
RICE UNIVERSITY

Motion Planning for Physical Simulation

by

Andrew M. Ladd

A THESIS SUBMITTED

IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE DEGREE

Doctor of Philosophy

APPROVED, THESIS COMMITTEE:

Lydia E. Kavraki, Professor, Chair

Computer Science

Joe Warren, Professor

Computer Science

Richard Baraniuk, Professor

Electrical and Computer Engineering

HOUSTON, TEXAS

DECEMBER 2006

ABSTRACT

Motion Planning for Physical Simulation

by

Andrew M. Ladd

Motion planning research has been successful in developing planning algorithms which are

effective for solving problems with complicated geometric and kinematic constraints. Var-

ious applications in robotics and in other fields demand additional physical realism. Some

progress has been made for non-holonomic systems. However systems with complex dy-

namics, significant drift, underactuation and discrete system changes remain challenging

for existing planning techniques particularly as the dimensionality of the state space in-

creases. This thesis develops a novel motion planning technique for the solution of prob-

lems with these challenging characteristics. The novel approach is called Path Directed

Subdivision Tree Exploration algorithm (PDST-EXPLORE) and is based on sampling-

based motion planning and subdivision methods. PDST-EXPLORE demonstrates how to

link a planner with a physical simulator using the latter as a black box, to generate realistic

solution paths for complex systems. The thesis contains experimental results with exam-

ples with simplified physics including a second order differential drive robot and a game

which exemplifies characteristics of dynamical systems which are difficult for planning.

The thesis also contains experimental results for systems with simulated physics, namely

a weight lifting robot and a car. Both systems have a degree of physical realism which

could not be incorporated into planning before. The new planner is finally shown to be

probabilistically complete.

Acknowledgments

I would like to thank my advisor Lydia Kavraki who is an outstanding example of what a

great mentor and a friend can be.

My deepest gratitude and love go to my wonderful wife Fumiko, my family and my

friends.

My thesis committee provided constructive critique and feedback that improved this

thesis significantly and helped me prepare my defense. I am grateful for this help.

The members of my group at Rice inspired me with the great things they do; they

listened to and discussed my ideas. This thesis would not have been possible without them.

Special thanks go to Brian Chen for six years of mutual reassurance and friendship.

Over the years I have had many discussions with researchers in the robotics community.

Thanks for the many discussions, feedback, inspiring ideas, greatness and help.

Finally, I would like to thank Dr. Gordon, Dr. Einhorn and Dr. Kim and their staff for

saving my life.

Work on this thesis has been partially supported by NSF 9702288, NSF 0308237,

NSF 0205671, and an FCAR fellowship to Andrew Ladd. The computational experiments

were carried on equipment obtained by the above grants and by NSF EIA 0216467, CNS

0454333 and CNS 0421109 in partnership with Rice University, AMD and Cray.

Contents

Abstract ii

Acknowledgments iii

List of Illustrations viii

List of Tables x

1 Introduction 1

1.1 Motion Planning in the Last Fifteen Years 1

1.2 Physical Simulation . 6

1.3 The Model Gap . 7

1.4 Opportunities in Robotics . 8

1.5 Contributions . 9

1.6 Organization . 10

2 Background 11

2.1 The General Motion Planning Problem . 11

2.2 Probabilistic Roadmap Planners . 12

2.3 Single-Query Sampling-based Planners 14

2.4 Dynamic Constraints in Motion . 17

2.5 Physical Simulation . 18

2.5.1 Rigid Body Dynamics and ODE 20

3 Problem Statement 22

3.1 Preliminaries and Definitions . 22

3.1.1 States and State Space . 22

3.1.2 Obstacle Constraints . 23

3.1.3 Paths . 24

3.1.4 Initial State and Goal Region . 24

3.1.5 Controls and Control Space . 24

3.1.6 Solutions . 25

3.2 General Motion Planning Problem . 26

3.3 Solving the MMP with an Incremental Tree Building Algorithm 28

3.3.1 The Overall Scheme . 28

3.3.2 Design Decisions . 30

3.3.3 Specifics and Definitions . 31

3.4 Black Box Simulation . 34

3.4.1 The Black Box Computational Model so Far 34

3.4.2 The Black Box Computational Model in the Future 35

4 The PDST-EXPLORE Algorithm 38

4.1 Overview of Algorithm Operation . 38

4.2 Algorithm Details . 39

4.2.1 Explore Procedure (lines 1–27) and Initialization (lines 2–5) 39

4.2.2 Outer Loop (line 6–25) and Failure Condition (line 26) 42

4.2.3 Select (line 7) . 42

4.2.4 Propagate (line 8) . 43

4.2.5 Check for Solution (line 9–11) . 44

4.2.6 Adjust Priorities (line 12–14) . 44

4.2.7 Insertion Subroutine (line 28–39) 45

4.2.8 Subdivision (line 15–24) . 46

4.3 The Full Algorithm . 47

5 Experiments with Simplified Physics 49

5.1 2D Kinodynamic, Differential Drive and Blimp Robots 49

5.1.1 Maneuver Automata . 49

5.1.2 Robot Systems . 51

5.1.3 2-D Kinodynamic Robot . 51

5.1.4 Differential Drive Robot . 53

5.1.5 Blimp Robot . 53

5.1.6 PDST-EXPLORE Experiments 55

5.2 The Game of Koules . 55

5.2.1 State Space and Controls . 57

5.2.2 The Dynamic System . 58

5.2.3 Rules for Elastic Collisions . 59

5.2.4 Trajectory Generation . 60

5.2.5 Coverage Estimation . 62

5.2.6 Full Solution Algorithm . 63

5.2.7 Koules Experimental Methodology 64

5.2.8 Partial Solutions . 64

5.2.9 Full Solutions . 66

5.2.10 Additional Experiments . 68

6 Experiments with Simulated Physics 70

6.1 Open Dynamics Engine . 70

6.1.1 Interface with ODE . 71

6.2 Weightlifting 3R Planar Chain . 76

6.3 Simulated Car . 79

6.4 Cumulative Probability of Solution Charts 84

7 Proof that PDST-EXPLORE is Probabilistically Complete 93

7.1 Random Walk Criteria . 93

7.2 The Propagation Operator . 95

7.3 PDST-EXPLORE Produces a Dense Sample 98

7.4 Iterations are Finite Time . 107

7.5 The Main Result . 107

8 Discussion 109

Bibliography 111

Illustrations

2.1 A simple PRM roadmap. The gray areas are obstacles. The dots are

sampled configurations. Edges denote collision-free paths 13

2.2 A generic tree . 14

3.1 A motion planning problem . 23

3.2 Incremental tree construction for the 2-D point robot example 29

3.3 Black box simulator . 35

4.1 An example of PDST-EXPLORE execution 40

4.2 Sample set . 43

4.3 Cell subdivision . 47

5.1 Execution snapshots of PDST-EXPLORE for a differential drive robot . . . 52

5.2 Workspaces (from left to right) spiral-1, varied-1, varied-2 and slot 54

5.3 Average running times to obtain full coverage 56

5.4 Execution snapshots for a solution to the game of Koules with 6 koules . . . 56

5.5 Average time spent versus number of iterations for 1, 3 and 6 koules 65

5.6 Average time spent per 1000 iterations versus number of koules 65

5.7 Average number of solutions generated versus number of iterations 66

5.8 The trajectory taken the ship’s x-coordinate during a full solution of a

problem with 6 koules . 67

5.9 Timing results for full solutions averaged over 90 trials 68

6.1 An example of coordinate frame defined for a cube shaped rigid body . . . 73

6.2 The “hinge” and “hinge-2” joint type used in the experiments 74

6.3 The weightlifting robot . 76

6.4 Simulated car . 80

6.5 The easy maze environment . 80

6.6 Weightlifter cumulative probability of solution (200 trials) 85

6.7 Simulated car in the easy maze environment probability of solution (200

trials) . 86

6.8 Weightlifter: first example . 87

6.9 Weightlifter: second example . 88

6.10 Weightlifter: third example . 89

6.11 Simulated car in the fancy ramp . 90

6.12 Simulated car with a fancy barrier: first example 91

6.13 Simulated car with a fancy barrier: second example 92

Tables

6.1 Rigid body frames for weightlifting 3R planar chain 77

6.2 Geometry for weightlifting 3R planar chain 78

6.3 Joints for weightlifting 3R planar chain 78

6.4 Constants for weightlifting 3R planar chain 79

6.5 Constants for weightlifting 3R planar chain controller 79

6.6 Rigid body frames for simulated car . 81

6.7 Geometry for simulated car . 82

6.8 Joints for simulated car . 82

6.9 Constants for simulated car . 83

1

Chapter 1

Introduction

This thesis proposes a new framework for the “motion planning” problem in robotics. The

introduction explores the various interpretations of “motion planning” over the years. An

attempt will be made to provide the historical and academic perspective by considering a

selection of quotations from foundational texts in the fields of robotics and control theory.

1.1 Motion Planning in the Last Fifteen Years

The seminal book of Latombe “Robot Motion Planning” published in 1991 [Lat91] states

in its introduction:

“In this book we are interested in giving the robot the capability of planning

its own motions, i.e., deciding automatically what motions to execute in order

to achieve a task specified by initial and goal spatial arrangements of physi-

cal objects. Creating autonomous robots is a major undertaking in Robotics.

It definitively requires that the ability to plan motions automatically be de-

veloped. [...] This would allow the user to specify tasks more declaratively,

by stating what he/she wants done rather than how to do it. As robots become

more dexterous, the need for motion planning tools will become more critical.”

The final sentence of the above quote predicts the current state of affairs in robotics.

In the fifteen years since it was written an enormous amount of progress has been made in

robotics in terms of landmark examples of robot autonomy, such as the RHINO tour guide

2

robot [BBC+95], the Honda ASIMO biped [Hon], the Sony Robocup Legged League [Rob]

and the DARPA Grand Challenge [TMD+06]. These examples are huge improvements in

precision and sophistication of robot hardware and require the development of new and ef-

fective motion planning algorithms. The progress in autonomous robotics has been largely

driven by advances in real-time sub-systems and integration: namely, in computer vision,

map and model building, localization and motion generated by feedback control. Motion

planning in these examples is typically limited to 2-D planning for obstacle avoidance or

is simply not necessary. Progress in the development of accurate, capable and dexterous

robot hardware has proceeded very quickly. Huge improvements in servo motors, batter-

ies, sensors, embedded computers and other “everyday” devices have led to robots that

have enormous potential for autonomy and complicated environmental interaction. These

possibilities are currently not realized since the need for automatically generated motion

for dexterous systems prevents using new robot hardware to reach new landmarks in au-

tonomy. In an introductory quote from Principles of Robot Motion [CBH+05] written in

2005, fifteen years after Latombe’s book, little has changed.

“Some of the most significant challenges confronting autonomous robotics lie

the area of automatic motion planning. The goal is to be able specify a task

in a high-level language and have the robot automatically compile this specifi-

cation into a set of of low-level motion primitives, or feedback controllers, to

accomplish the task.”

A key difference in language in the above definition for motion planning compared to

Latombe’s words from fifteen years ago is the explicit mention of the intuitive notion of

“low-level motion primitives” or “feedback controllers”. Low-level motion primitives such

as geodesics or 0 acceleration curves play an important role in the construction of popular

3

and effective sampling-based motion planning algorithms, a class of motion planning al-

gorithms that is currently widely used [Ov94,Kav95,Ov95,KvLO96, Šve97,KL98,KL00,

LK01c,HLM99,HKLR00b,HKLR00a]. The mention of feedback control belies the view

that the role of a motion planner in a full robot system is to provide open-loop trajectories

that can be fed into a feedback controller, or sequence of feedback controllers, to physically

realize the plan in hardware. Quoting again from Latombe’s book [Lat91]

“A still widespread view is that motion planning is essentially some sort of

simple collision checking. Motion planning is much more than that. As we

will see in this chapter, it presents an unexpected variety of facets, the sim-

plest of which raise provably difficult computational issues. In fact, the kind

of operative intelligence that people use unconsciously to interact with their

environment, which is needed for perception and motion planning, turns out to

be extremely difficult to duplicate in a computer program.”

It is a well-known fact in robotics that finding collision-free paths in a world consisting

only of geometric and kinematic constraints can be a very hard problem, both in practice

and theory. Additional constraints such as kinodynamics, multiple agents, parallel chains

and contact increase complexity sharply [Lat91,CBH+05]. However, many automatic mo-

tion generation problems deriving from more ambitious and capable dexterous robots do

not reduce to the simple problem of finding collision-free paths. More precisely, recon-

structing a feasible trajectory that satisfies additional physical constraints from a collision-

free path often goes beyond what can be done with traditional control tools. The next quo-

tation comes from classic text on traditional control theory by Stengel originally published

in 1986 [Ste94].

“Designing control logic that commands a dynamic system to a desired output

4

or that augments the system’s stability is a common objective of many technical

fields, ranging from decision making for economic and social systems through

trajectory control of robots and vehicles to “knowledge-based engineering” in

the application of “artificial intelligence” concepts. If the control objective

can be expressed as a quantitative criterion, then optimization of this criterion

establishes a feasible design structure for the control logic.”

Traditional control theory shares a deep connection with the methods of mathematical

optimization. Concepts such trajectory following and stability can be formulated in terms

of minimizing an objective in the presence of noise in a particular space. There are many

problems that cannot be solved using these tools and control theorists have looked to pre-

dictive methods and open-loop trajectory generation to solve hard control problems that

arise in real applications. Quoting from Choset et al [CBH+05]

“Motion planning for nonholonomic and underactuated systems has been the

subject of a great deal of recent research, and the results could easily fill several

books [...]. Motion planning approaches with roots in control theory tend to

apply to systems with particular structure and no obstacles, while approaches

based on search algorithms are computationally intensive and are suited to find-

ing collision-free trajectories among obstacles.”

An accurate, but broad, definition of motion planning is the computational construction

of inputs to a physical system designed to produce a desired observable output. This defi-

nition is virtually identical to the objectives of control theory, however certain differences

exist. Motion planning methods are typically “offline” methods that produce solutions for

realizing a task. This is sometimes referred to as trajectory generation. Control theoretic

methods deal primarily with the “online” problem, i.e., how to generate inputs in response

5

to observed outputs. Motion planning tends to use algorithmic analysis techniques and

is model driven. Control theory leans more towards tools from optimization and conver-

gence analysis and is not necessarily model driven. Most specifically, motion planning and

control theory can be distinguished by the class of constraints they typically consider. Mo-

tion planning algorithms focus primarily on global constraints and controllers tend to deal

with local constraints. In fact, the two methodologies are generally weak at duplicating the

strengths of the other.

A principle goal of this work is to develop algorithmic techniques that exploit the

strengths of traditional motion planning algorithms and make use of the strengths of control

theory to solve increasingly physically realistic problems. The contributions in this work

advance the state-of-the-art in this area by a significant step. However, the final quotation in

this section speaks to a further goal which is to find algorithms that can exploit the power of

methods from motion planning, control and artificial intelligence to realize the goals artic-

ulated fifteen years ago: to go from a high-level description of a task to realized and robust

motion on a robot. Quoting from LaValle’s 2006 book “Planning Algorithms” [LaV06]

“Due to many exciting developments in the fields of robotics, artificial in-

telligence, and control theory, three topics that were once quite distinct are

presently on a collision course. In robotics, motion planning was originally

concerned with problems such as how to move a piano from one room to an-

other in a house without hitting anything. The field has grown, however, to

include complications such as uncertainties, multiple bodies, and dynamics.

In artificial intelligence, planning originally meant a search for a sequence of

logical operators or actions that transform an initial world state into a desired

goal state. Presently planning extends beyond this to include many decision-

theoretic ideas such as Markov decision processes, imperfect state informa-

6

tion, and game-theoretic equilibria. Although control theory has traditionally

been concerned with issues such as stability, feedback, and optimality, there

has been growing interest in designing algorithms that find feasible open-loop

trajectories for nonlinear systems. In some of this work, the term “motion plan-

ning” has been applied, with a different interpretation from its use in robotics.

Thus, even though each originally considered different problems, the fields of

robotics, artificial intelligence, and control theory have expanded their scope

to share an interesting common ground.”

This thesis extends the current state-of-the-art in motion planning by coupling algorith-

mic techniques with control theory and physical simulation in an effort to generate planners

that are directly applicable to complex physical systems.

1.2 Physical Simulation

Research in physical simulation deals with an entirely different set of objectives. In the

realm of simulation, computation is used to predict the output of an inputless physical sys-

tem. The design objectives for physical simulators are to reduce computational cost and

to increase the accuracy of the reproduction. Frequently physical simulators are subject

to rigorous validation against actual measured results or other, known accurate simulators.

Design trade-offs balance expressiveness, computational cost, scalability, accuracy and the

complexity of parameter estimation. Significant progress is often driven by the discov-

ery of clever approximations, often domain specific, and implementation improvements.

Research in physical simulation developed in concert with the modern computer, has em-

powered an enormous amount of progress in every aspect of science and engineering, and

is still a powerful motivation for efforts in computer science. In the last decade, new phys-

7

ical approximations, fast geometric algorithms, faster optimization techniques, massive

improvements in low-cost floating point processing and cheap, fast memory have led to a

new class of simulators that accurately model and simulate rigid body physics with contact

and friction at order of magnitude faster than realtime on low cost consumer hardware.

Additionally, driven by the gaming industry, special-purpose physics processing hardware

to further extend the capabilities of these simulators is beginning to enter the consumer

market.

1.3 The Model Gap

In the context of practical system engineering for many applied robotics implementations,

both motion planning and control theory are used. It is typical, though, for the model of

the robot employed by the motion planner to be significantly simpler than the one used

by the controller. Typically, the controller uses, either implicitly or explicitly, a richer and

more expressive robot model that is a closer approximation to reality. Often model error is

estimated by having to estimate model parameters or by unobservable noise inputs. Addi-

tionally, since controllers are often local methods, models that only are valid locally such as

a linearizations of non-linear differential systems around a given point can be used. Motion

planners often use grossly simplified robot models to side-step the thorny difficulties posed

by increased complexity. The resulting model gap between the planner and controller can

sometimes be modeled as system error and fixed on the fly by the controller. However,

planners rarely deal directly with physical dynamics, and consequently the resulting model

gap can be fatal. As robotics applications become increasingly ambitious and move away

from the domain of statics and geometry towards physical dynamics and environmental

interaction, much of the current motion planning research is almost totally inadequate. For

this reason, research at the forefront of hardware robotics rarely makes use of motion plan-

8

ning, foregoes the advantages of algorithmic design, automation and provable guarantees

and instead often employs labor intensive, ad hoc solutions to trajectory design.

1.4 Opportunities in Robotics

The impact of recent developments in physical simulation on robotics has already begun.

The ease of use, accuracy and speed of existing simulation software packages has made

physical simulation an invaluable tool in mechanism and robot design, and provides a way

to test controllers without the risk of damaging expensive hardware. Perhaps most impor-

tant, a relatively small of amount of effort can be expended learning or determining the

physical parameters for the simulator and then the simulator can be leveraged to nearly

totally automate parameter tuning for the controller, which is often very labor intensive

because of the time overhead in setting up experiments on a physical platform. Simulation

also provides an effective abstraction barrier to divide labor between hardware designers

and programmers. Superficially, the evolution of motion planners reasoning about coarse

models with little or no physics towards direct reasoning on physical simulations seems

obvious. The advantages are motivating: the problem of model gap between the planner

and the controller can be reduced to the problem of validating the predictiveness of the

simulation. Since controller design in a simulator and subsequent validation on a physical

platform is a tested and successful research and development paradigm, it is reasonable to

think that trajectory design in simulator will also be very effective. An additional strength

is the capability of the planner to directly incorporate the controller by simulating the op-

eration of the controller. Since controllers often provide excellent methods to reduce the

number of input parameters and increase the usefulness of generated motions in complex

systems, this strength may provide enormous computational efficiency advantages as well

being an effective marriage of the advantages of control theory and motion planning.

9

1.5 Contributions

As stated earlier, a principle goal of this work is to develop an algorithmic framework

that exploits the strengths of traditional motion planning algorithms and makes use of the

strengths of control theory to solve increasingly physically realistic problems.

This goal is achieved through

• The design of a new algorithm for motion planning, and

• The tight coupling of the above algorithm with physical simulators, which are used

as black boxes by the planner.

As it will be shown in this thesis, the proposed approach can handle problems of com-

plexity that has not been dealt with in the past, mainly because of the accurate modeling

and physical realism of the robots involved. Although similar problems had been solved by

hand, it is the first time that it is demonstrated how they can be attacked in a fully automated

way.

An important point that will be iterated multiple times in this thesis is that physical

simulation is used by the proposed planner as a black box. This is reminiscent of the way

collision checking has been used by sampling-based motion planners in the past [CBH+05]

(see discussion in Chapter 2). Sampling-based planners benefited enormously by advances

in collision checking which were driven by academic disciplines other than robotics (e.g.,

computational geometry) and industries other than robotics (e.g., games and entertain-

ment). The faster collision checking became, the faster sampling-based planners became.

The proposed planner will benefit from advances in physical simulation, which are again

driven by powerful industries, in the same way that sampling-based motion planners bene-

fited from advances in collision checking.

10

1.6 Organization

Chapter 2 gives some background on sampling-based motion planners which provided an

inspiration to the proposed planner. It also includes a short discussion on physical simula-

tion. Chapter 3 defines in detail the motion planning problem and illustrates the principles

and design decisions that will govern the design of the new planner. Chapter 4 presents the

new planner. Experiments with simplified physics are given in Chapter 5, while Chapter 6

shows experiments with simulated physics. The probabilistic completeness of the proposed

planner is shown in Chapter 7. This thesis ends with a discussion in Chapter 8.

11

Chapter 2

Background

There have been many alternative approaches that address aspects of the motion planning

problem since its introduction almost thirty years ago. The following discussion provides

an overview of important milestones in the field and focuses on advances that have inspired

the proposed planner.

2.1 The General Motion Planning Problem

Motion planning asks for valid actions that move a system from an initial to a goal spatial

arrangement [Lat91]. A specification of a robot’s spatial arrangement is called a configura-

tion and all configurations define the configuration space. The general mover’s problem is

posed for polyhedral robots in a polyhedral workspace and is PSPACE-hard [Rei79].

In two dimensions this problem is also known as the Sofa mover’s problem, while in

three dimensions it is known as the Piano mover’s problem. Early on, a single expo-

nential algorithm was proposed that uses a cylindrical algebraic decomposition of the

semi-algebraic descriptions of the configuration space to solve it [MBOR86]. Follow-

ing this line of research, a series of theoretical results provided polynomial time algo-

rithms for problems with fixed dimensions. For example an algorithm for the Sofa mover’s

problem has complexity O(n5) [SS83a], for moving a fixed number of discs the com-

plexity is O(n3) [SS83b], for moving a 2D star-shaped robot with k arms [SAS84] it is

O(nk+4) and for moving a 3D rod shaped robot [SS84] the complexity is O(n15). These

12

results, however, also suggested an exponential dependence on the dimensionality of the

problem. Eventually a PSPACE algorithm [Can88] was constructed that proved that the

problem is PSPACE-complete. The same algorithm introduced the roadmap, a 1D

subspace of the configuration space that captures its connectivity. The algorithm, how-

ever, is impractical both computationally and implementation wise. Other approaches at-

tempted to approximate the structure of the configuration space but they were also imprac-

tical [BP83,Per83,KD86].

A different paradigm based on potential fields and obstacle avoidance [Kha86] was also

developed [HA88,Kod89,BL91,HA92]. Nevertheless, the construction of general complete

potential field approaches methods was proved difficult [Kod89, RK92]. A potential-field

based method that solved difficult problems was the RPP planner [BL91,LL96]. It took a

stochastic approach to avoid local minima and later was proved complete [LL96]. Sequen-

tial search with backtracking was also explored [GG95].

2.2 Probabilistic Roadmap Planners

While the deterministic and exact planners faced difficulties in addressing many interesting

instances of the general motion planning problem, advances in modeling provided accu-

rate CAD models of spaces and robots that required efficient planners for solving planning

queries. This development led to the introduction of a new series of algorithms that took

advantage of the advances in collision detection and modeling [LC91,Qui94,LM91,MC95,

LM97,GLM96,KPLM98,EL00] and used sampling to improve performance. Examples of

these planners are the Ariadne’s Clew algorithm [ATBM92, BATM94, AGM98] and the

Probabilistic Roadmap Method (PRM) [KL94,Ov94,Kav95,Ov95,KvLO96,Šve97,KL98].

Especially the latter, PRM, proved to be very successful in problems with complex ge-

ometries by utilizing a learning phase. It is also easier to implement than its algebraic

13

Figure 2.1 : A simple PRM roadmap. The gray areas are obstacles. The dots are sampled

configurations. Edges denote collision-free paths

counterpart.

PRM splits planning in two phases, a learning and a querying phase. During learn-

ing, PRM samples collision-free configurations and connects them with simple paths to

build a roadmap. The initial implementation used uniform sampling and straight line

paths [KvLO96]. Given a roadmap, multiple queries can be answered quickly. First the

initial and goal configurations are connected to the roadmap and then planning amounts to

solving the corresponding graph search problem. An illustration of a PRM roadmap is given

in Figure 2.1.

The efficiency of PRM depends on how well the sampling strategy can capture the con-

nectivity of the free space. A major factor that affects PRM performance is the presence

of “narrow passages” [ABD+98,LK02,HKL+98] in the space. In order to solve problems

with “narrow passages”, PRM must select samples from very small sets in order to con-

nect the roadmap. A plethora of biased sampling techniques were introduced to improve

the effectiveness of PRM. Example include quasi-random sampling [LB02], or a variety

of techniques that focused sampling on subsets of the configuration space. These subsets

could be either parts of the space with low connectivity [KvLO96], or parts of the space

close to the obstacle boundaries [ABD+98,AW96,BOvdS99] or the medial-axis of the free

14

space [OY85,GHK99,WAS99,HK00].

The benefits of sampling-based planning with PRM come at the cost of sacrificing

completeness. That is, path non-existence cannot be proven with sampling-based plan-

ners. A looser guarantee, termed probabilistic completeness is provided instead. If an

algorithm is probabilistic complete and a path exists, then the planner will find it eventu-

ally [KvLO96,KLMR96,KKL96, Šve97, LK02]. This was proved for the PRM algorithm

originally for k-dimensional manifolds [KLMR96,KKL96,KvLO96, Šve97], then for non-

holonomic robots [Šve97] and recently for a broad class of problems [LK02].

A main emphasis of the PRM planner was the use of collision checking both for se-

lecting the samples and for creating connections among the samples. The planner bene-

fited enormously from advances in collision checking [LC91,Qui94,LM91,MC95,LM97,

GLM96, KPLM98, EL00]. In retrospect, using collision checking as a black box was a

powerful primitive of PRM that contributed to its performance, ease of implementation and

subsequent widespread use.

2.3 Single-Query Sampling-based Planners

PRM takes advantage of the roadmap constructed during the learning phase to efficiently

answer multiple queries. In many cases however only single query problems have to be

solved. The solution to a single query problem can be often obtained more efficiently by

focusing the exploration only on certain parts of the configuration space, without the need

to construct a roadmap that captures the connectivity of the entire configuration space. This

observation motivated the development of a series of approaches that focus on answering

single queries [BK00, SL01, Boh01, LB02, LL06, LL05, HKLR02, SK06, SK05, YJSL05,

HBHL06,BB05].

One approach to single-query motion planning is to speed up computation by doing

15

Figure 2.2 : A generic tree

collision checking only when it is necessary. The lazy PRM variant [BK00, SL01, Boh01]

constructs a roadmap whose nodes and edges are initially assumed to be collision-free.

The roadmap can even be computed implicitly on a grid [Boh01, LB02]. As in the PRM

formulation, lazy PRM searches the roadmap graph to find a path that connects the query

configurations. The computed path is then checked for collisions. The path is discarded if

it is found in collision and the violating nodes and edges are removed from the roadmap.

Lazy PRM continues to search the roadmap for alternative paths in this manner until a

collision-free path is found.

An alternative approach to roadmap-based planners yielded in a family of planners

known as tree-based planners [BK00, SL01, Boh01, LB02, LL06, HKLR02, SK06, SK05,

YJSL05,HBHL06,BB05]. In contrast to roadmap-based approaches, the objective of tree-

based planners is to bias the exploration toward those parts of the configuration space that

facilitate the construction of a path that connects the given initial and goal configurations.

The idea here is to start the exploration by rooting a tree at the initial configuration and

incrementally explore the relevant parts of the configuration space by advancing the tree

16

toward the goal configuration. Figure 2.2 provides an illustration. The tree-based planners

have been successfully used to solve not only geometric motion planning problems, but also

motion planning problems with kinematic and dynamic constraints, as it will be explained

later in this chapter.

The success of tree-based planners depends on the strategy employed to expand the ex-

ploration tree. Typically the tree is expanded by adding new configurations and edges. One

popular and successful approach is the Rapidly-Exploring Random Tree (RRT) [LK99]. At

each iteration a configuration, qrand, is sampled at random from some probability distribu-

tion. The nearest configuration in the tree, qnear, is then computed and attempts are made

to extend qnear toward qnew. A new configuration, qnew, is obtained by moving qnear for a

small distance along the straight-line defined by qnear and qrand in the configuration space.

This process is repeated until qnear reaches qrand or the extension is no longer possible due

to collision with obstacles. Several or all the collision-free intermediate configurations

qnew are added to the tree. The tree is pulled toward the goal by often generating random

configurations near the goal configuration.

The Expansive Spaces Tree (EST) approach is another successful tree-based planner

[HLM99,HKLR00b,HKLR00a]. EST attempts to advance the tree in unexplored regions of

the configuration space. At each iteration, an existing node in the tree is selected according

to some probability distribution and extended for a short distance in a random direction.

Nodes in the tree that are in dense areas are selected less frequently than nodes in sparse

areas. The tree thus explores new regions of the configuration space that could lead to the

construction of a path from the initial to the goal configuration.

Many other tree-based planners have been proposed. The Single-Query Bidirectional

Lazy SBL planner combines the idea of collision checking with tree expansion [SL01].

Some instances of tree-based planners build two trees, one rooted at the initial configu-

17

ration and another one rooted at the goal configuration, and grow the trees toward each-

other [HLM99,LK00,SL01]. The Sampling-based Roadmap of Trees (SRT) leverages the

benefits of PRM and tree-based planners. It tries to expand multiple trees from various initial

seed points in the configuration space. Neighboring trees are then grown toward each-other

giving rise to a roadmap of trees that ultimately captures the connectivity of the configu-

ration space. SRT has proven effective both for multiple-query and single-query planning

while it can also be parallelized very efficiently [BCL+03,ABC+05,PBC+05,PK05].

The planner proposed in this thesis is a tree-based planner. However it displays several

key differences with the planners above as discussed in the next chapter.

2.4 Dynamic Constraints in Motion

As mentioned in the introduction, there is an important model gap between control theory

and motion planning. The role of a controller is to approximate reality as close as possible

and take into account the real constraints and capabilities of a system. A controller is also

responsible to adjust the behavior of the system in case of errors or unexpected events.

Nevertheless, controllers can rarely address global planning problems. On the other hand,

motion planners, which are built to solve global queries, often apply simplistic approxima-

tions to avoid modeling the full system’s complexity. Often this gap in the representation

of a solution can be fatal because the planner does not take into account the dynamic con-

straints. For example, a kinematic path, returned by a a planner such as PRM may not

be executable due to bounds on velocity, acceleration and applied forces [DLOS98]. To

alleviate this problem motion planners must incorporate a higher level of physical real-

ism. The typical approach to address this problem is to augment the configuration space

by including the parameters related to the motion constraints and define the system’s state

space [CBH+05]. The state of a system does not only characterize its spatial arrangement

18

but is a full description of its status in a way that if a control input and the state of a system

is provided, then the progress of a system in the future can be simulated.

Algebraic solutions for the computation of exact paths under dynamic constraints are

known only for 1D and 2D point masses with velocity and acceleration constraints [O’D87,

CRR91]. Research in optimal control showed that optimal paths can be achieved with

piecewise-extremal (“bang-bang”) controls and a finite number of switches [Hol83,BDG85,

SS85,Sch87]. Approximation methods that use grids have proved to depend exponentially

in the number of grid points or resolution [SH85, SD88]. Donald et al. [DXCR93] pro-

vided the first optimal-approximation polynomial-time algorithm for a point mass with

dynamics. For first order vehicles [FW88,Wil88] there are ways to characterize minimum

wheel-rotation paths [RS90, BM02]. A different methodology, related to potential fields,

employs path deformation to adapt online a precomputed path given motion constraints and

sensing observations [KJCL97,BK91,QK93,LBL04].

A hierarchical approach exists in techniques that use PRM. The planner can be used to

produce a roadmap of kinematic paths, which are later adapted to the dynamic constraints

of the robot [SvLO98,SA01]. Such techniques must compute a valid trajectory to connect

two given states, a difficult sub-problem in general, known as the steering problem [LFV04]

and hence the approach is not generally applicable. On the other hand, tree-based planners

apply forward integration of controls instead of steering. This is a simple and fast primitive,

which naturally simulates the underlying propagation model of a system. In this way,

tree-based planners have become the norm in kinodynamic planning [CBH+05, LaV06].

Examples include but are not limited to [HKLR00a, LK99, LK01c, LK01b,CSL01,CL03,

CL02,CFL03,KVdP06,HBHL06].

19

2.5 Physical Simulation

Simulation studies “the design of a model of an actual or theoretical physical system, the

execution of the model on a digital computer, and the analysis of the execution output”

[Fis94]. This abstract definition emphasizes the applicability of simulation to a wide variety

of applications, varying from factory simulation, computer networks, flight dynamics to

operation research and imaginary worlds [Hol04, PC06]. In each of these areas, the use of

simulation has resulted in procedures that are more cost effective, less dangerous, faster,

or otherwise more practical than experimenting with a real system. The idea of using a

model to formulate sequences of actions is also central to planning and, given a sequence

of actions, a robot can use the model to simulate the future as it would occur if the actions

were carried out [DW91].

Often, assumptions are made about this system and mathematical algorithms and rela-

tionships are derived to describe these assumptions. This constitutes a “model” that can

reveal how the system works. If the system is simple, the model may be represented and

solved analytically. However, many problems of interest in the real world are usually much

more complex and a simple mathematical model cannot be constructed to represent them.

For example, in some problems in robotics, a state transition equation might not be avail-

able. Nevertheless, it is still possible to compute future states given a current state and an

action trajectory by using simulation as a black box [LaV06], since simulators can also

work internally with implicit differential constraints. In computer graphics applications,

simulations can even arise from motion capture data [RPE+05].

The focus in this thesis is on physical simulators of multi-body dynamics [Smi06,Hav,

MSO94], especially for rigid and potentially articulated bodies, so as to plan for the mo-

tions of such bodies. The field of rigid body dynamics and more generally of multi-body

dynamics designs mathematical models and algorithms to predict the motions of bodies and

20

the contact forces, including friction, that arise between them when they interact [ST96].

Multi-body contact systems are involved in many engineering applications such as robotic

manipulation, fixture loading, graphic simulation and haptic display that can be used for

planning. Rigid bodies are a convenient approximation to reality for these applications. Al-

though it is inevitable that the bodies will deform when a contact occurs, the deformation

can be neglected, considering the purpose of these applications. For computational pur-

poses, the underlying theory for a rigid-body system is much simpler than for deformable

bodies, and computation of the rigid-body system is more reliable and efficient [Ste00].

Simulation of deformable objects is also receiving a lot of attention recently [BSB+01] and

motion planners for deformable objects [LK01a,MK06] should benefit from the increasing

realism of such physical simulators.

2.5.1 Rigid Body Dynamics and ODE

A realistic simulation must both respect the laws of Newtonian dynamics and not allow two

rigid bodies to inter-penetrate [Bar89]. The simulator must calculate what forces would ac-

tually arise in nature to prevent bodies from inter-penetrating and then use these forces to

derive the action motion of the bodies. Lotstedr [Lot84] represents the first attempt to com-

pute friction forces in an analytical setting, by using quadratic programming to compute

friction forces based on a simplification of the Coulomb friction mode. Baraff also pro-

posed analytical methods for dealing with friction forces and presents algorithms that deal

both with static friction [Bar93] and dynamic or sliding friction [Bar94].

The Open Dynamics Engine (ODE) [Smi06] is a popular, successful example of a

physics-based simulator that has been used in this work. It is an open source, high per-

formance library for simulating rigid body dynamics. It is a fully featured, stable software

platform that includes modeling of advanced joint types and integrated collision detec-

21

tion with friction. ODE is useful for simulating vehicles, articulated objects and objects

in virtual reality environments. There are many other physical simulator available both

proprietary [Hav] and open-source ones [MSO94].

ODE implements a time-stepping algorithm similar to the approaches by Stewart and

Trinkle [ST96] and Anitescu et al. [APS99], but with reduced accuracy in order to increase

frame rates for applications. These methods contrast with the more traditional approaches,

which involve formulating a system of equations, or complementarity problem, at each

time-step to be solved for the forces, which are then used as input for a differential equa-

tions or differential-algebraic equations solver [HWY86,Lot82, PG96]. The problem with

traditional approaches is that the systems of equations or complementarity problems to

be solved at each instant in time may not have a solution. The point of the new time-

stepping techniques is that they avoid this problem by implicitly allowing impulsive forces

at any time during contact, not just at the instant of impact. The solver used by ODE is

based on Baraff’s pivoting method [Bar92], while collisions are handled following Mir-

tich’s method [Mir97].

22

Chapter 3

Problem Statement

The focus of this thesis is to describe howmotion planning for systems with a high degree of

physical realism can be solved in practice. The specific target is to consider models that can

express rigid body dynamics in 3-D under a rich variety of constraints such as force limits,

serial and parallel kinematics, motor dynamics, friction and contact. To do this correctly,

it is necessary to consider the possibility that discrete changes in the set of constraints

can occur. Additionally, it is convenient to assume very little about specific simulation

techniques. Finally, extensions to more advanced physical systems such as deformable

materials or fluid dynamics should be theoretically straightforward. Figure 3.1.

3.1 Preliminaries and Definitions

In order to introduce the algorithm developed in this thesis a simple 2-D robot motion

planning problem will be used. This problem is depicted in Figure 3.1. This example will

be used as an analogy to simplify exposition but will be rigorously generalized in the formal

treatment.

3.1.1 States and State Space

A state consists of the information required to represent the entire physical system at a given

instant of time. The intention of the abstraction is that a state consists of information that

is, together with the relevant external input, sufficient to run the simulation without history.

23

Obstacles

Initial State

Goal

Figure 3.1 : A motion planning problem

The set of all states is called the state space and is written Q. The notion of state only

requires that the representation be sufficient to run the simulation without history and does

not demand any kind of minimalism. Although it is desirable to avoid considering states

that are unreachable in the simulation or even totally unreasonable, it can be very difficult

to characterize these properties and consequently to design minimalistic state spaces.

3.1.2 Obstacle Constraints

In the problem shown in Figure 3.1, the state space is Q = [0, 1]2, the unit square. A

state consists of the pair (x, y) ∈ [0, 1]2 and is the point robot’s position in the square.

Intuitively from the diagram, it is clear that some of the states are not reasonable, insofar

that robot is inside the obstacles. The obstacles shown in Figure 3.1 form a polygonal

subset O ⊂ Q = [0, 1]2. A region of state space that is an obstacle or is forbidden is one

important kind of constraint that is often used in motion planning.

24

3.1.3 Paths

A path in the state space is a function π : [0, T]→ Q, where T ≥ 0. The quantity T is the

duration of the path and meant to represent the amount of time the path takes. The intention

of the path abstraction is that the path be feasible motion of the robot in the state space. In

the example in Figure 3.1, a feasible path is any continuous map π : [0, T] → [0, 1]2 such

that π(t) 6∈ O. In general, the notion of path in this treatment need not be continuous.

3.1.4 Initial State and Goal Region

An initial state and a goal region are shown in the diagram in Figure 3.1. These are used to

define the motion planning problem. In the case of the example in Figure 3.1, the motion

planning problem is to construct a continuous path π : [0, T]→ Q such that the path begins

at π(0) = qinitial, the initial state, and ends in the goal region, π(T) ∈ G ⊂ Q.

3.1.5 Controls and Control Space

In 2-D point robot example from Figure 3.1, there are many ways of representing a solution

path. However, in a general setting, paths are generated and represented by a sequence of

inputs or controls. A control is an input to the represented system and the set of all controls

is written U . The critical detail is the way the control inputs are interpreted and determines

how the modeled system behaves.

To begin this description, consider the augmented state space Q = Q ∪ {⊥}. The

additional state, ⊥, is used to represent constraint violation or universal failure condition.

The system behavior is governed by a function called the transit function

F : Q× U × R
≥0 → Q.

The interpretation of the transit function is as follows: F (q, u, t) is the state that results

25

from applying control input u from state q for time t.

The control space for the example in Figure 3.1 is U = [−vmax, vmax]
2 where vmax > 0.

Each u = (vx, vy) ∈ U is interpreted as a velocity for the point robot. The transit function

for the example in Figure 3.1 is given precisely by the following expression:

F (q, u, t) =

⊥ if there exists t′ ∈ [0, t] such that q + ut′ ∈ O

q + ut otherwise.

3.1.6 Solutions

In the example from Figure 3.1, the state space isQ = [0, 1]2. The constraint on the motion

of the robot is that there is a part of the state space that is forbidden. This part is polygonal

subset O ⊂ Q. The motion planning problem in this domain is specified by the initial

state qinitial and the goal region G. A solution to this problem consists of a feasible path

π : [0, T] → Q such that π(0) = qinitial and π(T) ∈ G, i.e. the path π begins at the initial

state, ends in the goal region and does not intersect the obstacles.

The generalized model used in this work represents motion in terms of controls and

times. In the point robot example, the controls are the velocities of the robot. In this way,

a path is given by a state q, an integer n > 0, a sequence of controls u1, ..., un and a

sequence of times t1, ..., tn, where ti > 0. The path defined by q, u1, ..., un and t1, ..., tn is

written path(q, u1, ..., un, t1, ..., tn). Recursively defining T0 = 0, Ti = Ti−1 + ti, the path

π = path(q, u1, ..., un, t1, ..., un) is given explicitly as

π(t) =

q when t = 0

F (π(Ti), ui, t− Ti) when t ∈ [Ti, Ti+1]

.

A solution path represented in this way is given an integer n > 0, controls u1, ..., un

and times t1, ..., tn and is the path π = path(qinitial, u1, ..., un, t1, ..., tn). To be a solution,

26

the end state of π should be in the goal region, π(|π|) ∈ G. A motion planning algorithm

would then need to search for such a path.

3.2 General Motion Planning Problem

Section 3.1 described a point robot motion planning problem in two dimensions. This

section generalizes the treatment and provides formal definitions for the concepts of Section

3.1. The section begins by defining a motion planning problem instance.

Definition 3.2.1 (Motion Planning Problem Instance (MPP)). An instance of motion

planning problem is a tuple

(Q,U , F, qinitial, G)

with

• Q is a probability space called the state space.

• U is a probability space called the control space.

• F is a measurable function

F : Q× U × R
≥0 → Q

where Q is the augmented state space Q = Q ∪ {⊥} where the special state ⊥

has been added. The state ⊥ is meant to represent a universal failure condition or

constraint violation. The function F is called the transit function and must satisfy

Property 3.2.2.

• qinitial ∈ Q is a state called the initial state.

• G ⊂ Q is a measurable subset of the state space called the goal set.

27

Definition 3.2.1 restates the definition of the transit function used in Section 3.1 in more

formal terms and refers to necessary conditions a transit function must satisfy in Property

3.2.2, which will now be stated. These properties are designed to express the intention of

the transit function as a rule for defining the behavior of a broad class of physical systems.

Property 3.2.2 (Transit Function Properties). A transit function F : Q×U ×R
≥0 → Q

defined over state space Q and control space U should satisfy the following properties:

1. For every q ∈ Q, u ∈ U

F (q, u, 0) = q.

This requires that applying control u from state q for 0 time leaves the system un-

changed.

2. For every q ∈ Q, u ∈ U , t1, t2,

F (q, u, t1 + t2) = F (F (q, u, t1), u, t2).

This requires that F is transitive: applying control u for time t1 + t2 from state q is

equivalent applying u for time t1 and then for time t2.

3. For every q ∈ Q, u ∈ U , 0 ≤ t1 < t2

F (q, u, t1) = ⊥ =⇒ F (q, u, t2) = ⊥.

This requires that once the failure state ⊥ has been reached the system is stuck. In

other words, F must be defined so that ⊥ is a sink.

The next definition, Definition 3.2.3, in this section formalizes a solution of a motion

planning problem.

28

Definition 3.2.3 (Motion Planning Problem Solution). A solution of a given instance of

the motion planning problem

(Q,U , F, qinitial, G)

consists of a sequence of

controls u1, ..., un ∈ U and times t1, ..., tn

such that q0 = qinitial, qn ∈ G and for 1 ≤ i ≤ n,

qi := F (qi−1, ui, ti).

3.3 Solving the MMP with an Incremental Tree Building Algorithm

As described in the previous chapter incremental tree-based algorithms are a popular ap-

proach to solving motion planning problems. The algorithm developed in this thesis is

also an incremental tree-based algorithm with some fundamental differences than earlier

approaches.

3.3.1 The Overall Scheme

The illustration of searching for a solution path in Figure 3.2 shows a sequence of tree

structures in state space constructed by incrementally adding branches. The definition given

here is intuitive and used for exposition.

A tree consists of a set of related path segments which, in the language of this treatment,

are referred to as path samples. Each path sample can be thought of as a triple (q, u, T)

where q is a state, u is a control and T ≥ 0 is a time. The path sample represents the

constant control feasible path π given by F (q, u, t) for 0 ≤ t < T .

Described simply, a tree is a set of samples which is incrementally constructed. The

initial set of samples is S0 = {(qinitial, ·, 0)}. The state qinitial ∈ Q is the initial state of the

29

Initial State

Goal

Initial State

Goal

Initial State

Goal

Initial State

Goal

Figure 3.2 : Incremental tree construction for the 2-D point robot example

motion planning problem and the path sample is the zero duration path segment beginning

at that state. The control for the sample is irrelevant and is denoted “·”. Incrementally, the

abstract scheme for adding a path sample operates as follows:

1. Select a path sample (q, u, T) from sample set Si.

2. Choose t ∈ [0, T) and compute q′ = F (q, u, t).

3. Choose a control u′.

4. Find the smallest T ′ > 0 such that F (q′, u′, T ′) = ⊥ or choose T ′ = Tmax, some

constant.

5. Add path sample (q′, u′, T ′) to obtain Si+1 = Si ∪ (q′, u′, T ′).

30

The general termination condition for this process is to continue until some maximum

number of iterations have been executed or some π ∈ Si is generated such that π ∩ G is

non empty. In the latter case, the discussion in the previous subsection describes a solution

which can be easily extracted from the tree structure on the samples.

3.3.2 Design Decisions

The process in the previous subsection fits with the illustration in Figure 3.2. However,

there are many decisions to make in designing a practical implementation of the described

schema.

• How is the branch state on the tree chosen, i.e. which path sample and time t?

• How is the control u chosen?

This treatment proposes that these design decisions should be made to further the following

objectives:

(i) The algorithm should be probabilistically complete ∗.

(ii) The algorithm should admit an efficient implementation.

(iii) The algorithm should be capable of exploiting the structure in motion planning prob-

lems.

(iv) The algorithm should be applicable to a large class of physical systems.

Objective (i) can be easily achieved for a very large class of physical systems by opting

for a totally random selection strategy or for a systematically exhaustive strategy. Although

∗A formal discussion of this concept appears in Chapter 7.

31

these solutions are very easy to implement, these approaches fail to exploit any of the struc-

ture present in physical systems and are unusably inefficient for anything other than trivial

motion planning problems. Put differently, the challenge is to design a selection scheme for

building trees that is probabilistically complete for the same class of systems as the random

approach but has an experimentally effective mechanism for exploiting structure without

being overly inefficient as an implementation.

3.3.3 Specifics and Definitions

The final part of this section develops a set of formal definitions for the notion of a path

sample and a tree that was introduced in the above subsection. These definitions will be

used in the description of the proposed planner and in the associated proof of probabilistic

completeness.

Path Sample

This definition is with respect to a given MPP, (Q,U , F, qinitial, G). A path sample is a tuple

(q, u, D) where q ∈ Q is a state, u ∈ U is a control, and D is a non-empty finite union of

real positive intervals, meaning for some n > 0,

D =
n
⋃

i=1

Ii where Ii = (a, b), [a, b), (a, b], or [a, b] for a ≤ b ∈ R
≥0,

such that for t ∈ D, F (q, u, t) 6= ⊥.

Note that in contract with previous work, the proposed algorithm will use paths as

samples and not individual states.

32

Primitive Path

If for some path sample π = (q, u, D), D = [0, T) for T ≥ 0 †, then π is primitive path

sample.

The integrate Operator

The operator integrate is used to construct new primitive path samples. This operator

takes a state and a control as arguments and returns a primitive path sample

integrate(q, u) = (q, u, [0, T))

where either T is minimum among all T > 0 such that F (q, u, T) = ⊥ or T = Tmax, some

fixed positive constant, in the case F (q, u, t) 6= ⊥ for t > 0.

Intersection of a Path Sample and a Subset of the State Space

Let A ⊂ Q and let be (q, u, D) be a path sample. The intersection operator is defined by

(q, u, D) ∩ A = (q, u, D′)

where

D′ = {t ∈ D : F (q, u, t) ∈ A}.

The result of the intersection is well defined if (q, u, D′) is also a path sample. If D′ = ∅

then, by convention, (q, u, D) ∩ A = ∅ can express this.

In the proposed algorithm a decomposition of the state space will be used. The above

operation will be critical for the design of the algorithm.

†an interval of the form [a, b) is interpreted as [a] when a = b

33

Union of Two Path Samples

Let π1 = (q, u, D1) and π2 = (q, u, D2) such that D1 ∩ D2 = ∅. The union operator for

path samples is well defined in this case and yields a new path sample in the following way:

π1 ∪ π2 = (q, u, D1 ∪D2).

Primitive Trees

A set of samples S is a primitive tree if the following conditions are met:

1. Every path sample π ∈ S is a primitive path sample.

2. The sample set S contains a distinguished sample π ∈ S such that π = (q, ·, [0]).

This sample is called the root and is denoted root(S).

3. Every path sample π = (q, u, [0, T)) ∈ S, except for the root, has a parent π′ =

(q′, u′, [0, T ′)) ∈ S such that there exists t ∈ [0, T ′) with π′(t) = π(0). The operator

parent expresses the parent relationship in that parent(S, π) = π′ where π′ is the

parent of π. Additionally, the graph induced by the parent relation on the elements

of S must be cycle-free and therefore a tree in the graph-theoretic sense.

Contractions

A sample set S is a simple contraction of sample set S′ if for every π ∈ S either

1. π ∈ S
′, or

2. there are π1, π2 ∈ S
′ such that the operation π1 ∪ π2 is well defined, π = π1 ∪ π2 and

π1, π2 6∈ S.

34

Trees

A set of samples of S is a tree if there is a sequence S1, ...,Sn such that S1 = S, Si+1 is a

simple contraction of Si, and Sn is a primitive tree. The operators root and parent can be

extended to be compatible across the contractions and by convention parent((q, u, D)) =

(q′, u′, D′) implies that there is t ∈ D′ such that F (q′, u′, t′) = q.

All definitions above will be used in Chapter 4 for the definition of the algorithm and

Chapter 7 for the proof of its completeness.

3.4 Black Box Simulation

Up to now the discussion has focused on defining a formal mathematical framework for

representing models of physical systems. To this end, the definitions in Section 3.2 were

given. A 2D example was used to illustrate ideas, however this work is , in essence, directed

towards practical results grounded in actual computation. For this reason, this section will

develop the computational semantics of the model of Definition 3.2.1. The section begins

with a discussion of the usual computational properties of physical system simulators and

proposes the computational abstraction employed by this work.

3.4.1 The Black Box Computational Model so Far

Early practical motion planning algorithms leveraged specific structure present in prob-

lem categories to obtain results. For example, 2-D point robot path planning can be done

efficiently using visibility-based decomposition [OY82, dBvKO97]. Decomposition and

other explicit methods quickly gave way to early potential field [BL91] and sampling-based

methods [KvLO96]. Interestingly, these newer algorithms could be applied to a larger

class of planning problems. The application focus shifted towards exploiting computation-

35

F

q

u
qnext

Figure 3.3 : Black box simulator

ally cheap primitives and the theoretical underpinnings of showing completeness results

for algorithms composed from such primitives. Specifically, the last decade of progress in

motion planning has been enabled by two cheap primitives:

1. collision detection for collections of 2-D and 3-D polyhedra and

2. proximity queries in general metric spaces.

3.4.2 The Black Box Computational Model in the Future

This thesis maintains that the next revolution in motion planning will be enabled from the

use of physical simulators as black boxes. These simulators are not as cheap today as one

would like to, but their capabilities and speed are increasing day by day. Physical simulators

are driven by an independent and powerful industry, mainly games and entertainment. They

36

are bound to reach new levels of abstraction and performance. Motion planners that use

physical simulators as black box primitives can exploit these advances.

When planning for a complex robotic system, a state transition equation may not be

available. In the future and as we plan for more and more complex systems, state transition

equations will in general not be available. It may still be possible to compute future states

given the current state and a set of controls. As an extreme, take the example of a car

which is modeled as a set of rigid parts that are connected together as in a real car. One

can imagine different levels of abstraction starting from a car having four wheels, three

axes and a frame, to a car having all of its parts each modeled with precision that may

include the material properties of each part. Car manufacturers build increasingly accurate

simulators to model the dynamics and the behavior of cars and test certain of aspects of

their behavior in simulation before these cars are manufactured. Such simulators can be

used as a black box in a planner. The input to the simulator is the current state and a set

of controls as depicted in Figure 3.3. The output is a new state. By using a simulator the

planning algorithm does not need to deal with the details and the complexity of the system

representation. The equations, explicit or implicit, that govern the system’s behavior are

all encapsulated in the simulator, which has to decide what methods to use to integrate

and/or solve the underlying equations. Issues related to discrete time integration, numerical

precision, forward and backward integration, parallel kinematics and dynamics, friction

models etc can all be hidden inside the simulator. Chapter 2 provides a glimpse to what

modern simulators can do.

For the purposes of this thesis, a motion planning algorithm is a computable process

that takes a MPP as input, and outputs either a solution u1, ..., un and t1, ..., tn or a failure

condition. If a MPP has a solution, it is called solvable.

37

The algorithm presented in the next chapter keeps a clean interface between the algo-

rithm and the interface to the simulator and makes decisions that facilitate the use of a

simulator.

38

Chapter 4

The PDST-EXPLORE Algorithm

4.1 Overview of Algorithm Operation

The algorithm presented in this chapter is called Path Directed Subdivision Tree exploration

algorithm. We will refer to it as the PDST-EXPLORE algorithm. Figure 4.1 provides

an illustration of the operation of the PDST-EXPLORE algorithm. The motion planning

problem in this example is the same as in Figure 3.1. The small tree that is shown in Figure

4.1 is the same as the one constructed in Figure 3.2. It was constructed by hand but is

strictly according to the rules of PDST-EXPLORE. The additional notation on the diagram

shows some of the internal workings of PDST-EXPLORE.

The algorithm proceeds by iteratively adding branches to the tree; in the same way as

the abstract schema presented in Section 3.3. The dotted lines denote a space partition of

the state space into cells. The cell partition is refined incrementally, with a new split added

at each iteration. The numbers beside individual path samples provide a labeling of the

path segments.

It is important to note that as the cell partition is refined, the path samples are split

accordingly to satisfy the invariant rule that every path sample is contained in exactly one

cell. Formally, this representation for path sample and tree are supported by and motivate

the notation introduced at the end of Section 3.3.

The decisions for selection, propagation and cell refinement are governed by a heuristic

optimization scheme designed to satisfy the complete properties while providing a powerful

39

mechanism for exploiting problem structure.

The remainder of this chapter deals with the specifics of the PDST-EXPLORE. Exper-

iments are given in Chapters 5 and 6. An analysis of the probabilistic completeness of this

algorithm is given in Chapter 7 and a discussion is included in Chapter 8. This chapter is

meant to precisely expose the details of the PDST-EXPLORE algorithm. The focus is for

this to be a workable implementation guide as well as to provide notation that will be used

in the theoretical analysis in Chapter 7. The algorithm is presented in entirety as Algorithm

1 and described in the body of the next section. The notation used and the definitions of

certain key operators are given as they are introduced in the algorithm.

4.2 Algorithm Details

The object of this section is to provide a detailed description of PDST-EXPLORE which is

given in its entirety as Algorithm 1. The methodology will be discuss the algorithm in a se-

quence of logical blocks, giving the relevant pseudo-code at the beginning of each segment

and exposing the meaning. Rather than having a centralized discussion of the various data

structures used in PDST-EXPLORE, they will be defined as they are introduced and used.

4.2.1 Explore Procedure (lines 1–27) and Initialization (lines 2–5)

1: procedure EXPLORE(qinitial, N, G) ⊲ Find a path from qinitial to G in N iterations

2: SampleSet← CreateSet()
3: InsertSet(SampleSet, qinitial) ⊲ Initial state is added to SampleSet

4: priority(qinitial) = 1 ⊲ Priority of the initial state is 1
5: CellBSP← CreateBSP(Q) ⊲ Cell BSP begins with the entire state space

6:
...

27: end procedure

The arguments to Explore are the initial state qinitial, a maximum number of iterations,

N , and a goal region, G. There is an unspoken additional argument consisting of the

“universe”, i.e., the motion planning problem consisting of the state space Q, the control

40

Iteration 0

0

Initial State

Goal

Iteration 3

0

1

2

3 4

5

Initial State

Goal

Iteration 6

0

1

2

3 4

5

6

7

8
9

10

11

12

13

Initial State

Goal

Iteration 1

0

1

Initial State

Goal

Iteration 4

0

1

2

3 4

5

6

7

Initial State

Goal

Iteration 7

0

1

2

3 4

5

6

7

8
9

10

11

12

13

14

15

Initial State

Goal

Iteration 2

0

1

2

3

Initial State

Goal

Iteration 5

0

1

2

3 4

5

6

7

8
9

10

11

Initial State

Goal

Problem Solved

Initial State

Goal

Figure 4.1 : An example of PDST-EXPLORE execution

41

space U and the transit function F . In my reference implementation, this information is

attached as an object which deals with representing and manipulating states and controls,

as well as providing the black box integrator for the system. Additionally, as part of the

universe, are any integration parameters, e.g. time step and maximum path time, measures

for Q and U , and the subdivision scheme. These concepts are defined in the write-ups for

the code blocks that use them.

The set SampleSet is a set of path samples and is initially created as an empty set on

line 2. In Section 3.3, this set was referred to as S and is a set of path samples. It will

always be a tree in the sense of the definitions of Section 3.2. As stylistic policy, verbose

variable and operator names are used in the algorithm description to reduce the opacity of

the notation. The SampleSet initially has the singleton path sample (qinitial, ·, [0]) inserted

into it. The description on line 3 is slight abuse of notation and follows the rule that a state

q interpreted as a path sample is the path sample (q, ·, [0]).

Line 4 introduces the priority operator. The operator priority maps path samples

in SampleSet to positive integers. The priority of a path sample is used to construct an

ordering over the path samples and to determine which segment is selected for branching.

A lower priority value means it will be selected earlier.

Finally, on line 5, the cell subdivision introduced and Figure 4.1 is created. The set

CellBSP consists of a set of cells which define a partition of the state space, Q. The set

CellBSP is initialized to a single cell, the state space Q.

There is a relationship between SampleSet and CellBSP. An invariant is constructively

maintained throughout the execution of PDST-EXPLORE. In plain language, the invariants

states that every path sample in the sample set lies in exactly one cell from the subdivision.

Invariant 4.2.1. At any step in the execution of PDST-EXPLORE the following property

42

holds:

For every π ∈SampleSet, there exists C ∈ CellBSP such that π ⊂ C.

4.2.2 Outer Loop (line 6–25) and Failure Condition (line 26)

6: for iteration← 1 to N do

7:
...

25: end for

26: return No Path Found

The input variable N is the maximum number of iterations that PDST-EXPLORE tries

before concluding that no path exists. After completing N iterations, the algorithm returns

“No Path Found” on line 26.

4.2.3 Select (line 7)

7: πselect = π ∈ SampleSet such that score(π) is minimal ⊲ Select

Line 7 shows the criterion that determines which path sample is selected for branching.

The sample that is selected is the one that minimizes the scoring function. The scoring

function is defined by

score(π) =
priority(π)

µC(cell(C, π))
,

and the operator cell is given by

cell(π) = C such that C ∈CellBSP and π ⊂ C.

In other words, the score of a path sample is the priority of that segment divided by the

volume of the cell that contains it. The measure µC is a probability measure for the state

space, i.e. µC(Q) = 1, and is an implicit parameter of the algorithm. The sample with the

minimal score is chosen as the selected sample for that iteration, πselected.

Figure 4.2 shows SampleSet on the 5th and 6th iterations of the PDST-EXPLORE

run shown in Figure 4.1. The numbering in Figure 4.2 is consistent with the numbering

43

Iteration 5 Iteration 6

pr sc

pr sc

pr sc pr sc

pr sc pr sc

pr sc

pr sc

pr sc

pr sc

pr sc

pr sc

8

9

10

0

1 711

2 3

4 5

6

10 5 4

3 48

7 112

7 112 7 56

3 324 24

7 112

4 64

5

5

5

80

40

10

3 24

7 0 39 6 8 11 2 1

Minimum Score Order

pr sc

pr sc

pr sc pr sc

pr sc pr sc

pr sc

pr sc

pr sc

pr sc

pr sc

pr sc

pr sc

pr sc 12

13

8

9

10

0

1 711

2 3

4 5

6

3 48

7 112

7 112 7 56

3 324 24

7 112

4 64

5

5

11

80

40

44

3 24

6

6 24

24

105 47 0 39 6 8 11 2 113 12

Minimum Score Order

Figure 4.2 : Sample set

Figure 4.1. Each dark square represents a primitive path sample that appears in the tree

and the arrows represent the branching relation. The entries associated with square are

path samples that have been split to satisfy Invariant 4.2.1. Each entry contains its sample

identifier, its priority and its score. At the bottom of Figure 4.2, the set of all path samples

is ordered from left to right from least to largest score. At iteration 5, the path sample with

the identifier 10 will be selected.

4.2.4 Propagate (line 8)

8: πnew ← integrate(πselect(uniform(domain(πselect))), randomControl()) ⊲ Propagate

Line 8 describes how a new branch is added to the tree; this step is also called propagate.

Suppose πselect = (q, u, D). The operator domain(πselect) returns D, the domain of the

path segment. The operator uniform(D) returns a random t ∈ D, uniformly distributed

over D using the usual distribution on the real line. Then πselect is evaluated at time t

to produce a state q′ = πselect(t). Finally, a random control u = randomControl() is

44

generated and a new primitive path sample is produced by integrating control u from state

q′, πnew = integrate(q′, u). The integrate operator is defined in the same way as in

Section 3.2. The distribution used by randomControl and the value Tmax in the integrator

are implicit parameters to algorithm.

4.2.5 Check for Solution (line 9–11)

9: if πnew ∩G 6= ∅ then ⊲ If the goal is reached...

10: return the pathTo(πnew, G) ⊲ then return the solution path

11: end if

Next PDST-EXPLORE checks to see if the newly generated path sample is a solution

to planning problem. On line 9, it is checked if πnew intersects the goal region G. If not,

then no solution was found and the algorithm proceeds, otherwise a solution was found and

the solution path is returned.

The pathTo operator is defined as follows. pathTo(π, G) returns the path given by first

finding the longest sequence π1, ..., πn with πi ∈SampleSet, πn = π and parent(πi+1) =

π. Noting that π1 = (qinitial, ·, [0]) and then determining t1, ..., tn such that πi(ti) = πi+1(0)

and πn(tn) ∈ G, the solution path is given by, for πi = (qi, ui, Di),

pathTo(π, G) = path(qinitial, u1, t1, ..., un, tn).

4.2.6 Adjust Priorities (line 12–14)

12: priority(πselect)← 2 · priority(πselect) + 1 ⊲ Penalize

13: priority(πnew)← iteration ⊲ Initialize priority for new sample

14: InsertSample(πnew) ⊲ Insert the new sample

In the case where no solution is found, the new sample is inserted into the tree. Before

this occurs, the priority for the selected sample, πselect, must be adjusted and the priority of

the new sample must be set. This is governed by line 12 and 13 and the rules are:

1. priority is doubled after selection

45

2. new priorities are set to the current iteration count

The basic intuition is that selection of a given sample should occur exponentially infre-

quently. Secondly, there is a linear ordering on new samples, i.e. excluding bias introduced

by the cell volumes, a sample created on iteration 7 should be selected before a sample

created on iteration 12. A more formal explanation of why these are good rules is given in

Chapter 7.

After setting the priorities, the new sample is inserted on line 14 by calling the insertion

subroutine.

4.2.7 Insertion Subroutine (line 28–39)

28: procedure INSERTSAMPLE(π) ⊲ Insert path sample π into the SampleSet splitting if

necessary

29: C ←StabBSP(CellBSP,π) ⊲ Find the cell that π begins in

30: if π ⊂ C then ⊲ If π is entirely contained in cell C

31: InsertSet(SampleSet, π) ⊲ The sample was contained in one cell

32: else

33: π1 ← π ∩ C ⊲ Intersect π with C

34: π2 ← π − π1 ⊲ π2 is the path sample not in C

35: priority(π1)← priority(π2)← priority(π) ⊲ Priority is inherited

36: InsertSet(SampleSet, π1) ⊲ Add π1 to the sample set

37: InsertSample(π2) ⊲ Recursively insert π2

38: end if

39: end procedure

The insertion subroutine deals with inserting given path sample, π, which may be recur-

sively split in order to maintain Invariant 4.2.1. Line 29 determines the first cell containing

the path sample π. Formally, the operator is defined by, for π = (q, u, D),

StabBSP(CellBSP, π) = C ∈ CellBSP such that there is t ∈ D for all t′ ∈ D, t′ ≤ t, π(t′) ∈ C.

On line 30, the procedure checks if π is contained entirely in C. If so, the direct insertion

into SampleSet is sufficient on line 31 and nothing else needs to be done. Otherwise, on

46

line 33, π1 is set to the part of π that intersects C, i.e.

π1 = (q, u, D1) where D1 ⊂ D maximal s.t. t ∈ D1, F (q, u, t) ∈ C.

Similarly, line 34 sets π2 as the remainder, π2 = (q, u, D −D1). The priorities of the split

samples π1 and π2 are inherited from the priority of π. Since π1 is entirely contained C, it

is directed inserted into SampleSet and a call to InsertSample occurs recursively on

π2 on line 37.

4.2.8 Subdivision (line 15–24)

15: Cselect ← cell(πselect) ⊲ This cell will be subdivided

16: ReinsertionSet← CreateSet()
17: for π ∈ SampleSet such that cell(π) = Cselect do

18: InsertSet(ReinsertionSet, π) ⊲ Accumulate all samples contained in the cell

19: RemoveSet(SampleSet, π) ⊲ Remove them from the sample set

20: end for

21: SubdivideCellBSP(CellBSP,Cselect) ⊲ Subdivide the cell

22: for π ∈ ReinsertionSet do

23: InsertSample(π) ⊲ Reinsert all samples from the subdivided cell

24: end for

Before the end of an iteration of PDST-EXPLORE, the cell that contained πselect is

subdivided. On line 15, Cselect is set to the cell that contains πselect, cell(πselect). On the

subsequent line, a temporary set calledReinsertionSet is created. TheReinsertionSetwill

contain all π ∈ SampleSet such that cell(π) = Cselect. The for loop from lines 17–20,

removes all of the path samples contained in the cellCselect from the sample set, SampleSet,

and places them in the ReinsertionSet. On line 21, the cell Cselect is subdivided. The

effect is that it is partitioned into two new pieces which are added to CellBSP and Cselect is

removed from the CellBSP. The scheme for subdividing cells is an implicit parameter of

the algorithm. The for loop on lines 22–24 reinserts all of samples in the ReinsertionSet

using the InsertSample procedure where they may be split if necessary.

47

Iteration 5 Iteration 6

x=0.5

y=0.5

5

x=0.25

3,4

x=0.25

0,1

7,9

y=0.5

2,6,8,11

10

x=0.5

y=0.5

5

x=0.25

3,4

x=0.25

0,1

7,9

y=0.5

2,6,8,11

10,12

y=0.5

13

Figure 4.3 : Cell subdivision

The illustration in Figure 4.3 shows cell binary space partitions for iterations 5 and 6 of

the execution of PDST-EXPLORE in Figure 4.1.

4.3 The Full Algorithm

Algorithm 1 contains all the full algorithm whose individual parts have already been ex-

plained in this chapter.

48

Algorithm 1 PDST-EXPLORE Pseudo-Code

1: procedure EXPLORE(qinitial, N,G) ⊲ Find a path from qinitial to G in N iterations

2: SampleSet← CreateSet()
3: InsertSet(SampleSet, qinitial) ⊲ Initial state is added to SampleSet

4: priority(qinitial) = 1 ⊲ Priority of the initial state is 1
5: CellBSP← CreateBSP(Q) ⊲ Cell BSP begins with the entire state space

6: for iteration← 1 to N do

7: πselect = π ∈ SampleSet such that score(π) is minimal ⊲ Select

8: πnew ← integrate(πselect(uniform(domain(πselect))), randomControl()) ⊲
Propagate

9: if πnew ∩G 6= ∅ then ⊲ If the goal is reached...

10: return the pathTo(πnew, G) ⊲ then return the solution path

11: end if

12: priority(πselect)← 2 · priority(πselect) + 1 ⊲ Penalize

13: priority(πnew)← iteration ⊲ Initialize priority for new sample

14: InsertSample(πnew) ⊲ Insert the new sample

15: Cselect ← cell(πselect) ⊲ This cell will be subdivided

16: ReinsertionSet← CreateSet()
17: for π ∈ SampleSet such that cell(π) = Cselect do

18: InsertSet(ReinsertionSet, π) ⊲ Accumulate all samples contained in

the cell

19: RemoveSet(SampleSet, π) ⊲ Remove them from the sample set

20: end for

21: SubdivideCellBSP(CellBSP,Cselect) ⊲ Subdivide the cell

22: for π ∈ ReinsertionSet do

23: InsertSample(π) ⊲ Reinsert all samples from the subdivided cell

24: end for

25: end for

26: return No Path Found

27: end procedure

28: procedure INSERTSAMPLE(π) ⊲ Insert path sample π into the SampleSet splitting if

necessary

29: C ←StabBSP(CellBSP,π) ⊲ Find the cell that π begins in

30: if π ⊂ C then ⊲ If π is entirely contained in cell C
31: InsertSet(SampleSet, π) ⊲ The sample was contained in one cell

32: else

33: π1 ← π ∩ C ⊲ Intersect π with C
34: π2 ← π − π1 ⊲ π2 is the path sample not in C
35: priority(π1)← priority(π2)← priority(π) ⊲ Priority is inherited

36: InsertSet(SampleSet, π1) ⊲ Add π1 to the sample set

37: InsertSample(π2) ⊲ Recursively insert π2

38: end if

39: end procedure

49

Chapter 5

Experiments with Simplified Physics

This chapter presents several experimental results using PDST-EXPLORE. The cases con-

sidered in this chapter are cases where the physics of the underlying system are fairly

simple and in some cases extensive prior work can be used for trajectory generation. First

a 2D Kinodynamics robot, a second-order differential drive robot and a blimp robot are

considered. Then we present a game, called the Games of Koules which is a second-order

dynamical multi-agent system, and which exemplifies many of the characteristics of prob-

lems that are difficult for current planners. The material of this chapter has been presented

in [LK05a,LK05b].

5.1 2D Kinodynamic, Differential Drive and Blimp Robots

In this section, we begin by describing a novel extension to Maneuver Automata the-

ory [Fra] which uses PRM sampling to generate Maneuver Automata. The generated au-

tomata are then used for trajectory generation for the robots considered in this section. We

continue by outlining the specific robot systems we have implemented PDST-EXPLORE

for. Finally, we describe our experiments and present our experimental results.

5.1.1 Maneuver Automata

We propose using the Maneuver Automata [FDF05] to implement the integrate func-

tion used in our exploration planner. This is novel extension to the Maneuver Automata

50

literature and can applied to any planner that uses propagation for a robot that satisfies the

symmetry property we have described in this subsection. The advantage we gain is that we

can restrict ourselves to nice family of motions and eliminate numerical integration from

the call to integrate. These techniques only apply when special structure exists in the

motion of the robot, however the class of applicable robot systems is an important one. A

sufficient condition occurs when the state space Q is a direct product of a Lie Group G

and a shape manifold Z. Furthermore, the Lie Group G operating on Q must preserve path

feasibility [Fra]. If this is the case, we say that G is a symmetry group for Q and Maneuver

Automata theory can be applied.

For our purposes a Maneuver Automata is a finite directed multi-graph MA = (V, E).

The vertex set V is a finite subset of Z. An element of E is (z1, λ, z2) is a directed edge

between vertices z1 and z2 together with a control function λ : [0, T] → U of duration

T . The control function λ must satisfy the property that if q1 = (e, z1) then result of

integrating the control function λ starting at state q1 produces a state q2 = (g, z2) where g

can be arbitrary. In other words, λ gives a control schedule for transitioning from any state

with shape z1 to some state with shape z2. Such a transition defines a set of paths equivalent

under G-symmetries which is called a maneuver motion. A second kind of motion can be

effected from a state q = (g, z) where z ∈ V by executing the zero control 0 ∈ U for

any amount of time. These motions can be called trim motions and can be represented by

Lie group exponentiation. Precisely, if q = (g, z) for z ∈ V and for any time t ≥ 0 there

exists gz ∈ G such that integrating the constant control 0 ∈ U starting at q produces a

motion α(t) which can be written as α(t) = (g exp(gz, t), z). The Maneuver Automata can

be used to generate motions by alternating between the fixed duration maneuver motions

and the anytime trim motions. If an automata MA satisfies certain properties then the set

QMA = {q = (g, z) : g ∈ G and z ∈ V } is strongly connected by these generated motions.

51

The graph MA = (V, E) is a kind of roadmap in shape space. Continuing this analogy,

we can sample MA using PRM techniques. So, given z1, z2 ∈ Z, we need a local planning

primitive which can compute a control function which defines a maneuver motion that

connects them. The local planner and the sampling distribution over Z can be used to

implement PRM. It seems likely that Quasi-Random-Lattice methods might be particularly

effective for this task [LB02].

5.1.2 Robot Systems

In this subsection, we describe the robot systems for which we implemented PDST-EXPLORE.

In each case, we specify the state space, the dynamics, inequality constraints, the symme-

tries, primitive trajectories and cell subdivision scheme.

5.1.3 2-D Kinodynamic Robot

The state space for the 2-D kinodynamic robot is denoted by Q = R
2 × R

2. A state q =

(x, y, ẋ, ẏ), where (x, y) is the robot’s position in the plane and (ẋ, ẏ) is the robot’s velocity.

The symmetry group we use for this robot is G = R
2, the group of 2-D translations.

The shape manifold for the robot is Z = R
2 and represents positionless velocities. Every

z = (ẋ, ẏ) ∈ Z defines a trim primitive [αz] and corresponds to the straight line at that fixed

velocity. Maneuvers between trim primitives consist of the robot acceleration towards the

different velocity state at maximum acceleration. We impose a constraint that velocity is

bounded, i.e. ||(ẋ, ẏ)|| ≤ vmax. The subdivision scheme builds a kd-tree in the state space

by equal splits on the first and second dimensions.

52

Figure 5.1 : Execution snapshots of PDST-EXPLORE for a differential drive robot

53

5.1.4 Differential Drive Robot

The state space for this robot is Q = R
2 × S × R

2. A state is given by q = (x, y, θ, vl, vr).

The vector (x, y, θ) is the robot’s position and orientation and (vl, vr) are the robot’s wheel

velocities. The symmetry group we use for this robot is G = R
2×S = SE(2), the group of

2-D rigid motions. The shape manifold for the robot is Z = R
2 and represents positionless

wheel velocities. Every z = (ẋ, ẏ) ∈ Z defines a trim primitive [αz]. The canonical path

for the trim primitive defined by z = (vl, vr) is

αz(t) =

(vf t, 0, 0, vl, vr) ω = 0

(
vf

ω
sin(ωt),

vf

ω
(1− cos(ωt)), ωt, vl, vr) ω 6= 0,

where ω = vr−vl

L
, vf = vl+vr

2
and L is the length of the wheel base of the robot. Let

z1 = (v1
l , v

1
r) and z2 = (v2

l , v
2
r). The maneuver primitive that brings z1 to z2 is [πz1z2]. It is

determined by amax, the maximum wheel acceleration for the robot. Let

T = max

{∣

∣

∣

∣

v2
l − v1

l

amax

∣

∣

∣

∣

,

∣

∣

∣

∣

v2
r − v1

r

amax

∣

∣

∣

∣

}

be the duration of [πz1z2] which has canonical representative

πz1z2(t) =

(

v1
l + (v2

l − v1
l)

t

T
, v1

r + (v2
r − v1

r)
t

T

)

.

We impose a constraint which bounds the maximum wheel velocity, |vl|, |vr| ≤ vmax. The

subdivision scheme we use for this space builds a kd-tree in the state space and uses equal

splits on the first, second and third dimensions.

5.1.5 Blimp Robot

The the state space for this robot isQ = R
3×S×R

3×S. A state q = (x, y, z, θ, ẋ, ẏ, ż, θ̇) is

the robot’s position, orientation and velocity. The symmetry group that we use for this robot

54

Figure 5.2 : Workspaces (from left to right) spiral-1, varied-1, varied-2 and slot

is G = R
3, the group of translations in 3-D. The shape manifold for this robot is R

3 × S.

Every z = (ẋ, ẏ, ż, θ̇) ∈ Z represents the velocities of the robot. Each z = (ẋ, ẏ, ż, 0)

defines a trim primitive [αz]. The canonical path for the trim primitive defined by such a z

is α(t) = (ẋt, ẏt, żt, 0, ẋ, ẏ, ż, 0). The controls for this robot are af , az and aθ. The robot

is subject to the following constraints: ẍ = cos(θ)af , ÿ = sin(θ) · af , z̈ = az and θ̈ = aθ.

Furthermore, af ∈ [0, amax
f], az ∈ [−az

max, a
z
max] and aθ ∈ [−aθ

max, a
θ
max]. In particular,

since af must be positive the robot’s motion is highly constrained. The calculation of

the maneuver primitives are accomplished using a controller which tries to minimize the

amount of time taken to switch between two shapes. During the switch, the z-dimension

is controlled independently and the controller attempts to minimize the change in z by

keeping |ż| = 0 for as long as possible. The controller that we use is expensive to compute

but is effective at minimizing the time used. The trajectories taken through shape space

to connect two shapes are not symmetric for this robot and can differ greatly in the total

time used. Finally, the time step used to integrate the motion of the robot is very small in

the controller and once the path is computed we resample using a variable sized time step

which approximates the motion in the state space. The subdivision scheme we use for this

robot builds a kd-tree in the state space and uses equal splits on the first, second, third and

fourth dimensions.

55

5.1.6 PDST-EXPLORE Experiments

In Figure 5.2, we depict some of the workspaces in which the experiments were carried out.

In each experiment, a maneuver automata was built offline which took less than two sec-

onds for the kinodynamic robot and differential drive robot and between 50 and 70 seconds

for the blimp example. During the experiment, the maneuver automata was loaded off the

disk and the PDST-EXPLORE planner was run until the measured dispersion [LB02] in

the free space became very small. Dispersion was measured on a high-resolution cell grid.

Cells containing an obstacle were not considered in the dispersion measure. The threshold

we used ensured that over 0.999 of the space was covered. The number of iterations was

then reported. In every example, 384 trials were carried out. The number of iterations re-

quired to solve the problem tended to be very similar to the mean number of iterations with

the occasional outlier requiring between two and six times more iterations. In Figure 5.1,

we show snapshots of the execution of the exploration of the free space for a differential

drive robot. The example in question is referred to as chambers-1. The time costs and

collision detect calls were very consistent across multiple runs. The raw data is presented

in Figure 5.3. Experiments were carried on a standard 2004 technology desktop. Cost in

time per iteration is roughly O(n log n) experimentally, which is expected because of the

binary heap.

5.2 The Game of Koules

Our version of the game of Koules takes place in a 2-D workspace, specifically a square.

There are two types of robots inside the workspace: a single ship and the koules. The

ship is controlled by the user and the koules follow independent trajectories. When a robot

touches the boundary of the workspace, it is killed. The user loses the game if the ship is

56

problem robot avg. # iterations avg. # time avg. # collision detects

spiral-1 kino 54205 0.76 s 51274

chambers-1 kino 95963 1.88 s 94112

varied-1 kino 76549 1.28 s 77974

varied-2 kino 431736 5.8 s 290904

spiral-1 dd 86000 4.6 s 71808

chambers-1 dd 282708 13.9 s 160350

varied-1 dd 288067 22.9 s 297662

varied-2 dd 1069687 66.7 s 717530

six blimp 10000 3.4 s 391737

slot blimp 65000 22.0 s 2515246

Figure 5.3 : Average running times to obtain full coverage

Figure 5.4 : Execution snapshots for a solution to the game of Koules with 6 koules

57

killed and the user wins the game if all of the koules are killed. When two robots touch, an

elastic collision occurs and the robots bounce away from each other. The ship is capable of

four different actions that the user can control: to cruise, to turn left or right at a constant

speed, or to apply a constant thrust in the direction of the ship’s current heading. The

koules are attracted towards the center by a damped spring which makes them difficult to

push towards the sides. The user can only influence the koules by colliding with them. An

illustration is offered in Figure 5.4.

Solving an instance of the game of Koules requires the generation of sequence of timed

controls such that the ship survives and all of the koules are killed. In the remainder of this

section, we describe the implementation of our version of the game of Koules. In the next

section, we describe the planner that we use to solve input instances of the game.

5.2.1 State Space and Controls

We begin by describing the state and control spaces. The state space for the game of Koules

with n koules is determined as follows:

Qn = ([0, 1]2 × S1 × R
2)× ([0, 1]2 × R

2)n.

A state q = (xs, θ, vs, x1, v1, ..., xn, vn) determines the position, xs, heading, θ, and velocity

vs of the ship together with the positions, x1, ..., xn and velocities v1, ..., vn of the koules.

There are four distinct control inputs in the set of controls for the game of Koules,

U = {u0, uL, uR, u1}, which correspond to cruise, u0, turn left, uL, turn right, uR, and

thrust, u1.

An instance of the game of Koules consists of n, the number of koules and an initial

state q0 ∈ Qn. A partial solution to that instance is a path π of duration T such that at state

π(T), a koule touches the boundary and no boundary collisions occur on the path before

58

time T . A full solution is a sequence of paths πn, ..., π1 with durations Tn, ..., T1 such that

for all i < n, πi is a partial solution to the instance (i, πi+1(Ti+1)).

5.2.2 The Dynamic System

The game of Koules is a second-order dynamic system. The motion of the ship is deter-

mined by its state and the control input using the following equations:

ẋs

θ̇

v̇s

=

vs

vθ

R(θ) · [a 0]T

(5.1)

where vθ is the turning speed, R(θ) is the rotation matrix in SO(2) determined by θ and a

is the thrust. The turning speed, vθ, and thrust, a are determined as functions of the current

control input u ∈ U ,

u vθ(u) a(u)

u0 0 0

uL vmax
θ 0

uR −vmax
θ 0

u1 0 amax

.

The motion of each koule is determined by its state and the position of the ship using

the following damped spring equation:

ẋi

v̇i

=

vi

(o− xi) · λc − vi · h

(5.2)

where o is the center of the workspace, λc is spring constant attracting towards the center

and h is a friction parameter.

59

In the simulator, control inputs are applied over a fixed timestep ∆t and numerically

integrated with a fourth-order Runge-Kutta-Nystrom method [AS74].

5.2.3 Rules for Elastic Collisions

During each time-step of the simulator must simulate the system to generate the state that

results from applying the current control, u ∈ U , to the initial state. This is a two-step

process: first, a numerical integration of the equations of motion and followed by a discrete

event simulation to resolve any collisions.

At the beginning of the time-step, the system is in state q0. The result of integrating

the control u for time ∆t is a new state, qf . However, although q0 is collision-free, it

is possible that collisions between robots or between the robots and the boundary of the

workspace occur along the path between q0 and qf . In order to calculate collisions and the

results of the induced velocity changes, a locally linear approximation is used and first-

order motions are simulated with a discrete event simulator. To begin with, a new initial

state,

q+ = (x+
s , θ+, v+

s , x+
1 , v+

1 , ..., x+
n , v+

n),

is constructed from q0 and qf as follows: x+
s = x0

s, θ
+ = θ0, x+

i = x0
i , v

+
s = (xf

s − x0
s)/∆t

and v+
i = (xf

i − xs
i)/∆t.

All robots are then assumed to begin at q+ and to move along the lines determined by

their velocities during the discrete event simulation. If there are no collisions, after time ∆t

has elapsed, the system will reach a state with the same positions as state qf and with the

velocities of state q+. The velocities are constant along the time step and are approximately

correct with error linearly proportion to ∆t.

The events in the discrete event simulation occur when a pair of robots collide or when

a robot touches the boundary. The ship has radius rs and mass ms. Each koule has radius

60

rk and mass mk.

Pairwise collisions occur when the distance between two robots is equal to the sum

of their radii. This is predicted by the solution of the appropriate quadratic equation. It

is best to use iterative root polishing to avoid simulation errors caused by near singular

states. Collisions with the boundary are determined by solving linear equations. Inter-

robot collisions are resolved by applying the 1-D elastic collision formula and boundary

collisions end the simulation.

The minimum amount of information required to store a path is the initial state q0 and

a sequence of timed control inputs: 0 = t0, u1, t1, ..., tm−1, um, tm where the input ui is

applied from time ti−1 to time ti and ui 6= ui+1. In order to reconstruct the state, qt, at

time t the integrator and discrete event simulator must be run. Our implementation stores

key frames at times were collisions occurred and with a certain minimum density to reduce

the amount of integration that needs to be done during interpolation while maintaining a

compact representation for path data.

5.2.4 Trajectory Generation

Let γ be a path segment of duration T . The operation propagate(γ) creates a path seg-

ment π branching from γ. There are many possible choices for the propagate operation

and the performance of the PDST-EXPLORE planner depends on this choice. We have ob-

served that the following design principles are good choices: an iterated sequence of calls

to propagate should be able to approximate any given path with some non-zero proba-

bility and a short sequence of iterated calls should extend into the local space around the

initial segment. These principles were taken into the design and testing of the trajectory

generation scheme which was used in the planner described in this paper. We now present

propagate in Algorithm 2.

61

Algorithm 2 propagate(π)

1: Generate uniformly at random t ∈ [0, |π|].

2: Let q0 := π(t).

3: Let x0
s be the ship’s position at q

0.

4: Generate x ∈ [0, 1]2 uniformly and at random.

5: Generate vmag
s ∈ [vmin

s , vmax
s].

6: Set vtarg
s := vmag

s
x−x0

s

||x−x0
s||
.

7: for i ranges from 0 to Nmax do

8: Let vs be the ship velocity of state qi.

9: Let θ be the ship direction of state qi.

10: Let v := vtarg
s − vs.

11: Let θtarg be the direction of vector v.

12: Let ∆θ := θtarg − θ.

13: if |v| < δ then u = u0.

14: else if |∆θ| < ǫ then u = u1.

15: else if ∆θ > 0 then u = uL.

16: else u = uR.

17: end if

18: Let qi+1 := simulate(qi, u).

19: if qi is a terminal state then return the path {q0, ..., qi}.

20: end for

21: return ∅.

62

Algorithm 2 incrementally constructs a path by running a controller with the simula-

tor. The operation simulate(qi, u) is the result of running the simulator to compute the

state that results from applying control u for time ∆t from state qi. The controller is de-

signed to change the ship’s velocity into a given target velocity. The target velocity has

a random magnitude. Its direction is towards a randomly and uniformly chosen point in

the workspace (unit square) from the ship’s position at initial state of the new path. The

initial state is chosen randomly from the states along the path being branched, π. The con-

troller runs until the ship or a koule collides with the boundary or until Nmax iterations have

occurred.

In lines 4, 5 and 6 of Algorithm 2, the target velocity is computed. Notice the biased

sampling that occurs as a function of the ship’s current position. When the ship is close

to the boundary of the workspace, the target velocity will tend to move away from the

boundary. The target velocity is sampled this way to reduce the probability that the ship

will collide with the boundary at the beginning of the path.

Algorithm 2 has several external parameters: the maximum number of iterations, Nmax,

the minimum andmaximum velocity magnitudes, vmin and vmax respectively, and the switch-

ing bounds for the controller, δ and ǫ. Choosing δ = amax·∆t
2

and ǫ =
vmax

θ
·∆t

2
guarantees

stability.

5.2.5 Coverage Estimation

The subdivision scheme used in our implementation was relatively unsophisticated. Initial

tests determined that subdividing the velocity dimensions led to poor performance. Conse-

quently, the scheme we employed only worked on the position dimensions: xs, θ, x1, ..., xn.

The variables were subdivided in that order and we employed uniform splits. In an example

with n koules, the coverage space is 3 + 2n-dimensional and the state space is 5 + 4n-

63

dimensional. The measure µ is uniform probability measure on R
2 × S1 × R

2n.

5.2.6 Full Solution Algorithm

The PDST-EXPLORE planner creates partial solutions. In order to construct a full solution,

a sequence of partial solutions must be generated. It is possible that the endpoint of a partial

solution may leave the system in a state fromwhich no further solution exists. Therefore the

full solution planner needs a backtracking mechanism. The method presented as Algorithm

3 is very simple but was quite effective for the purposes of the game of Koules. The method

proceeds recursively: PDST-EXPLORE is invoked to find a solution and if one is found

then Algorithm 3 runs on the end state of the solution path. If repeated invocations of

PDST-EXPLORE fail to find a solution or if the recursive calls fail, then the recursion

stack pops one level and another attempt is made.

Algorithm 3 SOLVE(n, qn, Niter, Nattempts)

1: for i ranges from 1 to Nattempts do

2: Let πn := PDST-EXPLORE(qn, Niter).

3: if πn = ∅ then continue.

4: if n = 1 then return π1.

5: Let qn−1 be the endpoint of πn.

6: Let πn−1 := SOLVE(n− 1, qn−1, Niter, Nattempts).

7: if πn−1 6= ∅ then return πn ◦ πn−1.

8: end for

9: return ∅.

64

5.2.7 Koules Experimental Methodology

Two different kinds of experiments were run to establish evidence for our claims: partial

solutions and full solutions. The partial solution experiments were run for various numbers

of koules. They use PDST-EXPLORE to search for paths that eliminate a koule. The plan-

ner is allowed to continue after finding a solution and may generate many solutions. The

full solution experiments were also run for various numbers of koules and uses Algorithm 3

to construct a sequence of partial solutions each, in turn, generated with PDST-EXPLORE.

The experiments were conducted on a cluster of 16 dual AMD 1900MPs with 1 GB

of RAM running Debian unstable with the 2.4.18 Linux kernel. The code is written in

C/C++/fluid and uses the FLTK, GLUT, OpenGl and S-Lang packages. Throughout

the experiments, the following parameters were used: vmax
θ = π, amax = 1, λc = 4, h =

0.05, ms = 0.75, mk = 0.5, rs = 0.03, rk = 0.015 and ∆t = 0.005. These parameters

were set to create a challenging motion planning task and were tuned by using an interactive

interface to the game. With these parameters, we found that human players in our research

group were not able to solve examples with more than a few koules.

5.2.8 Partial Solutions

In this set of experiments, we measure the cost per iteration of PDST-EXPLORE during

partial solutions. Each run was for 60000 iterations and worked on a randomly generated

problem instance. The data was merged and averaged from 80 runs, but for these results

there was very little variations. In Figure 5.5, we see the total time in seconds versus

the iteration counter. Although running N iterations of Algorithm 1 is guaranteed to take

at least time proportional to N log N , the timing plots are very close to linear. This is

explained by observing that most of the runtime is spent in the simulator. The additional

cost of the PDST-EXPLORE algorithm is a slight super-linear cost due to the binary space

65

 0

 100

 200

 300

 400

 500

 600

 0 10000 20000 30000 40000 50000 60000 70000

ti
m

e
 i
n
 s

e
c
o
n
d
s

number of iterations

n = 1
n = 3
n = 6

Figure 5.5 : Average time spent versus number of iterations for 1, 3 and 6 koules

 0

 2

 4

 6

 8

 10

 12

 14

 1 2 3 4 5 6 7 8

ti
m

e
 i
n
 s

e
c
o
n
d
s

number of koules

partial solution timing

Figure 5.6 : Average time spent per 1000 iterations versus number of koules

66

 0

 20

 40

 60

 80

 100

 120

 140

 0 10000 20000 30000 40000 50000 60000 70000

n
u
m

b
e
r

o
f
g
e
n
e
ra

te
d
 s

o
lu

ti
o
n
s

number of iterations

n = 1
n = 2
n = 3
n = 4
n = 5
n = 6

Figure 5.7 : Average number of solutions generated versus number of iterations

partition stab operations and the binary heap make nearly no impact on the scale of a few

hundred thousand iterations. The growth in the cost of iterations is shown in Figure 5.6.

The super-linear trend is due to the increased number of inter-robot collisions.

An important question that must be asked about Algorithm 1 is: how well does our

algorithm PDST-EXPLORE perform as coverage estimates become coarser due to the di-

mensionality increase? One way to examine this is to look at the number of solutions a run

of PDST-EXPLORE generates as a function of the number of iterations. When the space

becomes well covered then the rate solutions are generated frequently. Before good cov-

erage is achieved, the solution rate will be much less. In Figure 5.7, we show the average

solution count for partial solutions with n = 1, ..., 6 koules. The sharp drop-off that occurs

when moving from n = 3 to n = 4 suggests the coverage estimator begins to fail when

moving from 9 to 11-dimensional space.

5.2.9 Full Solutions

Algorithm 3 is used for generating full solutions for instances of the game of Koules by

repeatedly invoking PDST-EXPLORE. For each trial, we generated a random problem in-

67

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 20 40 60 80 100 120

th
e
 s

h
ip

’s
 x

 c
o
o
rd

in
a
te

simulation time

solution path n = 6

Figure 5.8 : The trajectory taken the ship’s x-coordinate during a full solution of a problem
with 6 koules

stance and then ran Algorithm 3. In our tests, Nattempts = 1 and Niter = 40000 were used.

The computed paths were quite complicated, with durations of several hundred thou-

sand simulator steps and thousands of maneuvers. In Figure 5.8 we see an example of a

computed solution for an instance with 6 Koules. The figure shows the path by the ship’s

x-coordinate. Qualitatively, the paths tended to look quite good. The random trajectory

generation did tend to produce occasional path sections where the ship coasted away from

the koules, however the usual mode was that the ship would separate a koule from the pack

and systematically bounce it into the wall using three or four hits, while avoiding the walls

and the other koules.

In Figure 5.9, we present the time used by the planner to solve instances of various

complexity. The number of backtracks in Algorithm 3 grew at slightly higher rate than

linear with the number of koules. This is due to PDST-EXPLORE failing to find solutions

more frequently as n increases. The amount of time used grows fairly quickly with the

number of koules. This is expected to be worse than quadratic since the number of invoca-

tions of Algorithm 1 grows linearly and the cost per iteration is super-linear in the number

68

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 2 4 6 8 10 12 14 16

ti
m

e
 i
n
 s

e
c
o
n
d
s

number of koules

full solution timing

Figure 5.9 : Timing results for full solutions averaged over 90 trials

of koules. Experiments with up to 20 koules were conducted and solutions were produced

in less than 3 hours. The runtime began to grow very quickly around n = 20 because of

memory usage. When n = 15, the state space is 65 dimensional and when n = 20, the

state space is 87 dimensional.

5.2.10 Additional Experiments

At the end of Subsection 5.2.4 we discussed the motivation behind the design of Algorithm

2. The direction of the target velocity vector is set using the procedure on lines 4 and 6.

We replaced this procedure with choosing the direction of the target velocity uniformly and

randomly. We then ran full solutions trial with 3, 6 and 9 koules and observed a severe

performance degradation. Sample bias in trajectory generation and the kinds of paths be-

ing generated are extremely important to determine the performance of PDST-EXPLORE.

Biased trajectory generation helps the planner reduce the time spent searching.

The difficulty of the game of Koules can be varied by modifying the physical parame-

ters. The most important parameters for varying difficulty are relative masses of the koules

and the ship, the ship’s thrust, amax and the spring constant for the koules λc. To our sur-

69

prise, reducing the value vmax
θ by a factor less than 4 did not seem to affect the solution times

which is interesting as human players seem to be extremely sensitive to this parameter.

70

Chapter 6

Experiments with Simulated Physics

This chapter presents additional experimental results using PDST-EXPLORE. The focus is

on problems with more complicated dynamics, where a physical simulator is required to

properly model the system. First, an abstract interface between the planner and the simula-

tor will be provided. The two specific examples described in this chapter are planning for

a weight-lifting robot and a differential drive car. These problems include friction, gravity

and take into account rigid body dynamics.

6.1 Open Dynamics Engine

Problems with sophisticated dynamics require a physically-realistic simulator to model ac-

tuation. The Open Dynamics Engine (ODE) [Smi06] is an open source, high performance

library for simulating rigid body dynamics that has been used in this work. It includes mod-

eling of advanced joint types and integrated collision detection with friction. Section 2.5.1

provides more details on the specific techniques implemented by ODE.

ODE is used for simulating articulated rigid body structures. An articulated structure is

created when rigid bodies of various shapes are connected together with joints of various

kinds. For example, in a ground vehicle the wheels are connected to the chassis. ODE is

designed to be used in interactive or real-time simulation and is appropriate for modeling

moving objects in changeable environments. Beyond a stable integration method [ST96]

and a proper modeling of hard contacts for non-penetrating rigid bodies [Bar92], ODE also

71

contains a built-in collision detection system.

6.1.1 Interface with ODE

There are two main usages of ODE in the planning phase: collision detection and propaga-

tion of the system’s dynamics. To use this functionality, the following initialization steps

are performed:

1. Create world with rigid bodies.

2. Attach joints to the bodies.

3. Define a space for collisions.

During the execution of the PDST planner, instead of internally propagating the sys-

tem’s state given control input, the ODE can be used to model the evolution of the system.

After sampling a set of candidate controls the following simulation loop is executed:

1. Apply controls through forces and torques to the bodies as necessary.

2. Adjust joint parameters.

3. Call collision detection.

4. Produce a contact joint for every collision point to treat collisions.

5. Propagate dynamics.

The most important concepts in the above simulation loop are presented in the following

paragraphs.

72

Rigid Bodies

The world object is a container for rigid bodies and joints. Objects in different worlds

can not interact. In the examples of this thesis, a single world was used. A rigid body has

various properties as part of its state. The first four may potentially change as the simulation

progresses:

• Position vector of the body’s point of reference, which corresponds to the body’s

center of mass.

• Linear velocity of the point of reference, a vector (vx, vy, vz).

• Orientation of a body, represented by a quaternion (qs, qx, qy, qz).

• Angular velocity vector (ωx, ωy, ωz) which describes how the orientation changes

over time.

• Mass of the body m, which remains constant throughout the simulation. The center

of mass coincides with the point of reference.

• Inertia matrix, that describes how the body’s mass is distributed around the center of

mass. In the current implementation, all bodies are assumed to be homogeneous.

Conceptually each body has an (x, y, z) coordinate frame embedded in it, that moves

and rotates with the body, as shown in Figure 6.1. The origin of this coordinate frame is the

body’s point of reference. Note that the shape of a rigid body is not a dynamical property

and is not part of its state. It is only collision detection that cares about the detailed shape

of the body.

73

Figure 6.1 : An example of coordinate frame defined for a cube shaped rigid body

Joints and Constraints

Bodies are connected to each other with joints. Joints define the relationship enforced

between two bodies so that they can only have certain positions and orientations relative to

each other. An “island” of bodies is a group that can not be pulled apart - in other words

each body is connected somehow to every other body in the island. Each island in the world

is treated separately when the simulation step progresses. For example, the wheels and the

chassis of a car define an island. The joint relationship is also called a constraint since a

joint typically has limits and represents conditions that cannot be violated.

Joints can have different types in ODE but for the purpose of this thesis all joints are

of the “hinge” type. A hinge joint constraints the two parts of the hinge to be in the same

location and to line up along the hinge axle as Figure 6.2 shows. Each joint has a number

of parameters controlling its geometry. The parameters of a hinge joint are the anchor point

where the two bodies connect and the axis around which they rotate as in Figure 6.2. The

functions to set joint parameters all take global coordinates, not body-relative coordinates.

A consequence of this is that the rigid bodies that a joint connects must be positioned

correctly before the joint is attached. The specific frame and joint coordinates used in the

74

Figure 6.2 : The “hinge” and “hinge-2” joint type used in the experiments

weight lifting and the simulated car will be explicitly provided.

Note that two hinges connected in series, with different hinge axes define an extended

type of hinge joint, called “hinge-2” joint shown in Figure 6.2. This type of joint is used

in the car model, since a “hinge-2” joint can easily model the steering wheel of a car,

where one axis allows the wheel to be steered and the other axis allows the wheel to rotate.

The “hinge-2” joint has an anchor point and two hinge axes. Typically, axis 1 is specified

relative to body 1, such as the chassis in the case of the car, and has joint limits and a motor.

Axis 2 is specified relative to body 2, the wheel in the case of the car, and can only have

a motor. Axis 1 can function as a suspension axis, i.e. the constraint can be compressible

along that axis.

Integration and Force Accumulation

The process of simulating the rigid body system through time is called integration. Each

integration step advances the current time by a given step size, adjusting the state of all the

rigid bodies for the new time value.

Each time the integrator takes a step all the joints are allowed to apply constraint forces

to the bodies they affect. These forces are calculated such that the bodies move in such a

75

way to preserve all the joint relationships.

The forces from joints together with external forces are added to “force accumulators”

in the rigid body object. When the next integration step happens, the sum of all the applied

forces will be used to push the body around. The forces accumulators are set to zero after

each integration step.

Collision Handling

Before each simulation steps, collision detection functions from ODE are called to deter-

mine which bodies touch one another. These functions return a list of contact points. Each

contact point specifies a position in space, a surface normal vector and a penetration depth.

A special contact joint is created for each contact point. The contact joint is given extra

information about the contact, for example the friction present at the contact surface or how

bouncy or soft it is. Only after the inclusion of the additional contact joints, a simulation

step is propagated.

Geometry objects are the fundamental objects in the collision system. A geometry can

represent a single rigid shape (such as a sphere or box), or it can represent a group of other

geometries. Any geometry can be collided against any other geometry to yield zero or more

contact points. Geometries can be placeable or non-placeable. A placeable geometry has a

position vector and a 3 by 3 rotation matrix, just like a rigid body, that is changed during the

simulation. Non-placeable geometries, such as static environmental features, do not have

this capability. To use the collision engine in a rigid body simulation, placeable geometries

are associated with rigid body objects. This allows the collision engine to get the position

and orientation of the geometries from the bodies. For example, a box-shaped geometry

is positioned at the frame origin of the corresponding rigid body, rotated according to the

frame and its shape is defined by the lengths (Lx, Ly, Lz).

76

Figure 6.3 : The weightlifting robot

6.2 Weightlifting 3R Planar Chain

The first example corresponds to a manipulator, which is composed of three box-shaped

bodies linked through hinge-type joints to form a planar chain as Figure 6.3 shows. The

planar chain is mounted on a static pole of height Lz
0 and thickness Lx

0 . The three bodies

have the same thickness Lx, width Ly but different lengths Lz
0, Lz

1 and Lz
2. There are

motors at the joints that allow the end effector to move on a planar surface parallel to the

(y − z) plane. The end effector achieves the minimum z coordinate without any forces

being applied due to the modeling of gravity.

A heavy mass is attached to the end effector. The goal for the manipulator is to lift this

mass at the maximum z value. Because the mass is heavy this cannot be achieved easily

(there is no kinematics paths) and the manipulator must rotate in order to gain momentum

77

before being able to lift the mass. This goal defines a planning problem in the control space

of the manipulator. The torques at the motors of the three joints τ1, τ2, τ3 and the angular

velocities of the bodies must be selected so as to compute a path that will eventually result

in a solution. Figures 6.8, 6.9 and 6.10 present various solutions to the same problem.

Description of Physical Parameters

The three rigid-body frames attached to the geometries are shown in Table 6.1. The table

gives the position of each frame in world coordinates.

frame x y z

1 0.5Lx
0 + 0.5Lx 0 Lz

0 − 0.5Lz
1

2 0.5Lx
0 + 1.5Lx 0 Lz

0 − 0.5Lz
2 − αLz

1

3 0.5Lx
0 + 2.5Lx 0 Lz

0 − 0.5Lz
3 − α(Lz

1 + Lz
2)

Table 6.1 : Rigid body frames for weightlifting 3R planar chain

The weightlifting robot has four separate parts which are described in Table 6.2 con-

sisting of three rectangular prisms which form the body of the robot and a spherical weight

anchored at the end of the third link. Positions and rotations are given in the coordinate

frame relative to the rigid body that the part is attached to and masses are uniformly dis-

tributed.

The weightlifting robot is a 3R planar chain. The positions in world coordinates and

axes of rotation are given in Table 6.3.

The model for the weightlifting robot is parametric to variation in the difficulty of the

problem. The constants used in the experiments presented in this thesis are given in Table

6.4.

78

id type frame position rotation mass

1 box (Lx, Ly, Lz
1) 1 (0, 0, 0) ~0 m1

2 box (Lx, Ly, Lz
2) 2 (0, 0, 0) ~0 m2

3 box (Lx, Ly, Lz
3) 3 (0, 0, 0) ~0 m3

4 sphere with radius r 3 (0, 0,−0.5βLz
3) ~0 mw

Table 6.2 : Geometry for weightlifting 3R planar chain

id type frames axis anchor

1 R (0, 1) (−1, 0, 0) (0.5Lx
0 , 0, βLz

0)

2 R (1, 2) (1, 0, 0) (0.5Lx
0 + Lx, 0, Lz

0 − βLz
1)

3 R (2, 3) (1, 0, 0) (0.5Lx
0 + Lx, 0, Lz

0 − αLz
1 − βLz

2)

Table 6.3 : Joints for weightlifting 3R planar chain

Controller

The control space for weightlifting robot is

U =
3
∏

i=1

[−ωmax
i , ωmax

i].

Random controls for the weightlifting robot are chosen uniformly distributed. A given

control (ω1, ω2, ω3) ∈ U is interpreted as a target velocity. The component ωi is therefore

the velocity for the ith link. The velocity of the links are controlled in the simulation by

three independent linear feedback controllers applying bounded torques to the joints. The

absolute values torques are bounded by the constants τmax
i from i = 1, 2, 3. The constants

used in this implementation are given in Table 6.5.

In the implementation of the controller makes use of the internal ODElinear feedback

79

Lx Ly Lz
0 Lz

1 Lz
2 Lz

3 α β r m1 m2 m3 mw

0.05 0.2 2.0 1.0 0.5 0.5 0.8 0.5 + 0.5α 0.1 0.1 0.05 0.05 8.0

Table 6.4 : Constants for weightlifting 3R planar chain

τmax
1 τmax

2 τmax
3 ωmax

1 ωmax
2 ωmax

3

40.0 35.0 30.0 8.0 6.0 4.0

Table 6.5 : Constants for weightlifting 3R planar chain controller

controller in the following fashion: at the beginning of each timestep, the target velocity for

each joint is set to the currently operating control and the torque bounds are set. During the

integration of the system for the timestep, ODE approximates a continuous linear feedback

controller.

6.3 Simulated Car

The second example corresponds to a simulated car, which is composed of a body chassis

and four wheels. The back wheels of the cars are linked to the chassis through hinge joints,

while the front steering wheels use hinge-2 joints. Figure 6.4 provides an illustration of

the simulated car. In terms of dynamics, the body is modeled as a box with dimensions

Lx, Ly, Lz. For the initial placement of the car, the origin is considered to be at the center

of the body’s box. Then the wheels are placed at the four corners of the body with distance

0.5αxL
x and 0.5αyL

y from the origin along the x and y axis correspondingly. The wheels

have a radius r and the body frame is positioned higher than the wheel’s axis of rotation.

There are motors at the joints that allow the wheels to rotate around the x axis, while the

front wheels are also able to rotate around the z axis.

80

Figure 6.4 : Simulated car

Figure 6.5 : The easy maze environment

81

Planning problems with this simulated car correspond to a selection of appropriate

torque and angular velocity values for the motors at the joints connecting the four wheels.

Figure 6.5 provides an example of the type of environments tested with this model. The car

must start at the bottom right corner of a maze like environment and reach the top left cor-

ner. Figures 6.11, 6.12 and 6.13 present sequences of images from experiments in similar

environments. The first figure has the additional difficulty that the car has to go up a ramp

and take an abrupt drop before reaching the target. The last two figures require the robot to

push through a set of movable obstacles.

Description of Physical Parameters

The five rigid-body frames attached to the body and the four wheels are shown in Table

6.6. The table gives the position of each frame in world coordinates. Note that the wheels

are appropriately rotated.

frame x y z rotation

1 0 0 0.5Lz + r ~0

2 −0.5αxL
x −0.5αyL

y r (0, 1, 0, π/2)

3 0.5αxL
x −0.5αyL

y r (0, 1, 0, π/2)

4 −0.5αxL
x 0.5αyL

y r (0, 1, 0, π/2)

5 0.5αxL
x 0.5αyL

y r (0, 1, 0, π/2)

Table 6.6 : Rigid body frames for simulated car

As mentioned earlier, the main body of the car is modeled as a box and has a mass

mb. The wheels are cylinders and they have the same mass mw. Table 6.7 describes the

geometries for the parts of the simulated car.

82

id type frame position rotation mass

1 box (Lx, Ly, Lz) 1 (0, 0, 0) ~0 mb

2 cylinder with radius r and height h 2 (0, 0, 0) ~0 mw

3 cylinder with radius r and height h 3 (0, 0, 0) ~0 mw

4 cylinder with radius r and height h 4 (0, 0, 0) ~0 mw

5 cylinder with radius r and height h 5 (0, 0, 0) ~0 mw

Table 6.7 : Geometry for simulated car

There are four joints in the simulated car, one for each wheel. Table 6.8 describes how

these joints link the various rigid bodies, the anchor point and the axes of rotation. The

first two joints that correspond to the two back wheels have only one axis, since they are

simple hinge joints. As described in Section 6.1.1, the front steering wheels can make use

of hinge-2 joints and they have two axis of rotation.

id type frames axis 1 axis 2 anchor

1 R (1, 2) (1, 0, 0) n/a (0, 0, 0)

2 R (1, 3) (1, 0, 0) n/a (0, 0, 0)

3 2R (1, 4) (1, 0, 0) (0, 0, 1) (−0.5αxL
x, 0.5αyL

y, r)

4 2R (1, 5) (1, 0, 0) (0, 0, 1) (0.5αxL
x, 0.5αyL

y, r)

Table 6.8 : Joints for simulated car

The constants used in the experiments presented in this thesis for the simulated car are

given in Table 6.9. The additional parameters kerp and kcfm are related to ODE’s internal

parameters for handling errors in modeling of “soft” constraints.

83

Lx Ly Lz r h αx αy mb mw kerp kcfm

0.5 1.0 0.15 0.1 0.04 0.75 0.75 5.0 0.4 1.0 0.0

Table 6.9 : Constants for simulated car

Most constraints are by nature “hard”. This means that the constraints represent con-

ditions that are never violated. In practice constraints can be violated by unintentional

introduction of errors into the system, but an error reduction process can be used for limit-

ing the effect of these errors. For example, during each simulation step each joint applies a

special force to bring its bodies back into correct alignment. Some “soft” constraints, how-

ever, are designed to be violated. For example, the contact constraint that prevents colliding

objects from penetrating is hard by default, so it acts as though the colliding surfaces are

made of steel. But it can be made into a soft constraint to simulate softer materials, thereby

allowing some natural penetration of the two objects when they are forced together.

Parameters kerp and kcfm control the distinction between hard and soft constraints. The

first is the error reduction parameter that specifies what proportion of the joint error will be

fixed during the next simulation step. If kerp = 0 then no correcting force is applied and the

bodies will eventually drift apart as the simulation proceeds. If kerp = 1 then the simulation

will attempt to fix all joint errors during the next time step. The second is the constraint

force mixing value kcfm. If kcfm = 0, the constraint will be hard. If kcfm is set to a positive

value, it will be possible to violate the constraints. In this thesis the constraints are modeled

as hard and the error reduction parameter is used to its full extent.

84

6.4 Cumulative Probability of Solution Charts

Let T be the random variable that represents the time taken by a planner to produce a

solution. For a given time t ≥ 0, the function

φ(t) = Prob(T ≤ t)

can be defined to give the probability that the planner solves the query in less than time t.

This function has an inverse, which will be denoted Tp, for 0 ≤ p ≤ 1,

Tp = t such that φ(t) = p.

Observe that E(T) = T0.5 by definition. Consider the simple process

1. Run the planner until a solution is produced or until time tinput.

2. If a solution was produced then return it, otherwise repeat.

The notation Ct will denote the random variable expressing the running time of planner

with the maximum running time clamped at t and C∗
t will denote the random variable

expressing the running time of the process described above with t = tinput.

Some simple calculations show

E(Ct) = φ(t)Tφ(t)
2

+ (1− φ(t))t

and

E(C∗
t) = φ(t)E(Ct) + (1− φ(t))(t + E(C∗

t)) = E(Ct) +
(1− φ(t))

φ(t)
t.

Figure 6.6 provides the cumulative probability E(Ct) for the weightlifter robot and

Figure 6.7 corresponds to the simulated car.

85

Figure 6.6 : Weightlifter cumulative probability of solution (200 trials)

86

Figure 6.7 : Simulated car in the easy maze environment probability of solution (200 trials)

87

Figure 6.8 : Weightlifter: first example

88

Figure 6.9 : Weightlifter: second example

89

Figure 6.10 : Weightlifter: third example

90

Figure 6.11 : Simulated car in the fancy ramp

91

Figure 6.12 : Simulated car with a fancy barrier: first example

92

Figure 6.13 : Simulated car with a fancy barrier: second example

93

Chapter 7

Proof that PDST-EXPLORE is Probabilistically Complete

In this chapter, a proof of probabilistic completeness will be presented for the algorithm

presented in this thesis. Throughout, a specific MPP is assumed together with a probability

measure for the control space µC and a specific subdivision operator subdivide. Several

concepts will be given names and notation in order to express the proof. Most of these

devices are only necessary for explaining the main result.

7.1 Random Walk Criteria

Let (Q,U , F, q0, G) be a MPP. A primitive path segment is defined by three quantities

q ∈ Q, u ∈ U and T ≥ 0. A primitive path is feasible if for all t ∈ [0, T) ∗,

F (q, u, t) 6= ⊥.

The space of all feasible primitive path segments is P ⊂ Q× U × R
≥0.

A primitive path π = (q, u, T) ∈ P can be thought of as defining a function from [0, T)

to Q. When T = 0, then the domain of the function is [0]. This function is given by the

rule

π(t) = F (q, u, t).

A primitive path π = (q, u, T) ∈ P can be also be thought of as defining a subset of Q.

∗an interval of the form [a, b) is interpreted as [a] when a = b

94

This subset is written

Im(π) = {q ∈ Q : there exists t ∈ [0, T) such that π(t) = q}.

An random operator called propagate : P → P will now be defined. For any two real

numbers a and b, the random operator uniform(a, b) picks a number x ∈ [a, b) uniformly

and at random. Additionally, the random operator randomControl() chooses u ∈ U at

random according to some distribution. The probability measure µU represents that distri-

bution in that for any measurable subset U ⊂ U ,

µU(U) = Prob(randomControl() ∈ U).

The propagation operator is now defined in terms of these two operators and a strictly

positive real number Tmax

propagate ((q, u, T)) = (q′, u′, T ′) ,

where

q′ = F (q, u, uniform(0, T))

u′ = randomControl()

T ′ =

Tmax if F (q′, u′, Tmax) 6= ⊥

Tfail where Tfail = inf{t ≥ 0 : F (q′, u′, t) = ⊥}

The propagation operator can be written in an iterated form

propagatei(π) =

propagate(π) i = 0

propagate(propagatei−1(π)) otherwise

The next definition defines a useful criteria. There is a slight abuse of notation in defining

the intersection of a path sample and a subset of the state space

(q, u, D) ∩G = (q, u, D′)

95

where

D′ = {t ∈ D : F (q, u, t) ∈ G}.

Property 7.1.1. A MPP, (Q,U , F, q0, G) and propagation operator µU , Tmax, ǫ satisfies the

RandomWalk Criteria(RWC) if there exists N > 0 such that

Prob
(

propagateN((q0, ·, 0)) ∩G 6= ∅
)

> 0

or the MPP is not solvable†.

7.2 The Propagation Operator

In order to give a formal treatment of the propagate operator and its random sampling

properties, it is convenient to examine a space which will be called the propagation space

and is defined as

J =
∞
⋃

n=1

(

n
∏

i=1

([0, 1)× U)

)

.

The propagation space, J , has the natural measure structure inferred by [0, 1) and U . It is

equipped with probability measure which is determined by its behavior on the rectangles,

for any n ≥ 1

µJ (([a1, b1)× U1)× · · · × ([an, bn)× Un)) =
1

2n

(

n
∏

i=1

(bi − ai)µU(Ui)

)

,

where for all 1 ≤ i ≤ n, 0 ≤ ai ≤ bi ≤ 1 and Ui ⊂ U .

The importance of the propagation space is that it provides an avenue to analyze sam-

pling behavior of the propagate operator. This connection is made via the propagation

†the symbol · is used in place of a value when the variable it represents is “unbound” either because all

values are equivalent or to denote functional currying

96

projection function. The definition of the propagation projection function, h : P×J → P ,

is given recursively by

h((q, u, T), jn) =

(q′, un, T
′) n = 1

h(q′, un, T
′), jn−1) otherwise

where

q′ = F (q, u, tn · T),

jn = (t1, u1, ..., tn, un) ∈ J ,

for n > 1,

jn−1 = (t1, u1, ..., tn−1, un−1) ∈ J ,

and, as in the definition of propagate,

T ′ =

Tmax if F (q′, un, Tmax) 6= ⊥

Tfail where Tfail = inf{t ≥ 0 : F (q′, un, t) = ⊥}

The ultimate object of interest in the above development is the projection back to the

state space which will be denoted φ : Q× [0, 1)×P → Q. This projection φ is defined by

φ(q, t, j) = F (q′, u′, T ′ · t) where (q′, u′, T ′) = h((q, ·, 0), j) .

This projection is used as a stepping stone to write a version of its pre-image

Φ(q, A) = {j ∈ P : there exists t ∈ [0, 1) such that φ(q, t, j) ∈ A} .

The pre-image function maps measurable sets in Q to measurable sets P as a consequence

of the measurability of the transit function F .

Using the pre-image function Φ, a probability measure for the state space which cap-

tures the behavior of propagate can be constructed simply

µhq0(A) = µJ (Φ(q0, A)) .

97

Lemma 7.2.1. If the MPP satisfies the RWC then

µhq0(G) > 0.

Proof. If the MPP satisfies the RWC then by Property 7.1.1, there exists N > 0 such that

Prob
(

propagateN((q0, ·, 0)) ∩G 6= ∅
)

> 0.

A call to N th iterated propagate operator uses N calls to the uniform operator and the

randomControl operator. The results of the calls to uniform will be written t1, ..., tN

and the calls to randomControl will be written u1, ..., uN . Without loss of general-

ity, the values of ti can be considered to be in [0, 1) since calls to uniform(0, T) can be

rewritten uniform(0, 1) · T .

Note that j = (t1, u1, ..., tN , uN) is a point in J . If the N calls to uniform are

t1, ..., tN and the N calls to randomControl return u1, ..., uN then by the definition of h

and propagate,

propagateN((q0, ·, 0)) = h((q0, ·, 0), j).

Let the set J be the set of solutions of length N , i.e.

J =

{

j ∈
N
∏

i=1

([0, 1)× U) : h((q0, ·, 0), j) ∩G 6= ∅

}

.

The following equivalence is evident:

Prob(propagateN((q0, ·, 0)) ∩G 6= ∅) = 2NµJ (J).

Since the RWC holds,

µJ (J) =
Prob(propagateN((q0, ·, 0)) ∩G 6= ∅)

2N
> 0.

Furthermore, it is clear that J ⊂ Φ(q0, G). Therefore it can be concluded that

µhq0(G) = µJ (Φ(q0, G)) > µJ (J) > 0.

98

Lemma 7.2.2. If the MPP satisfies the RWC then there exists a subset

R =
k
∏

i=1

(ai, bi)× Ui ⊂ J

such that for all 1 ≤ i ≤ k, 0 ≤ ai < bi ≤ 1 and µU(Ui) > 0.

Proof. Recall the definition of J from the proof of Lemma 7.2.1. It contained the solutions

of length N . It was previously established that µJ (J) > 0. J can be rewritten as

J =
N
∏

i=1

Ai × Ui,

where Ai ⊂ [0, 1) and Ui ⊂ U . Since primitive intervals of the form (a, b) generate the

Borel algebra for the probability space [0, 1), J can be rewritten as

J =
∞
⋃

j=1

N
∏

i=1

(ai,j, bi,j)× Ui,

where 0 ≤ ai,j < bi,j ≤ 1 for all i, j. By definition

µJ (J) =
1

2N

∞
∑

j=1

N
∏

i=1

(bi,j − ai,j) · µU(Ui),

Since µJ (J) > 0, it follows that there exists j such that

N
∏

i=1

(bi,j − ai,j) · µU(Ui) > 0.

which proves the Lemma (for k = N).

7.3 PDST-EXPLORE Produces a Dense Sample

During the operation of PDST-EXPLORE, the data structures S and C are built and up-

dated. To refer to these structures at each iteration of the algorithm, the notation Si and Ci

can be used. In this way, Si refers to the sample set at the end of the ith iteration. Moreover,

written this way, S0 = {(q0, ·, 0)} and C0 = {C0}.

99

By ignoring the termination conditions on lines 7,8 and 9 of PDST-EXPLORE and by

replacing line 4 with an infinite loop PDST-EXPLORE can be thought of as producing

infinite runs of the form

(S0,C0), ..., (Si,Ci), ...

Other important variables for the state of PDST-EXPLORE are π∗ and π′ for the ith itera-

tion, so for a given infinite run, these are denoted π∗
i and π′

i. If π ∈ S then priorityi(π)

is the priority of π at the end of the ith iteration. Similarly, scorei(π) is defined the same

way.

In this way of writing things, the question of completeness asks if there exists i such

that π′
i ∩G 6= ∅.

This discussion will begin by proving some handy Lemmas about score. Here the

sequence αi is defined as the minimum score of the elements of Si at the end of the ith

iteration of a run of PDST-EXPLORE

αi = min
π∈Si

scorei(π).

Lemma 7.3.1. Suppose PDST-EXPLORE generates the infinite run

(S0,C0), ..., (Si,Ci), ...

For any iteration N , if αN ≥ ξ and N > 2/xi hold then there exists an iteration M > N

such that

αM > 2ξ.

Proof. This proof proceeds by counting the number of samples with priorities between ξ

and 2ξ. The set Vi contains all of the samples with priorities in the desired range at the end

of the ith iteration,

Vi = {π ∈ Si : ξ ≤ scorei(π) ≤ 2ξ}.

100

The cardinality of this set will be written ρi,

ρi = |V ′
i |.

The next goal in this proof is show that for every i ≥ N, αi ≥ ξ and that ρi is strictly

monotone decreasing until converging to 0, where it remains. The argumentation will be

carried out on the i + 1th iteration as an induction using i = N as the base case.

1. For any γ ∈ Si, γ
′ ∈ Si+1 such that γ′ is a subsample of γ,

µC(celli(γ
′)) ≥ µC(celli+1(γ)).

This follows from the definition of the subdivision scheme. Observing that celli+1(γ
′) ⊂

celli(γ
′) completes the result.

A stronger claim can be proved. Since γ ∈ Si, it follows that

priorityi+1(γ
′) ≥ priorityi(γ)

and combining the above observation shows

scorei+1(γ
′) ≥ scorei(γ).

2. If γ ∈ Vi+1 then γ is not a subsample of π′
i+1.

The operation of PDST-EXPLORE implies any subsample γ ∈ Si+1 of π′
i+1 has

priority i + 1 which by assumption is greater than 2ξ > N . Therefore,

scorei+1(γ) =
priorityi+1(γ)

µC(celli+1(γ))
≥ priorityi+1(γ) ≥ 2ξ.

3. αi+1 ≥ ξ.

Let γ ∈ Si+1 be such that scorei+1(γ) = αi+1. Either γ is a subsample of γ′ ∈ Si

or γ is a subsample of π′
i+1. In the former case, it was previously demonstrated that

scorei+1(γ) ≥ scorei(γ
′) ≥ ξ. In the latter case, scorei+1(γ) ≥ 2ξ.

101

4. If γ ∈ Vi+1 then γ is not a subsample of π∗
i+1.

By induction αi ≥ ξ and therefore scorei(π
∗
i+1) > ξ since scorei(pi

∗
i+1) = αi.

On line 11 of PDST-EXPLORE, the priority of the selected element is penalized. It

follows that

2ξ < 2scorei(π
∗
i+1)+ǫ ≤

2priorityi(π
∗
i+1) + 1

celli(π∗
i+1)

≤
priorityi(γ)

celli+1(γ)
≤ scorei+1(γ),

for sufficiently small ǫ > 0.

5. If γ ∈ Si then there is at most one subsample γ′ ∈ Si+1 such that γ′ ∈ Vi+1.

Suppose there is more than one subsample of γ in Vi+1. The only way this is possible

is if the cell C subdivided by PDST-SUBDIVIDE is cell(γ) = C and the children

of C, CL and CR both intersect γ to create subsamples γL and γR after subdivision.

Since both scorei+1(γL), scorei+1(γR) ≥ scorei(γ), it follows that if either are in

Vi+1 then γ ∈ Vi. Noting that by the subdivision definition

µC(CL) + µC(CR) = µC(C),

without loss of generality µC(CL) ≤ 0.5µC(C) and therefore

scorei+1(γL) ≥
priorityi(γ)

µC(CL)
≥ 2

priorityi(γ)

µC(C)
≥ 2scorei(γ) ≥ 2ξ.

It follows that both γL and γR cannot be members of Vi+1.

6. If ρi > 0 then ρi+1 < ρi.

First consider what is known about elements in Vi+1. Every element γ ∈ Vi+1 is a

subsample of an element γ′ ∈ Vi since subsamples of π′
i+1 cannot appear in Vi+1.

Furthermore, it cannot be that there are two distinct elements γ1, γ2 ∈ Vi+1 such that

they are both subsamples of the same γ′ ∈ Vi. It follows that there is an injective

102

map f : Vi+1 → Vi such that f(γ) = γ′ where γ is a subsample of γ′. Therefore

ρi+1 ≤ ρi. Recall that π
∗
i+1 ∈ Vi but there is no γ ∈ Vi+1 such that γ is subsample of

π∗
i+1. It follows that ρi+1 < ρi.

Lemma 7.3.2. Suppose PDST-EXPLORE generates the infinite run

(S0,C0), ..., (Si,Ci), ...

Then the minimum score tends to infinity as the number of iterations increases:

lim
i→∞

αi =∞.

Proof. It is trivially true that αi ≥ 1 for all i > 0. So for iteration N = 3, αN ≥ 1. Since

N/2 > 1, it follows by Lemma 7.3.1 that there exists M > N such that for all i ≥ M ,

αi > 2. Suppose now inductively that for k > 0, there is iteration N such that for all

i > N ,

αi ≥ 2k.

Without loss of generality N > 2k+1 and by applying Lemma 7.3.1, there is M ≥ N such

that for all i > M

αi > 2k+1.

Therefore by induction, for any constant c, there is N such that for all i > N , αi > c. It

follows that

lim
i→∞

αi =∞.

Lemma 7.3.3. Suppose PDST-EXPLORE generates the infinite run

(S0,C0), ..., (Si,Ci), ...

103

For any iteration N , if C ∈ CN and there is a sample π ∈ SN such that cellN(π) = C

then there exists M > N such that C 6∈ CM .

Proof. Suppose for some iteration N , there is a cell C ∈ CN such that there is a sample

π ∈ SN such that cellN(π) = C but for all i ≥ N , C ∈ Ci. It follows that for any i ≥ N

and γ ∈ Si such that celli(γ) = C that π∗
i+1 6= γ, i.e. γ is never selected since C is never

subdivided. It follows that for all i > N , that π ∈ Si and priorityi(π) = priorityN(π).

Therefore it follows that for all i > N

αi = min
γ∈Si

scorei(γ) ≤ scorei(π).

This is in direct contradiction with Lemma 7.3.2 and the desired result follows.

Lemma 7.3.4. Suppose PDST-EXPLORE generates the infinite run

(S0,C0), ..., (Si,Ci), ...

For any N ≥ 0 iterations, for any sequence of samples πi for i ≥ N such that πi ∈ Si and

πi+1 is a subsample of πi, there exists M ≥ N such that π∗
M+1 = πM .

Proof. This will be a proof by contradiction. Suppose the Lemma’s statement does not

hold then there is N ≥ 0 and a sequence of samples πi for i ≥ N but for all M ≥ N , π∗
M+1

is not πM . Such a sequence has the property that for all i ≥ N , celli+1(πi+1) ⊂ celli(πi).

Changes in the sequence πi in the sense of “πi+1 6= πi” occur as a result of the subdivision

of the cell celli(πi). The initial assumption eliminates the possibility that πi was selected

(πi 6= π∗
i+1) so subdivision of the cell celli(πi) occurs when some other sample in the cell

is selected. Let ξ = priorityN(πN) and note that priorityi(πi) = ξ for all i ≥ N since

πi is never selected. Finally, define for i ≥ N the sequence

Bi = {π ∈ Si : celli(π) = celli(πi) and priorityi(π) ≤ ξ}.

104

Following a similar line of reasoning as the proof of Lemma 7.3.1, a counting argument

can be constructed. Now consider the quantity

ρi =
∑

π∈Bi

1 + ξ − priorityi(π).

By definition, ρi ≥ 0 for i ≥ N . Without loss of generality, N can be taken to be strictly

greater than ξ. Since N > ξ, there can be no insertions of samples that have priority

less than ξ and it follows that ρi is monotone decreasing. Consider what happens on a

hypothetical iteration K ≥ N when

cellK(π∗
K+1) = celli(πi).

The priority of π∗
K+1 is least of all samples π ∈ SK such that cellK(π) = cellK(π∗

K+1).

Since πK ∈ BK and BK contains all samples with priority equal or less than ξ, it follows

that π∗
K+1 ∈ BK . Additionally, following the primary assumption, π∗

K+1 is a not πK .

Since the priorities of π∗
K+1 is increased on lines 10-12 of PDST-EXPLORE, it follows that

ρK+1 < ρK .

Suppose there exists K ≥ N such that for all j ≥ K, ρj = ρK and ρK > 0. It

has been shown on an iteration j when a sample from the cell celli(πi) is selected that

ρj+1 < ρj . Therefore, if for all j ≥ K, ρj = ρK then no sample from cellj(πj) is ever

selected meaning that cellj(πj) = cellK(πK) for all j ≥ K. This violates the statement

of Lemma 7.3.3 and therefore cannot be true. Hence, it follows that for every i ≥ N such

that ρi > 0, there exists j > i such that ρj < ρi.

Eventually there exists K ≥ N such that ρK = 0. By definition, for all j ≥ K, BK

contains only πK . Since the claim that for all j ≥ K, cellj(π
∗
j+1) 6= cellj(πj) violates

Lemma 7.3.3, it must be true that eventually a sample from cell cellj(πj) is selected.

However, since Bj contains only πj , there can be no sample with in that cell with priority

105

less than or equal to that of πj . There is no other possibility than to conclude that πj is

selected which completes the contradiction and proves the Lemma.

Lemma 7.3.5. Suppose PDST-EXPLORE generates the infinite run

(S0,C0), ..., (Si,Ci), ...

and after the N th iteration, the sample π ∈ SN has been generated. Let 0 ≤ a < b ≤ 1

and let U ⊂ U such that µU(U) > 0. Then there exists with probability 1 iteration M > N

such that π′ ∈ SM such that there exists t ∈ (a, b), u ∈ U and

π′ = h(π, (t, u)).

Proof. In order to prove the desired result, it will be sufficient to show the existence of a

sequence πi ∈ Si for i ≥ N such that πi+1 is a subsample of πi, πN = π and if πi is

selected during the i + 1th iteration then

Prob (propagate(πi) = h(π, (t, u))) > p

for any t ∈ (a, b), u ∈ U and for some constant p > 0 independent of i. If such a

sequence existed, then by Lemma 7.3.4, there would be infinitely many i such that πi was

selected and each time would have probability greater than p of successfully producing a

sample with the desired property. In this way, it is shown that PDST-EXPLORE produces

a sample π′ = h(π, (t, u)) in finite time with probability 1.

The construction proceeds inductively. Let πN = π and fix the constant p as

p = Prob(propagate(π) = h(π, (t, u))) = (b− a)µU(U) > 0.

Inductively, there are two possibilities: either the celli(πi) is subdivided or not. If not,

then πi+1 = πi and the probability of propagate producing the desired sample remains the

same.

106

After subdivision, two new cells are created and either one or two subsamples of πi are

created. If there is only one created then πi+1 = πi and nothing changes. So consider the

case where πi is split into γL and γR such that

πi = (q, u, D)

γL = (q, u, DL)

γR = (q, u, DR).

Observe that inductively

Prob(propagate(πi) = h(π, (t, u))) ≥ p.

This means that

µ((a, b) ∩D)

µ(D)
µU(U) ≥ p.

Now consider the following equations

Prob(propagate(γL) = h(π, (t, u))) =
µ((a, b) ∩DL)

µ(DL)
µU(U) =

pL

TL

µU(U),

Prob(propagate(γR) = h(π, (t, u))) =
µ((a, b) ∩DR)

µ(DR)
µU(U) =

pR

TR

µU(U),

for constants pL, pR, TL, TR. Note that DL and DR partition D, so it follows that

pL + pR

TL + TR

µU(U) = Prob(propagate(πi) = h(π, (t, u))).

Suppose pL/TLµU(U) < p, then it can be deduced that

pL

TL

µU(U) < p ≤
pL + pR

TL + TR

µU(U).

(TL + TR)pL < TL(pL + pR).

pLTR < pRTL.

107

pL

TL

<
pR

TR

.

Similarily, if pR/TRµU(U) < p it follows that pR

TR
< pL

TL
. Since both inequalities cannot be

true, it follows that either pL/TLµU(U) ≥ p or pR/TRµU(U) ≥ p. In this way, either γL or

γR can be chosen to be πi+1. Inductively, a sequence πi with the desired properties can be

constructed and the proof is given.

7.4 Iterations are Finite Time

Property 7.4.1. This property deals with how subdivide operator affects to the PDST-EXPLORE

algorithm. For any subdivision C produced by a finite number of calls to subdivide, the

following statements should hold.

1. Every C ∈ C has strictly positive measure: µC(C) > 0.

2. Every path primitive π = (q, u, T) ∈ P intersects with a finite number of cells in the

subdivision C, i.e. the function φ : [0, T)→ C defined by

φ(t) = C,

where π(t) ∈ C and C ∈ C, is piecewise constant.

Lemma 7.4.2. A single iteration of the PDST-EXPLORE algorithm runs in finite time if

Property 7.4.1 holds.

7.5 The Main Result

Theorem 7.5.1. If a Motion Planning Problem is solvable and satisfies the Random Walk

Criteria and a given distribution over control space µU and the subdivision operator sat-

isfies Property 7.4.1, then PDST-EXPLORE will find a solution to the given MPP in finite

time with probability 1.

108

Proof. The RWC implies the result of Lemma 7.2.2 and therefore there exists N and R such

that

R =
N
∏

i=1

(ai, bi)× Ui ⊂ J

such that for all 1 ≤ i ≤ N , 0 ≤ ai < bi ≤ 1 and µU(Ui) > 0. Recall that q0 is the initial

state input to PDST-EXPLORE and π0 = (q0, ·, 0) is the sample added to initial sample set

on line 1 of PDST-EXPLORE. For convenience, the sets Rk for 1 ≤ k ≤ N can be defined

as

Rk =
k
∏

i=1

(ai, bi)× Ui ⊂ J .

Note that RN = R. A partial solution of length k for 1 ≤ k ≤ N is a subsample π of any

sample h(π0, rk) such that rk ∈ Rk and, additionally for k < N , there exists t, u ∈ U , such

that h(π, (t, u)) = h(π0, rk+1) for some rk+1 ∈ Rk+1. There is a unique partial solution of

length 0 and it is π0.

It is clear that PDST-EXPLORE eventually generates a partial solution of length 0.

Inductively, it will be shown that if πk is partial solution of length k < N , PDST-EXPLORE

eventually will generate a partial solution of length k + 1 with probability 1.

Let πk ∈ SM and note that there is 0 ≤ ak+1 < bk+1 ≤ 1 and Uk+1 with µU(Uk+1) > 0.

Applying Lemma 7.3.5 implies that, with probability 1, there is iteration M ′ ≥ M such

that πk+1 ∈ SM ′ and πk+1 = h(πk, (t, u)) for t ∈ (ak+1, bk+1) and u ∈ Uk+1. In other

words, πk+1 = h(π0, rk+1) for some rk+1 ∈ Rk+1 meaning that πk+1 is a partial solution of

length k + 1.

A partial solution of length N , πN = h(π0, rN) for rN ∈ RN = R ⊂ J is therefore

eventually constructed with probability 1. Furthermore, πN ∩G 6= ∅ (a solution to the MPP)

by construction. By Lemma 7.4.2, each iteration PDST-EXPLORE takes finite time and by

the construction the solution is produced in a finite number of iterations, the main result is

given.

109

Chapter 8

Discussion

This thesis develops a novel method that can handle motion planning for dynamical sys-

tems with high-dimensionality, drift, underactuation, discrete system changes and complex

physics. The proposed planner, PDST-EXPLORE is based on sampling-based principles

and subdivision methods. Importantly, the planner can use a physical simulator as a black

box and hence can deal with systems where state transitions can not be described simply by

a system of equations. PDST-EXPLORE is the first planner to present a successful frame-

work where core algorithmic work in motion planning is coupled with a physical simulator.

It is argued that the impact that physical simulators will have in planning will be compara-

ble to the huge impact that collision checking primitives have had in the development and

popularity of sampling-based planners. Examples with simplified and simulated physics

were demonstrated. It is the first time that a planner is shown to handle problems of such

physical complexity and in such high dimension.

A major issue that arises in planning for dynamical systems is that memory efficiency

is a very important concern. The number of iterations that we were able to perform for

a solution is memory bounded. Once the number of states we need to represent the tree

exceed the size of the core, performance degraded significantly. Since the cost per iteration

of PDST-EXPLORE does not grow quickly, storage usage becomes the bottleneck. Using

a path sample representation and making these representations as compact as possible was

essential to solve the larger examples; however for handling applications with additional

state complexity that may result from increases in physical realism, algorithmic changes

110

may be necessary to further reduce storage requirements during planning. These issues are

almost certainly present regardless of the planning algorithm that is employed.

Besides the issue of memory efficiency, other issues that deserve exploration are the

accuracy and utility of coverage estimates, the extension to hybrid systems with possi-

bly a large number of discrete states, and large scale implementations. Better connection

with physics simulators will broaden the class of problems for which motion planning can

provide realistic solution paths. In simulation, PDST-EXPLORE may end up providing

interesting extensions to gaming and entertainment. In the real world, the proposed planner

can lead to extensive testing of robot systems before these are built and to designing com-

plex gaits for novel mechanisms and particularly reconfigurable robots. PDST-EXPLORE

bridges the model gap between traditional motion planning and control to the benefit of

both the robotics and the control communities.

111

Bibliography

[ABC+05] M. Akinc, K. E. Bekris, B. Y. Chen, A. M. Ladd, E. Plaku, and L. E.

Kavraki. Probabilistic roadmaps of trees for parallel computation of multiple

query roadmaps. In P. Dario and R. Chatila, editors, Robotic Research: The

Eleventh International Symposium, pages 80–89. Springer, STAR 15, 2005.

[ABD+98] Nancy M. Amato, O. Burchan Bayazit, Lucia K. Dale, Christopher Jones,

and Daniel Vallejo. OBPRM: An obstacle-based PRM for 3D workspaces. In

Proceedings of Workshop on Algorithmic Robotics, pages 155–168, 1998.

[AGM98] Juan-Manuel Ahuactzin, Kamal Gupta, and Emmanuel Mazer. Manipulation

planning for redundant robots: A practical approach. International Journal

of Robotics Research, 17(7):731–747, July 1998.

[APS99] M. Anitescu, F. A. Potra, and D. E. Stewart. Time-stepping for three dimen-

sional rigid body dynamics. Computer methods in applied mechanics and

engineering, 177(3-4):183–197, 1999.

[AS74] M. Abramowitz and I.A. Stegun, editors. Handbook of Mathematical Func-

tions. National Bureau of Standards, Dover, 1974.

[ATBM92] Jean-Manuel Ahuactzin, El-Ghazali Talbi, Pierre Bessière, and Emmanuel

Mazer. Using genetic algorithms for robot motion planning. In European

Conference on Artificial Intelligence, pages 671–675, 1992.

112

[AW96] Nancy M. Amato and Yan Wu. A randomized roadmap method for path and

manipulation planning. In Proceedings of IEEE Conference on Robotics and

Automation, volume 1, pages 113–120, 1996.

[Bar89] D. Baraff. Analytical methods for dynamic simulation of non-penetrating

rigid bodies. In Computer Graphics (Proc. SIGGRAPH), volume 23, pages

223–232. ACM, 1989.

[Bar92] D. Baraff. Dynamic Simulation of nonpenetrating rigid bodies. PhD thesis,

1992.

[Bar93] D. Baraff. Issues in computing contact forces on non-penetrating rigid bodies.

Algorithmica, 10:292–352, 1993.

[Bar94] D. Baraff. Fast contact force computation for non-penetrating rigid bodies.

In Proc. SIGGRAPH, pages 23–34. ACM, 1994.

[BATM94] Pierre Bessière, Juan-Manuel Ahuactzin, El-Ghazili Talbi, and Emmanuel

Mazer. The ‘Ariadne’s clew’ algorithm: Global planning with local methods.

In Proceedings of Workshop on Algorithmic Robotics, pages 39–47, 1994.

[BB05] B. Burns and O. Brock. Single-query entropy-guided path planning. In Pro-

ceedings of IEEE Conference on Robotics and Automation, pages 2124–2129,

Barcelona, Spain, 2005.

[BBC+95] J. Buhmann, W. Burgard, A.B. Cremers, D. Fox, T. Hofmann, F. Schneider,

J. Strikos, and S. Thrun. The mobile robot Rhino. AI Magazine, 16(1), 1995.

[BCL+03] K. E. Bekris, B. Y. Chen, A. M. Ladd, E. Plaku, and L. E. Kavraki. Multiple

query probabilistic roadmap planning using single query planning primitives.

113

In 2003 IEEE/RJS International Conference on Intelligent Robots and Sys-

tems (IROS), pages 656–661, Las Vegas, NV, October 2003.

[BDG85] J. Bobrow, S. Dubowsky, and J. Gibson. Time-optimal control of robot ma-

nipulators. Int. Journal of Robotics Research, 4(3), 1985.

[BK91] O. Brock and O. Khatib. Elastric strips: A framework for integrated planning

and execution. In 1999 International Symposium on Experimental Robotics,

1991.

[BK00] Robert Bohlin and Lydia E. Kavraki. Path planning using lazy PRM. In

Proceedings of IEEE Conference on Robotics and Automation, pages 521–

528, 2000.

[BL91] Jérôme Barraquand and Jean-Claude Latombe. Robot motion planning: A

distributed representation approach. International Journal of Robotics Re-

search, 10(6):628–649, December 1991.

[BM02] D. J. Balkcom and M. T. Mason. Time optimal trajectories for differential

drive vehicles. Intl. Journal of Robotics Research, 21(3):199–217, 2002.

[Boh01] Robert Bohlin. Path planning in practice: Lazy evaluation on a multi-

resolution grid. In Proceedings of IEEE/RSJ Conference on Intelligent Robots

and Systems, 2001.

[BOvdS99] Valérie Boor, Mark H. Overmars, and A. Frank van der Stappen. The Gaus-

sian sampling strategy for probabilistic roadmap planner. In Proceedings of

IEEE Conference on Robotics and Automation, pages 1018–1023, 1999.

114

[BP83] R. Brooks and T. Lozano Perez. A subdivision algorithm in configuration

space for findpath with rotation. In Proccedings of the International Joint

Conference on Artificial Intelligence, pages 799–803, 1983.

[BSB+01] J. Brown, S. Sorkin, C. Bruyns, J.-C. Latombe, K. Montgomery, and

M. Stephanides. Real-time simulation of deformable objects: Tools and ap-

plication. In The Fourteenth Conference on Computer Animation, pages 228–

258, Seoul, South Korea, 2001.

[Can88] John Canny. The Complexity of Robot Motion Planning. PhD thesis, MIT,

Cambridge, MA, 1988.

[CBH+05] H. Choset, W. Burgard, S. Hutchinson, G. Kantor, L. E. Kavraki, K. Lynch,

and S. Thrun. Principles of Robot Motion: Theory, Algorithms, and Imple-

mentation. MIT Press, April 2005.

[CFL03] P. Cheng, E. Frazzoli, and S. M. LaValle. Exploiting group symmetries to

improve precision in kinodynamic and nonholonomic planning. In Proc. of

the Intl. Conf. on Intelligent Robots and Systems, volume 1, pages 631–636,

2003.

[CL02] P. Cheng and S. M. LaValle. Resolution complete rapidly-exploring random

trees. In Proc. of the IEEE Intl. Conference on Robotics and Automation,

volume 1, pages 267–272, 2002.

[CL03] Peng Cheng and Steve M. LaValle. Exploiting group symmetries to improve

precision in kinodynamic and nonholonomic planning. In Proceedings of

IEEE/RSJ Conference on Intelligent Robots and Systems, 2003.

115

[CRR91] J. Canny, A. Rege, and J. Reif. An exact algorithm for kinodynamic planning

in the plane. Discrete and Computational Geometry, 6:461–484, 1991.

[CSL01] Peng Cheng, Zuojun Shen, and Steven M. LaValle. RRT-based trajectory

design for autonomous automobiles and spacecraft. Control Sciences, 11(3-

4):51–78, 2001.

[dBvKO97] M. de Berg, M. van Kreveld, and M. Overmars. Computational Geometry:

Algorithms and Applications. Springer, Berlin, 1997.

[DLOS98] A. De Luca, G. Oriolo, and C. Sampson. Feedback Control of a Nonholo-

nomic Car-lie Robot, chapter Robot Motion Planning and Control, pages

171–253. Lecture Notes in Control and Information Sciences. Springer, NY,

1998.

[DW91] T. L. Dean and M. P. Wellman. Planning and Control. Morgan Kaufmann,

1991.

[DXCR93] B. Donald, P. Xavier, J. Canny, and J. Reif. Kinodynamic motion planning.

Journal of the ACM, 40(5):1048–1066, 1993.

[EL00] S. Ehmann and M. C. Lin. Swift: Accelerated distance computation between

convex polyhedra by multi-level marching. In Proceedings of IEEE/RSJ Con-

ference on Intelligent Robots and Systems, 2000.

[FDF05] E. Frazzoli, M. A. Dahleh, and E. Feron. Maneuver-based motion plan-

ning for nonlinear systems with symmetries. IEEE Trans. on Robotics,

21(6):1077–1091, December 2005.

116

[Fis94] P. A. Fishwick. Simulation Model Design and Execution: Building Digital

Worlds. Prentice-Hall, Inc., 1994.

[Fra] E. Frazzoli. Maneuver-based motion planning for non-linear systems with

symmetries. Submitted to Transactions on Robotics and Automation.

[FW88] S. Fortune and G. Wilfong. Planning constrained motion. In STOC, Chicago,

1988.

[GG95] K. Gupta and Z. Guo. Motion planning with many degrees of freedom: se-

quential search with backtracking. IEEE Transactions on Robotics and Au-

tomation, 6(11):897–906, 1995.

[GHK99] Leonidas J. Guibas, Christopher Holleman, and Lydia E. Kavraki. A prob-

abilistic roadmap planner for flexible objects with a workspace medial-axis-

based sampling approach. In Proceedings of IEEE/RSJ Conference on Intel-

ligent Robots and Systems, 1999.

[GLM96] S. Gottschalk, M. Lin, and D. Manocha. Obb-tree: A hierarchical structure

for rapid interference detection. In Proc. ACM SIGGRAPH’96, pages 171–

180, 1996.

[HA88] Yong Koo Hwang and Narendra Ahuja. Path planning using a potential field

representation. Technical report, University of Illinois, October 1988.

[HA92] Yong Koo Hwang and Narendra Ahuja. A potential field approach to path

planning. Transactions on Robotics and Automation, 8(1):23–32, February

1992.

[Hav] Havoc.com. Havoc engine. http://www.havok.com/content/blogcategory/20/37/.

117

[HBHL06] K. Hauser, T. Bretl, K. Harada, and J.-C. Latombe. Using motion primitives

in probabilistic sample-based planning for humanoid robots. In Proceedings

of Workshop on Algorithmic Robotics, New York, New York, 2006.

[HK00] Christopher Holleman and Lydia E. Kavraki. A framework for using the

workspace medial axis in PRM planners. In Proceedings of IEEE Conference

on Robotics and Automation, pages 1408–1413, 2000.

[HKL+98] D. Hsu, L.E. Kavraki, J.-C. Latombe, R. Motwani, and S. Sorkin. On find-

ing narrow passages with probabilistic roadmap planners. In Proceedings of

Workshop on Algorithmic Robotics, pages 143–153, 1998.

[HKLR00a] D. Hsu, R. Kindel, J.-C. Latombe, and S. Rock. Randomized kinodynamic

motion planning with moving obstacles. In Proceedings of Workshop on Al-

gorithmic Robotics, April 2000.

[HKLR00b] David Hsu, Robert Kindel, Jean-Claude Latombe, and Stephen Rock. Kino-

dynamic motion planning amidst moving obstacles. In Proceedings of IEEE

Conference on Robotics and Automation, pages 537–543, 2000.

[HKLR02] D. Hsu, R. Kindel, J.-C. Latombe, and S. Rock. Randomized kinodynamic

motion planning with moving obstacles. 21(3):233–255, 2002.

[HLM99] David Hsu, Jean-Claude Latombe, and Rajeev Motwani. Path planning in

exapansive configuration spaces. International Journal of Computational Ge-

ometry and Applications, 9(4/5):495–512, 1999.

[Hol83] J. M. Hollerbach. Dynamic scaling of manipulator trajectories. Technical

Report Memo 700, MIT AI Lab, 1983.

118

[Hol04] B. W. Hollocks. Still simulating after all these years - reflections on 40 years

in simulation. In Proc. of the 2004 Operational Research Society Simulation

Workshop (SW04), pages 209–222, Birmingham, 2004. Operational Research

Society.

[Hon] Honda. Asimo. website: http://world.honda.com/ASIMO/.

[HWY86] E. J. Haug, S. C. Wu, and S. M. Yang. Dynamics of mechanical systems with

coulomb friction, stiction, impact and constraint addition, deletion i, ii and iii.

Mechanism and Machine Theory, 21:401–425, 1986.

[Kav95] Lydia E. Kavraki. Random Networks in Configuration Space for Fast Path

Planning. PhD thesis, Stanford University, January 1995.

[KD86] Subbarao Kambhampati and Larry S. Davis. Multiresolution path plan-

ning for mobile robots. Journal on Robotics and Automation, 2(3):135–145,

September 1986.

[Kha86] O. Khatib. Real-time obstacle avoidance for manipulators and mobile robots.

International Journal of Robotics Research, 5(1):90–98, 1986.

[KJCL97] M. Khatib, H. Jaouni, R. Chatila, and J.-P. Laumond. Dynamic path modifica-

tion for car-like nonholonomic mobile robots. In Intl. Conference on Robotics

and Automatiion, pages 2920–2925, Albuquerque, NM, April 1997.

[KKL96] Lydia E. Kavraki, M. N. Kolountzakis, and Jean-Claude Latombe. Analysis

of probabilistic roadmaps for path planning. In Proceedings of IEEE Confer-

ence on Robotics and Automation, volume 4, pages 3020–3025, 1996.

119

[KL94] Lydia E. Kavraki and Jean-Claude Latombe. Randomized preprocessing of

configuration space for fast path planning. In Proceedings of IEEE Confer-

ence on Robotics and Automation, volume 3, pages 2138–2145, 1994.

[KL98] Lydia E. Kavraki and Jean-Claude Latombe. Probabilistic roadmaps for path

planning. In K. Gupta and P. del Pobil, editors, Proceedings of IEEE Confer-

ence on Robotics and Automation, pages 33–53. John Wiley and Sons LTD.,

1998.

[KL00] James J. Kuffner and Steven M. LaValle. RRT-Connect: An efficient ap-

proach to single-query path planning. In Proceedings of IEEE Conference on

Robotics and Automation, pages 995–1001, 2000.

[KLMR96] L. E. Kavraki, J.-C. Latombe, R. Motwani, and P. Raghavan. Randomized

query preprocessing in robot motion planning. In Proceedings of the Sympo-

sium on the Theory of Computing, 1996.

[Kod89] D. E. Koditschek. Robot planning and control via potential functions. In The

Robotics Review 1, pages 349–367. MIT Press, 1989.

[KPLM98] S. Krishnan, A. Pattekar, M. Lin, and D. Manocha. Spherical shell: A higher-

order bounding volume for fast proximity queries. In Proceedings of Work-

shop on Algorithmic Robotics, 1998.

[KVdP06] M. Kalisiak and M. Van de Panne. Rrt-blossom: Rrt with a local flood-fill

behavior. In Proc. of the IEEE International Conference on Robotics and

Automation (ICRA), pages 1237–1242, May 15-19 2006.

[KvLO96] Lydia E. Kavraki, Petr Švestka, Jean-Claude Latombe, and Mark H. Over-

mars. Probabilistic roadmaps for path planning in high-dimensional config-

120

uration spaces. Transactions on Robotics and Automation, 12(4):566–580,

August 1996.

[Lat91] J.-C. Latombe. Robot Motion Planning. Kluwer Academic Publishers,

Boston, 1991.

[LaV06] Steven M. LaValle. Planning Algorithms. Cambridge, 2006.

[LB02] S. M. LaValle and M. S. Branicky. On the relationship between classical grid

search and probabilistic roadmaps. In Proceedings of Workshop on Algorith-

mic Robotics, 2002.

[LBL04] F. Lamiraux, D. Bonnafous, and O. Lefebvre. Reactive path deformation for

nonholonomic mobile robots. IEEE TR, 20(6):967–977, 2004.

[LC91] M. C. Lin and John F. Canny. Efficient algorithms for incremental distance

computation. In Proceedings of IEEE Conference on Robotics and Automa-

tion, pages 1008–1014, 1991.

[LFV04] F. Lamiraux, E. Ferre, and E. Vallee. Connecting exploration trees using

trajectory optimization methods. In ICRA, pages 3987–3992, April 2004.

[LK99] Steven M. LaValle and James J. Kuffner. Randomized kinodynamic planning.

In Proceedings of IEEE Conference on Robotics and Automation, pages 473–

479, 1999.

[LK00] Steven M. LaValle and James J. Kuffner. Rapidly-exploring random trees:

Progress and prospects. In Proceedings of Workshop on Algorithmic

Robotics, 2000.

121

[LK01a] F. Lamiraux and L. E. Kavraki. Planning paths for elastic objects un-

der manipulation constraints. International Journal of Robotics Research,

20(3):188–208, 2001.

[LK01b] S. M. LaValle and J. J. Kuffner. Randomized kinodynamic planning. Inter-

national Journal of Robotics Research, 5:348–400, May 2001.

[LK01c] Steven M. LaValle and James J. Kuffner. Randomized kinodynamic planning.

International Journal of Robotics Research, 20(5):378–400, May 2001.

[LK02] AndrewM. Ladd and Lydia E. Kavraki. Generalizing the analysis of PRM. In

Proceedings of IEEE Conference on Robotics and Automation, pages 2120–

2125, 2002.

[LK05a] A. M. Ladd and L. E. Kavraki. Fast tree-based exploration of state space

for robots with dynamics. In M. Erdmann, D. Hsu, M. Overmars, and A. F.

van der Stappen, editors, Algorithmic Foundations of Robotics VI, pages 297–

312. Springer, STAR 17, 2005.

[LK05b] A. M. Ladd and L. E. Kavraki. Motion planning in the presence of drift, un-

deractuation and discrete system changes. In Robotics: Science and Systems

I, pages 233–241, Boston, MA, June 2005. MIT Press.

[LL96] Florent Lamiraux and Jean-Phillippe Laumond. On the expected complexity

of random path planning. In Proceedings of IEEE Conference on Robotics

and Automation, pages 3306–3311, 1996.

[LL05] S. R. Lindemann and S. M. LaValle. Smoothly blending vector fields for

global robot navigation. In Proceedings IEEE Conference on Decision and

Control, pages 3353–3559, Seville, Spain, 2005.

122

[LL06] S. R. Lindemann and S. M. LaValle. Multiresolution approach for motion

planning under differential constraints. In Proceedings of IEEE Conference

on Robotics and Automation, pages 139–144, Orlando, Florida, 2006.

[LM91] M. C. Lin and D. Manocha. Fast interference detection between geometric

models. The Visual Computer, 11(10):542–561, 1991.

[LM97] M. C. Lin and D. Manocha. Efficient contact determination between geomet-

ric models. International Journal of Computational Geometry and Applica-

tions, 7(1):123–151, 1997.

[Lot82] P. Lotstedt. Mechanical systems of rigid bodies subject to unilateral con-

straints. SIAM Journal of Applied Mathematics, 42(3):281–296, 1982.

[Lot84] P. Lotstedt. Numerical simulation of time-dependent contact friction prob-

lems in rigid body mechanics. SIAM Journal of Scientific Statistical Comput-

ing, 5(2):370–393, 1984.

[MBOR86] D. Kozen M. Ben-Or and J. Reif. The complexity of elementary algebra and

geometry. Journal of Computational Sciences, 32:251–264, 1986.

[MC95] B. Mirtich and J. F. Canny. Impulse-based simulation of rigid bodies. Pro-

ceedings of ACM Interactive 3D Graphics, 1995.

[Mir97] B. Mirtich. Efficient algorithms for two-phase collision detection. Technical

Report TR–97–23, Mitsubishi Electric Research Laboratory, December 1997.

[MK06] M.Moll and L. E. Kavraki. Path planning for deformable linear objects. IEEE

Transactions on Robotics, 22(4):625–636, 2006.

123

[MSO94] S. McMillan, P. Sadayappan, and D. E. Orin. Parallel dynamic simulation of

multiple manipulator systems: Temporal vs. spatial methods. IEEE Transac-

tions on Systems, Man, and Cybernetics, 24(7):982–990, July 1994.

[O’D87] C. O’Dunlaing. Motion planning with inertial constraints. Algorithmica,

4(2):431–475, 1987.

[Ov94] Mark H. Overmars and Petr Švestka. A probabilistic learning approach

to motion-planning. In Proceedings of Workshop on Algorithmic Robotics,

pages 19–37, 1994.

[Ov95] Mark H. Overmars and Petr Švestka. A paradigm for probabilistic path plan-

ning. Technical report, Utrecht University, March 1995.

[OY82] C. O’Dunlaing and C. K. Yap. A retraction method for planning the motion

of a disc. Journal of Algorithms, 6:104–111, 1982.

[OY85] Colm Ó’Dúnlaing and Chee K. Yap. A retraction method for planning the

motion of a disc. Journal of Algorithms, March 1985.

[PBC+05] E. Plaku, K. E. Bekris, B. Y. Chen, A. M. Ladd, and L. E. Kavraki. Sampling-

based roadmap of trees for parallel motion planning. IEEE Transactions on

Robotics, 21(4):597–608, 2005.

[PC06] M. Pidd and A. Carvalho. Simulation software: not the same yesterday, today

or forever. Journal of Simulation, pages 1–14, 2006.

[Per83] T. Lozano Perez. Spatial planning: a configuration space approach. Transac-

tions on Computing, February 1983.

124

[PG96] F. Pfeiffer and Ch. Glocker. Multibody Dynamics with Unilateral Contacts.

Willey Series in Nonlinear Science, New York, 1996.

[PK05] E. Plaku and L. E. Kavraki. Distributed sampling-based roadmap of trees for

large-scale motion planning. In IEEE International Conference on Robotics

and Automation, pages 3879–3884, Barcelona, Spain, April 2005.

[QK93] S. Quinlan and O. Khatib. Elastic bands: Connecting path planning and con-

trol. In Proc. IEEE Int. Conf. on Rob. and Autom., pages 00–00, 1993.

[Qui94] S. Quinlan. Efficient distance computation between non-convex objects. In

Proceedings of IEEE Conference on Robotics and Automation, 1994.

[Rei79] John H. Reif. Complexity of the generalized mover’s problem. In Proceed-

ings of the IEEE Symposium on Foundations of Computer Science, pages

421–427, 1979.

[RK92] E. Rimon and D. Koditschek. Exact Robot Navigation Using Artificial Po-

tential Functions. IEEE Transactions on Robotics and Automation, 8(5):501–

518, Oct. 1992.

[Rob] Robocup legged league. website: http://www.tzi.de/4legged/.

[RPE+05] L. Ren, A. Patrick, A. A. Efros, J. K. Hodgins, and J. M. Rehg. A data-

driven approach to quantifying natural human motion. ACM Transactions on

Graphics, 24(3):1090–1097, 2005.

[RS90] L. Reeds and L. Shepp. Optimal paths for a car that goes both forwards and

backwards. Pacific Journal of Mathematics, 145(2):367–393, 1990.

125

[SA01] Guang Song and Nancy M. Amato. Randomized motion planning for car-like

robots with C-PRM. In Proceedings of IEEE/RSJ Conference on Intelligent

Robots and Systems, 2001.

[SAS84] Micha Sharir and Elka Ariel-Sheffi. On the piano movers’ problem: IV. vari-

ous decomposable two-dimensional motion planning problems. Communica-

tions on Pure and Applied Mathematics, 37:479–493, 1984.

[Sch87] H. M. Schaettler. On the optimality of bang-bang trajectories in R3. Bull.

AMS, 16(1):11–36, 1987.

[SD88] Z. Shiller and S. Dubowsky. Global time-optimal motions of robotic manipu-

lators in the presence of obstacles. In IEEE Intl. Conference on Robotics and

Automation, Philadephia, 1988.

[SH85] G. Sahar and J. Hollerbach. Planning of minimum-time trajectories for robot

arms. In IEEE Intl. Conference on Robotics and Automation, St. Louis, 1985.

[SK05] M. Stilman and J. J. Kuffner. Navigation among movable obstacles : Real-

time reasoning in complex environments. International Journal of Humanoid

Robotics, 2(4):1–24, 2005.

[SK06] M. Stilman and J. J. Kuffner. Planning among movable obstacles with artifi-

cial constraints. In Proceedings of Workshop on Algorithmic Robotics, pages

1–20, New York, New York, 2006.

[SL01] G. Sánchez and J.-C. Latombe. A single-query bidirectional motion planner

with lazy collision checking. In Proceedings of International Symposium on

Robotics, 2001.

126

[Smi06] Russell Smith. Open Dynamics Engine: v05. User Guide, February 2006.

[SS83a] Jacob T. Schwartz and Micha Sharir. On the piano movers’ problem: I. the

case of a two-dimensional rigid polygonal body moving admidst polygonal

barriers. Communications on Pure and Applied Mathematics, 36:345–398,

1983.

[SS83b] Jacob T. Schwartz and Micha Sharir. On the piano movers’ problem: III.

coordinating the motion of several independent bodies: The special case of

circular bodies moving amidst polygonal barriers. International Journal of

Robotics Research, 2(3):46–75, 1983.

[SS84] Jacob T. Schwartz and Micha Sharir. On the piano movers’ problem: V. the

case of a rod moving in three-dimensional space amidst polyhedral obstacles.

Communications on Pure and Applied Mathematics, 37:815–848, 1984.

[SS85] E. Sontag and H. Sussmann. Remarks on the time-optimal control of two-

link manipulators. In Proc. of the 24th Conf. on Decision and Control, Ft.

Lauderdale, 1985.

[ST96] D. E. Stewart and J. C. Trinkle. An implicit time-stepping scheme for rigid

body dynamics with inelastic collisions and coulomb friction. Intl. Journal of

Numerical Methods in Engineering, 39:2673–2691, 1996.

[Ste94] Robot F. Stengel. Optimal Control and Estimation. Dover Books, 1994.

[Ste00] D. E. Stewart. Rigid-body dynamics with friction and impact. SIAM Rev.,

42(1):3–39, 2000.

127

[Šve97] P. Švestka. Robot Motion Planning using Probabilistic Road Maps. PhD

thesis, Utrecht University, the Netherlands, 1997.

[SvLO98] S. Sekhavat, P. Švestka, J.-P. Laumond, and M. H. Overmars. Multilevel

path planning for nonholonomic robots using semi-holonomic subsystems.

International Journal of Robotics Research, 17:840–857, 1998.

[TMD+06] S. Thrun, M. Montemerlo, H. Dahlkamp, D. Stavens, A. Aron, J. Diebel,

P. Fong, J. Gale, M. Halpenny, G. Hoffmann, K. Lau, C. Oakley, M. Palatucci,

V. Pratt, P. Stang, S. Strohband, C. Dupont, L.-E. Jendrossek, C. Koelen,

C. Markey, C. Rummel, J. van Niekerk, E. Jensen, P. Alessandrini, G. Brad-

ski, B. Davies, S. Ettinger, A. Kaehler, A. Nefian, and P. Mahoney. Winning

the darpa grand challenge. Journal of Field Robotics, 2006. accepted for

publication.

[WAS99] Steven A. Wilmarth, Nancy M. Amato, and Peter F. Stiller. Motion planning

for a rigid body using random networks on the medial axis of the free space.

In Proceedings of ACM Symposium on Computational Geometry, pages 173–

180, 1999.

[Wil88] G. Wilfong. Motion planning for an autonomous vehicle. In IEEE Intl. Con-

ference on Robotics and Automation, Philadephia, 1988.

[YJSL05] A. Yershova, L. Jaillet, T. Siméon, and S. M. LaValle. Dynamic-domain rrts:

Efficient exploration by controlling the sampling domain. In Proceedings of

IEEE Conference on Robotics and Automation, pages 3856–3861, Barcelona,

Spain, 2005.

