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Abstract. This paper presents a new motion planning algorithm which we call
the Path-Directed Subdivision Tree exploration planner (PDST-EXPLORE). It is a
sampling-based method which builds a tree and takes a substantially different ap-
proach from other exploration planners such as RRT [18] and EST [12]. PDST-EXPLORE
is a general purpose planner but is designed to overcome difficulties inherent in
planning for robots with non-trivial dynamics. Specifically, our planner represents
samples as path segments rather than individual states and uses non-uniform sub-
divisions of the state space to estimate coverage. This change avoids many of the
problems that previous sampling-based planners have had with milestone place-
ment, metrics and coverage estimation. We use a deterministic update schedule
together with randomized path generation to adaptively strike a balance between
greedy exploration and methodical search. We have obtained a proof of probabilis-
tic completeness for the planner which assumes very little about the specific robot
system that the planner operates on. Finally, we have implemented the planner for
planar kinodynamic point robots, differential drive robots and blimp-like robots.
The experimental results demonstrate the efficiency of the planner’s implementa-
tion as well as its robustness in covering the entire reachable free space.

1 Introduction

This paper treats the problem of developing efficient planning techniques for
robot systems with non-trivial dynamics operating in the presence of obsta-
cles [18]. There are many interesting examples of dynamic motion planning
problems such as car-like robots [16,3], tractor-trailer robots [16], snakeboard
[19], helicopter robots [10], and spaceship robots [7]. We present a general
purpose planner that is designed to address the challenges posed by robot
systems with non-trivial second-order dynamics. In these cases, planning is
complicated by constrained motion, drift and the importance of minimiz-
ing a path cost such as time or fuel usage. This paper relates the design
and implementation of the Path-Directed Subdivision Tree exploration plan-
ner (PDST-EXPLORE). It is a tree-based planner which departs from previous
frameworks, such as Rapidly-Exploring Random Trees RRT [18] and Expan-
sive Spaces Trees EST [12], in order to avoid well-known weaknesses of these
approaches [4,1].

There are various techniques applicable to dynamics planning problems
in the literature. We group these into several families: exact methods, path
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conversion methods and sampling-based methods. Exact methods which pro-
duce optimal paths are known but are PSPACE [9]. Polynomial time algo-
rithms that produce approximately optimal paths are known for acceleration
bounded point robots and for curvature constrained planning [20]. These ex-
act algorithms produce optimal or approximately optimal solutions, however
the main barrier to usage is that they are not practical algorithms and are
only applicable to specific instances. Path conversion techniques make use of
structure [2] to lift solutions obtained for simplified systems to feasible solu-
tions for the given problem [22,21]. Although path conversion methods often
offer a computationally efficient way of generating dynamic motions, the re-
sulting paths tend to be of low quality, having many redundant or stopping
motions. In the area of sampling-based planners, we divide existing planners
into two categories: roadmap methods, such as the Probabilistic Roadmap
(PRM) planner, and tree-based planners. The roadmap family of planning
techniques [13] use global sampling and local planners to build roadmaps.
In the dynamics case, implementing the local planner primitive, as it used
in PRM, requires solving the steering problem [6,15], which is typically com-
putationally expensive. The PRM approach offers a probabilistically complete
solution [14] but the large number of calls to the steering primitive is pro-
hibitive. Finally, tree-based planners, such as the (RRT) planner [18,5] and the
(EST) planner [12], make use of forward integration of controls (propagation)
to incrementally construct trees in the state space (exploration planning).
Typically, steering primitives are then used to connect pairs of trees (connec-
tion planning). The tree-based methods enjoy the computational advantage
of the relatively cheap propagation primitive and are thus the starting point
for the research developed in this paper.

We choose to focus on improving the basic instance of a tree-based plan-
ner: the exploration planner. The purpose of an exploration planner is to
capture the structure of the reachability set of the root state by incremen-
tally constructing a tree of paths beginning from the given root. Exploration
planners are usually employed as primitives in larger schemes, such as in bi-
directional planning [18] or for the Probabilistic Roadmap of Trees planner
[1], and dominate the run-time [18]. Our objective is to improve the state-of-
the-art of exploration planning for dynamic planning problems. Exploration
planners for such systems, namely RRT and EST, incrementally construct a
tree in reachability space by alternating between two actions, selection and
propagation, at each iteration of the planner. We refer to this design as the
select-propagate architecture. In the selection phase, a state from the sample
set is chosen using an algorithmic procedure guided by a data structure which
is constructed and maintained on-line. This data structure is designed to esti-
mate the current coverage of the sample set and to bias the sampling toward
areas of the space which have few or no samples. Propagation generates new
branches in the tree extending from the state chosen by the selection phase.
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PDST-EXPLORE is a general purpose exploration planner but focuses on
the case of motion planning with second-order dynamics as it is particularly
challenging for exploration planners [4]. It is these challenges that inspired
the PDST-EXPLORE planner and motivate its design. The efficiency of explo-
ration planners is strongly tied to the implementation of the selection phase
during expansion. The RRT approach uses Voronoi bias computed with prox-
imity queries to guide expansion [18] and the EST approach maintains local
density estimates to achieve the same [12]. Both approaches determine a
probability distribution over the set of all current samples. The randomized
(or quasi-random) selection approach is the foundation of probabilistic (or
resolution) completeness for both methods. During propagation it is usually
desirable to create multiple new samples along the propagated path (check-
pointing) [4,12]. It is now well-known that the performance of these methods
when applied to dynamic planning is very sensitive to the metric that deter-
mines proximity or density [4]. In particular, the drift present in second-order
systems invalidates inherent assumptions in the way the metric is used [4].
Although specific remedies to this difficulty have been proposed [4], the met-
ric sensitivity issue still impacts the efficiency of the planner. It has been
empirically observed that RRT and EST enjoy rapid initial convergence but
global convergence is much slower [1]. We posit that this is due to the ran-
domized (or quasi-random) selection schedule leading to redundant growth
as coverage increases.

PDST-EXPLORE preserves the features of exploration planning that have
been successful: the use of cheap propagation primitives and the select-
propagate architecture for growing the tree. Our contribution is a new se-
lection algorithm and corresponding introspection data structure which are
radically different from the ones typically employed in sampling-based plan-
ning. Namely, we propose the following design changes:

1. The samples are path segments and not states.

2. Metrics are not employed during selection and their properties are not
used to prove completeness.

3. We use a deterministic, greedy selection schedule.

Outline This paper is organized as follows: in Section 2 we define the motion
model that we use and state the problem that we are addressing. In Section
3, we describe the PDST algorithm and state a theorem about probabilistic
completeness. We have tested the efficiency of our planner on the planar kin-
odynamic point robot, the differential drive robot and a blimp robot in 3-D.
The planar workspaces we used are maze-like environments with features of
various scale and character. Such workspaces are very challenging for existing
planners [18,12,4,5]. Our experiments and results are detailed in Section 4,
together with a novel application of Maneuver Automata theory to trajectory
generation [11]. We conclude in Section 5 with a brief discussion.
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2 Problem Statement

The state space of the robot is denoted by () and is a smooth m-dimensional
manifold. Let U be the set of controls for the robot. The motion of the
robot system is governed by a differential equation. This equation is of the
form ¢ = f(q,u) for ¢ € @ and u € U. The function f is smooth in ¢. In
addition to the constraint imposed by f, the motion of the robot may be
further constrained by inequality constraints of the form g(q,q) < 0 where
g is smooth. Any path through @ that satisfies these constraints is feasible.
In addition to the dynamic constraints, there are constraints determined by
obstacles in (). The set of states which are free is an m-dimensional sub-
manifold of ) which is denoted Qgree- A state ¢ € Qpree 1S a free state and
state ¢ € Qgee is in collision. A feasible path which lies entirely in Qfee is
said to be collision-free.

We give a formal definition of an exploration planner which is convenient
for exposition and to state our theorem of probabilistic completeness. We
define the exploration planning problem as follows: given ¢y € Qfree and
A C Qfree, the exploration planner must compute a collision-free path from
go to any gy € A. This formulation captures how RRT and EST can be used
a uni-directional planners and allows to analyze coverage of the reachability
set, of qq.

3 The PDST-EXPLORE Planner

Like RRT and EST, PDST-EXPLORE is a sampling-based planner which uses
select-propagate architecture to incrementally construct a tree. However, we
propose radical changes to the way samples are represented and to the im-
plementation of the selection algorithm. We will begin this section by giving
a brief overview of and introduction to the operation of our planner.

In exploration planners to date, the sample set is represented as a set of
states connected by paths defining a tree. In the PDST-EXPLORE planner, we
represent the samples as a set of paths which are connected at branch states.
By switching to this representation, the selection algorithm adaptively places
branch states as needed. This seemingly superficial change avoids the need for
check-pointing and drastically reduces the number of stored sample objects.

Previous exploration planners construct and maintain a biased probability
distribution over the samples and then select the state to propagate from by
randomly selecting from this distribution. The distribution bias is determined
by proximity [18] or density [12]. In PDST-EXPLORE, priorities are assigned to
each sample. The priority of a given sample is initialized to the iteration num-
ber the sample was created on and doubles each time that sample is selected.
The selection algorithm for PDST-EXPLORE selects the sample with the lowest
weighted priority at each iteration. The weighting for the priority are deter-
mined by a partition of the state space into cells. At the end of iteration, one
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cell is subdivided and samples contained in that cell are subdivided as well.
The cell subdivision rule, priority scheme and sample growth are designed to
satisfy probabilistic completeness, to cover the reachability set greedily and
to support efficient implementation.

3.1 Space and Sample Representation in PDST-EXPLORE

In this subsection we describe how the PDST-EXPLORE planner represents the
state space and the samples. The space representation is a non-uniform cell
partition of state space which is used to estimate coverage and to guide
expansion. The samples are collision-free path segments which define a tree.

Definition of Subdivision Scheme PDST-EXPLORE maintains a complete
subdivision of the state space into a set of cells. The subdivision is refined
after each iteration. Each cell has a volume. Refining a cell creates two new
cells, the union of which is the original cell, each with non-zero volume. This
final property is necessary for our proof of correctness. A straightforward
implementation of the cell partition can be obtained with a Binary Space
Partition Tree [8].

Formally, a cell C'is a subset of (). The measure or volume of a cell is given
by u(C). The function p is a measure in the formal sense and is normalized
so that u(Q) = 1. A subdivision, S, is a finite partition of @ into cells of non-
zero volume, S = {C1,...,Ck}. Cell subdivision is deterministic and consists
of splitting a cell C into two parts, left(C) and right(C), which form a
disjoint partition of C' and each have non-zero measure. A subdivision S is
refined by subdividing a single cell. The measure p and refinement rules are
called a subdivision scheme. It turns out that the subdivision scheme need
not satisfy any additional properties beyond the ones we have detailed in
order to permit the proof of probabilistic completeness. For this reason, the
choice of the subdivision scheme can be made to optimize the efficiency of
the planner.

Definition of Sample (Mass) A change proposed in this paper is to use
paths rather than states as samples. We introduce the term mass to refer
to a sample consisting of a non-empty path segment together with some
additional structure. Masses also have a non-negative scalar weight and can
be subdivided. It is possible to generalize mass to mean arbitrary subsets of
state space but we eschew this in favor of clarity of exposition.

A mass is a collision-free path 7 with given duration T'. Since the masses
define a tree structure we need to define the root of the tree and the path
from the root to each state contained in a mass. Specifically, every mass M
has a root state root(M) € @) and associated with a path from root(M) to
each state along 7. If ¢ is state along the path 7, we write path(M, q) for the
collision-free sub-path from root(M) to g.
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Each mass M has a weight (M) > 0. The function v is a measure in
the formal sense. In our implementations, we have used v(M) = |r| = T, the
duration of the path. Other notions of length or measure could be used. If
7' is a sub-path of the path =, then the mass M' = «’ is a sub-mass of M
if root(M) = root(M') for any state g along both 7 and 7', path(M,q) =
path(M’, q).

Propagation The propagate operation creates a new mass by randomly
extending from an existing mass. In our experiments, we have implemented
propagate using two operations: choose and generate. The choose opera-
tion chooses a random state from the mass. For mass M = 7 with duration
T, choose(M) generates a random parameter ¢ uniformly from [0,7] and
returns m(t). The operation generate creates a new mass by integrating a
randomly chosen control function starting from the given state. Let M be a
mass and let ¢ be the result of choose(M), the call to generate(M, ¢) chooses
k : [0, 00] = U from a distribution of control functions and integrates it start-
ing from ¢ to obtain a new path. The design of such distributions of control
functions has been described in the literature [18,12,10,5]. The new path is
collision detected and a collision-free sub-path, 7', is obtained. The new mass
M' is created from 7’ and the canonical path to root(M) is constructed from
the path from the root to ¢, path(M,q).

3.2 PDST-EXPLORE Description

In this subsection, we describe the operation of the PDST-EXPLORE algo-
rithm given as Algorithm 1. We split the pseudo-code of the algorithm into
three parts: initialization (lines 1-4), select and propagate (lines 6-9) and
the update code (lines 10-30). As we describe the operation of Algorithm
1, we will detail the calculation of various quantities and the data invariant
maintained during the execution. Certain aspects of the interaction between
the priority scheme, selection and space partitioning might seem somewhat
arbitrary. These design decisions were made for two reasons: observed exper-
imental efficiency and to permit the proof of Theorem 1.

Initialization and Invariants We now describe the initialization phase of
PDST-EXPLORE (lines 1-4). An input of go, A and N is provided. The state
go € Qrree Will be the root state for all masses created by the run. The subset
A C Qfree is the goal set for the run and planner will halt if a generated mass
has non-empty intersection with A. The integer N determines the number of
iterations that the algorithm runs for. Before we continue, some key invariants
need to be discussed to shed light on the design of PDST-EXPLORE.

The algorithm maintains a few structures during the run. Fundamentally,
these are a subdivision of () called S, a finite set of masses written M and
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Algorithm 1 PDST-EXPLORE(gg, A, N)

1: Set the subdivision to S = {@}.
2: Create a singleton mass Mo = {qo}-
3: Set the mass set M = {Mp}.
4: Set priority(Mpo) = 1.
5: for Each iteration =1,...;, N do
6: Choose Cs € S, the cell with the lowest priority.
7:  Choose M, € masses(C), the mass in C; with the lowest priority.
8:  Set g to choose(M).
9:  Set M. to generate(Ms,,q).
10:  if M. =0 then
11: priority(M,) := 2(priority(M;) + iteration).
12: else
13: if M.NA#0 then
14: Take g5 € M, such that g € M..
15: return path(M., g5).
16: end if
17:  else
18: priority(M,) := 2(priority(M,) + 1).
19: while M. # ) do
20: Chext = stab(S, M.)
21: M, 1= Chext N M.
22: M, := M, — M,.
23: if not the first time through and if density(Chext) > avgdensity(S)
then
24: break out of the while loop.
25: else
26: M :=MU{M,}.
27: priority(M,) := iteration.
28: end if
29: end while
30: Subdivide cell Cs.
31: endif
32: end for

33: return FAILED.

a positive integer priority for each M € M denoted priority(M). We dis-
cuss low-level implementations for these structures later in this section. The
subdivision S and M always satisfy the invariant property that for every
M € M, there is a unique C' € S such that M C C. In other words, each
mass element lies uniquely in a some cell of the subdivision. When a cell is
subdivided, the masses contained in that cell are also subdivided.

During initialization, the structures are created and assigned trivial val-
ues. The subdivision is initialized to the trivial subdivision S = {Q}. A
special singleton mass My is created. We have My = {qo} and is associated
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with the trivial path at go. The mass set is initialized by M = {My}. The
initial priority of My is set to 1.

Select and Propagate Selection and propagation occur on lines 6-9 and
execute at the beginning of each iteration. The selection step chooses a mass
M from the current mass set M. The mass M has the lowest priority among
all masses contained in the cell Cs € S with the lowest priority. The priority
of cell C, priority(C), is determined as a function of priorities of the masses
contained in C' and the volume of C'. The intuition is that small cells are less
important than large cells.

min {priority(M): M C C and M € M}
#(C) '

If there are no M € M such that M C C then priority(C) = oo.

After selecting the mass M, a new mass is propagated from the old
mass. The new mass, which we call M, is created by calling a randomized
operator propagate(M;). It is possible that M, = @ in which case we say
that propagation failed.

priority(C) =

Update After selection and propagation occur, the mass set, priorities and
subdivision are updated. The update takes place on lines 10-30. There are
three cases: if M, = 0, if M. N A # () and the final case where M, is incre-
mentally inserted into M according to S.

If the call to propagate fails (M, = @) then the priority of M, is adjusted
to 2(priority(M;) + iteration). The addition of the iteration counter is
to penalize the rate of selection for that mass beyond the normal doubling
scheme since propagation failed. If M.NA # 0 then there is g € M, such that
gr € A. The exploration planner has succeeded and can return path(M,, g5).

If the propagation succeeded but M. did not intersect A, then M, is par-
titioned according to S and incrementally inserted into M. The insertion
proceeds until it reaches a cell of above average density. The density thresh-
olding technique helps limit the creation of redundant samples. At least one
insertion occurs regardless of density. The insertion loop is on lines 10-30.
After the insertion is complete, the selected cell Cy is subdivided. Addition-
ally, the priority of M is updated to 2(priority(M;) + 1) to penalize its
selection.

The density of a cell is determined by the weight of the masses in the cell
and the volume of the cell. The density of a cell C' is determined by the sum
of the masses contained in a given cell divided by the volume of the cell

. _ v(M)
density(C) = MEI\%CC 20

The average density of the subdivision S, avgdensity(S), is determined by
cells in the subdivision which are non-empty S, = {C' € S : thereis M €
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M such that M C C}. Specifically, the average density is the sum of the
densities of the non-empty cells divided by the number of non-empty cells,

z density(C) ‘

avgdensity(S) = 5]
J2

CeSy

The insertion loop proceeds by determining a cell Cpext such that M. N
Chext 1S non-empty and then inserting M; = M. N Chexy into M. After the
insertion, M, is set to the remainder M, — M; and the loop proceeds. After
the first insertion, the insertion loop ends if M, = @) or if density(Chext) >
density(S). The choice of Chext is determined by operation called stab such
that Chexy = stab(M,, S). The stabbing operation finds the cell containing
the first state in M., i.e. if M, = 7 then stab(M,, S) returns the cell C € S
such that 7(0) € C. This operation is well-defined since the cells in S are a
partition of the state space. After insertion has completed, the cell Cpext i
subdivided. The cell Cext is removed from the subdivision is removed from
S and the cells C; = left(Chext) and C = right(Chext) are added. Then
each M € M that was contained in Chpeyy is split into M; C C; and M, C C,.
The mass M is discarded and M; and M, are added to M. Empty masses
are discarded.

Data Structures Obtaining a general implementation of PDST-EXPLORE is
fairly straightforward. The mass representation, subdivision scheme and their
associated operations can be made abstract. A generic binary space partition
tree is then the primary data structure and the masses are referenced by the
leaf nodes (cells). A hash table is used to store priorities and the cell priorities
and densities are stored at each cell. All non-empty cells are placed in a
priority queue and sorted by increasing priority. We use binary heap with hash
table back-pointers to implement the priority queue and its operations. The
stabbing operations are implemented top-down. The algorithmic overhead in
PDST-EXPLORE at the mth iteration is proportional to O(DS +log(m)), where
D is the maximum depth of the tree, S is the number of stab operations and
log(m) is incurred by the binary heap. In practice, we have observed that the
bulk of the run-time is spent in path generation and collision detection.

Probabilistic Completeness The general formulation of PDST-EXPLORE
that we provide supports an abstract proof of probabilistic completeness
similar to one made for PRM [14]. We begin by defining a simple random
walk exploration planner which we call RANDOM-WALK-EXPLORE. Given input
(go, A), the planner begin by setting M to singleton mass {go}. At each iter-
ation: if M intersects A then return success and report the path, otherwise
set M := propagate(M). If M = () then return failure otherwise loop again.
We can now state the Theorem below.
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Theorem 1. For a given robot system and given a formulation for the mass
and the subdivision scheme, the exploration planner RANDOM-WALK-EXPLORE
succeeds with strictly positive probability on an input (go, A) if and only if the
exploration planner PDST-EXPLORE eventually succeeds on input (go, A) with
probability 1.

Although we do not have space to present the proof of this Theorem as it is
fairly involved, we can briefly describe the argument. For the input (gg, 4),
both exploration planners can only succeed with strictly positive probability
if there a sequence of calls to propagate which creates mass in A with strictly
positive probability. Using measure-theoretic techniques similar to those ap-
plied to our analysis of PRM [14], we prove the existence of a finite stationary
sampling sequence. It remains to show that PDST-EXPLORE eventually makes
progress, thus decreasing the length of stationary sequence required to gen-
erate mass in A by one. Then, applying induction, we can conclude that the
planner succeeds. The technical difficulties in the proof arise as a result of the
deterministic selection schedule and the subdivision of the masses and cells.
Since the effect of random results to propagate on the sequence of mass se-
lections is difficult to judge directly, a non-deterministic model of propagate
can be taken and it can be shown that some sub-mass of any generated mass
is selected infinitely often over the course of an infinite run. From this ob-
servation, the rest of proof can be constructed after formalizing the effect of
subdivision on the masses.

4 Experimental Results

In this section, we begin by describing a novel extension to Maneuver Au-
tomata theory [11] which uses PRM sampling to generate Maneuver Automata.
The generated Maneuver Automata are then used for trajectory generation.
We continue by outlining the specific robot systems we have implemented
PDST for. Finally, we describe our experiments and present our results.

4.1 Maneuver Automata

We propose using the Maneuver Automata [11] to implement the generate
function used in our exploration planner. This is novel extension to the Ma-
neuver Automata literature and can applied to any planner that uses propa-
gation for a robot that satisfies a certain symmetry property. The advantage
we gain is that we can restrict ourselves to nice family of motions and elimi-
nate numerical integration from the call to generate. These techniques only
apply when special structure exists in the motion of the robot, however the
class of applicable robot systems is an important one. A sufficient condition
occurs when the state space () is a direct product of a Lie Group G and a
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shape manifold Z. Furthermore, the Lie Group G operating on () must pre-
serve path feasibility [11]. If this is the case, we say that G is a symmetry
group for @ and Maneuver Automata theory can be applied.

For our purposes a Maneuver Automata is a finite directed multi-graph
MA = (V,E). The vertex set V is a finite subset of Z. An element of E
is (21, A, 22) is a directed edge between vertices 21 and 2 together with a
control function A : [0,T] — U of duration T. The control function A must
satisfy the property that if ¢; = (e, 21) then result of integrating the control
function \ starting at state g¢; produces a state g = (g, 22) where g can be
arbitrary. In other words, A gives a control schedule for transitioning from any
state with shape z; to some state with shape z5. Such a transition defines
a set of paths equivalent under G-symmetries which is called a maneuver
motion. A second kind of motion can be effected from a state ¢ = (g, z) where
z € V by executing the zero control 0 € U for any amount of time. These
motions can be called trim motions and can be represented by Lie group
exponentiation. Precisely, if ¢ = (g, 2) for z € V and for any time ¢ > 0 there
exists g, € G such that integrating the constant control 0 € U starting at ¢
produces a motion a,(t) which can be written as a,(t) = (gexp(g;,t), 2). The
Maneuver Automata can be used to generate motions by alternating between
the fixed duration maneuver motions and the anytime trim motions. If an
automata M A satisfies certain properties then the set Qa4 = {q¢ = (g,2) :
g € G and z € V} is strongly connected by these generated motions.

The graph M A = (V, E) is a kind of roadmap in shape space. Continuing
this analogy, we can sample M A using PRM techniques. So, given 21,22 € Z,
we need a local planning primitive which can compute a control function
which defines a maneuver motion to connect z; to z2 . The local planner
and the sampling distribution over Z can be used to implement PRM. It seems
likely that Quasi-Random-Lattice methods would be particularly effective for
this task [17].

4.2 Robot Systems

In this subsection, we describe the robot systems for which we implemented
PDST. In each case, we specify the state space, the dynamics, inequality con-
straints, the symmetries, primitive trajectories and cell subdivision scheme.

2-D Kinodynamic Robot The state space for the 2-D kinodynamic robot
is denoted by Q = R? x R2. A state ¢ = (z,y, &,7), where (z,y) is the robot’s
position in the plane and (&,9) is the robot’s velocity. The symmetry group
we use for this robot is G = R?, the group of 2-D translations. The shape
manifold for the robot is Z = R? and represents positionless velocities. Every
z = (&,9) € Z defines a trim primitive a, and corresponds to the straight line
at that fixed velocity. Maneuvers between trim primitives consist of the robot
acceleration toward the different velocity state at maximum acceleration.



12 Andrew M. Ladd and Lydia E. Kavraki

We impose a constraint that velocity is bounded, i.e. ||[(Z,9)|| < Umax. The
subdivision scheme builds a kd-tree in the state space by equal splits on the
first and second dimensions.

Fig. 1. Execution snapshots of PDST-EXPLORE for a differential drive robot

Differential Drive Robot The state space for this robot is Q = R? xS xR?.
A state is given by ¢ = (z,y,6,v;,v,). The vector (z,y,6) is the robot’s
position and orientation and (vj,v,) are the robot’s wheel velocities. The
symmetry group we use for this robot is G = R? x S = SE(2), the group of
2-D rigid motions. The shape manifold for the robot is Z = R? and represents
positionless wheel velocities. Every z = (z,y) € Z defines a trim primitive
a;. The canonical path for the trim primitive defined by z = (v;, v,) is

o (t) = {(Uft,O,O,U[,’UT) w=0
z - v . v
(=L sin(wt), L (1 — cos(wt)), wt,vi,vr) w #0,
where w = 2%y, = Ui and L is the length of the wheel base of the

2 v2). The maneuver primitive that

robot. Let z' = (v},v}) and 2?2 = (v7,0?
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brings z! to 2% is [m,1,2]. It is determined by a@mayx, the maximum wheel
acceleration for the robot. Let

2 1 2 1
Vi —v Vi — v
— ! ! T T
T = max { , }
amax amax

be the duration of [m,1,2] which has canonical representative

t t
T (t) = (v; 0 o) v (0 - vi)f) .

We impose a constraint which bounds the maximum wheel velocity, |v;|, |v,| <
Umax- The subdivision scheme we use for this space builds a kd-tree in the
state space and uses equal splits on the first, second and third dimensions.

|

‘t
i |

S -y

Fig. 2. Workspaces (from left to right) spiral-1, varied-1, varied-2 and slot

Blimp Robot The the state space for this robot is @ = R xSxRxS. A
state ¢ = (z,y, 2,0, 4,9, 2,0) is the robot’s position, orientation and velocity.
The symmetry group that we use for this robot is G = R®, the group of
translations in 3-D. The shape manifold for this robot is R3 x S. Every
z = (&,9,%,0) € Z represents the velocities of the robot. Each z = (&,7, 2,0)
defines a trim primitive a,. The canonical path for the trim primitive defined
by such a z is a(t) = (&t, yt, 2t,0,%,9, £,0). The controls for this robot are
ay,a, and ag. The robot is subject to the following constraints: & = cos(8)ay,
§ = sin(d) - ay, Z = a, and 6 = ag. Furthermore, ay € [0,a7%], a, €
[—aZ x> Anax] and ag € [—al ., a% .. ]- In particular, since ay must be positive
the robot’s motion is highly constrained. The calculation of the maneuver
primitives are accomplished using a controller which tries to minimize the
amount of time taken to switch between two shapes. During the switch,
the z-dimension is controlled independently and the controller attempts to
minimize the change in z by keeping 2| = 0 for as long as possible. The
controller that we use is expensive to compute but is effective at minimizing
the time used. The trajectories taken through shape space to connect two
shapes are not reversible and can differ greatly in the total time used. The
time step used to integrate the motion of the robot needs to be very small
and once the path is computed we re-sample using a variable sized time step
which approximates the motion in the state space. The subdivision scheme
we use for this robot builds a kd-tree in the state space and uses equal splits
on the first, second, third and fourth dimensions.



14 Andrew M. Ladd and Lydia E. Kavraki

4.3 PDST Experiments

In Figure 2, we depict some of the workspaces we used for the experiments.
In each experiment, a maneuver automata was built offline which took less
than two seconds for the kinodynamic robot and differential drive robot and
between 50 and 70 seconds for the blimp example. During the experiment, the
maneuver automata was loaded off the disk and the PDST-EXPLORE planner
was run until the measured dispersion [17] in the free space became very
small. Dispersion was measured on a high-resolution cell grid. Cells containing
an obstacle were not considered in the dispersion measure. The threshold
we used ensured that over 0.999 of the space was covered. The number of
iterations was then reported. In every example, 384 trials were carried out.
The number of iterations required to solve the problem tended to be very
similar to the mean number of iterations with the occasional outlier requiring
between two and six times more iterations. In Figure 1, we show snapshots
of the execution of the exploration of the free space for a differential drive
robot in the workspace chambers-1. The time costs and collision detect calls
were very consistent across multiple runs. The raw data is presented in Figure
3. Cost in time per iteration is roughly O(nlogn) experimentally, which is
expected because of the binary heap.

problem |robot ||avg. # iterations|avg. # time|avg. # collision detects
spiral-1 | kino 54205 0.76 s 51274
chambers-1| kino 95963 1.88 s 94112
varied-1 | kino 76549 1.28 s 77974
varied-2 | kino 431736 58s 290904
spiral-1 dd 86000 4.6 s 71808
chambers-1| dd 282708 139s 160350
varied-1 | dd 288067 229 s 297662
varied-2 | dd 1069687 66.7 s 717530
six blimp 10000 34s 391737
slot blimp 65000 22.0 s 2515246

Fig. 3. Average running times to obtain full coverage.
5 Discussion

In this paper, we have presented the PDST-EXPLORE algorithm, stated its
probabilistic completeness theorem, discussed motion generation for plan-
ning using Maneuver Automata and then implemented our ideas for kino-
dynamic point robots in 2-D, second-order differential drive robots and a
second-order blimp-like robots. In our experiments we have demonstrated
that PDST-EXPLORE produces full coverage of the space efficiently. Many of
our examples were for complicated and varied maze-like environments. In
previous studies for planning with second-order dynamics that have reported
run-times, times on the scale on a hour have been reported for finding a path
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in simple environments using robot systems similar to those implemented for
this paper [18,5].

There is a great of flexibility in how the PDST-EXPLORE planner can be
applied that we have not evaluated in this paper. Time or other cost vari-
ables could be incorporated into the space to encourage cost optimization.
Our preliminary experiments in this direction have been promising. The cell
subdivision scheme, space measure and mass measure can be varied signifi-
cantly without taking away completeness since they can be chosen to reduce
running time by improving convergence speed and by reducing overhead of
the geometric computations. For example, the use of non-uniform measures
or cell subdivision in a projective space such as task space might be useful
for some applications.

The PDST-EXPLORE is only one component of an efficient planning frame-
work for robots with dynamics. We envision using the Probabilistic Roadmap
of Trees (PRT) [1] to continue developing this framework toward general pur-
pose single and multiple-query planners for dynamic systems. In pursuit of
this goal, we plan on studying path optimality issues, connection planning and
adapting PDST-EXPLORE to higher dimensional systems. Most importantly, we
plan to apply our techniques to more complex dynamical robot systems to
determine the limitations of our approach.
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