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Computational Approaches to Drug Design

P. W. Finn* L. E. Kavrakit

Abstract

The rational approach to pharmaceutical drug design begins with an investigation of the
relationship between chemical structure and biological activity. Information gained from
this analysis is used to aid the design of new, or improved, drugs. Primary considerations
during this investigation are the geometric and chemical characteristics of the molecules.
Computational chemists who are involved in rational drug design routinely use an array of
programs to compute, among other things, molecular surfaces and molecular volume, models
of receptor sites, dockings of ligands inside protein cavities, and geometric invariants among
different molecules that exhibit similar activity. There is a pressing need for efficient and
accurate solutions to the above problems. Often, limiting assumptions need to be made, in
order to make the calculations tractable. Also, the amount of data processed when search-
ing for a potential drug is currently very large and is only expected to grow larger in the
future. This paper describes some areas of computer-aided drug design that are important
to computational chemists but are also rich in algorithmic problems. It surveys recent work

in these areas both from the computational chemistry and the computer science literature.

1 Introduction

The design of pharmaceutical drugs is an extremely complex and still not completely understood
process [7]. Computational chemists combine their knowledge of molecular interactions and
drug activity, together with visualization techniques, detailed energy calculations, geometric
considerations, and data filtered out of huge databases, in an effort to narrow down the search for

potent pharmaceutical drugs. Computer-aided drug design is a significant component of rational
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Figure 1: (a) The protease thermolysin with one of its known inhibitors (CDP), (b) the folding
of thermolysin and the CDP inhibitor.

drug design [16], and is becoming more relevant as the understanding of molecular activity

improves and the amount of available experimental data that requires processing increases.

The Framework. A fundamental assumption for rational drug design is that drug activity is
obtained through the molecular binding of one molecule (the ligand) to the pocket of another,
usually larger, molecule (the receptor, which is commonly a protein). In their active, or binding,
conformations, the molecules exhibit geometric and chemical complementarity, both of which
are essential for successful drug activity [7, 84]. By binding to these macromolecules, drugs
may modulate signal pathways, for example by altering sensitivity to hormonal action, or by
altering metabolism, for example by interfering with the catalytic activity of the enzyme. Most
commonly, this is achieved by binding in the specific cavity of the enzyme (the active site) which
catalyses the reaction, thus preventing access of the natural substrate(s). Figure 1(a) shows the
protease thermolysin and one of its inhibitors. Thermolysin is the large molecule shown in the
picture, while the inhibitor (a carboxymethyl dipeptide, CDP) is drawn near the center of the
molecule. The 3D structure of the complex has been obtained by X-ray crystallography and can
be retrieved from the Brookhaven protein data bank (code 1TMN) [10]. The protein is a linear
polymer of amino acids which fold into a compact globular state. Figure 1(b) shows the folding

of the polymer chain of thermolysin as a ribbon and the inhibitor as a set of spheres.



The Modeling. The modeling of molecular structure is a complex task, in particular because
most molecules are flexible, being able to adopt a number of different conformations that are of
similar energy. Quantum mechanics provide a detailed description of molecules in terms of the
positions of atomic nuclei and the electron distribution among them. However, quantum me-
chanical calculations cannot be used to treat even small molecules because of high computational
demands. The modeling of the binding process is also a difficult task, as the characteristics of
the receptor, the ligand, and the solvent in which these are found have to be taken into account.
Although chemists strive to obtain models that are as accurate as possible, several approxima-
tions have to be made in practice. Molecules are thus visualized to have surfaces and volume
similar to our perception of surfaces and volume of macroscopic objects, or are considered under
idealized conditions (e.g. in a vacuum) in order to simplify energy calculations. It is clear that
the more accurate the model used, the better the chances chemists stand in predicting molecular
interactions. Nevertheless, a large number of predictions made with approximate models have
been confirmed with experimental observations [16, 55]. This has encouraged researchers to
build tools that use approximate models and investigate the extent to which these tools can be
useful. As discussed later in this article, these approximate models pose difficult algorithmic
questions. More accurate molecular modeling, gained through better theoretical understand-
ing or increased computational power, can only improve the techniques developed with simpler

models.

Two classes of problems. Depending on whether the chemical and geometric structure of the
receptor is known or not, the problems arising can be classified into two broad categories. If the
receptor is known, chemists are interested in finding if a ligand can be placed inside the binding
pocket, of the receptor in a conformation that results in a low energy for the complex. This
problem is referred to as the docking problem. It has several variations: an accurate description
of the binding interaction may be desired, or an approximate estimate may be sought of which

ligands, from those contained in a huge database, are likely to fit inside the receptor.

Very often the binding pocket is unknown. In fact, the 3D structure of relatively few large
molecules (or macromolecules) has been determined by X-ray crystallography or NMR tech-
niques, although this number is increasing rapidly. In this case, indirect approaches must be
adopted. These approaches use a number of ligands that have been experimentally found to
interact with that specific receptor. Using the geometric structure and the chemical characteris-

tics of these molecules, chemists attempt to infer information about the receptor. In particular,



chemists are interested in identifying the pharmacophore present in these ligands. The pharma-
cophore is a set of features in a specific 31) arrangement contained in all the active conformations
of the considered molecules. A prevailing hypothesis is that the pharmacophore is the part, or
parts, of the molecule that is responsible for drug activity, while the rest of the molecule is a
scaffold for the pharmacophore’s features. If the pharmacophore is determined, by examining
the different activities, relative shapes, and chemical structures of the initial molecules, chemists
can use it to design a more potent pharmaceutical drug [46]. One common strategy is to design
rigidified molecules that must present the correct binding geometry. Other things being equal,
these will bind more strongly than their flexible counterparts. This is particularly interest-
ing when two of the pharmacophoric groups would have a natural tendency to associate [121].
This strategy can be challenging, however, as rigidifying into even a slightly incorrect geometry
can cause dramatic deceases in binding - geometric complementarity is very important in this

context.

The Methods. The techniques that have been used so far in computer-aided drug design
include graphics algorithms (visualization of molecules), geometric calculations (surface compu-
tation), numerical methods (energy minimization), graph theoretic methods (invariant identi-
fication), randomized algorithms (conformational search), computer vision methods (docking),
and a variety of other techniques like genetic algorithms and simulated annealing. A number
of tools for performing complex geometric and energy calculations are now available and the

success of these computer-aided methods is under evaluation [7, 16].

This paper surveys some of the computational approaches to rational drug design. Four
core areas which are rich in algorithmic problems have been identified: (a) surface and volume
calculations, (b) conformational search, (c) docking, and (d) pharmacophore identification. We
define the problems in each of these areas and discuss recent work in the computational chemistry
and computer science communities. The discussion reveals the wealth and diversity of the
algorithmic issues that arise in the domain of computer-aided pharmaceutical drug design. The
interested reader is also referred to other recent surveys on topics in molecular biology and

bioinformatics [84, 102]. An earlier version of this paper appeared in [67].
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Figure 2: The hard-sphere model and stick diagram of CDP.

Figure 3: Illustration of torsional angles.

2 Some Background on Molecular Modeling

The hard-sphere model of CDP, the inhibitor of thermolysin of Figure 1, is drawn in Figure
2(a). This model is an abstraction frequently used by chemists to approximate the volume of
a molecule. A sphere is drawn around the center of every atom of the molecule. The radius of
each sphere reflects the space requirements of the corresponding atom and has been determined
by a combination of experimental observations and quantum mechanical calculations. A set of
radii that are commonly used are the van der Waals radii [15]. If the van der Waals radii are

used, the envelope surface of the hard-sphere model is called the van der Waals surface.

The stick diagram of a molecule (Figure 2(b)) draws a line segment for each chemical bond.
The angle between two consecutive bonds is called the bond angle and the angle formed by the
first and the third of three consecutive bonds when one looks along the axis of the second bond

is called the dihedral or torsional angle. Figure 3 illustrates the torsional angles and the rotation



that they allow.

A priori, all bond lengths, bond angles and torsional angles are degrees of freedom (DOF)
of the molecule. Because of their chemical characteristics, certain bonds cannot rotate about
themselves and, as a result, all the torsions in which they participate as central bonds are fixed.
Bond lengths and bond angles tend not to exhibit large variations in their values. It is fairly
common to consider bond lengths and bond angles constant in calculations [47, 55]. Torsional
angles, however, vary significantly and this affects the 3D shape of the molecule. When bond
lengths and bond angles are considered fixed and only torsions vary, a molecular chain with n
torsions can be viewed as an articulated mechanism with n revolute joints. A conformation of

a molecule is obtained by assigning values to all the DOF of the molecule.

Standard geometries are commonly used to construct reasonable models of molecules. For
example, tables have been compiled of “preferred values” for bond lengths and these depend on
the kind of atoms participating in these bonds [15]. Preferred values have also been tabulated
for bond angles and torsional angles, and again depend on the types of atoms linked by the
corresponding bonds. The exact values used are obtained from statistical analysis of structural
data in X-ray databases, like the Brookhaven or the Cambridge [5] databases. Although it is
true that there is variability in the geometric data in these repositories, the information gathered

provides a reasonable approximation of reality [15, 55].

As far as calculations of energy are concerned, empirical force fields are used in practice
instead of more detailed methods like quantum mechanics. A typical empirical force field includes
terms for bond-stretch, bond-angle, and torsional-angle deformations, and terms for van der
Waals and Coulomb potentials [88]. Frequently, terms that model solvation effects are also
included. Interactions of the molecule with the solvent in which it is dissolved are very important
but also difficult to model accurately [15, 55]. An example of how the energy of conformation ¢
can be calculated with empirical force fields when the molecule is considered in vacuum is given

below:
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In the above K3, K, and K  are force constants, € is the dielectric constant, and n is a periodicity



constant. R, 6, and ¢ are the measured values of the bond lengths, bond angles, and torsional
angles in conformation ¢, while Ry, #fy, and v are equilibrium (or preferred) values for these
bond lengths, bond angles, and torsional angles. r;; measures the distance of atom centers in
c. The parameters o;;, ¢;; and ¢; are the Lennard-Jones radii, well depth, and partial charge for
each atom in the system. All parameters and constants above, are derived by a combination
of quantum mechanics, vibrational methods, and experimental data. Defining a force field
parameterization within this framework that reproduces geometries and energies accurately is a
time-consuming process, as is the addition of new parameters to the force field. Once the values
of bond lengths, bond angles and torsional angles of a conformation are known, obtaining the
energy of a molecule with an empirical force field is a straightforward task. Minimization of this
energy is not easy however, since force fields are non-linear functions and may contain a large

number of local minima.

Calculations of energy are very important in the molecular world. In nature, molecules
are usually found in low-energy conformations. Protein-ligand complexes are stable when the
binding energy of the system is low. It should be emphasized that the exact calculation of
molecular and binding energies is by no means a simple task [88], and that empirical force
fields offer only an approximation. Nevertheless, as noted above, there are several cases where

reasoning with these approximations has produced meaningful results [12, 15, 55].

Before describing specific problems let us also define the concept of molecular features.
Chemists group atoms according to their chemical characteristics and use a label to refer to
these groups. Given a molecule, there are rules that identify the hydrophilic and hydrophobic
parts of that molecule, the hydrogen-bond donors and acceptors, the charged centers etc. These
features are used, for example, to define pharmacophores, or to specify database queries that
will retrieve ligands with certain characteristics. The accurate definition of features is a difficult

task for medicinal chemists but is out of the scope of this paper [30, 53].

3 Molecular Surfaces and Volume

We begin our survey with the computation of molecular surfaces and volume. Although it can
be argued that molecules do not have surfaces and volume analogous to our perception of macro-
scopic surfaces and volume, this abstraction is more than helpful for visualizing molecules and

their interactions [95]. It is also useful in calculations for molecular recognition and docking
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Figure 4: (a) van der Waals, (b) smooth molecular, and (c) solvent accessible surface.

[24], in computations of the energy of a molecule in solution [40], and in the process of pharma-
cophore identification, since atoms that are buried or little exposed are not likely to participate

in a pharmacophore.

3.1 The Problem

The surfaces that are of interest to chemists include the van der Waals surface (defined in
Section 2), the smooth molecular surface, and the solvent accessible surface [82, 111]. Figure
4 illustrates these different surfaces in two dimensions. The smooth molecular surface and the
solvent accessible surface are defined with the help of a solvent molecule which is a sphere of
radius r. In particular, the smooth molecular surface is defined by the front of the solvent
sphere when this is rolling around the van der Waals surface. The solvent accessible surface is
defined by the center of the solvent when this is rolling around the van der Waals surface of the
molecule. In other words, the solvent accessible surface is the boundary of the free placements
of the center of the sphere of the solvent, when this is moving among the atom spheres of the
molecule. Borrowing our terminology from robotics, it is the union of the Minkowski sums of

each molecular atom sphere and the sphere of the solvent [57].

In all the above cases what is required is the calculation and accurate representation of the
considered surface and volume. Other useful information is the contribution of each atom to the
surface, the connectivity of the surface patches, as well as the location of voids, pockets, and

canyons in the molecule.



3.2 The Methods

Both numerical and analytical methods have been developed for the computation of surfaces
and volume of molecules. A survey of early techniques is given in [95] and many references to

recent work can be found in [86].

Most numerical or approximation techniques involve some kind of discretization which is
in general a polyhedral decomposition of the space occupied by the molecule, or a covering
of surfaces with a large number of dots. All these techniques trade accuracy for speed of

calculations.

As far as analytical methods are concerned, closed expressions have been obtained for the
different patches that compose the molecular surfaces described in the previous subsection. This
line of work has not led to robust software implementations, a fact partly due to the complexity
of the calculations involved with highly intersecting atoms. Techniques from computational
geometry have also been applied. These techniques include alpha-shape theory and results from
arrangements. Dealing with degeneracies and arithmetic errors in this context is imperative as

surface and volume computations are applied to larger and larger molecules.

3.3 Literature Survey

One of the most widely used approximate methods is described in [110]. This approach uses
bisector planes to divide the space of the internal atoms into polyhedra. Atoms on the surface
are divided in the same way by considering virtual solvent atoms placed next to them. The
area and volume are calculated through these polyhedra. Another approximate technique that
enjoys widespread use is discussed in [25]. This method produces a set of dots on the surface
of the molecule. The dots are calculated as follows. A probe sphere is placed tangent to each
atom, each pair of neighboring atoms, and each triple of neighboring atoms. Points that are
on the molecule-facing surface of the probe became part of the smooth molecular surface when
the probe does not intersect any other atoms. The probe is moved at small angular increments
around each atom and pair of atoms. It is clear that dot spacing influences the accuracy of the

solution of this approach. Other methods that approximately compute molecular surfaces and

volume include [52, 98, 119, 123].

Analytical calculation of surfaces was first done in [23]. The output of this algorithm consists

of a set of curved regions of spheres and tori, joined together at circular arcs. Closed forms for



volume have also been derived in the same work [23]. To simplify calculations the authors did
not consider intersections of 4 or more atoms, which can result in significant miscalculations
[86]. Intersections that involve more than 4 atoms were later treated in [44, 45]. Other an-
alytical methods have been presented in [75, 93, 105]. Unfortunately there are only very few

implementations of the above methods.

In recent work, computational geometry techniques have given rise to methods for surface
and volume calculations that overcome many of the limitations of previous methods [32, 33, 42,
57, 86]. In [57] it was observed that the complexity of the arrangement defined by n atomic
spheres of a molecule is ©(n), as opposed to O(n?®) for a general arrangement of spheres in
space. The complexity of an arrangement is defined as the overall number of cells in that
arrangement. In the same paper it was shown that the arrangement of atomic spheres can be
decomposed into an arrangement of simple cells whose total complexity is O(n). As a result, it is
possible to construct a hashing data structure that uses O(n) space and can answer intersection
queries for spheres of comparable radii to the atomic spheres in constant time. Computation of
surfaces and volume follows nicely from this data structure. In particular, the van der Waals
surface of a molecule can be constructed in O(nlogn) time. Similar results can be obtained
for the solvent accessible and the smooth molecular surface. The work in [58] addresses the
degeneracies and precision problems inherent in computing spherical arrangements while using

floating point arithmetic.

Alpha shape theory also proved a useful tool in accurately computing the surface and volume
of molecules [31]. The alpha shape is the space occupied by the simplices of an alpha complex.
These simplices are constructed in such a way that they are always a subset of the simplices
defined by the weighted Delaunay triangulation of the molecule. In the above model, « is a
parameter that regulates the radius d = Vw? + « of atomic spheres and w denotes the van der
Waals radius of an atom. If a is increased from its least possible value (a negative value) to
zero, the shape of a molecule grows from a set of points to its van der Waals shape. Appropriate
simplices are maintained as « changes, and when a = 0 the set of constructed simplices, the
alpha complex, contains important information about atom intersections and the topology of
the molecule. The alpha complex can be computed in O(nlogn) time and then it is possible to
quickly identify the atoms on the surface of the molecule, and compute the van der Waals, smooth
molecular, and solvent accessible surfaces. The volume of the alpha complex can be combined

with the volume of the surface atoms to compute the volume of the molecule. Furthermore,

10



the topological structure of the alpha complex permits the identification of voids and canyons
in the molecule [32, 33, 86]. Comparing shapes of different resolution it is possible to identify
the cavities on the surface of the protein responsible for ligand binding [106]. Alpha shapes
have also been used in [117] for molecular modeling. This work has produced a parallelizable
algorithm that scales linearly with the number of atoms in a molecule for computing molecular

surfaces.

Although algorithms that compute molecular surfaces have been widely investigated, little
has been done for their dynamic maintenance. Dynamic maintenance would, however, have
interesting applications. For example, in calculation of binding energies, it is interesting to
know how the surface that one particular atom contributes to the outer van der Waals surface
changes, as the shape of the molecule changes. Work on dynamic data structures is useful in

this respect [56].

4 Conformational Search

4.1 The Problem

Given a ligand and its degrees of freedom (see Section 2), the conformational search problem
is to find a set of conformations of the ligand whose energy is below a threshold and which are

geometrically distinct [79].

A particular case of the conformational search problem is the protein folding problem. It is
believed that proteins have “unique” 3D shapes (the “native” state), which correspond to the
global minima of their total energy and which are specified only by the chemical composition of
the molecules. This is supported by the ability of proteins to refold to the native state following
unfolding by altered salt concentration or temperature. Finding these conformations is by
no means an easy task and involves several hundreds of DOF. For a survey of protein folding

techniques see [29].

For small ligands, finding the conformation with the minimum energy is of little interest. In
the process of computer-aided pharmaceutical drug design, several low energy conformations of
a ligand are used in docking [96] and pharmacophore identification [91]. These represent the
conformations of the molecule that are present in solution, and thus those that are available for

binding to the receptor.
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Frequently additional constraints among the atoms of a molecule are imposed. For example,
“distance constraints” may specify the “desired” relative positions of two or more atoms (or
features) of the molecule. When constraints are specified, the output of conformational search
is a set of conformations that are geometrically distinct, are of low energy, and satisfy the
constraints. We refer to this problem as the constrained conformational search problem to
contrast it with the previously defined unconstrained conformational search. Tools that can
produce conformations that satisfy known constraints have additional applications in database

screening [92].

Several approximations are made during conformational search, depending on the level of
detail required. For example, it is usual to consider bond lengths and bond angles as fixed,
choose torsional angle values from predefined distributions, and simplify the energy model used
[47, 55]. Frequently the molecule is assumed to be in a vacuum. An external potential can
be considered with most conformational search methods but may result in longer computation

times [55].

4.2 The Methods

When the degrees of freedom (in most cases the torsional angles) of the molecule are more than 4
and no pruning is done, any kind of systematic search method is impractical. Systematic search
discretizes each of the degrees of freedom of the molecule and explores all possible combinations

of them minimizing the energy of every single combination.

Most implemented unconstrained search procedures employ Monte-Carlo randomized tech-
niques to limit the number of conformations explored. For example, the search may apply
random increments to each of the degrees of freedom of the molecule, or choose the values of
the degrees of freedom according to a distribution that fits experimental data of “preferred”
values of the corresponding degree. An extended bibliography of recent search methods can be
found in [43, 79]. A number of important questions are raised in the above framework, namely
how to ensure the diversity of the sample and when to stop the search procedure. Another
question that is closely linked with unconstrained conformational search in this framework is
how to reliably identify and eliminate from the output conformations that are very similar in
both geometric and energy terms. Most frequently clustering techniques are used for grouping
similar conformations into sets and then a representative per set is selected. Recent work focuses

on developing robust methods for clustering possibly thousands of 3D conformations.
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As far as constrained conformational search is concerned, it clear that if the ligand molecule
is flexible, a blind search has very few chances of producing, in a reasonable amount of time,
a ligand that respects the specified constraints. Here techniques from robotics have been used.
Typically, part of the molecule is considered as a linear manipulator with its tip (an atom of the
molecule) at the desired location. The values of the degrees of freedom of the manipulator are
computed to accommodate the positioning of the tip. The solution of inverse kinematics is by

no means a simple task (see [90] for some pointers to recent work).

4.3 Literature Survey: Unconstrained Search

Systematic search methods sample each torsional DOF of the ligand at regularly spaced intervals
and were among the first to be developed and used [87]. The discretization of the torsional values
is typically as coarse as 30° or 60° [79]. Even with such a resolution the number of conformations
that are generated with a systematic search can be very large [43]. Furthermore, the energy of
all generated conformations is minimized, which is an expensive operation. Several heuristics
have been used to quickly prune down conformations that are close to previously generated
conformations in an effort to enhance the diversity of the sample. For example, in [115] a
technique called poling is introduced. This technique uses a penalty energy function that forces
similar conformations away from each other. In [80] clustering is interleaved with conformational
search and new conformations are created only if they are dissimilar to already produced cluster

representatives.

A variety of randomized methods are currently under investigation: conformations are ob-
tained by applying random increments to the torsional DOF of the molecule starting from a
user-specified initial conformation [43], or from a previously found low-energy conformation
[20]. Techniques that use molecular dynamics trajectories [19], simulated annealing [103], or
distance geometry [27] for obtaining distinct conformations have also been tried. Recent arti-
cles, which attempt to compare different methods, emphasize the superior quality of the results
obtained with randomized methods [43].

The random sampling method for exploring the conformation space of small molecules de-
scribed in [36, 37] works as follows. Initially a large number of conformations are generated
at random. A random conformation is obtained by selecting each degree of freedom from its

allowed range according to a user-specified distribution. This distribution is frequently the uni-
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Figure 5: Two clusters of CDP.

form distribution. However, if some a priori information is available about the preferred values
of a particular degree of freedom [70], then the corresponding values are selected according to
a distribution that reflects this information (i.e. a Gaussian distribution). The energy of the
resulting conformation is minimized with an efficient technique [107]. To obtain a representative
set of conformations from the sample, the method partitions the conformations into sets that
reflect geometric similarity as captured by the distance measure DRMS. DRMS(¢;,c;) is the
square root of the mean of the squared distances of the corresponding atoms of ¢; and c;, after
c; is transformed to ¢;. This transformation is computed using a basis of three predefined atoms
ay, ay, and asz. The clustering performed minimizes the maximum inter-cluster distance [49].
Figure 5 shows two of the clusters obtained with the randomized approach of [36, 37] for CDP.
At the end of the clustering step, a representative per cluster can be retained. The method de-
scribed above borrows ideas from randomized techniques for path planning in high-dimensional
configuration spaces [66]. Experimental observations show that it is very effective in discovering
the local minima of the irregular energy landscape of ligands with 5 to 15 degrees of freedom.
Unconstrained conformational search thus raises a number of interesting issues. Many open
questions remain on what are good minimization techniques for the energy models that are
available for small molecules, what are reasonable similarity measures for conformations, and
how partitioning or clustering can be done efficiently. Incremental clustering techniques can be

very interesting in the context of conformational search. For some recent results see [21].

Improvements in conformational search software directly affect the quality of solutions ob-
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tained for the problems where these conformations are actually used (i.e. docking and pharma-
cophore identification). A discussion on the quality of the conformational coverage required for

the above problems can be found in [114].

4.4 Literature Survey: Constrained Search

Most of the techniques described in the previous section will produce poor results when distance
constraints are imposed in the 3D structure of the molecule. Distance constraints arise frequently
in practice. For example, chemists may be interested in conformations that keep two atoms
(features) of the molecule at specific positions in space because these two atoms belong to a
pharmacophore. Database queries are usually specified by a 3D graph whose nodes correspond
to specific features and whose edges correspond to diatomic distances. Ring structures impose
distance constraints by their own nature: maintaining ring closure when a torsional angle in the
ring changes, requires the atom at the beginning and the atom at the end of the chain to be at

a bond’s length distance from each other (and also that bond angle constraints are satisfied).

The constrained conformational search problem has a direct analog in robotics, namely the
problem of inverse kinematics. If the bond lengths and bond angles in a single molecular chain
are considered fixed, then the chain can be viewed as a serial manipulator with revolute joints

(these joints correspond to the torsional DOF of the chain).

Work done in robotics for computing inverse kinematics of manipulators, is exploited in
[90] to find valid conformations for small molecular chains. In particular, the case of a serial
manipulator with 6 consecutive revolute DOF has been extensively studied (6 is the minimum
number of DOF for a robot to be able to span a full-rank subset of SF(3) [26]). Symbolic
manipulation of the equations of Raghavan and Roth [108] transforms the inverse kinematics
problem into one of computing the eigenvalues and eigenvectors of a matrix, which in turn can be
done very efficiently [89]. In a similar way, the inverse kinematics of a serial molecular chain with
6 torsional DOF can be computed by finding the eigenvalues and eigenvectors of appropriately
defined matrices. For chains with » > 6 torsions, 6 torsions are considered free while the rest
n — 6 are assigned discrete values and this procedure is repeated for different values of the n — 6
“fixed” torsions. The techniques in [90] are very efficient when computing conformations that
maintain ring closure and local deformations of small protein chains. It is worth mentioning

that algebraic equations in 6 unknowns were also derived in [47] for finding the permissible
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conformations of a single-loop molecule when only 6 torsional angles are considered free, and
solutions in limited cases were obtained. In contrast with the above algebraic methods, the work

in [9] computes the conformations of large cyclic molecules with purely geometric techniques.

Other kinds of methods, like distance geometry [27], have also been tested for constrained
conformational search problems. Distance geometry exploits the fact that lower and upper
values on interatomic distances can be derived from the restriction that atoms belong to a 3D
chemical structure. These distances are used to refine 3D models of molecules by a variety of
constraint propagation and “bounds smoothing” techniques. Distance geometry can also deal
with large scale constrained conformational search problems like the ones arising from NMR
data [27]. NMR spectroscopy produces distances between pairs of atoms of a macromolecule
and the problem is to construct a conformation of the molecule that satisfies these distances.
The drawback of distance geometry methods is that they may fail to converge to a solution and

can be relatively slow in practice [90].

Constrained conformational search is frequently encountered in the domain of database
searching, as mentioned earlier. Queries in many chemical database systems usually specify
a set of features and and their pairwise distances. The result of the search is typically a set
of molecules that contain these features and can assume a low-energy conformation that satis-
fies the pairwise distances. For a detailed discussion on database queries and the definition of
similarity in this context see [17, 92, 112, 122]. The importance of fast methods for database
searching can only be emphasized: database searching is becoming a basic tool for finding novel

bioactive compounds [35].

Although, it is fairly simple to do an initial screening of a database with one million com-
pounds and isolate, for example, molecules with a particular desired set of features, it is difficult
to narrow down the results at later stages [122]. The main reason for the above is that ligand
flexibility can increase dramatically the number of cases that need to be examined before it is
decided that a molecule does not match a query. Constrained conformational search should be
performed very fast in this domain [79, 92, 122]. So far, distance geometry techniques, system-
atic and randomized search, and genetic algorithms have been tried but have produced slow
algorithms [11, 20, 22, 39]. Heuristic methods are the ones which can produce a solution fast,
although this may not be a good solution. One of the most efficient heuristic techniques for
flexible searching is the “Directed Tweak Method” [59, 116]. The method minimizes a pseudo-

energy function which is the sum of the squares of the deviations of the distances found in the
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Figure 6: Docking of a ligand to a receptor. Shading indicates schematically the energetically

most favourable interactions.

molecular structure to the distances expressed in the database query. Unfortunately the pseudo-
energy function contains a large number of local minima and conformations having high energy
are frequently returned [22]. Fast techniques that can produce low-energy geometries that avoid

these local minima are clearly needed [122].

5 Docking

5.1 The Problem

Given two interacting molecules of known geometry the docking problem consists of finding their
relative positions during the interaction. This paper is mostly concerned with docking small
ligands into receptors that are of larger size, typically proteins. However docking problems are
also studied when the molecules involved are proteins, or proteins and macromolecules like DNA
or RNA [64, 85]. In the case of protein-ligand docking, information about the geometry of the
receptor is obtained by X-ray crystallography or NMR techniques. It is generally assumed that
the receptor molecule is rigid [81] and that the geometric and chemical complementarity at the
binding site are important (see Figure 6). Figure 7 shows the pocket of the protein thrombin.
Thrombin is an enzyme with an important function in blood coagulation; its inhibitors have

potential application as anti-coagulants. The approximation of the rigid receptor is justified by
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Figure 7: The binding pocket of thrombin. The cavity runs across from left to right, with the

residues responsible for catalysis, and an overhanging surface group, at the center of the cleft.

experimental data i.e. crystals of the molecule with and without the ligand, but exceptions have
also been noted [99]. As the understanding of the docking process improves, flexible models for
the receptor may be considered. For the ligand however, it is essential to address its flexibility.
The quality of the docking is measured in energy terms: the binding energy of the complex must

be as low as possible [85].

5.2 The Methods

Assume for the moment that the receptor and the ligand are rigid. An obvious approach is to
explore the 6D conformational space of the ligand inside the receptor’s cavity, but this can be
time consuming. An alternative approach is to represent the cavity with a number of sparse
points and match these points against corresponding points of the ligand. Hence in this case
the docking problem can be viewed as a point matching problem. The techniques used for this
matching problem include graph-theoretic methods, computer vision techniques (i.e. geometric
hashing), the use of the Fast Fourier Transform for computing optimal translations combined
with rotational sampling, as well as heuristic techniques and evolutionary algorithms like genetic

algorithms or simulated annealing.

When the ligand is flexible, then one could perform first a conformational search of the ligand

and then dock the conformations obtained in the receptor assuming that these conformations
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are rigid. Of course it is also possible to treat the flexibility of the ligand inside the receptor’s
cavity with randomized methods or any of the other methods that have been developed for
conformational search, as this case can be seen as conformational searching with an additional
potential. Another popular approach is to break down the ligand in smaller pieces and to dock
these pieces separately inside the cavity. The problem in this case is treated with a combination
of geometric techniques (shape matching) and efficient energy minimization procedures. An

extensive bibliography on several recent docking methods is given in [85].

A central question for all the above cases is how to represent the geometry of the cavity, and
how to compare it to the geometry of the ligand. The computation of the binding energy of the
complex is also a very important issue to be addressed in docking. Numerous approaches have
been taken to this problem ranging from the highly empirical to more rigorous methods, such
as free-energy perturbation (FEP) techniques. A detailed discussion is out of the scope of the
present paper (see also [71]), but it is worth pointing out that a major component in many of
the empirical schemes is a measure of the geometric complementarity of the ligand and receptor.
This can be expressed as the buried surface area of the ligand [4, 13, 14], or the contact area
of the two molecules [83]. Note that the FEP methods have also highlighted the importance of

geometric complementarity in some cases [97].

5.3 Literature Survey: Rigid Ligand

If the ligand is considered rigid, it is possible to systematically search its six-dimensional con-
figuration space for possible placements inside the binding pocket, but such a process can be
time consuming [94]. A lower resolution approach has been developed to speed the search and
implicitly allow for small conformational changes [61]. Alternatively, the Fast Fourier Transform
(FFT) can be used to compute the possible translations of the ligand for a specific orientation,
and this process can be repeated for multiple orientations [65]. The FFT essentially computes
the Minkowski sum of the pocket and the ligand. Most recent methods, however, adopt the fol-
lowing approach: they try to match points (features) of the binding pocket to points (features)
of the ligand. The points inside the pocket are referred to as “hot spots” [50], “essential points”

[96], or “match probes” [120].

The definition of matching points in the receptor and the ligand varies widely with the
method used. Some approaches use energy calculations to define these points. They describe,

for example, the chemical environment of the pocket using a 3D grid, and define matching points
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as energetically favourable sites for certain functional groups [50, 96]. When the ligand molecule
is placed in the grid region, the interaction energy can be efficiently calculated using precomputed
data. Other docking approaches use only the geometry of the receptor and the ligand to define
matching points. DOCK [76, 113], one of the earliest methods for docking, generates spheres
inside the binding site in a way that they touch the surface of the pocket in two points and
have their centers along the surface normal at one of these points. The centers of these typically
overlapping spheres are the receptor’s matching points. Spheres are created in a similar way
inside the ligand and their centers are the matching points of the ligand. The description of the
binding pocket by the spheres described above is not unique and may seem arbitrary, but several
successful predictions have been reported when matching ligand and receptor points [113]. This
method has recently been extended to consider multiple conformations of the receptor, where

these are available [72].

As noted above, after essential points have been identified in the pocket and the ligand, the
docking problem reduces to a matching problem. All possible combinations of ligand-receptor
points can be tried if their number is small. For example, the CLIX method [78], which uses
minima in interaction energy maps [50] as centers to which it tries to fit ligands, tries all possible
combinations. At each step a match is sought between two interaction points and corresponding
features in the ligand. This initial orientation is then optimized, and those with good geometric

and chemical complementarity are retained. All pairs of points are tried in the process.

Simple heuristics can be used to narrow the search of possible matchings. DOCK, for exam-
ple, selects a pair of receptor points and measures their distance. Then a pair of ligand points
that are at approximately the same distance with the receptor points is found. A third receptor
point is chosen and its distances with the previously selected receptor points are used to identify
a third point of the ligand. This process continues until a specified number of pairs is found or
until no possible matches can be found. In that case the algorithm backtracks. At least four
points are necessary to define an unambiguous orientation of a ligand inside a receptor. Other
approaches build a “docking graph” using the receptor and ligand matching points [74]. The
graph has a node for all pairs of receptor-ligand points, and an edge between two nodes, if the
pairs corresponding to the nodes can be matched at the same time. A maximal clique in this
graph will produce a maximal matching between the receptor and the ligand. It is well known

that this problem is NP-hard [41] but the method is reported to work well in practice [74].

The matching problem that arises in docking clearly has analogies with the geometric match-
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ing performed for model-based shape recognition [34]. These analogies are extensively discussed
in [102]. In geometric matching, a 31D model of an object is known. Given a set of 3D points
which may lie on the surface of that object, a rigid transformation is sought to align these points
to the model. In the context of molecular docking the ligand provides the model, and the re-
ceptor provides the set of 3D points that are checked against the model. Techniques developed
for model-based recognition, like interpretation trees [54] or geometric hashing [77, 109], are
thus applicable to the docking problem. In fact, geometric hashing has already been used for
molecular docking in protein-ligand and protein-protein studies [6, 100]. In geometric hashing,
a hash table for the ligand is computed and this is a transformation invariant representation of
the molecule. Given a set of points in the receptor, matches can be detected through a voting
scheme. An advantage of this approach is that the hash table for the ligand can be computed
off-line, and after that it is possible to dock the ligand to multiple receptors.

5.4 Literature Survey: Flexible Ligand

For flexible ligands, a common approach is to consider different low-energy conformations of
the ligand, obtained by a conformational search procedure. These conformations are tried
against the receptor cavity using a technique developed for docking a rigid ligand to a rigid
receptor [96]. To facilitate such docking approaches, several molecular databases now store a
set of geometrically distinct conformations per ligand [68]. Recent work advocates that a good
approximation to the docked position of the ligand can be found by storing only a small number
of conformers in 3D chemical databases [114]. It is clear that if the active conformation is not
close to the conformations considered, these methods will fail to produce a docking close to the

optimal one.

Conformational flexibility has also been addressed directly by simulated annealing tech-
niques. In that case, the torsional DOF of the molecule are changed inside the receptor’s cavity
[51]. Genetic algorithms have also been applied [101, 118]. In particular, the genetic algorithm
in [63] includes limited flexibility of the receptor in addition to full flexibility of the ligand. One
could also imagine using randomized sampling techniques instead of simulated annealing to find
low-energy conformations of the ligand inside the binding pocket. Matching points defined inside
the binding pocket are again useful when flexible ligands are considered. In this case however,
fragments of the ligand are docked independently and the fragments are later joined into confor-

mations which are in turn refined and ranked with appropriate scoring functions [28, 109, 120].
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The placement of the fragments raises difficult combinatorial and geometric questions. The
idea of “building” a ligand inside a binding pocket is also popular with methods that suggest

unsynthesized compounds or add functionality to a known inhibitor [70].

Allowing for ligand flexibility is a challenging and still unsolved problem in protein-ligand
docking. Efficient geometric techniques that can exclude placements of fragments that are
in collision with the rest of pocket, or can suggest good placements for these fragments may
help in pruning the number of placements that are subjected to rigorous energy calculations.
Researchers have also stressed the need for more accurate scoring functions for characterizing
the energy of the binding. The development of such functions remains a difficult and poorly

understood problem [12].

6 Pharmacophore Identification

6.1 The Problem

When the 3D structure of the target macromolecule is unknown, the identification of a phar-
macophore is key to the rational development of new pharmaceutical drugs [91]. The pharma-
cophore is a set of features in a specific 3D arrangement that is present in all (or most) of the
active conformations of a set of ligands that exhibit similar activity. As outlined in Section 1, a
prevailing assumption in rational drug design is that if different ligands exhibit similar activity
with a receptor, this activity is due largely to the interaction of the features of the pharma-
cophore to “complementary” features of the receptor (see Figure 8). Thus, if a pharmacophore
has been isolated, chemists can use it as a template to build more potent drugs [46]. Note,
however, that other approaches have been developed which highlight the requirement for shape
complementarity between the ligands [104].

As an example, consider the four different inhibitors of the protease thermolysin of Figure
1. These inhibitors are shown in Figure 9. The ligands have 5 to 11 torsional degrees of
freedom and each of them can assume a few hundreds of distinct low-energy conformations
[36, 79]. Each conformation gives rise to a 3D point set (typically 5-20 points or features per
conformation). The pharmacophore, whose size is in general small (3-5 features), should be
congruent with a subset of the features of at least one conformation of each considered molecule.
The problem is further complicated by the fact the exact congruence is usually not achieved.

The matching is done within some tolerances to reflect the uncertainties in the position of the
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Figure 8: The features of the pharmacophore interact with features of the receptor cavity.

Figure 9: Four different inhibitors of thermolysin.

features. Such uncertainties arise from variability tolerated by the receptor, imperfect modeling,
and the approximations done during conformational search. Note that in contrast with docking,
the active conformations of the ligands may have no other features in common except the

pharmacophore.

6.2 The Methods

Given two 3D point sets, finding a subset of the first which is congruent to a subset of the
second is in itself a difficult problem. Geometric optimization techniques and primarily graph
theoretic techniques have been used. Geometric hashing and other techniques from computer
vision developed for model based recognition are again applicable. The fact that the matching

should be done within small tolerances further complicates the problem.

When multiple conformations per ligand are considered there is an inherent combinatorial

explosion in the process of identifying the pharmacophore. One issue that arises is that two set
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congruence should be decided quickly and a clever scheme is needed for eliminating invariants
as soon as possible. Randomized methods have recently been considered. Hashing schemes are
also relevant in encoding the large number of “intermediate” invariants that are discovered in
the process - the invariants that are found only in proper subsets of the molecules and are at

some later stage eliminated.

6.3 Literature Survey

The problem of determining the congruence of point-sets is studied in [1, 2, 3, 69] using graph-
theoretic methods. Determining the congruence in R* is tractable [1, 3] in the absence of
complications such as noise. Undoubtly, invariant identification is more closely related to the
problem of identifying the largest common point set (LCP). Unfortunately, the LCP problem
turns out to exceedingly difficult; in fact, even for m collections of n points on the real line, the
LCP cannot be approximated to within an n® factor unless P = NP, and only weak positive
results are known [2, 69]. Of course the problem is polynomially solvable when m = 2 [3].
However in the case of pharmacophores, there is noise present in the data and the above methods

have limited applicability.

DISCO [91], one of the most popular algorithms for pharmacophore identification, uses clique
detection to identify invariants. Initially the program considers a pair of conformations ¢; and
¢y belonging to different molecules. A “correspondence graph” G is constructed and this graph
is similar to the “docking graph” described in Section 5.3. The nodes of GG are again all node
pairs of e¢; and ¢3. An edge in G is created if the pairs in each of the connected nodes can be
matched simultaneously. The Bron-Kerbosch clique detection algorithm [18] is then used to find
cliques in G. These correspond to invariants in ¢; and ¢, and thus to candidate pharmacophores.
The algorithm seems to work well in practice [91, 122]. Generalization of the above approach
to n conformations (corresponding to n different molecules) is straightforward by considering
one of the conformations as a reference and comparing it with all other n — 1 conformations.
If multiple conformations per molecule are available, all possible combinations should be tried.
Common parts of all pairwise invariants need to be computed in the end.

If a large number of conformations per molecule are considered, there can be a combinatorial
explosion in the number of basic operations performed by algorithms like DISCO [8]. This is the
main reason that different approaches are under development. One idea is to start with small

invariants (2-3 features) and gradually expand them [8]. Another idea is to use optimized geo-
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metric hashing techniques from computer vision [38]. Another idea is to use genetic algorithms.
A genetic algorithm has been described in which conformational flexibility is considered during
the pharmacophore identification process. T'he chromosome encodes the torsional angles of the
rotatable bonds and the feature mappings [62]. The fitness function is a weighted combination
of the feature overlap (the pharmacophore), the common volume occupied by the ligands, and
energy of the ligands (to prevent the identification of pharmacophores which use high-energy

conformations). The method has been shown to work well in test cases.

Yet another idea is to use randomized techniques when searching for invariants [37]. Ran-
domization can be introduced both when solving the two point set problem and when considering
multiple conformations per molecule. In [37] two methods for determining congruence are pre-
sented. One just selects three random points from the first set and matches them with points
in the other set that have approximately the same pairwise distances. Then a transformation is
defined to overlap the triples and the rest of the points in the sets are checked for congruence.
This process is repeated and the maximal matching is retained. The second approach randomly
selects two subsets A and B of size 1/a from the first set of points (o is the estimated size of the
pharmacophore), and a subset C' of size 1/a from the second set of points. For every triangle
(a,b,p) witha € A,b€ B, and p € m, it finds matching triplets (¢, p1, p2) with ¢ € C and
p1,p2 € C. The first triplet is transformed to the second and the matches are counted. Again
the process is repeated and the maximal matching is retained. It is shown in [37] that the second
scheme is more efficient than the first because of the distribution of distances among features
that is encountered in molecules. The question of matching with noise is further treated in [60]

using techniques from combinatorial geometry. The bounds given depend on the diameter of

the point set. The problem of matching under noise is still open.

7 Discussion

Computed-assisted methods for rational drug design combine a number of different techniques.
This article shows that methods from graph-theory, geometry, randomized algorithms, computer
vision and graphics have useful applications in this domain. It is clear that there is a need for
robust algorithms that provide good performance guarantees and allow the chemists to test their
hypothesis. It is also clear that there is a need to further develop these algorithms to deal with

noisy data.
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Undoubtedly, the molecular representations and methods discussed here are only one part
of the picture of rational drug design. Others include, for example, incorporating into the
design appropriate selectivity for the desired target (so as to reduce side-effect profiles) and
resistance to metabolic degradation. Nonetheless, software tools that consider molecular geome-
tries and perform simple energy calculations, and in particular conformational search, docking
and pharmacophore identification methods, can help in the early stages of drug development
[7, 12, 16, 122]. The increased use of such tools can contribute to the development of improved
models of the relationship between chemical structure and biological activity [48, 73], making
drug design a more efficient and effective process. Last but not least, the amount of data that
is now available in molecular databases makes such tools indispensable to medicinal chemists.
From a theoretical point of view, the computational problems that arise in drug design, even

when simple energy models are assumed, are truly challenging.
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