin Xu, and Hadas Kress-Gazit. Guaranteeing high-level
behaviors while exploring partially known maps. In Proceedings of Robotics:
Science and Systems, Sydney, Australia, July 2012.

[69] J. Shewchuk. Triangle: Engineering a 2D quality mesh generator and Delaunay
triangulator. In Applied Computational Geometry Towards Geometric Engineer-
ing, volume 1148 of Lecture Notes in Computer Science, chapter 23, pages 203 –
222. Springer-Verlag, Berlin/Heidelberg, 1996.

[70] A. Shkolnik, M. Walter, and R. Tedrake. Reachability-guided sampling for plan-
ning under differential constraints. In IEEE Intl. Conf. on Robotics and Automa-
tion, pages 2859–2865, 12-17 2009.

[71] Jeremy G. Siek, Lee-Quan Lee, and Andrew Lumsdaine. The Boost Graph Li-
brary: User Guide and Reference Manual. Addison-Wesley, 2002.

[72] Menkes Van Den Briel, Romeo Sanchez, Minh B Do, and Subbarao Kambham-
pati. Effective approaches for partial satisfaction (over-subscription) planning.
In Proceedings of the National Conference on Artificial Intelligence, pages 562–
569. Menlo Park, CA; Cambridge, MA; London; AAAI Press; MIT Press; 1999,
2004.

82

[73] Pavol Černý, Sivakanth Gopi, Thomas A. Henzinger, Arjun Radhakrishna, and
Nishant Totla. Synthesis from incompatible specifications. In Proceedings of the
tenth ACM international conference on Embedded software, EMSOFT ’12, pages
53–62, New York, NY, USA, 2012. ACM.

[74] T. Wongpiromsarn, U. Topcu, and R.M. Murray. Receding horizon control for
temporal logic specifications. In Proceedings of the 13th ACM International Con-
ference on Hybrid Systems: Computation and Control, pages 101–110. ACM,
2010.

[75] T. Wongpiromsarn, U. Topcu, and R.M. Murray. Receding horizon temporal
logic planning. Automatic Control, IEEE Transactions on, 57(11):2817 –2830,
nov. 2012.

83

	Introduction
	Contributions

	Related Work
	Classifying this Work
	On Partially Satisfying a Specification

	Motion Planning
	Sampling-Based Motion Planning
	Planning with Differential Constraints
	Discrete Guides for Continuous Motion

	On Logic Specifications for Robots
	Synthesis-Based Approaches
	Motion-Planning Approaches

	Temporal Motion Planning in Partially Unknown Environments
	Preliminaries
	Motion Planning Problem with a Temporal Logic Specification
	Syntactically Co-safe and Safe LTL

	Problem Description and Overall Approach
	Overall Approach

	Planning Framework
	Abstraction
	Initializing the Product Automaton
	Planning
	Discovering an Obstacle and Replanning

	Framework Implementation and Experimentation
	Implementation
	Experiments
	The Office-Like Environment
	The Maze-Like Environment

	Possible Extensions
	Hard and Soft Constraints
	Beyond Co-safe and Safe LTL

	Conclusion and Future Work

