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Abstract 

Various material compositions have been successfully used in 3D printing with promising 

applications as scaffolds in tissue engineering. However, identifying suitable printing conditions 

for new materials requires extensive experimentation in a time and resource-demanding process. 

This study investigates the use of Machine Learning (ML) for distinguishing between printing 

configurations that are likely to result in low quality prints and printing configurations that are 

more promising as a first step towards the development of a recommendation system for 

identifying suitable printing conditions. The ML-based framework takes as input the printing 

conditions regarding the material composition and the printing parameters and predicts the quality 

of the resulting print as either “low” or “high”. We investigate two ML-based approaches: a direct 

classification-based approach that trains a classifier to distinguish between “low” and “high” 

quality prints and an indirect approach that uses a regression ML model that approximates the 

values of a printing quality metric. Both models are built upon Random Forests. We trained and 

evaluated the models on a dataset that was generated in a previous study which investigated 

fabrication of porous polymer scaffolds by means of extrusion-based 3D printing with a full-

factorial design. Our results show that both models were able to correctly label the majority of the 

tested configurations while a simpler linear ML model was not effective. Additionally our analysis 

showed that a full factorial design for data collection can lead to redundancies in the data, in the 

context of ML, and we propose a more efficient data collection strategy. 
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Impact Statement 

This study investigates the use of ML for predicting the printing quality given the printing 

conditions in extrusion-based 3D printing of biomaterials. Classification and regression methods 

built upon Random Forests show promise for the development of a recommendation system for 

identifying suitable printing conditions reducing the amount of required experimentation. This 

study also gives insights on developing an efficient strategy for collecting data for training ML 

models for predicting printing quality in extrusion-based 3D printing of biomaterials.  

Keywords 

3D Printing, Biomaterials, Tissue Engineering, Machine Learning, Random Forests, Printing 

Quality Prediction 
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Introduction 

3D printing technologies offer an unprecedented control over design of constructs with 

complex architecture.1 This possibility is particularly advantageous for the design of scaffolds for 

tissue engineering since both internal and external architecture of such scaffolds play critical roles 

in their function.2,3 Among various additive manufacturing techniques available for scaffold 

fabrication, extrusion-based 3D printing methods have found widespread application due to their 

low cost and compatibility for processing of a wider range of biomaterials. Successful scaffold 

fabrication using extrusion-based printing, however, requires optimization of inter-related 

processing parameters such as speed, pressure, and temperature of the printing process.4 This 

optimization also highly depends on material-related factors such as viscoelastic properties and 

curing mechanism of the material composition intended for scaffold fabrication.5 Accordingly, 

these combinations of parameters necessitate an optimization process involving time- and labor-

intensive experiments, which may hinter progress in this emerging field.  

During recent years, various studies have focused on the investigation of printability of existing 

or novel biomaterials, and the consequent optimization of their 3D printing process.4–11 Systematic 

studies such as those involving factorial design approaches12 have been successful in identifying 

suitable printing conditions of biomaterials, but at the expense of extensive experimentation. One 

technology that exhibits a great potential for accelerating the development of printable 

biomaterials and the optimization of their 3D printing is Artificial Intelligence (AI). Recent studies 

demonstrate successful use of AI techniques based on Machine Learning (ML) to improve 3D 

printing of materials.13–16 ML is a subfield of AI that provides predictions by analyzing underlying 

behaviors within a given dataset. The three common ways ML has been used in these studies are 
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to 1) predict and optimize printing parameters to maximize the structure’s properties,13,16–22 2) 

optimize printability of the material,23,24 and 3) to assess the quality of the prints.14,15,25–27  

A hierarchical ML method that leveraged domain knowledge of complex physical systems and 

statistical learning was developed to optimize 3D printing of a silicone elastomer printed in a 

support bath based a freedom reversible embedding setup.13 This strategy effectively folded 

advanced physical modeling into an ML algorithm and enabled the determination of optimal 

printing parameters that delivered more rapid printing of constructs with higher shape fidelity, and 

provided insight into the impact of different parameters on the printing process. A convolutional 

neural network (CNN) trained with a database of hundreds of thousands of geometries from finite 

element analysis was used to design and 3D print composite constructs with superior mechanical 

properties.16 In this work, the ML model could identify the geometrical configurations of soft and 

stiff materials that resulted in the highest toughness and strength when 3D printed as composite 

structures.  

Other studies have used ML to determine material printability.23,24 Inductive logic 

programming methodology was employed to predict the printability of various collagen and fibrin 

mixtures. By establishing a relationship between a rheological property and shape fidelity, the 

algorithm determines which mixtures would produce a high-quality print.23  

ML has not been limited to pre-printing processes and has been investigated to assure print 

quality during the printing process. A CNN algorithm trained on digital image data sets was 

developed to detect inter-layer imperfections during 3D printing of poly(lactic acid) filaments.14 

The trained ML model in this work could afford a real-time detection of delamination in printed 

constructs, serving as a self-monitoring tool for 3D printing. Using a similar approach, an 
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autonomous self-correcting system was developed that could detect over-/under-extrusion during 

3D printing and adjust the flow rate in real-time to correct the extrusion process at the same or 

faster rate than a human operator.15 Despite the high potential of ML methods, these strategies 

have not been fully adopted for 3D printing of tissue engineering scaffolds. 

Here, we investigated the use of ML for aiding extrusion-based printing of a polymeric 

biomaterial. To this end, we employed a dataset of printing experiments based on extrusion-based 

3D printing of poly(propylene fumarate) (PPF) for fabrication of porous scaffolds for bone tissue 

engineering, which was previously generated in a full-factorial design study.12 Based on the 

obtained measurements of the printing experiments, we characterized the printing quality of each 

print using two printing quality metrics, machine precision and material accuracy, and explored 

the use of statistical ML for predicting printing quality for a given printing configuration. We 

examined whether ML could be used for distinguishing between printing configurations that are 

likely to result in low quality prints and printing configurations that are more promising, and 

assessed the amount of experimental data that was necessary to train an ML-based model in order 

to establish a data collection protocol that minimizes experimental work.  
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Methods 

Dataset and Printing Quality Metrics 

The dataset employed in this work was generated in a previously reported full-factorial design 

study which investigated fabrication of porous scaffolds by means of extrusion-based 3D printing 

of crosslinked PPF as a model biomaterial.12 The original study was designed to identify optimal 

printing conditions and the impact of various processing parameters on the quality of prints using 

a linear and quadratic full factorial regression model. Processing variables consisted of material-

related (i.e., PPF composition in the printing solution), printing-related (i.e., printing pressure and 

speed), and design-related (i.e., programmed fiber spacing) factors. For each set of processing 

parameters, the dataset included mean fiber diameter, mean inter-fiber spacing, and mean pore size 

of each printed layer. These measurements were obtained via layer-by-layer imaging and image 

analysis of the prints, and were used to calculate the % error for machine precision12 (Eq. 1) and 

material accuracy12 (Eq. 2) values for each printing condition. It should be noted that these metrics 

reflect the deviations of the experimental values from the programmed values and therefore larger 

values indicate larger errors or “lower” printing quality. 

 

𝑀𝑎𝑐ℎ𝑖𝑛𝑒𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = |
𝐸𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙𝑓𝑖𝑏𝑒𝑟𝑠𝑝𝑎𝑐𝑖𝑛𝑔 − 𝑃𝑟𝑜𝑔𝑟𝑎𝑚𝑚𝑒𝑑𝑓𝑖𝑏𝑒𝑟𝑠𝑝𝑎𝑐𝑖𝑛𝑔

𝑃𝑟𝑜𝑔𝑟𝑎𝑚𝑚𝑒𝑑𝑓𝑖𝑏𝑒𝑟𝑠𝑝𝑎𝑐𝑖𝑛𝑔
| × 100(𝐸𝑞. 1) 

 

𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = |
𝑀𝑒𝑎𝑛𝑓𝑖𝑏𝑒𝑟𝑑𝑖𝑎𝑚𝑡𝑒𝑟 − 𝑀𝑜𝑑𝑒𝑙′𝑠𝑓𝑖𝑏𝑒𝑟𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟

𝑀𝑜𝑑𝑒𝑙′𝑠𝑓𝑖𝑏𝑒𝑟𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟
| × 100(𝐸𝑞. 2) 
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Overall, this dataset covered 72 possible combinations of processing parameters – 2 

material compositions (85, 90 wt% PPF), 3 fiber spacings (0.8, 1.0, 1.2 mm), 3 printing speeds (5, 

7.5, 10 mm/s), and 4 printing pressures (2, 2.5, 3, 4 bar) – for up to 10 layers per scaffold, and 4 

replicates per processing condition. However, not all combinations of processing parameters were 

printable, and additional speeds were tested for 85 wt% PPF and additional spacings were tested 

for 90 wt% PPF.12 The configurations resulting in complete or partial prints are presented in the 

Supplemental Materials (Tables S1 and S2). 

ML-based Approach for Predicting Printing Quality 

We employed statistical ML-based models for predicting the printing quality of a given 

printing configuration. A printing configuration was characterized by the material composition, 

printing speed, printing pressure, scaffold layer and programmed fiber spacing. These parameters 

were the input features of the ML models. 

We explored two different approaches for predicting printing quality: i) a direct approach 

where a classification model classifies each input configuration as either “low” or “high” quality, 

and ii) an indirect regression-based approach that predicts the printing quality metric for a given 

printing configuration and subsequently applies a threshold to characterize the printing as “low” 

or “high” quality. Both approaches, classification-based and regression-based are built upon 

Random Forests.28 A Random Forest is an ensemble model that is built upon a set of tree-like 

structured models. Random Forests can be used for both classification and regression and are 

suitable even for training on small size datasets. We additionally trained a simpler linear regression 

model, specific to each material composition, as a baseline method. In the following, we describe 

in detail the three approaches.  
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1. Classification-based Approach 

For the classification-based approach, we labeled the data with binary labels, indicating “low” 

quality and “high” quality prints, using given threshold values (see below). Subsequently, we 

trained two Random Forest classifier (RFc) models for classifying a printing configuration as 

“low” or “high” quality based on the labels derived from the machine precision and material 

accuracy metrics, respectively. Each RFc model predicts a label, i.e., “low” or “high” quality, for 

a given printing configuration.  

2. Regression-based Approach 

In this setting, we investigated an indirect approach to the classification problem which was 

built upon a regression RF model. More specifically, we trained two Random Forest regressor 

(RFr) models for predicting the values for machine precision and material accuracy, respectively. 

The regression models predict a value of the printing quality metric for a given printing 

configuration and subsequently this predicted value is thresholded in order to classify the 

prediction as “low” or “high” quality.  

The regression-based approach was developed in order to circumvent the need for defining a 

cutoff value for separating the prints into “low” and “high” quality for the data labeling process as 

it is required in the case of the classification model. If the threshold is applied prior to training the 

models then the learned decision boundaries will depend on the selected threshold value. On the 

contrary, the regression-based approach does not require the application of a threshold to label the 

data; however it assumes that a printing quality metric is available for quantifying the quality of 

the prints.  
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3. Linear Model 

Finally, we implemented a simpler approach which was based on a linear regression29 model 

for predicting material accuracy given printing speed and printing pressure. The linear regression 

model was used for comparison purposes. Our motivation here was to investigate whether a 

simpler approach using a linear function is sufficient to approximate material accuracy given 

printing speed and pressure for a fixed material composition as RFs capture non-linear 

methodologies. 

We characterized the printing quality as “low” or “high” based on the computed values of 

machine precision and material accuracy. The threshold for each printing quality metric for 

separating “low” and “high” quality prints was selected based on expert intuition. For material 

accuracy, prints with values higher than 50% were considered of “low” quality while for machine 

precision this threshold was set to 6%. 

 

Experimental Design 

Models’ Specifications 

For the RF models and the linear regression model we used the Scikit-learn library from 

python.30 For the two RF-based models we used the data on both material compositions available. 

In the RF models the number of trees was set to 100 and the maximum depth tree was set to 6. A 

larger number of trees results in faster convergence however it increases computational 

complexity. 100 trees proved to be enough for the accuracy to converge, according to our 

observations. The depth of trees can be arbitrarily large however growing deep trees has the danger 

of overfitting on the training data undermining performance on unseen data. This can be prevented 
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when setting a maximum value on the depth. The rest of the models’ hyper-parameters were set to 

the default values of the sklearn implementation. The linear model has material specific meaning, 

as it was trained only on experiments from a single material composition. We chose to train a 

model specifically for material composition 85 wt% PPF for which we had a larger number of 

experimental data.  

Printing Quality Metrics 

In order to characterize printing quality as “low” or “high” we examined the use of two printing 

quality metrics: machine precision and material accuracy (Eq. 1 and 2). We trained models for 

each metric and selected the one that resulted in higher performance based on the Evaluation 

Metrics discussed below.  

Evaluation Setup 

The models were being evaluated following a leave-one-out validation setup. Leave-one-out 

validation means that if the dataset consists of N data points then N-1 points are being used to train 

the model and 1 data point is left out for evaluating the model. This process is repeated N times 

until the model has been evaluated on all data points. Although this setup guarantees that the model 

is not tested on data instances that the model has seen during training, it can still give misleading 

results if there are correlations between the data points of the dataset. In order to detect such 

dependencies in the data, we analyzed our dataset in order to understand the effect of each printing 

parameter in the resulting printing quality as we discuss in Feature Importance. Our analysis 

revealed that there are correlations between printing configurations that differ either on the scaffold 

layer or on the fiber spacing. For that purpose, the leave-one-out validation experiment was 

designed as follows: The left-out configuration to be tested at each iteration is the set of all printing 
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configurations of the dataset that share the same values for the material composition, printing 

speed, and printing pressure, and differ either in the fiber spacing or in the scaffold layer. Therefore 

the left-out configuration is defined by the values of the parameters: material composition, printing 

speed, and printing pressure. In the dataset, there are 16 unique combinations of these 3 parameters 

and therefore the leave-one-out experiment is repeated 16 times. Note when a combination is left 

out, all the data points of different fiber spacing and scaffold layer are included in the left out set.  

Evaluation Metrics 

The models were evaluated for their capacity to correctly classify printing configurations as 

either “low” or “high”. Due to the unique design of the evaluation setup, which sets aside a set of 

configurations for testing instead of a single configuration, we introduced the Prediction Accuracy 

score (P.A. score) for evaluating performance.  

The P.A. score shows the percentage of the printing configurations of the left-out set that have 

been correctly classified as “low” or “high” quality prints based on the reference labels. If the 

majority of the predictions (P.A. score>0.50) within the left-out set were in agreement with the 

reference values then the prediction for the testing configuration was considered correct. For the 

classification models, the predicted labels were obtained directly from the output of the models. 

For the regression models, if the predicted value for the printing quality metric exceeded the pre-

specified threshold then the predicted label was “low”. The reference labels were determined after 

thresholding the experimental values of the printing quality metrics.  

Specifically for evaluating the classification-based approach we additionally obtained the Area 

Under Receiver Operating Characteristic Curve (AUROC) which is a standard metric for 

classification modes. The AUC metric31 examines the capacity of a classification model to separate 
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the two classes with various thresholds for the predicted probabilities. It takes values from 0 to 1 

with 1 indicating perfect classification and 0.5 indicating predictions no better than a random 

classifier. The AUROC was determined for each left-out set of printing configurations in a leave-

one-out validation setting. It is computed taking into account the reference labels, as derived after 

applying the threshold value onto the printing quality metric, and the predicted probabilities for 

each configuration falling in each class, as obtained by the RFc model. 

Feature Importance 

The input features for training the ML models were the parameters of each printing 

configuration (material composition, printing speed, printing pressure, scaffold layer, fiber 

spacing). Feature importance was used to assess the effect of each feature on the output of the 

model. Variations of features with low importance would cause little to no effect on the output of 

the model. We studied feature importance for two purposes: First, in order to design the leave-one-

out validation strategy avoiding dependencies between the training and testing data as explained 

in the previous section, and, second, in order to identify an efficient data collection protocol for 

future studies. 

We studied feature importance by 1) using the RF model itself, and 2) designing different 

protocols of leave-one-out validation experiments. The RF assessed feature importance while the 

model was being built in order to determine the structure of the trees that compose the model. We 

ranked the features based on their importance using an embedded function in the Scikit-learn 

implementation of the RF. For this analysis the RFr regression model was used. In addition to that, 

we assessed the performance of the models, with a leave-one-out validation setting, excluding each 

time a specific feature in order to understand which features are the most important for improving 
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the performance of the models. More specifically, we executed 5 leave-one-out validation 

experiments, one for each input feature. For each studied feature, the left-out configuration to be 

tested was selected such that the value of the examined feature had not been seen during training. 

For example, when examining the importance of printing speed, all training points with the same 

speed value as the leave-out configuration would be excluded from the training set. 

Learning Curves 

We evaluated the learning curves of the RFr model in order to understand whether the dataset 

was sufficient for training and whether there were redundancies in the data. A learning curve is a 

plot that shows how the accuracy of a model changes when the size of the dataset is increased. 

Using a leave-one-out validation setting, we plotted the average accuracy on the test set by 

incrementally varying the size of the training set. In addition to that, we plotted learning curves 

fixing the fiber spacing and also fixing both fiber spacing and scaffold layer. These two parameters 

appeared to be non-informative according to the feature importance analysis and we used the 

learning curves to further test this hypothesis. These three experiments were intended to simulate 

three scenarios of data collection: full factorial design; data collected across material-speed-

pressure-layer combinations for one spacing; data collected across material-speed-pressure 

combinations for one spacing and one layer.  
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Results 

Printing Quality Metrics 

Figure 1 shows representative images of “low” and “high” quality prints based on machine 

precision or material accuracy as printing quality metrics. Material accuracy proved to be a better 

metric for characterizing “low” and “high” quality prints compared to machine precision. More 

specifically, when material accuracy was used as a printing quality metric for labeling the data, the 

RFc and RFr models achieved accuracies 74 and 75%, respectively. When the dataset was labeled 

using machine precision the RFc and RFr models achieved accuracies 62 and 63%, respectively. 

Based on these results, material accuracy is the printing quality metric that was used in all 

subsequent experiments for labeling the data. Results from using machine precision for labeling 

the data are presented in the Supplemental Materials (Table S3). Moreover, the code is included 

in the GitHub repository https://github.com/KavrakiLab/bioMateriaLs. 

Comparison between the Classification- and the Regression-based Approach 

We trained the two models, RFc and RFr, using material accuracy for characterizing printing 

quality. We evaluated the two models using the P.A. score in a leave-one-out validation setting. 

We recall that at each iteration of the leave-one-validation, the set of all configurations that share 

the same values of material composition, printing speed, and pressure are being tested and the P.A. 

score is reported. If the P.A. score is larger than 0.5, then the prediction is considered to be correct. 

Table 1 summarizes the results for the 16 tested printing configurations as well as the average P.A. 

score over all 16 tested configurations. According to the results, both models correctly labeled all 

tested combinations for material composition of 85 wt% PPF, while the tested configurations for 

material composition of 90 wt% PPF were challenging for both models. This can be justified by 

https://github.com/KavrakiLab/bioMateriaLs
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the fact that the largest portion of the experimental data was obtained from printing experiments 

using material with composition 85 wt% PPF. The models were trained on a dataset that included 

printing experiments using two different material compositions and, hence are not expected to 

generalize across different materials as also indicated by the poor predictions of material 

composition of 90 wt% PPF. For the classification model RFc we additionally report the AUROC 

in Table 2. The average AUROC value across all tested configurations was 0.71 indicating the 

capability of the model to predict correct labels for the majority of the tested configurations. 

Feature Importance 

The ranking of the features, regarding their effect on the predicted value, based on the feature 

importance function of Scikit-learn is shown in Figure 2. This analysis shows that printing speed, 

material composition, and printing pressure are the most important factors for differentiating 

between “low” quality and “high” quality prints. Fiber spacing and scaffold layer seem to be less 

informative features. Figure 3, which shows the material accuracy for all printing configurations, 

confirms this observation as printing configurations that differ only on the fiber spacing have 

similar values of material accuracy.  

We further examined feature importance by running a leave-one-out validation experiment for 

each feature in which the left-out configuration for testing had a value for the examined feature 

that the model had not seen during training. For example, when doing a leave-one-speed-out 

experiment for speed 5 mm/s then all configurations with speed 5 mm/s are excluded from the 

training set. Our intention here was to understand how sensitive the model is when it is tested on 

unseen values for each feature. The average accuracies over all printing configurations are 

presented in Table 3. The material composition is not studied in this analysis since there are only 
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two different compositions in the dataset. The experiments that examine the accuracy on unseen 

values of scaffold layer and fiber spacing obtained the highest accuracy. This means that although 

the model has not seen the same values for scaffold layer or fiber spacing during training it still 

makes very accurate predictions. This further reinforces our observations that prints with varying 

values of either fiber spacing or scaffold layer are correlated and therefore are redundant cases for 

our training set. Table 3 shows that when the model is tested on unseen values of speed or pressure 

then the accuracy significantly drops. These observations can be helpful for future data collection 

experiments. Variations of features that appear to be less important in our analysis, such as scaffold 

layer and fiber spacing, may not be examined in detail. 

Learning Curves 

Figure 4 shows the learning curves for three different experimental setups: First, the entire 

dataset was used as the training set (excluding the testing configuration following a leave-one-out 

validation setting). Second, the value of the spacing was fixed and only the printing experiments 

with that value of fiber spacing were retained in the training set. Finally, we fixed both, fiber 

spacing and scaffold layer, and we preserved only the printing configurations with the specific 

combination of fiber spacing and scaffold layer in the training set. The plot shows that there is 

redundant data in the training set as the maximum accuracy is reached when less than 20% of the 

data was used for training. When the repetitions of the printing experiments with varying values 

of either fiber spacing or scaffold layer were removed from the dataset the accuracy was not 

compromised. This result demonstrates that the source of the redundancy was the repetitions of 

the experiments with varying values of either fiber spacing or scaffold layer. 
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We finally compared two training scenarios which reflect two different data collection 

strategies: First, the entire dataset was used to train the RFr model and, second, the fiber spacing 

was set to a specific value and all training configurations with different values were removed from 

the training set. With this experiment we investigated whether removing these data would cause 

any decrease in the accuracy. The results are presented in Table 4. The results show that the 

removal of the experiment repetitions across spacing did not negatively affect the accuracy of the 

model proving that they are actually redundant data. 

Linear Model 

The capability of a linear model to label the tested printing configuration is presented in Table 

5. We used sklearn's linear regression with default parameters. With this experiment we 

investigated whether a linear model is sufficient to approximate material accuracy when a single 

material is considered. Again, we used material accuracy as the metric indicating printing quality. 

Printing speed and pressure were selected as the input features as they were the most informative 

features again according to our analysis from the RF models. We averaged the values of material 

accuracy over all repetitions of fiber spacing and scaffold layer. According to the results in Table 

5, the material-specific linear model does not achieve better accuracy than the RFr which considers 

material composition as a feature. Therefore, developing a linear model per material composition 

does not seem to provide any additional benefit compared to a non-linear model which covers a 

larger number of materials.  

The linear model was trained using two input features and therefore it is possible to examine 

the function learned by the model along with the data points. A visualization of the line that is 

obtained by fitting the data is provided in Figure 5 which can be useful to analyze the relationship 
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between the material accuracy of points with different input parameters. The purple plane 

represents the learned function while the yellow one is set at the threshold value of 50%. It is clear 

that the function will predict all the speed-pressure combinations on the right side or the red line 

(plane intersection) as “high” quality prints, while the combinations to the left will be predicted as 

“low” quality prints. From practice we know that any extreme combination of values (e.g., pressure 

0 bar and speed 0 mm/s) will not really give “high” quality prints, although the learned function 

suggests so. This highlights the inefficiency of a linear boundary and a linear model to characterize 

the given data.  
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Discussion 

This study investigated the use of ML for predicting printing quality in extrusion-based 

printing of a polymeric biomaterial. ML has the potential to be used as the core of a 

recommendation system for identifying suitable printing parameters, thus reducing 

experimentation. We investigated two metrics for labeling the data based on the resulting printing 

quality: material accuracy and machine precision.12 The use of material accuracy for training of 

the models resulted in more accurate predictions and was selected as a more indicative metric to 

characterize printing quality. We examined two ML-based approaches for predicting printing 

quality. The first approach utilizes a classification model which classifies each printing 

configuration as a “low” or “high” quality print. The second approach is based on a regression 

model which predicts the material accuracy for each printing configuration. This value is 

thresholded in order to classify the print as “low” or “high” quality. Both models are built upon 

Random Forests. The classification approach assumes the availability of a clear cutoff value for 

separating “low” from “high” quality prints which in practice may be challenging to define. The 

decision boundary that is learned from the classification model is sensitive to the selection of the 

value of the threshold. On the other side, the regression-based approach does not require a cutoff 

for the printing quality and the function that the regression model approximates does not depend 

on the selection of the threshold. However, the regression model assumes the existence of a 

printing quality metric. Despite these differences, both models performed equally well for the 

material composition which was well-represented in the data (85 wt% PPF). Regarding the 

material composition with significantly fewer experimental data (90 wt% PPF), both models had 

poor performance.  
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We also investigated feature importance in order to get insights on which printing parameters 

are mostly influencing the printing quality and define an efficient protocol for collecting data for 

future studies. Features that impact printing quality, such as material composition, need to be 

carefully examined while other features that may not be influencing the printing outcome may lead 

to data redundancies. The dataset we used was collected with a factorial design covering a large 

number of combinations of printing conditions. Our analysis showed that the material composition, 

printing speed, and printing pressure are the most important parameters affecting the quality of a 

print. Fiber spacing and scaffold layer appeared to be uninformative features. This suggests that 

further experimentation can focus on collecting data with larger coverage of printing speed and 

pressure and on examining a larger variety of material compositions. Such additional data would 

improve ML approaches. As a final point, in this study, the dataset included printing data from 

two different material compositions of which one was under-represented in the dataset (i.e., 90 

wt% PPF). This dataset does not allow us to investigate whether the trained models can generalize 

across different material compositions. However, in principle, employing the presented ML 

methodologies with more material compositions, could produce models that generalize across 

unseen material compositions. Experiment repetitions with varying values of fiber spacing or 

scaffold layers appeared to be redundant according to our analysis. Fixing the values of those 

parameters in the data collection process would significantly reduce the number of required 

experiments.  

There are a plethora of ML methods available. This study investigated a direct classification-

based approach and an indirect approach that uses a regression ML model. Both models were built 

upon Random Forests. The choice of the methods used was made after examining the amount of 

experimental data that was available. The choice was also guided by the desire to analyze the 
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existing experimental dataset without expert physical modeling. Clearly, there are several ML 

methods that could be used.29 Our results indicate that non-linear models will be needed but a 

further investigation of linear models such as Ridge or Lasso29 may also yield some insight. This 

study establishes, however, the potential of ML to form the core of a recommendation system for 

identifying suitable printing parameters, thus reducing experimentation.  
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Conclusions 

This study investigated the use of ML methodologies for distinguishing between printing 

configurations that are likely to result in low quality prints and printing configurations that are 

more promising. Our work did not use any expert physical modeling. The analysis established that 

simple linear models are not sufficient for predicting printing quality even within a single material 

composition. The use of a statistical ML model, the Random Forest, proved worthwhile. RF is 

suitable for training on small data sets such as the one available for this work. The models we 

trained predicted the printing quality for a given printing configuration accurately for the material 

for which enough data points were available, and our work identified which parameters mostly 

affect the printing quality. Focusing experimental work on varying those parameters could guide 

experimentation and also allow for the collection of additional data to further train the ML models 

with the ultimate goal of producing recommendation systems.  
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Table 1. Evaluation of RFc and RFr models using P.A. score. The P.A. scores are given across all 

leave-one-out configurations (PPF composition-pressure-speed) and the average is included. The 

correct/incorrect predictions are noted (correct if P.A. score is higher than 0.5).  

wt% PPF 

pressure (bar) 

speed (mm/s) 

85 

2.0 

5.0 

85 

2.0 

7.5 

85 

2.0 

10.0 

85 

2.0 

15.0 

85 

2.5 

5.0 

85 

2.5 

7.5 

85 

2.5 

10.0 

85 

2.5 

15.0 

85 

2.5 

20.0 

85 

3.0 

5.0 

85 

3.0 

7.5 

85 

3.0 

10.0 

90 

2.5 

5.0 

90 

3.0 

5.0 

90 

3.0 

7.5 

90 

4.0 

5.0 

 

avg 

RFc 

(P.A. score) 
0.98 0.99 0.82 0.54 0.99 0.99 0.99 0.62 0.68 0.93 0.95 0.97 0.27 0.41 0.77 0.00 0.74 

RFc correct 

prediction 
            × ×  ×  

RFr 

(P.A. score) 
0.98 0.99 0.82 0.75 1.00 1.00 1.00 0.63 0.74 0.93 0.92 0.97 0.27 0.04 1.0 0.00 0.75 

RFr correct 

prediction 
            × ×  ×  

 

 

 

 

Table 2. AUROC evaluation of RFc model. The AUROC is presented across all leave-one-out 

configurations (PPF composition-pressure-speed) and the average is included.  

wt% PPF 

pressure (bar) 

speed (mm/s) 

85 

2.0 

5.0 

85 

2.0 

7.5 

85 

2.0 

10.0 

85 

2.0 

15.0 

85 

2.5 

5.0 

85 

2.5 

7.5 

85 

2.5 

10.0 

85 

2.5 

15.0 

85 

2.5 

20.0 

85 

3.0 

5.0 

85 

3.0 

7.5 

85 

3.0 

10.0 

90 

2.5 

5.0 

90 

3.0 

5.0 

90 

3.0 

7.5 

90 

4.0 

5.0 

 

avg 

RFc 

(AUROC) 
0.97 0.95 0.75 0.62 0.92 0.96 0.92 0.58 0.60 0.59 0.3 0.92 0.41 0.98 0.77 0.13 0.71 
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Table 3. RFr models were evaluated and the average accuracy is reported. Models were trained in 

different leave-one-out settings. The test set was developed to contain one layer, spacing, speed, 

pressure value and speed-pressure value combination. 

leave-one-X-out 

setup 

average 

RFr 

accuracy  

layer 0.93 

spacing 0.96 

speed 0.75 

pressure 0.36 

speed-pressure 0.75 
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Table 4. P.A. scores are reported for RFr models across all leave-one-out configurations and the 

correct/incorrect prediction (correct if P.A. score is higher than 0.5) is noted. The models were 

trained on a full dataset and on a dataset with fixed spacing (1.2mm).  

wt% PPF 

pressure (bar) 

speed (mm/s) 

85 

2.0 

5.0 

85 

2.0 

7.5 

85 

2.0 

10.0 

85 

2.0 

15.0 

85 

2.5 

5.0 

85 

2.5 

7.5 

85 

2.5 

10.0 

85 

2.5 

15.0 

85 

2.5 

20.0 

85 

3.0 

5.0 

85 

3.0 

7.5 

85 

3.0 

10.0 

90 

2.5 

5.0 

90 

3.0 

5.0 

90 

3.0 

7.5 

90 

4.0 

5.0 

full  

dataset 
0.98 0.99 0.82 0.75 1.00 1.00 1.00 0.63 0.74 0.93 0.92 0.97 0.27 0.04 1.00 0.00 

correct 

prediction 
            

× ×  
× 

fixed 

spacing 
0.98 1.00 0.85 0.88 1.00 1.00 1.00 0.55 0.53 1.00 0.98 1.00 0.60 1.00 1.00 1.00 

correct 

prediction 
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SUPPLEMENTARY TABLE S1. Matrix representation of the printing configurations included 

in this study for 85 wt% PPF composition. For each configuration, there is data for 10 individual 

layers and four repetitions. Configurations with empty cells were not tested within the original 

dataset. 

  Pressure  

Speed Spacing 2 2.5 3 

5 

1.2 85; 2.0; 5.0; 1.2 85; 2.5; 5.0; 1.2 85; 3; 5.0; 1.2 

1.0 85; 2.0; 5.0; 1.0 85; 2.5; 5.0; 1.0 85; 3; 5.0; 1.0 

0.8 85; 2.0; 5.0; 0.8 85; 2.5; 5.0; 0.8 85; 3; 5.0; 0.8* 

7.5 

1.2 85; 2.0; 7.5; 1.2 85; 2.5; 7.5; 1.2 85; 3; 7.5; 1.2 

1.0 85; 2.0; 7.5; 1.0 85; 2.5; 7.5; 1.0 85; 3; 7.5; 1.0 

0.8 85; 2.0; 7.5; 0.8 85; 2.5; 7.5; 0.8 85; 3; 7.5; 0.8 

10 

1.2 85; 2.0; 10; 1.2* 85; 2.5; 10; 1.2 85; 3; 10; 1.2 

1.0 85; 2.0; 10; 1.0* 85; 2.5; 10; 1.0 85; 3; 10; 1.0 

0.8 85; 2.0; 10; 0.8* 85; 2.5; 10; 0.8 85; 3; 10; 0.8 

15 

1.2 85; 2.0; 15; 1.2 85; 2.5; 15; 1.2 --- 

1.0 85; 2.0; 15; 1.0 85; 2.5; 15; 1.0 --- 

0.8 85; 2.0; 15; 0.8 85; 2.5; 15; 0.8 --- 

20 

1.2 85; 2.0; 20; 1.2* 85; 2.5; 20; 1.2* --- 

1.0 85; 2.0; 20; 1.0* 85; 2.5; 20; 1.0* --- 

0.8 85; 2.0; 20; 0.8* 85; 2.5; 20; 0.8* --- 
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*Not all 10 layers are included within these configurations due to incomplete prints or prints 

with discontinuous fibers. 
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SUPPLEMENTARY TABLE S2. Matrix representation of the printing configurations included 

in this study for 90 wt% PPF composition. For each configuration, there is data for 10 individual 

layers and four repetitions. Configurations with empty cells were not tested within the original dataset. 

  Pressure  

 Speed Spacing 2.5 3 4 

5 

1.2 90; 2.5; 5; 1.2* 90; 3; 5; 1.2* 90; 4; 5; 1.2 

1 90; 2.5; 5; 1.0* 90; 3; 5; 1.0* 90; 4; 5; 1.0 

0.8 90; 2.5; 5; 0.8* 90; 3; 5; 0.8* 90; 4; 5; 0.8 

0.7 --- --- --- 

0.6 --- --- 90; 4; 5; 0.6* 

0.5 --- --- 90; 4; 5; 0.5* 

0.4 --- --- 90; 4; 5; 0.4* 

7.5 

1.2 --- 90; 3; 7.5; 1.2* --- 

1 --- 90; 3; 7.5; 1.0* --- 

0.8 --- 90; 3; 7.5; 0.8* --- 

0.7 --- 90; 3; 7.5; 0.7* --- 

0.6 --- 90; 3; 7.5; 0.6* --- 

*Not all 10 layers are included within these configurations due to incomplete prints or prints with 

discontinuous fibers.  
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SUPPLEMENTARY TABLE S3. Evaluation of RFc and RFr models trained on machine precision. The 

P.A. scores are given across all leave-one-out configurations (material composition-pressure-speed) and 

the average is included.  

wt% PPF 

pressure (bar) 

speed (mm/s) 

85 

2.0 

5.0 

85 

2.0 

7.5 

85 

2.0 

10.0 

85 

2.0 

15.0 

85 

2.5 

5.0 

85 

2.5 

7.5 

85 

2.5 

10.0 

85 

2.5 

15.0 

85 

2.5 

20.0 

85 

3.0 

5.0 

85 

3.0 

7.5 

85 

3.0 

10.0 

90 

2.5 

5.0 

90 

3.0 

5.0 

90 

3.0 

7.5 

90 

4.0 

5.0 

 

avg 

RFc 

(P.A. score) 
0.62 0.61 0.82 0.70 0.55 0.42 0.6 0.68 0.78 0.56 0.60 0.62 0.63 0.68 0.70 0.48 0.62 

RFr 

(P.A. score) 
0.56 0.59 0.82 0.68 0.63 0.61 0.58 0.63 0.71 0.69 0.61 0.66 0.64 0.58 0.70 0.57 0.63 

 

 

 

 

 

 



Figure 1. Representative images of low (A) and high quality (C) prints based on machine precision (of 
machine precision of 9.80% and 2.65%, and material accuracy of 3.20% and 32.58%, respectively), and 
low (B) and high quality (D) prints based on material accuracy (of machine precision of 1.75% and 4.90%, 
and material accuracy of 70.56% and 3.86%, respectively). The printing configurations (layer, material 
composition, printing pressure, printing speed, programmed spacing) for the images are as follows: A) layer
6, 85 wt% PPF, 2.5 bar, 7.5 mm/s, 1.2 mm, B) layer 3, 85 wt% PPF, 2.5 bar, 20 mm/s, 1.2 mm, C) layer 3, 
85 wt% PPF, 2 bar, 10 mm/s, 1.2 mm, and D) layer 4, 85 wt% PPF, 2 bar, 5 mm/s, 1.2 mm. Scale bar = 1 
mm.



Figure 2. Ranking of the features (printing parameters), as obtained from the RFr model, based on their 
importance for affecting printing quality. 



Figure 3. Material accuracy is plotted for the whole dataset of printable configurations. Datapoints that 
share the same material composition, printing speed, printing pressure, and programed spacing are 
combined in a box plot. Material accuracy values are shown on the y-axis. Printing configuration of data 
points is shown on the x-axis (material composition (wt% PPF); printing pressure (bar); printing speed 
(mm/s); programmed spacing (mm), respectively).



 
Figure 4. Test accuracy of the RFr model as a function of the size of the training set for: full factorial 
design; data collected across material-speed-pressure-layer combinations for one spacing; data collected 
across material-speed-pressure combinations for one spacing and one layer. 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Figure 5. 3D visualization of the relationship between material accuracy and the two printing parameters: 
printing speed and pressure for material composition 85 wt% PPF. The actual values are shown in green 
with each pillar containing configurations with the same speed-pressure value and different values of layer 
and spacing. The yellow plane represents the threshold of 50% material accuracy. The purple plane shows 
the function learned by the linear regression model. The red line represents the intersection between these 
two planes.  


