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Abstract

Probabilistic roadmap planners have been used with success
to plan paths for flexible objects such as metallic plates or
plastic flexible pipes. This paper improves the performance
of these planners by using the medial axis of the workspace to
guide the random sampling. At a preprocessing stage, the me-
dial axis of the workspace is computed using a recent efficient
algorithm. Then the flexible object is fitted at random points
along the medial axis. The energy of all generated configura-
tions is minimized and the planner proceeds to connect them
with low-energy quasi-static paths in a roadmap that captures
the connectivity of the free space. Given an initial and a final
configuration, the planner connects these to the roadmap and
searches the roadmap for a path. Our experimental results
show that the new sampling scheme is successful in identify-
ing critical deformations of the object along solution paths
which results in a significant reduction of the computation
time. Our work on planning for flexible objects has applica-
tions in industrial settings, virtual reality environments, and
medicine.

1 Introduction

Robot path planning is important in a wide array of applica-
tions from industrial automation to computer-aided animation
and computational pharmacology [6, 9, 11, 20]. The prob-
lem considered in this paper is an extension of the traditional
path planning problem of [23]: given a flexible object/robot
with known physical characteristics (e.g. an elastic object)
and a set of ways that the object can be manipulated (called
manipulation constraints or limit conditions hereafter), find a
quasi-static path for the object from an initial to a goal con-
figuration. The deformations of the object are prescribed by
the manipulation constraints in combination with a physical
model of the object. Figure 1 offers an illustration. The flexi-
ble object is an elastic plate and the manipulation constraints
restrict the tangents of two opposite edges of the plate. The
snapshot shown is from a path that has been computed by the
planner described in this paper.

Figure 1: Snapshot along a manipulation path for an elastic
plate (Three-quarter view).

Several important applications motivate our research on
planning for flexible objects: in industrial settings there is
a need to manipulate sheets of metal [26], pipes that can
bend [30], and cables [25]. In assembly maintainability stud-
ies done with virtual prototyping, planning is used to com-
pute a removal path for a part from an assembly, given only
the CAD model of the assembly [6]. The flexibility of the
part needs to be considered as engineers use deformable parts
to produce compact assemblies [5]. In medical and surgical
procedures, flexible catheters are inserted into human vessels
[4, 31]. Accurate planning studies may help in choosing the
size and properties of the catheter used. In computer-assisted
pharmaceutical drug design, path planning techniques are
used to compute paths for drug molecules to their docking
sites [29]. In that context the rigorous treatment of the phys-
ical properties of the drug molecule is crucial for obtaining
sequences that are of low-energy and can thus be encountered
in nature. Last but not least, our work may have applications
in domains like computer generated animation and virtual en-



vironments where the physical properties of objects need to
be considered for the creation of realistic motion.

The probabilistic roadmap approach to planning (PRM)
[16, 18, 19, 24, 27] has been adapted to flexible objects and
a new planner (f-PRM) is described in [14, 17, 22]. f-PRM
follows the principle of the PRM framework. Initially PRM
planners generate a large number of nodes through probabilis-
tic sampling and then create a roadmap by making local con-
nections between nodes. Initial and goal configuration can
be connected to this roadmap which is then searched for a
feasible path. Unfortunately, f-PRM is computationally ex-
pensive. A general deformation is infinite-dimensional. Let
us consider as an example the case of an elastic surface. We
are forced to approximate with available geometric represen-
tations. We can model it using a Bézier surface which con-
strains us to a finite-dimensional subspace of the deformation
space. The dimension of this subspace must still be large in
order to accurately model the elastic properties. The set of
usable deformations is an even smaller subset of this defor-
mation space — deformations that are within the elasticity
domain of the material and can be produced practically in
real life. To obtain deformations from this subset we intro-
duce manipulation constraints that succinctly describe prac-
tical manipulation situations and rely on a minimization pro-
cedure to map a set of manipulation constraints (a limit con-
dition) to a geometric representation. This allows us to plan
in a suitably low-dimensional space. Minimization, however,
is costly. It is desirable to choose only deformations that are
likely to contribute to a path which we accomplish by match-
ing the manipulation constraints to sections of the medial axis
of the workspace. The geometry and topology of the medial
axis dictate the creation of deformations. This is illustrated in
Figure 1 where the elastic surface ‘follows’ the medial axis
to go through a narrow passage. While fitting a flexible ob-
ject is more straightforward and more intuitive, the rigid 6D
robot case is also an interesting issue and is investigated in a
companion paper [13]. We are also investigating the use of
the GVG [7] instead of the medial axis.

This paper is organized as follows. Section 2 discusses re-
lated work and Section 3 contains all necessary notation as
well as a brief description of the f-PRM scheme. Section 4
describes our new sampling scheme. For the computation of
the medial axis we use a well-known recent algorithm devel-
oped by Amenta et al [3] that was originally devised for the
reconstruction of surfaces. Section 4 also presents an example
of our fitting scheme for a simple case. Experiments in two
dimensions are given in Section 5. We conclude with future
work in Section 6.

2 Related Work

Planning for robots with many dof has been extensively
treated in recent literature ([1, 2, 11, 12, 21, 23]). The proba-

bilistic roadmap approach to planning (PRM) [16, 18, 19, 24,
27] has gained wide acceptance because the method is easy
to implement and use and provides good performance results.
The work in [14, 17, 22] has produced f-PRM, a planner for
flexible objects. When flexible objects are manipulated one
needs to model the geometry of the objects and their mechan-
ical properties and employ powerful minimization procedures
to compute their shape as a local minimum of their internal
energy. Hence the work in this paper draws from research in
geometric modeling [8], mechanics [32], optimization theory
[28], and graphics [10].

An important issue in PRM planners is the method for
choosing the random configurations for the construction of
the roadmaps. Recent work has considered several alterna-
tives to a uniform random distribution of configurations for
rigid or articulated robots. A resampling step, creating addi-
tional nodes in the vicinity of nodes that are connected with
few others, is shown in [18, 19]. Nodes close to the surface
of obstacles are added in [2]. A dilation of the configura-
tion space has been suggested in [15]. In [33] a procedure
for retracting configurations onto the freespace medial axis is
presented. In this paper, we treat deformable objects and we
attempt to generate configurations close to the medial axis of
the workspace. The same idea is explored in [13] for rigid
objects.

As far as the computation of the medial axis is concerned
we use recent work that is especially suited for our problem.
The algorithm in [3] reconstructs surfaces from unorganized
data in

���
. It can be adapted to approximate the medial axis

of the shape described by the data — this is described in the
current paper. Since general workspaces come as polygon
soups, our intention is to sample these polygons, efficiently
construct a sufficient approximation of the medial axis, and
generate configurations for our planner based on the medial
axis. This is further explained in Section 4.

3 Background and Notation

Let � be our workspace of dimension � and let � be the con-
figuration space of our robot. � is the Cartesian product of
the deformation space � and �	��
 ���� SO ����� , the space
of rigid-body transformations. Deformability can be caused
by different types of mechanical behavior, the case of elastic-
ity being the more common of them. For an object made of
an elastic material, elasticity theory states the existence of a
scalar function � , called the density of elastic energy, at each
point � The latter depends only on the local deformation at � .
By integrating this local energy function over the domain of
the object, we obtain a functional over the space of deforma-
tions. The value of this functional for any deformation ����
is called elastic energy of the deformation. When an object is
manipulated, the manipulation constraints restrict the position
of certain parts of the object and the valid deformation is one



that minimizes the elastic energy of the object. In our work
we always compute the local minimum of the elastic energy
for a given manipulation constraint (both for guessed config-
urations and for configurations along a path) and hence all the
paths that we produce are quasi-static and can be expected in
nature. An upper bound on the elastic energy of allowable de-
formations safeguards our program from using deformations
that violate the elasticity limit of the object and hence can
cause a permanent deformation (plastic deformations).

4 f-PRM based on Workspace Medial-
Axis Sampling

The traditional f-PRM generates random configurations of
the flexible object. Given the decoupling of position and
deformation described above, the generation of a configura-
tion consists of (a) choosing uniformly at random the ma-
nipulation constraints, (b) minimizing the energy to obtain a
valid deformation (c) generating a random translation and ro-
tation, (d) checking the final configuration for collision with
the obstacles. The generation of a configuration is expensive,
mainly due to the high cost of minimization. Reusing defor-
mations, as in [17], cuts down costs but also limits exploration
of the deformation space.

In this paper, we form a heuristic for finding useful defor-
mations by employing the following scheme. First we com-
pute the medial axis of the workspace. In the sampling step
we fit our object along the medial axis, or, to be more specific,
we fit our manipulation constraints along the medial axis and
minimize the energy of the object to obtain its correct shape.
Details of our planner are given below. In this paper we limit
our discussion to two dimensional workspaces. As an exam-
ple, we treat the case where an elastic plate is manipulated by
its opposite ends and we require that all rotations and transla-
tions are in the plane.

4.1 Computation of the Medial Axis

For the purposes of the planner, the medial axis is approxi-
mated by a subset of the Voronoi diagram of points sampled
along the boundary of the freespace. The algorithm used is
derived largely from [3]. An informal description of the two
dimensional algorithm is given below; for a more rigorous
examination see [3]. Note that for our purposes only an ap-
proximation of the medial axis is required. We do not rely on
its precise attributes, but rather on capturing the topology of
the freespace and maximizing clearance from obstacles. The
medial axis is prone to having small “twigs” where there are
perturbations in the obstacle boundaries. These are of no use
during the planning stage and are discarded if their length is
less than a specified threshold.

Figure 2: Medial axis approximation.

2D Medial Axis Approximation Let
�

be a set of closed
curves in

���
that describe the boundary of the obstacles in the

workspace, and let � be a set of points sampled along these
curves (The algorithm presupposes sufficient sampling of the
curves. The generation of � is discussed below).

The medial axis computation proceeds as follows. Let ���
be the Voronoi diagram of � . � is then computed as the De-
launay triangulation of �	�
��� . All edges in � for which both
endpoints are in � are part of the crust, an approximation to�

([3]). For each edge in � � , there exists a corresponding
(and perpendicular) edge in the dual Delaunay triangulation,
� � . Define � as the set of edges that exist in both � � and � ,
and  as the corresponding edges in � � . The approximation
to the medial axis, � , is then given by � ���  . An example
is shown in Figure 2.

Sampling the Boundary of the Obstacles The algorithm
for computing an approximation to the medial axis requires
strict conditions on the ratio of the spacing between samples
and the curvature of the sampled curve. We are most inter-
ested in polygonal workspaces, i.e.

�
is a set of simple poly-

gons. Barring modifications to the above algorithm, vertices
in a polygonal obstacle (having infinite curvature) will not be
handled correctly. Since precisely determining the best ap-
proximation to the medial axis is not an absolute requirement
in our application, there is a tradeoff between accuracy of the
medial axis approximation and time spent computing the ap-
proximation. To this end, our approach to sampling

�
is to

take a constant number of points along each edge, filtered by
a simple moving average of length � . That is to say that
for each closed polygon we create a sequence of samples by
traversing the edges, then for each window of � consecutive
samples, we create a new sample that is the average of those
samples. Areas of

�
with high detail have more edges and

will thus be sampled more heavily. The moving average ef-
fectively rounds corners, resulting in feasible ratios between
the curvature and sample spacing.

The problem of dealing with the vertices of a polygonal
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Figure 3: Manipulation constraints for a 2D curve.

representation can be handled more efficiently in the medial
axis algorithm by keeping adjacency information with the
samples when they are first created. In the algorithm outlined
above, � is needed only to glean adjacency information for �
— this step can be skipped if that information is maintained
from the start. We choose not to take this approach because
it places undue limitations on the representation of the ob-
stacles. Triangle soups are the common denominator of 3D
representations, and often the only way that two incompati-
ble systems can exchange data. For this reason we felt that it
was important to maintain the ability to use this type of data.
We aim to extend our work to three dimensional cases and
to simplify this step we avoided modifications that were too
specific to the two dimensional case.

4.2 Sampling Along the Medial Axis

Once the preprocessing step of computing the medial is com-
plete, we sample configurations along the medial axis. To
describe our sampling in detail, let us first clarify how ma-
nipulation constraints are specified. For the 2D curves in this
paper, we assume that we grasp the curves from two oppo-
site edges and that we control the position and orientation of
these edges. Figure 3 provides an illustration. In the local
frame

���
of the curve the first edge is at ������� � tangent to the

x-axis, while the other edge is at �	� � �
� � � with orientation � .
First a vertex, � � , of the medial axis � is chosen at ran-

dom. (Note that the approximation to the medial axis is a
set of vertices and adjacency information for each, while the
true medial axis is a set of continuous curves). A direction on
the medial axis is chosen randomly and the distances between
vertices are added up as we walk down the medial axis. At
intersections we randomly choose which way to go, until the
sum of the lengths of the segments, ending with �� is greater
than the stable length of the flexible surface. A rigid transfor-
mation � is calculated that aligns the reference point of the
surface with � � such that the surface at the reference point
is tangent to the segment between � � and � � (the first vertex
encountered walking along the medial axis). We interpolate
between � ���� and �  to get ��� such that the distance walked
is exactly the stable length of the surface. � � and � � of the
limit condition are then calculated from the coordinates of ���
in the frame defined by � and � is calculated from the angle
of �  � � ���� (also in the frame defined by � ). The surface
is then minimized and we check for collisions with the obsta-

cles. This process may fail in several ways – we may run out
of medial axis, the deformation may be unacceptable due to
elasticity constraints, or the deformation may be in collision
with the obstacles. In any of these cases we simply discard
the configuration and try again, choosing a new � � .

4.3 Building the Roadmap of ���������
f-PRM now proceeds by employing an iterative procedure by
which a roadmap is augmented until it is able to satisfy the
query at hand. While we only investigate this “one-shot” ap-
plication, the graph can be used to satisfy multiple requests
and the graph can be augmented as needed for these addi-
tional queries.

The goal of the roadmap is to capture the connectivity of
the freespace with as few nodes as possible. f-PRM as de-
scribed in [17] samples across � evenly. By sampling only
in the neighborhood of the medial axis we avoid filling large
empty spaces with configurations and place more configura-
tions in tight areas.

The iterative step of the planner proceeds as follows:

1. Generate
�

nodes (along the medial axis or in the neigh-
borhood of the medial axis).

2. For each node, find the � closest neighbors and attempt
to connect to each of these � nodes by using a simple
and fast local planner (A planner that does a linear in-
terpolation on the limit conditions and the rigid transfor-
mation will work here).

3. Choose � nodes for enhancement. A probability dis-
tribution is created over all recently created nodes such
that the weight of a configuration ��� is defined as

 �!�"� � 
 #%$�&(')��* �+�-,��!�.� �0/132547682590:�9<; �!��* �>=
 13254-6?2590:�9<; �!�.� �A@�#
and the probability that ��� is selected for enhancement is
given by

����� � � 
  ��� � �BDC�EGF  ����* ��H

In the above equations � , �!� � � are the nodes in the neighbor-
hood of �.� and I is the set of roadmap nodes. We compute
the neighborhood of each node by considering the � closest
other nodes for connections. Hence, we use a heuristic based
on a node’s proximity to nodes in other components of the
graph to choose � nodes to enhance. For each chosen node,
we execute a random walk and attempt to make connections
from the configuration at the end of the random walk.



4.4 Extensions

Several improvements of the above scheme are under con-
sideration. Currently we sample uniformly all of the points
of the medial axis. We could use the local characteristics of
the medial axis to weight the distribution of points and guess
more configurations in regions that may be more difficult,
i.e. regions with intersections or narrower corridors. Cur-
rently, our sampling is based only on the medial axis. Some
key deformations may not be guessed by the medial axis fit-
ting. We could augment the medial axis fitting with a ran-
dom generation of deformations as in the earlier version of
f-PRM. Another possible improvement concerns the connec-
tion of neighboring configurations on the medial axis. We
could use the medial axis as a guide for the generation of the
local path reducing the chances for collision of the object with
the workspace along the path. A similar approach could be
used to strengthen the enhancement routine by heuristically
choosing directions based on the closest portion of the medial
axis.

5 Experimental Results

We show below experimental results planning for elastic
curves in two dimensions. We use Bézier curves to repre-
sent our objects. The manipulation constraints are specified
as in Figure 3. The mechanical model used corresponds to
a homogeneous isotropic and linearly elastic material. The
elastic energy is computed as in [17]. We perform the mini-
mization of the local energy by using the conjugate gradient
method [28]. The local planner interpolates linearly between
the rigid transformations of the two configurations and then
between the limit conditions.

Our code is written in C++ and executed on an SGI
R10000. We show in this paper two environments (Figure
4 and Figure 5), both with narrow corridors that require the
object to maneuver from the open area on the left to the open
area on the right. The majority of the running time is spent in
the minimization routines.

Snapshots along the path generated by our planner are
given in Figures 4 and 5. We show the full surface in these
pictures but the problem solved is essentially a 2D problem as
explained earlier. The running times average 33 minutes for
the case in Figure 4 and 43 minutes for the case in Figure 5.
A uniformly random sampling planner, without the benefit of
the medial axis, generally terminated without finding a path.
For a simpler case, where the medial-axis planner spent ap-
proximately 3 minutes, the planner that guessed deformations
randomly took over 4 hours.

We also compared our planner with the most efficient pre-
vious implementation of f-PRM available so far (described in
[17]). The implementation in [17] makes use of several op-
timizations that are not possible in the context of our work

Figure 4: Snapshots for a path in Workspace 1.

Figure 5: Snapshots for a path in Workspace 2.

here. For the workspace in 4 it averages 50 minutes, com-
pared to 43 minutes for our implementation using the medial
axis. For environments where more drastic deformations are
required [17] rarely succeeds. For environments that are sim-
ply tight but do not necessitate a large deformation, f-PRM
of [17] is faster as it can concentrate more on random walks
and is more efficient at making connections. It achieves this
efficiency by caching copies of minimized deformations that
are reused at multiple positions. In our implementation posi-
tion is not independent of deformation, and this optimization
is not possible.

6 Discussion

We presented a new sampling scheme for f-PRM, a planner
that computes paths for flexible objects. The 2D case was
treated in this paper. We first obtained an approximation to
the medial axis by adapting the algorithm in [3]. Then we cre-
ated configurations of our objects on or near the medial axis
by fitting the manipulation constraints to the medial axis. Our
experimental results showed that the new sampling scheme is
fairly successful in generating deformations that are critical
for solving the path planning problem which results in signif-
icant savings in running times.



Our future plans involve the extension of the planner to
three dimensions. We hope that with our algorithms, the ap-
proximation of the medial axis will be feasible for polygon
soups and this will allow us to attack real-world problems.
Furthermore, we are working on exploring the ideas of medial
axis sampling for rigid parts in the context of the traditional
PRM planner.
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