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Geometry-based Methods for Protein 
Function Prediction 

Brian Y. Chen 

Abstract 

The development of new and effective drugs is strongly affected by the need 

to identify drug targets and to reduce side effects. Unfortunately, resolving 

these issues depends partially on a broad and thorough understanding of the 

biological function of many proteins, and the experimental determination of 

protein function is expensive and time consuming. In response to this prob

lem, algorithms for computational function prediction have been designed to 

expand experimental impact by finding proteins with predictably similar func

tion, mapping experimental knowledge onto very similar, unstudied proteins. 

This thesis seeks to develop one method that can identify useful geometric 

and chemical similarities between well studied and unstudied proteins. Our 

approach is to identify matches of geometric and chemical similarity between 

motifs, representing known functional sites, and substructures of functionally 

uncharacterized proteins (targets). It is commonly hypothesized that the ex

istence of a match could imply that the target contains an active site similar 

to the motif. 

We have designed the MASH (Match Augmentation with Statistical 

Hypothesis Testing) pipeline, a software tool for computing matches. MASH 

is the first method to match point-based motifs, developed in earlier work, that 

represent functional sites as points in space with ranked priorities and alter

native chemical labels. MASH is also first to match cavity-aware motifs, a 

novel contribution of this work, that extend point-based motifs with volumet-
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ric information describing active clefts critical to protein function. Controlled 

experiments demonstrate that matches for both types of motifs can identify 

cognate active sites. 

However, motifs can also identify matches to functionally unrelated pro

teins. For this reason, we developed Motif Profiling (MP), the first method 

for motif refinement that reduces geometric similarity to functionally unre

lated proteins. MP is implemented in two forms: Geometric Sieving (GS) 

refines point-based motifs and Cavity Scaling (CS) refines cavity-aware mo

tifs. Controlled experimentation demonstrates that GS and CS identify motif 

refinements that have more matches to functionally related proteins and less 

matches to functionally unrelated proteins. 

This thesis demonstrates the importance of computational tools for match

ing and refining motifs, emphasizing the applicability of large-scale geometric 

and statistical analysis for functional annotation. 
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Chapter 1 

Introduction 

Broad and extensive knowledge of the biological function of proteins would 

have immense impact on medical and biological research. Using this knowl

edge, practical goals such as the identification of novel drug targets, the re

duction of potential side effects, and the development of treatments affecting 

biological mechanisms, could be broadly advanced. In addition, knowledge of 

individual protein functions could accelerate many studies at the broader scope 

of protein-protein interactions and protein networks, by providing supporting 

information about single proteins. 

Unfortunately, the function of many proteins is not known because experi

mental determination of protein function is an expensive and time-consuming 

process. Furthermore, it is currently infeasible to automate the collection of 

protein function information because elucidating the function of even a sin

gle protein currently depends on the insight of skilled investigators, and can 

require a broad range of empirical experimentation. This substantial barrier 

to automation inspires the design of computational methods that can provide 

investigators with useful information and analysis that may assist the deter

mination of protein function. These algorithms are frequently called methods 

for function prediction or functional annotation. For simplicity, we use the 

former. 

1 
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2 

1.1 The General Protein Function Prediction Problem 

Algorithms for Function Prediction approach the abstract problem of Protein 

Function Prediction, formulated as follows: 

The Problem of Protein Function Prediction 

Input: A specific protein P and I, any known biological 

information useful to determine the output. 

Output: Specific information hinting at the biological function 

of the protein. 

This description is an abstraction of many formulations of the problem. 

Varying formulations differ in how P is represented, such as by the sequence 

[1, 2, 3] or the structure [4, 5, 6, 7] of the protein, and may also use additional 

information (I), such as a set of sequence homologs [1, 8, 9, 10, 11, 12, 13], 

a network of proteins which P interacts with [14, 15, 16], or a set of protein 

structures [17, 18, 19, 20, 21, 22, 23]. Finally, many existing formulations of 

the problem yield information about protein function in many different ways. 

Some examples identify distant evolutionary relationships between proteins 

[2, 3], which may suggest functional similarities. Some formulations identify 

cavities and pockets in protein structures [24, 4, 7] which tend to be located 

at functional sites on the protein structure. Functional sites, also known as 

active sites, are regions within protein structure, frequently on the surface, 

believed to be most significant to the biological function of proteins. Still 

other formulations analyze networks of proteins [14, 15, 16] to deduce which 

proteins have important interactions with other proteins. All of these methods 

analyze existing data about proteins in an effort to gather small hints about 

protein functions, maximizing the impact of data collection efforts and poten

tially yielding information that might accelerate the study of proteins in the 

laboratory. 
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3 

1.2 Specific Problems Targeted in this Work 

Within the broader class of methods for Protein Function Prediction, this doc

ument studies the rigid geometric comparison of protein substructures. These 

techniques makes the governing assumption that geometric and chemical iden

tity implies functional similarity. Within this subclass, one popular approach 

is to determine if a target protein structure contains a substructure, or match, 

that resembles a well documented active site structure, or motif It has been 

widely hypothesized that rigid geometric similarity in active site geometry, 

with similar chemical labels, might identify active sites with similar biological 

function [17, 13, 18, 25, 20, 21, 22, 23]. 

In an effort to develop the most effective approach for identifying similar 

active sites, it is essential to answer two central questions: 

1) How do we efficiently determine if a substructure of the target 

is geometrically and chemically similar to the motif? 

2) What is the best geometric and chemical representation of the 

motif and target protein? 

Producing an answer to these questions is difficult because any answer to 

one question requires an answer to the other. In order to identify matches 

of geometric and chemical similarity, it is essential to fix a representation of 

protein structure that is adequate to capture characteristics relevant to protein 

function. However, in order to develop and test adequate representations of 

protein structure, it is essential to have geometric comparison algorithms for 

controlled experiments. 

The Geometric and Chemical Matching Problem 
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Input: A motif structure representing a known functional site 

A target protein structure 

Output: A match (or no match if none found) of geometric and 

chemical similarity. 

4 

One part of this thesis explores question 1 in an effort to target the Geomet

ric and Chemical Matching Problem. For two representations of motifs, called 

point-based and cavity-aware motifs, defined later, a solution to this problem is 

an algorithm that accepts a motif and a target as input, and returns matches 

of geometric and chemical similarity, if they exist, as output. 

An effective solution to this problem requires effective motifs and an ef

fective algorithm. Effective motifs have geometric and chemical similarity to 

functionally related proteins while maintaining geometric and chemical dis

similarity to functionally unrelated proteins. An effective algorithm identifies 

matches to effective motifs, when they exist. 

The Motif Refinement Problem 

Input: A motif structure representing a known functional site 

Output: A refined version of the input motif with greater 

sensitivity and/ or specificity. 

Point-based and cavity-aware motifs are two ways represent a functional 

site with a motif. However, the question of how best to represent specific ac

tive sites is a very broad one. Various characteristics of any active site may be 

chosen, regardless of how they are represented, so that the number of matches 

to functionally related proteins is maximized, while the number of matches to 

functionally unrelated proteins is minimized. Selecting the set of character

istics to be represented can be formulated as the Motif Refinement Problem. 

This problem accepts, as input, a motif structure which represents several 

characteristics of an active site. The output desired is the subset of character

istics which maximize geometric and chemical similarity to functionally related 

proteins, while minimizing similarity to functionally unrelated proteins. 
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5 

Together, our approaches to the Geometric and Chemical Matching prob

lem and to the Motif Refinement Problem provide a comprehensive approach 

to the problem of using rigid geometric and chemical similarity to identify 

potentially similar active sites represented with point-based and cavity-aware 

motifs. 

1.3 Statement of Thesis 

This thesis shows that an efficient matching algorithm and large scale geomet

ric comparison can yield an effective approach to the Geometric and Chemical 

Matching Problem and the Motif Refinement Problem. Large scale geometric 

comparison enables accurate, data-driven assessments of statistical significance 

not possible in earlier work. In Section 1.4, we will outline how efficient ge

ometric matching algorithms can drive statistical models that can identify 

matches to functionally related active sites. Large scale geometric comparison 

also enables us to refine motifs using criteria other than the criteria used to 

design the motifs in the first place. In Section 1.5 we describe a novel tech

nique that uses thousands of matches to identify motif refinements that have 

minimized geometric similarity to all known protein structures. As one of the 

first approaches to the Motif Refinement Problem, our technique would not 

be possible without large scale geometric comparison. 

1.4 The MASH Pipeline for Identifying Geometric 

Matches 

We have designed two variations of a pipeline called MASH (Match Augmentation 

with Statistical Hypothesis Testing) that identify geometric matches using two 

types of motifs. Point-based MASH uses motifs represented as sets of chem

ically labeled and prioritized points in space, motif points, taken from atom 

positions in crystallographic protein structures. Motifs used for Cavity-aware 

MASH use motif points as well, but also incorporate C-spheres that represent 
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6 

geometric volumes essential for protein function. 

1.4.1 Point-based MASH 

Many existing methods [17, 18, 19, 20] have studied the possibility of rep

resenting protein structures as chemically labeled points in space, in an ef

fort to compare protein structures. Our point-based motifs follow this basic 

blueprint; however, they also incorporate expanded labeling definitions for ad

ditional matching criteria. Section 3.1.1 explains that our point-based motifs 

follow this basic blueprint, and also support more flexible labellings, including 

multiple labels per point and priority ranks as those defined and computed in 

the work of [26, 27, 28, 1, 29, 8, 11]. 

We designed an algorithm called Match Augmentation (MA) [21]. MA 

identifies matches within the target that have substructural and chemical sim

ilarity to the motif. On a small data set, we demonstrated that MA is capable 

of finding 96.5% of target active sites cognate to a given motif. However, MA 

also identifies matches with many functionally unrelated proteins. We call 

these false positive matches. In the context of function prediction, where ex

pensive experimental resources could be applied to verify functional similarity, 

false positive matches must be reduced as much as possible. For this reason, it 

is essential to understand the degree of similarity necessary to imply functional 

similarity. 

The degree of geometric and chemical similarity associated with functional 

similarity can be studied with statistical models that assess the statistical 

significance of matches found. We measure geometric similarity by least root 

mean squared distance (LRMSD*), and enforce chemical similarity using chem

ical labels. Each time we find a match, our statistical model determines how 

statistically significant the LRMSD of a match is, relative to a baseline degree 

of similarity common among all protein substructures. Using our statistical 

*LRMSD is the smallest possible root mean square distance (RMSD) between two sets 
of aligned points in 3D 
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model, we showed that the identification of a match with statistically signif

icant similarity can suggest that the target and motif have a similar active 

site, a result that concurs with existing findings using other motif designs and 

statistical models [25, 30, 21, 20]. 

MA, combined with our statistical model, forms the point-based MASH 

pipeline. As input, MASH takes a motif, and target protein of interest, and 

a representative set of all known protein structures. As output, MASH pro

vides a match to the target provided, as well as a p-value that quantifies the 

statistical significance of the match. 

1.4.2 Cavity-aware MASH 

It is hypothesized that ligand binding proteins often contain active clefts or 

cavities which create chemical microenvironments essential for biological func

tion. In several instances, large surface concavities have been associated with 

protein function [6, 31]. For this reason, existing methods have also studied 

motif designs which represent the volumes of clefts and cavities essential for 

protein function [32, 24, 7, 33]. Inspired by seminal work in the modeling and 

search for protein cavities [6, 34, 30], we explored an expanded definition of 

motifs and targets by combining a representation of cavities in protein struc

tures with our own point-based motifs. We use geometric representations of 

cavities to eliminate false positive matches: If the matching atoms of the tar

get truly form a cognate active site with similar function, the matching atoms 

of the target should surround an empty cavity with similar shape. 

One of the strengths of MA is that it can be adapted for compatibility with 

certain motif and target variations. We developed a modified version of MA 

called Cavity-Aware Match Augmentation (CAMA) that searches for motifs 

built from motif points, such as those used above, while requiring specific ge

ometric volumes, represented with sets of C-spheres, to remain empty. These 

cavity-aware motifs represent active sites as a combination of protein structure 

and functionally significant protein volumes, simultaneously. C-spheres also 
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accelerate CAMA, because the search tree applied in CAMA, described later, 

can be pruned using the principle of maintaining empty C-spheres. Matches 

under consideration can be eliminated before computationally intensive anal

ysis is spent, reducing computation time by two thirds while maintaining high 

accuracy. As we will demonstrate in our experiments, in comparison to point

based motifs, cavity-aware motifs have many fewer matches to false positives, 

while preserving most matches to functionally related proteins. 

1.5 Motif Profiling (MP): A Method for Automated 

Motif Refinement 

Currently, many motifs are designed by experts [21, 25], derived from biolog

ical literature [35], built from evolutionary analysis of families of homologous 

proteins [8, 11, 13], or from databases of active site information [19, 36]. Other 

methods select motifs based on analysis of structure or sequence data, such as 

the largest cavity [32] or using evolutionarily significant amino acids close to 

known ligand binding sites [21, 13]. While biologically derived data is clearly 

essential for effective motifs, few existing techniques refine motifs based on 

geometric properties to make them more effective for geometric comparison, 

except MULTIBIND [37, 17] and our method, MP. 

In the design of MP, we observed that the set of proteins with known 

structure have a very diverse set of functions. No significant fraction of the set 

of proteins with known structure share functional similarity with any given 

protein. For this reason, computing a motif profile, the set of matches be

tween a given motif and the set of known protein structures, yields a close 

approximation to the set of matches to all functionally unrelated proteins. 

Given an input motif for refinement, MP compares motif profiles to find the 

motif refinement that maximizes geometric dissimilarity to the set of function

ally unrelated proteins, a property we call Geometric Uniqueness. The motif 

refinement with maximal Geometric Uniqueness is returned as output. 
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We have applied the measurement of Geometric Uniqueness to the problem 

of refining the selection of motif points in point-based motifs, as well as the 

selection of C-spheres in cavity-aware motifs. These two applications of MP 

are GS [38] and CS [35]. 

1.5.1 Geometric Sieving 

GS refines candidate motifs into optimized motifs before they are used in 

point-based MASH [38]. As input, GS accepts a selection of candidate motif 

points, chosen perhaps by another motif design algorithm, called the input 

set, and the number k of motif points desired in the optimized motif. GS 

outputs an optimized motif: a motif of k candidate motif points with the 

greatest Geometric Uniqueness. We used GS to identify 10 Geometrically 

Unique motifs, and tested them in the point-based MASH pipeline. Optimized 

motifs produced by GS had among the highest sensitivity and specificity among 

all possible refinements of the input sets. 

Measuring and optimizing Geometric Uniqueness is a nontrivial computa

tional problem because numerous structural comparisons must be made be

tween many motifs and many protein structures. Our implementation of GS 

efficiently distributes this work across a cluster of computers and achieves 

speedup that is linear in the number of processors. In addition, we have 

designed an online statistical analysis that refines the data as it is generated. 

These optimizations make GS a practical preprocessing tool for refining motifs 

before they are passed to point-based MASH. This reduces the dependence on 

human experts for motif design by automatically refining more broadly defined 

motifs. 

In addition to improving systems for function prediction, geometric refine

ment of motifs can also yield additional insight about active sites. For example, 

evolutionarily significant amino acids, defined in [26, 27, 1, 8, 10], as those most 

associated with important evolutionary divergences, have been shown to form 

statistically significant clusters [9] that are often related to active sites [11]. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

10 

On our limited dataset, we observed that clusters of evolutionarily significant 

amino acids are more Geometrically Unique than evolutionarily insignificant 

amino acids. 

1.5.2 Cavity Scaling 

We observed that certain high-impact C-spheres contribute more to the elim

ination of false positive matches than others. In particular, when computing 

motif profiles on cavity-aware motifs, we observed that high-impact C-spheres 

force cause matches with all known protein structures to have greater geo

metric dissimilarity. For this reason, measuring the Geometric Uniqueness of 

some cavity-aware motifs, in comparison to identical point-based motifs, can 

identify high-impact C-spheres. We call this process CS [35]. 

CS allowed us to automatically refine our existing motifs to contain only 

high-impact C-spheres, guiding the design of cavity-aware motifs that elim

inate many false positive matches, and reducing reliance on human experts. 

Applying CS to a set of cavity-aware motifs, we tested these refined motifs with 

cavity-aware MASH. Motifs using only high-impact C-spheres identified ad

ditional matches to functionally related proteins, while still eliminating many 

matches to false positives. 

1.6 Contributions 

MASH is a novel procedure that accepts two kinds of input motifs. The first, 

point based motifs, contain geometric, chemical and priority rank information. 

The development of motifs that fall in this class is a very active area of research 

[26, 39, 27, 1, 29, 9, 10, 12, 21, 38, 13, 35]. The second class of motifs, cavity

aware motifs, which first appear in this work, consists of a combination of 

point based motifs and volumetric information. MASH is the first procedure 

to accept these two classes of motifs. 

In addition to developing an algorithm for matching the above motifs, 
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MASH is also the first procedure that we know of that applies a non-parametric 

model to the measurement of the statistical significance of matches. Our 

statistical model does not require calibration to representative sets of protein 

structures, unlike earlier parametric models, and still identifies statistically 

significant matches to functionally related proteins. 

Having developed a platform capable of identifying matches to similar func

tional sites, we developed MP in an effort to refine existing motifs and improve 

the accuracy of our platform. MP is among the first methods to introduce the 

idea of motif refinement based on non-biological criteria. MP is also the first 

method to formulate the concept of Geometric Uniqueness and demonstrate 

that Geometric Uniqueness can refine point-based motifs as well as cavity

aware motifs. MP is a valuable contribution because it does not depend on 

expert knowledge, thereby making first steps towards the automated design of 

motifs. While other methods have been motivated to refine motifs, MP is the 

first method that yields demonstrable improvements in accuracy, as we will 

demonstrate in our experimental results. 

1. 7 Thesis Road Map 

Chapter 2 includes a discussion of the different types of motifs that have been 

considered in the past, summaries of other geometric comparison algorithms 

and other statistical models of geometric similarity, and a survey of the com

putational complexity of the geometric matching problem in several relevant 

formulations. 

Chapter 3 then describes point-based MASH and cavity-aware MASH. 

First, we provide an in-depth description of point-based motifs, the Match 

Augmentation algorithm, and our statistical model. We then describe how 

cavity-aware MASH modifies point-based MASH to produce a cavity-aware 

version of the MASH pipeline. 

Chapter 4 provides experimentation which demonstrates that point-based 

MASH and cavity-aware MASH are capable of identifying matches to func-
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tionally related proteins. We also demonstrate that cavity-aware MASH sub

stantially reduces matches to functionally unrelated proteins. 

Chapter 5 describes MP and the concept of Geometric Uniqueness. We 

then applied MP to the design of Geometric Sieving and Cavity Scaling. We 

also describe how statistical analysis can be used to accelerate a distributed 

version of Geometric Sieving. 

Chapter 6 provides experimentation demonstrating that GS and CS iden

tify sensitive and specific refinements of point-based and cavity-aware motifs. 

We also demonstrate the efficiency of our distributed implementation of GS. 

Finally, Chapter 7 summarizes the contributions and results presented in 

this document. 
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Chapter 2 

Related Work 

A vast space of techniques are related to the identification of functional sites 

and the prediction of protein function. These methods study a wide variety of 

data types, ranging from protein sequences to protein structures to networks 

of proteins, varying in scope from analyzing a single protein to comparing 

several proteins, to hundreds of related proteins. While these topics border 

on the subject of this document, they are too numerous and diverse for the 

scope of this document. Instead, this section focuses on describing core topics 

directly related to the identification of potential functionally similar active 

sites through the comparison of protein substructures. 

We begin by describing recent approaches to the critical subproblems of 

our function prediction approach, mentioned in Section 1.1. First, we describe 

different ways of representing active sites used in recent work. We then de

scribe algorithms used to compare these motifs to target protein structures. 

One issue for these comparison methods is to understand what degree of sim

ilarity is necessary to imply functional similarity. For this reason, we also 

reserve a section for statistical models which help establish the degree of simi

larity associated with functional similarity. Finally, we review the algorithmic 

complexity of the geometric comparison problem that we seek to solve. 

2.1 Motif Types and Design 

The search for geometric markers of functional similarity has considered many 

different ways to represent active sites. In each study, it is hypothesized that 

one particular representation of an active site, or motif type, can be successful 

in identifying similar-functioning sites. The motif types considered can be 

13 
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loosely organized into point-based motifs and volumetric motifs. 

In the future, it could be possible to study the differences in sensitivity 

and specificity common to each motif type, and perhaps arrive at a single 

type of motif that is useful for many proteins, or a well defined set of proteins. 

However, protein active sites vary greatly in chemical properties and geometric 

shape, and so it is likely that some motif types are more effective for some types 

of active sites, and that few are universally effective. 

2.1.1 Point-Based Motifs 

Point-based motifs are composed of geometric points in three dimensions. 

One prominent use of point-based motifs has been to represent atom coordi

nates taken from protein structures and active sites. Point-based motifs have 

been used to represent amino acid C-alpha atoms [40, 21], sidechain atoms 

[41, 20], atoms in hinge-bending flexible active sites [40], atoms in catalytic 

sites [25, 42], catalytic triads [43], and conserved binding patterns [37, 17]. In 

each of these cases, point-based motifs are used to represent specific atoms or 

groups of atoms, as a direct representation of atomic structure. 

Point-based motifs have also been used to represent more abstract struc

tural data, such as lattice points [44, 45, 46] and electrostatic potentials [18] 

on Connolly surfaces [47]. Here, point-based motifs represent critical topo

logical information, such as the deepest part of a "hole" or the highest part 

of a "knob" , on the protein surface. Another example is the use of pairs 

of points to represent vectors of sidechain orientation [48]. This abstraction 

of sidechain orientation permits a higher resolution description of sidechain 

orientation while preserving the ability to compare different amino acids. 

Many data structures have been developed for representing point-based 

motifs. While vectors are the most common representation [43, 46, 40, 25, 18, 

21], other representations of points in space include distance matrices [49, 50] 

and graphs [51, 52, 53]. 

Point-based motifs are easily labeled with biological information. When 
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representing atoms, this natural extension has been used widely to label points 

with atom and residue information. Points have also been labeled with evo

lutionary significance and mutation data [21] from the Evolutionary Trace 

(ET) [26, 12], hydrogen donor/acceptor and hydrophobic/hydrophilic proper

ties [17], and electrostatic potential [18]. 

There are many ways to represent the same active site with motifs of a 

specific type. For point-based motifs, the choice of atoms and how to label 

them is critical to successfully finding matches to functionally related por

tiones. In current work, point-based motifs have been designed using the 

Evolutionary Trace [26, 12] and proximity to binding sites [11, 21]. Motifs 

have also been designed using literature search and PSI-BLAST alignments 

of literature-defined motifs from the Catalytic Site Atlas [19, 36], and manu

ally, by experts [25]. Still other motifs are designed using surface exposure, 

and algorithms for detecting conserved binding patterns [37]. These methods 

seek to identify substructures that are involved in biological function. Recent 

techniques also use geometric analysis to refine point-based motifs. GS [38], 

presented later in this paper, is one such method. Another excellent example is 

MULTIBIND [37, 17], an algorithm that identifies conserved binding patterns 

by identifying the least common point set among a set of existing motifs. 

2.1.2 Volumetric Motifs 

Another way to represent active sites and function regions is to model the 

shape of the active cleft or cavity. Volumetric motifs have been represented 

with spheres [54, 7, 55, 56, 35], alpha-shapes [57, 34, 30, 32], and grid-based 

techniques [24, 7, 33]. The design of volumetric motifs involves the questions 

of which regions the motif should occupy and what amino acids should border 

the motif. One example of volumetric motif design is SURFNET-Consurf [33], 

an algorithm that modifies the boundaries of computationally identified active 

clefts, to avoid regions distant from highly conserved amino acids. 

Alpha shapes are one especially interesting way to identify and describe 
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pockets and voids in protein structures through a natural geometric construc

tion. While this construction is applied in three dimensions, we explain it in 

two dimensions for clarity. We begin with coordinates for each atom in the pro

tein. Centered at each coordinate, we place a constant-radius circle. We also 

compute the Voronoi diagram on these coordinates, generating a set of Voronoi 

edges. Some Voronoi edges are completely outside the circles surrounding each 

point, while others touch at least one circle. All Voronoi diagrams are dual to 

a Delauney trianglization, because all Delauney edges correspond to adjacent 

Voronoi cells. In this case, we color Delauney edges red if the Voronoi edge 

that it crosses does not touch any circles. We color the remaining edges green. 

The alpha shape is said to be the set of green edges, the points they connect, 

and the volume enclosed within the green edges. 

One interesting result of defining alpha shapes is that voids and pockets on 

protein surfaces can be identified easily. From the previous description, trian

gles in the Delauney trianglization which have at least one red edge describe 

pockets on the exterior of the protein, or are interior voids. This is critical 

in the identification of voids found by CASTp [31] and compared by pvSOAR 

[30]. 

2.2 Geometric Comparison Algorithms 

A broad range of geometric comparison algorithms have been developed for 

individual motif types*. These algorithms are highly specialized, making per

formance comparisons difficult. For clarity, we loosely organize these compar

ison algorithms into point-based methods that search for point-based motifs, 

and volumetric methods that deal with volumetric motifs. 

*For some approaches, geometric and chemical similarity is measured differently. Ge
ometric Hashing [58], JESS [25], PINTS [20], and MA [38] measure geometric similarity 
using LRMSD. pvSOAR [32] uses both LRMSD and oRMSD. oRMSD is computed by first 
projecting all points onto the unit sphere at the center of each pocket, and then computing 
LRMSD. 
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2.2.1 Point-based Comparison Algorithms 

Algorithms for comparing point-based motifs identify geometric similarity by 

finding point-to-point correlations between motif points, and the points in the 

target, or target points. Point-based motifs have been supported strongly by 

the seminal Geometric Hashing framework [58, 59], a paradigm that hashes 

rotationally and translationally invariant geometric representations for effi

ciency. Geometric Hashing has been applied in many different ways: it can 

search for many point-based motif types [44, 40, 41, 42, 37], refine point-based 

motifs by identifying the largest common point set among a set of similar 

motifs [17], and simultaneously align multiple [60, 61], even hinge-bent [62], 

protein structures. 

(x,y) 
• 

• ( ) 

Figure 2.1 : A Diagram of a Geometric Hashing Invariant 

Three points in space can be stored in an invariant manner. For 
example, the two closest points can be used to define a two di
mensional axis on which the last point is the two dimensional vec
tor ( x, y). The distance between the closest two points provides 
the last aspect of the invariant, z. This type of geometric repre
sentation can be used to generate initial alignments for geometric 
comparison. 

The Geometric Hashing paradigm hinges on the efficient application of ge

ometrically invariant representations of points in space. Since many variations 

on geometrical invariants exist, we describe one example here. Given a set 

of 3 points in space, we can define a procedure which generates a vector that 

represents all three points, as well as perhaps several symmetric reflections of 

the points. As in Figure 2.1, for example, two of the three points can define 
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a coordinate axis, with the perpendicular bisector of the segment defining a 

perpendicular axis. The distance between the first two points, and the 2D 

vector describing the position of the third point relative to the orthogonal 

axes described, generates a 3D vector that describes these points in space. We 

refer to this vector as an invariant. Similar invariants describe similar point 

triplets. Therefore, given two structures to compare, we can iterate through 

all triplets of both structures, generating invariants. 

Given two triplets, we can compute an LRMSD alignment that provides 

a transformation of one triplet onto another. For this reason, when we ob

serve a pair of similar invariants from the motif and target, we can compute a 

transformation between these two invariants, and store the transformation as 

a vector in the space of transformations. When we exhaustively compare all 

invariants from the motif and target, plotting the transformations correspond

ing to all similar pairs of invariants, we can cluster similar transformations. 

Averaging the largest cluster of transformations yields a single geometric align

ment between the most triplets in the motif and target - a match. Geometric 

Hashing facilitates the rapid comparison of invariants by hashing all motif in

variants, so that comparison of all motif invariants against all target invariants 

is dependent on generating invariants only for the target. 

Other point-based comparison algorithms test possible point-to-point cor

relations in a depth-first-search (DFS) manner, such as the database search 

algorithm used in PINTS [63], JESS [25], and the Augmentation phase of MA 

[21). These approaches to identifying matches begin with a partial correla

tion between the motif and the target, and expand the number of correlated 

pairs with a DFS. JESS and PINTS use multiple starting points from different 

atoms in the motif. MA uses seed matches, described later, of three points. 

Given the initial correlations, each method identifies a motif point and a target 

point that could be added as the next correlation, repeating this process until 

either no more motif points remain uncorrelated, or no more target points can 

be correlated with a motif point. The resulting partial match is saved, the last 
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added correlation is removed, and a new target point is found to be correlated 

with the last unmatched motif point. This DFS process continues exhaus

tively, always remembering the match with lowest LRMSD that also fulfills all 

matching criteria. This match is returned once DFS iteration is complete. 

Finally, other point-based comparison algorithms use techniques which find 

subgraph isomorphisms [53]. These approaches represent motifs as geometric 

graphs, where each atom is a vertex of the graph, and edge is weighted by 

its geometric distance between two points. Here, existing algorithms for edge

weighted subgraph isomorphism [64] were used to identify matches between 

motifs and targets. 

2.2.2 Volume-based Comparison Algorithms 

pvSOAR [30, 32] compares volumes in protein structure using motifs based 

on alpha-shapes. Earlier work on volumetric representations features analysis 

of only a single protein without comparison. Using varying representations of 

protein surfaces, these studies, using grid-based algorithms SURFNET [24] and 

SURFNET-ConSURF [33], and alpha-shapes technique CASTp [31], observed 

that ligand binding sites are often the largest "pocket" on the protein surface. 

Among all earlier work, pvSOAR is the most closely related to our own 

approach, being the only algorithm that compares protein volumes between 

two proteins. pvSOAR leverages a sequence comparison of amino acids that 

border on protein pockets, as well as a scale-independent geometric comparison 

of amino acids relative to the pocket. Beginning with two protein structures 

to compare, all pockets in both structures are first identified. Then the set 

of amino acids adjacent to all pockets are identified and compared. If two 

pockets have high sequence similarity, then the geometry of the pockets are 

compared by oRMSD. pvSOAR uses both the sequence similarity score and 

unit RMSD to evaluate geometric and chemical similarity. 
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2.3 Theoretical Foundations 

In our representation of protein structures, identifying matches between a 

motif and target generalizes to the problem of identifying the subset of a 

point set in 3D with smallest LRMSD to another set of points. While a 

polynomial solution for this problem remains unknown, as we explain later, 

many variations of this pattern matching problem have been studied, providing 

several bounds on the complexity of the problem. We survey these results in 

this section. 

2.3.1 Exact Pattern Matching 

The exact case of the pattern matching problem is well studied in JRd for all 

d. Exact pattern matching searches for a congruence between point sets A 

and B in JRd with sizes IAI and IBI. A congruence is defined as an isometric 

mapping TE T, the space of all rigid rotations and translations in JRd. A and 

B are said to be congruent if there exists a congruence T such that Vai E A, 

T(ai) = bi E B, where j are distinct for all i. The asymptotic complexity of 

determining congruence, and several relaxations of the congruence problem, is 

summarized in Figure 2.2. 

Exact Pattern Matching Performance 
Congruence CCD LCP 

O(n~2:..!. logn) O(nL89m·8 + min{n2·5, n3m-2}) O(nl.89m2.8 + n3) 

Figure 2.2 : Complexity of Exact Pattern Matching and Relaxations 

We survey here the complexity of exact pattern matching (furthest left), 
congruent copy detection (center), and largest common pointset (right) 
problems. While complexity is known for exact pattern matching in all 
dimensions d (JRd), this is not the case for CCD and LCP. For CCD 
and LCP above, we state complexity for 3D (three dimensions), which 
is most relevant to the work in this document. 

In their seminal publication, which initiated much of the study of exact and 

inexact, pattern matching, Alt, Mehlhorn, Wagener, and Welzl [65] demon-
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strated that for IAI = IBI = n, identifying a congruence (or returning failure 

when none exists) is possible in O(nd-2 logn) time. This was later improved 
d-1 

by Akutsu [66] to O(n-2 logn). Akutsu also added that the problem of iden-

tifying congruence for unbounded d is NP-hard, by demonstrating that if a 

polynomial time algorithm existed for congruence in unbounded d, there also 

exists a polynomial time algorithm for graph isomorphism [66]. 

The exact pattern matching problem is very restrictive. In many appli

cations, we seek to determine if one pattern A exists within a field of ob

served data B, which is not the same size as A. Thus, one well studied 

relaxation of the exact pattern matching problem is when IAI = m < n = 
IBI. Here, the problem is to determine if A is congruent to a subset of 

B, and the problem is called the Congruent Copy Detection ( CCD) prob

lem. In 1998, Akutsu, Tamaki, and Tokuyama [67], demonstrated that for 

d = 2, the complexity of CCD is O(min{ nl.43m·77 , n~m} ), for d = 3, CCD is 

O(ni.89m·8 +min{ n2·5 , n 3m-2 } ), ford= 4, CCD is O(n2·87 m + n3·83 ), and for 

d;:::: 5, CCD is O(nd-lm + nd). 

In other applications, we seek to determine of A exists within B, but it can 

be possible that only a portion of A is detectable. Thus, a further relaxation of 

the exact pattern matching problem is when IAI = m < n = IBI, but we seek 

the largest p < m such that a subset A' CA has IA'I = p and IA'I is congruent 

to a subset of B. This problem is called the Largest Common Pointset (LCP) 

problem. In 1998, Akutsu, Tamaki, and Tokuyama [67] demonstrated that for 

d = 2, LCP is O(nl.43ml.77 + n 2 ), for d = 3, LCP is O(nl.89m 2·8 + n3 ), for 

d = 4, LCP is O(n2·87m4 + n4 ), and ford;:::: 5, LCP is O(nd-lmd + nd). 

2.3.2 Inexact Pattern Matching 

Exact pattern matching has difficulties in application, because in practice, 

imprecise data and inaccurate sensors produce data that is rarely identical. For 

this reason, one important relaxation of the exact pattern matching problem is 

the inexact pattern matching problem. The inexact pattern matching problem 
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seeks to determine how similar two non-identical point-sets A and B are, by 

identifying the smallest possible value of a given distance measure between 

point sets. These distance measures vary based on the alignment of the two 

point sets, or the mapping between points in A and B. For this reason, 

identifying the minimum distance can be very time consuming. 

Distance Measures The most well studied point set distance measures 

include the Hausdorff measure 8s, the bottleneck measure 8B, and Root Mean 

Squared Distance (RMSD), 8RMSD· These distance measures are frequently 

defined on underlying point-to-point distance metrics such as the £ 2 norm and 

the £ 00 norm. In this document, we report results for the £ 2 norm, referred to 

as d( a, b) between points a and b, because it is far better studied and is most 

closely related to the work in this document. 

Definition 1 (Hausdorff Distance) Given point sets A and B 1 the asym

metric Hausdorff distance from A to B is 

--+ 
8s(A, B) = maxmind(a, b) 

aEA bEB 

The symmetric Hausdorff distance from A to B is 

Hausdorff distance differs from the other two measures in that for A, B C 

IRa, 8s(A, B) depends solely on an alignment T E T, the space of all rigid 

rotations in JRd. Thus, the smallest possible value of 8s(A, B) is min 8s(A, B). 
TET 

Definition 2 (Bottleneck Distance) Given point sets A and B, let M be 

the set of all matchings (one-to-one relations} M from A to B. The symmetric 

bottleneck distance from A to B is 

8B(A, B) = min max d(a, b) 
MEM (a,b)EM 
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Definition 3 (Root Mean Squared Distance) Given point sets A and B, 

let M E M be a one-to-one relation in the set of all one-to-one relations M 

from A to B. The symmetric RMSD for M is 

2: (d(a, b)) 2 

0RMsn(A, B) = 
(a,b)EM 

2 

The Least RMSD, or LRMSD, from A to B is 

oLRMsn(A, B) = min (oRMsn(A, B)) 
MEM 

Unlike the Hausdorff measure, the bottleneck and RMS measures depend 

on one-to-one relations between the point sets under comparison. While one 

way to generate these one-to-one relations is to generate an alignment and 

then carefully select a one-to-one relation based on proximities produced by 

the alignment, both measures are entirely independent of the alignment. In 

addition, given A, Band a one-to-one relation M from A to B, there is exactly 

one alignment T E T for which 0RMsn(T(A), B) = 0LRMsn(A, B). However, 

given M, a transformation T which satisfies OB(T(A), B) = min <5B(A, B) is 
MEM 

clearly not unique. 

Determining the Hausdorff similarity between given A and B is to de

termine the minimum of oH(A, B) for all rotations and translations of A. 

For A, B C IR2 , IAI = m < n = IBI, the minimum <5H(A, B) can be de

termined in O((m + n) 5 log2 mn) using a method by Huttenlocher, Kedem, 

and Kleinberg [68], and was improved to O((m + n) 5 1og2 mn) by Chew et. 

al. [69]. Later, for A and B (IAI = IBI = n) in IRd, under the OH, Chew, 

Dor, Efrat, and Kedem [70] showed that the minimum of <5H(A, B) could be 

computed O(nl3d/21 log3 n). Minimizing 6;;(A, B) ,A, B c IR2 is possible in 

O(m3n 2 log mn) time [69]. 

Minimizing OB and <5RMSD is much more difficult. Restricting the problem 

to determining the Given A, B C IR2 , IAI = IBI = n, Alt, Mehlhorn, Wa-
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Complexity of Determining Optimal Matching Distance 
Symmetric Hausdorff I Bottleneck* RMSD 

O(nr3d/21 log3 n) l O(n6 logn) Unknown 

Figure 2.3 : Complexity of Inexact Pattern Matching 

We survey here the complexity of the inexact pattern matching, where 
we seek to determine the minimum Hausdorff (left), Bottleneck (center), 
or RMS (right) distance between point sets A and B. While complexity 
is known for Hausdorff pattern matching in all dimensions d (JRd), this 
is not the case for Bottleneck and RMSD. For Bottleneck and RMSD, 
we state complexity for 2D (two dimensions), which is closest to the 
work in this document. * = The only known complexity bound for 
Bottleneck measure is for translation only. 
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gener, and Welzl [65] demonstrated that computing the minimum of JB under 

translation only is 0 ( n 6 log n). No polynomial algorithm is known to mini

mize J RM sv for all rotations and translations in the plane [71], or in higher 

dimensions. 

2.3.3 Approximate Inexact Pattern Matching 

The difficulty of determining the minimum distance via JH JB and JRMSD led 

to the development of techniques for approximating the minimum distance. 

Under the Hausdorff measure, these algorithms seek to determine, for E, (3, 

A and B given, if there exists a transformation T E T, the space of rigid 

transformations, such that JH(T(A), B) < (1+(3)t. Under the Bottleneck and 

RMSD measures, given A, B, and E, many approximations seek to determine if 

there exists ME M such that JB(A, B) < E or JRMsv(A, B) < E, respectively. 

In IR2
, Goodrich, Mitchell and Orletsky [72] demonstrated that identifying 

a rigid motion such that JH(T(A), B) < (1 + (3)E is possible in O(n2mlogn), 

and that in IR3
, a similar result is possible in O(n3mlogn). Recognizing that 

applications of geometric pattern matching are frequently applied to data with 

well understood geometric properties, Indyk, Motwani, and Venkatasubrama

nian [73] later developed an approximation scheme that performs better when 
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Complexity of Approximating Minimum Pointset Distance 
Symmetric Hausdorff J Bottleneck I RMSD 

O(n3mlogn) J O(m16n 16Jm + n) J O(n4c 512 log6 n) 

Figure 2.4: Complexity of Approximate Pattern Matching 

We survey here the complexity of the approximate pattern matching, 
where we seek, under the Hausdorff (left), Bottleneck (center), or RMS 
(right) measures, to identify a rigid transformation T E T such that 
distance between A and B is less than a given value. Some approxima
tion techniques that also take advantage of data-specific properties are 
described below but not categorized here. 
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the ratio .6. of the maximum distance between points in B relative to the min

imum distance between points in Bis small. Under the Hausdorff measure in 

IR2
, this approximation scheme results in O(min(k(n4.6.) 113 , n(.6. +n))), and in 

IR3 the scheme results in O(min(k max(n2
·
25)K, n 2

·
5
), n.6.(.6.2+n), n2(n+ .6.)) ). 

Approximating Bottleneck distance is very difficult. In 2000, Ambuhl, 

Chakraborty, and Gartner demonstrated that, given small E and point sets 

A, B E IR3
, IAI = m < n = IBI, it is possible to determine if there exists a 

rigid transformation such that 

The algorithm Ambuhl et. al. provided was O(m16n 16vm + n). In

dyk, Motwani, and Venkatasubramanian [73] also developed a density-based 

approximation scheme under the Bottleneck measure. In IR2 , this approx

imation scheme results in O(k312 (n4.6.) 1 /3). In JR3 , this scheme results in 

O(kl.5max(n2·25 )K, n 2·5 )). 

In 2006, Phillips and Agarwal showed that, given the parameter E > 0 

and A, B C IB.2 with IAI = IBI = n, if (bLRMsv(A, B) = t*), it is possible to 

determine if bRMSv(A, B) < (1 + t)t* in time O(n4t-512 log6 n). 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

26 

2.3.4 Complexity of Pattern Matching Used in This Work 

The pattern matching algorithm used in the work, MA, seeks to determine 

the LRMSD in three dimensions, between A and B with IAI = n < m = IBI. 
Unfortunately, there is no known polynomial-time algorithm for this precise 

problem. In fact, there is also no known polynomial-time algorithm for the 

2D optimization problem, even for IAI = IBI [71]. In addition, given a match 

m that claims to have lowest LRMSD among all possible 3D matches between 

A and B, it is unclear that it is even possible to verify that m is minimal in 

polynomial time. 

Even though identifying the single match with lowest LRMSD is clearly a 

difficult problem, many existing techniques like Geometric Hashing and MA, 

operating without a constant of approximation, can identify a useful match in 

a fraction of a second on modern desktop computers. In fact, we will demon

strate in Chapter 4 that MA can rapidly identify amino acids cognate to the 

amino acids of the motif. It remains unclear at this point if biological charac

teristics reduce the complexity of the pattern matching problem on biological 

data. 

2 .4 Statistical Models 

Protein structures are never perfectly identical. For this reason, understanding 

the degree of geometric and chemical similarity necessary to imply functional 

similarity is a critical aspect of function prediction. If a given match indicates 

similarity that is significantly greater than a baseline degree similarity between 

functionally unrelated proteins, then we expect that the given match indicates 

functional similarity. Therefore, a baseline degree of geometric similarity is 

essential to evaluate the significance of geometric matches. 
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2.4.1 Reference Sets 

To establish a baseline degree of similarity between functionally unrelated 

proteins, we first require a reference set of functionally unrelated proteins. 

Any reference set must remain unbiased, so that truly significant matches 

are identifiable relative to this background. This is a very difficult problem 

because the space of protein structures is largely unknown, and because the 

space of known protein structures contains over- and under-represented protein 

structures. 

Full PDB Frequency Distribution 

-Ful!PDB 

' LRMSD 

Figure 2.5 : Distribution of matches between a motif and all structures in the 
Protein Data Bank 

Current reference sets are generated from databases and classifications of 

protein structures, including the Protein Data Bank (PDB) (74], SCOP [75], 

a classification of protein folds, and CATH (76], a multi-level nested catego

rization of increasingly specific protein sequence and structure classifications. 

In an effort to gather an unbiased reference set, recent statistical models have 

computed matches to all structures in the PDB (21], and to structurally nonre

dundant subsets of the PDB (35]. Other statistical models compute matches 

to fold representatives (20] from SCOP, and non-redundant multi-domain rep

resentatives (25] from CATH. The distribution of matches between a motif and 

proteins in a reference set, such as the PDB, in Figure 2.5 can be visualized as 

a frequency distribution, which is essentially a histogram that plots frequency 

(the number of matches with a particular LRMSD) versus LRMSD. 
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2.4.2 Measuring Statistical Significance 

Given a baseline degree of similarity, it is then necessary to determine if 

a specific match LRMSD is statistically significant. This can be determined 

with several different methods, summarized below. 

The PINTS (20] database computes matches between a motif and every 

protein in a nonredundant subset of SCOP (75]. The tails of the frequency 

distribution follow the extreme value distribution, with parameters that can 

be estimated from motif data. Careful calibration of these parameters allow 

PINTS to generate the extreme value distribution for a wide range of mo

tifs a priori. Using this distribution with a given motif and match LRMSD, 

PINTS can explicitly evaluate a p-value that measures the degree of statistical 

significance. 

JESS [25] uses a set of nonredundant multi-domain representatives from 

CATH as the basis for generating their reference set. The distributions of 

matches generated between a motif and this reference set is modeled using 

a parametric model of mixtures of normal distributions. JESS applies this 

approach to comparatively evaluate the significance of matches between a li

brary of motifs and a given target structure. The most significant match in 

the library provides evidence of functional similarity between the given target 

and the matching motif. 

pvSOAR [30, 22], a method for comparing volumetric motifs, can assess 

the statistical significance of volume matches between two surface pockets. 

Given an input match, pvSOAR gathers approximately 38 million other pairs 

of pockets at random. Ordering these pairs based on geometric similarity, 

pvSOAR finds the number of pairs with greater geometric similarity. The 

fraction of pairs with greater similarity, relative to the total number of pairs, 

provides the measure of statistical significance. 
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2.5 Systems for Protein Function Prediction 

In this chapter, we have described many techniques relevant to the problem 

of identifying statistically significant matches of geometric and chemical sim

ilarity to functionally related proteins. However, combining these tools into 

systems useful for making function predictions is also an important problem. 

For example, pvSOAR [30] combines a cavity-based matching algorithm and 

an empirical statistical model as part of a web service for identifying similar 

protein surface regions in protein structures. CASTp [31] provides an atlas of 

protein pockets and voids for all structures in the PDB [74]. The PINTS server 

[63, 20] provides a rapid database search algorithm coupled with a statistical 

model of structural similarity. PROFUNC [77], provides numerous sequence 

and structure analyses in a single package, including BLAST [3], InterProScan 

[78], SSM [79], and JESS [25], among many others. These integrated systems 

inspired our own integrated approach to the design of MASH and MP, de

scribed in the next chapters. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

Chapter 3 

MASH: A Pipeline for Protein Function 
Prediction 

Our first approach to the problem of identifying similar functional sites was 

to fix a representation of protein structures, and to design an algorithm, MA, 

for identifying matches of geometric and chemical similarity between given 

motifs and targets. The design of MA is highly modular, and compatible 

with several different types of motif. We will begin by describing point-based 

MASH, a pipeline for identifying matches based on representing protein struc

tures as sets of points in three dimensions. Next, we describe cavity-aware 

MASH, which extends point-based MASH by also modeling active clefts crit

ical to protein function. Both variations contain three critical components: a 

representation of motifs and targets, a matching algorithm, and a model for 

evaluating the statistical significance of matches found. These components 

complete the MASH pipeline. 

Input/ Output Requirements for MASH 

Input: A motif, A target protein structure 

All Protein Structures in the PDB 

Output: A match (or no match if none found) and p-value 

measuring the Statistical Significance of the match. 

As input MASH accepts either a point-based or cavity-aware motif, as well 

as a target protein structure and has access to the set of all protein structures 

in the PDB. MASH uses this input to determine if a match exists between the 

motif and the target, and measure the statistical significance of the match, 

returning this information as output. 

30 
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3.1 Point-Based MASH 

In this section, the term "MASH" refers to point-based MASH. As input, 

MASH accepts a motif and a list of target proteins in which to search for 

matches. After applying MA to identify matches in each target, MASH then 

uses a snapshot of the PDB to compute a p-value that assesses the statis

tical significance of each match. Using a standard of acceptable statistical 

significance, a, statistically significant matches, where p < a, and statistically 

insignificant matches, where p 2: a are returned as output. 

Input: 
Motif 

and PDB 

3.1.1 Motifs 

Find 
Matches 

Filter 
Matches 

Figure 3.1 : The MASH pipeline 

A MASH motif S, contains a set of ISi points { s1 , ... , s1s1} in three dimensions, 

whose coordinates are taken from backbone and side-chain atoms. Each motif 

point si in the motif has an associated rank that measures the functional 

significance of the motif point. Each Si also has a set of alternate amino acid 

labels l ( si) C { G LY, ALA, ... } , that represents residues to which this amino 

acid has mutated during evolution. Labels permit our motifs to simultaneously 

represent many homologous active sites with slight mutations, not just a single 

active site. In this work, we obtain labels and ranks using the Evolutionary 

Trace [26, 27]. 

3.1.2 Matching Criteria for MA 

MA compares a motif S to a target T, a protein structure encoded as !Tl 
target points: T = {t1 , ... t1r1}, where each ti is taken from atom coordinates, 
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and labeled l(ti) for the amino acid to which ti belongs. A match M is a 

bijection correlating all motif points in S to a subset of T of the form M = 

{ ( Sa 1 , tb1 ), ( Sa2 , tb2 ) ••• ( sa181 , t1s1)}. Referring to the Euclidean distance between 

points a and bas Ila - bll, an acceptable match requires: 

Criterion 1 Vi, sai andtbi are biologically compatible: l(tbJ E 

l(saJ· 

Criterion 2 LRMSD alignment, via rigid transformation A 

of S, causes Vi, llA(saJ-tb;ll < E, our threshold for geometric 

similarity. 

MA takes as input a motif S and a target T. MA outputs the match with 

smallest LRMSD among all matches that fulfill the criteria. Partial matches 

correlating subsets of S to T are rejected. By establishing a threshold for ac

ceptable geometric similarity, the second criterion causes MA to return match 

LRMSDs bounded above by E. 

3.1.3 Match Augmentation 

MA searches for the set of point-to-point correlations which satisfy our criteria, 

and have the smallest LRMSD among all matches considered. MA takes an 

algorithmic approach that is distinct from other structural comparison algo

rithms because it proceeds in a prioritized manner in finding these correlations. 

Matches are found in two primary phases: Seed Matching, and Augmentation. 

Seed Matching first identifies correlations for the three highest ranking motif 

points, and passes this list of seed matches to Augmentation. Augmentation 

expands each seed match into a set of correlations for all motif points, in order 

of rank. During this expansion process, Augmentation tracks the match with 

lowest LRMSD, returning it when all seed matches have been fully expanded. 
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Seed Matching 

Given a motif Sand target T, seed matching begins by identifying the seed, 

the three highest ranking motif points S' = {s1, s2, s3}. After identifying the 

seed, we interpret T' = {t1, t2, ... t1r1} as a graph [80], where each vertex is a 

target point k We then eliminate all ti that are not compatible with one of 

{ 8 1 , 8 2 , 8 3}. Since S' has exactly three points, there are exactly three interpoint 

distances between points in S': the distance 1181 -8211, 1182-8311, and lls1 -8311· 

We refer to these distances as red, blue, and green, respectively. Suppose ti,tj 

are compatible with 81,82, respectively. Then, if -2E ~ llti -t1ll - ll81 -8211 ~ 

2c, target points ti,tj are at a similar distance and also compatible with 8 1 ,82 , 

making them a two point geometric match. We visualize two point geometric 

matches with 8 1,82 on the target by inserting red edge between ti,t1. An 

identical process defines blue and green edges between target points compatible 

with 8 1 ,83 and 8 2 ,83 respectively, where again inter-point distances are within 

2c. Once we complete the search for all colored edges, we search the graph 

for all three colored triangles. Each triangle identifies three target points that 

are label compatible with S', and positioned at similar distances. For each 

triangle, LRMSD with S' is calculated, and if all points are aligned within c, 

the new seed match is stored. The k lowest LRMSD seed matches are passed 

to Augmentation, in a stack data structure ordered in ascending LRMSD. 

Implementing Seed Matching efficiently requires a range-search data struc

ture like a kd-tree [81, 82], which can be used to identify points in a range of 

distances without checking all points. A target T has at most (l;I) = O(ITl3 ) 

matching triangles, but this worst case requires target points to be very close 

together. Van der Waals interaction forces make this impossible on biological 

data, where typical performance has been observed to be close to O(n2). 
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Augmentation 

Augmentation expands a seed match to find correlations between all mo

tif points and a subset of the target. The input seed matches begin on a 

stack of incomplete matches. Popping off the first seed, augmentation plots 

the LRMSD alignment of the seed onto the three correlated target points. 

Relative to this alignment, we calculate the position of the highest ranked un

matched motif point Si as if it were rigidly aligned with the rest of the seed. 

We now seek target points that correlate with Si that do not misalign the 

match. In the spherical vicinity V of si, we identify all ti within V that are 

compatible with si· We explore only in V because distant points will violate 

our second match criteria, mentioned earlier. Then, for each compatible ti, 

we compute the LRMSD alignment A of the seed match with the addition 

correlation of Si to ti. If llA(si) - till 2: E, the second criteria is violated and 

the match is discarded. If llA(si) - till < E, the second criteria is not violated, 

and the seed match with the additional correlation (si, ti), becomes a partial 

match, and is pushed onto the stack of incomplete matches. The use of a stack 

causes Augmentation to behave like a stack-based depth first search (DFS), 

exhaustively expanding one partial match before continuing on to other seed 

matches. Once all ti in V have been considered, we then pop off the first match 

from the stack of incomplete matches, and repeat this process. Since motifs 

have a finite number of points, at some point, no unmatched motif points 

remain. Rather than push these completed matches back onto the stack, the 

match is stored, and the LRMSD is recorded, tracking always the completed 

match with lowest LRMSD. Eventually, the stack is emptied, completing the 

Augmentation phase. The final output from Augmentation is the completed 

match of all si to distinct ti, with lowest LRMSD. 

Performance is dependent on the number of motif points ISi, and Cn the 

number of compatible ti found in V, giving runtime O(ISl 2 (c~Sl-3 )). Cr is 

bounded because repulsive Van der Waals forces limit the number of atoms 
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found in V. The quadratic factor is the aggregate cost of LRMSD calculations, 

and the exponential is the cost of DFS with Cr possibilities per iteration. With 

ISi usually 4-13 points, Augmentation is extremely efficient. 

3.1.4 A Nonparametric Statistical Model 

In collaboration with Viacheslav Y. Fofanov and his advisor Marek Kimmel 

at Rice University, we have developed a statistical model that uses a hypoth

esis testing framework. We use our statistical model to detect matches with 

statistically significant geometric and chemical similarity. Statistical signif

icance is assessed by comparing the match LRMSD to a baseline degree of 

geometric and chemical similarity, which is established with a reference set of 

protein structures. In this section we will first describe the reference set of 

proteins that we use and then explain the structure of our hypothesis testing 

framework. 

A Reference set of Proteins 

We refer to our reference set of protein structures as n, and for each motif 

S that we use, our baseline is dependent on the set of matches between S and 

0, a motif profile, Sn. As mentioned earlier, motif profiles are best visualized 

as frequency distributions (see Figure 2.5). 

The purpose of the reference set 0 is to represent the set of all known 

protein structures. However, we have found that different representations of 

0 tend not to have significant effect on the actual shape of motif profiles 

generated. For the ten motifs optimized for this work, we observed strong 

similarity between motif profiles calculated with the PDB (00 ), and Onr25 and 

Onr9o, which are two sets of sequentially nonredundant PDB structures hav

ing no more than 253 (resp. 903) amino acid sequence identity. A similar 

comparison was true when using the CATH [76] database. We selected a rep

resentative of every category at the three most specific levels: Topologies (Or), 

Homologous Superfamiles (OH), and Sequence Families 0 3 . In our experience, 
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motif profiles on these representatives also resemble n0, in increasing degrees 

of similarity corresponding to increasingly specific levels of CATH. The simi

larity between the no (black), nnr25 (light grey) and ns (dark grey) is plotted 

in Figure 3.2a. nnr90, nr, and nH were excluded for clarity, but are closely 

related. The similarities between the different reference sets considered here 

is testament to the high fidelity of structural and sequential classification in 

CATH [76]. 

Comparison of full PDB, nonredundant PDB-90. 
and CATH S35 representatives 

-FullPDB 
Nonredundant PDB 

-CATH 

LRMSD 

(a) 

Confidence Dands Surrounding PDB Samples 
/,--; 

fl\\ 
f" \ 2.5%ile 

\ 
97.5%ile 

Full Dist 

(b) 

Figure 3.2 : A study of protein reference sets 

-FullPDB 

(c) 

A 
p= A+B 

(a) Comparison of PDB, sequentially nonredundant PDB, and CATH 
representatives. (b) Confidence band demonstrating the accuracy of 
samples of the PDB. (c) Volumes measured while computing the p
value. This data computed using the motif C42, H57, C58, D102, D194, 
S195, S214 from a-Chymotrypsin (lacb). 

We have also observed that motif profiles on n0 are exceptionally robust to 

random sampling. n5 is the random 53 sample of PDB structures in n0 , and 

motif profiles with this set are called Sn,5 • In our experience, for any S, Sn,5 

resembles Sn0 with high accuracy. This can be seen in Figure 3.2b, where we 

overlayed 5000 distinct Sn,5 samples with a single Sn0 , the center line in Figure 

3.2b. 953 of the 5000 Sn,5 fell within the upper and lower lines, demonstrating 

that motif profiles based on n5 retain high similarity to motif profiles based on 

no. Kolmogorov-Smirnoff [83] tests confirmed a lack of statistically significant 

differences between sampled distributions and Dsi. 

Because our observations suggest that motif profiles based on many logical 

reference sets, including ns, nH, nr, nnr25, nnr90, differ little from motif 
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profiles based on D5 , this paper proceeds by using Ds. 53 sampling greatly 

reduces the number of matches necessary to compute a motif profile, while its 

simple definition promotes the reproducibility of this work. 

Statistical Hypothesis Testing 

Finding a match with MA indicates only that substructural geometric and 

chemical similarity exists between the motif and a substructure of the target, 

not that the motif and the target have functionally similar active sites. In order 

to use matches to imply functional similarity, it is essential to understand the 

degree of similarity, in LRMSD, sufficient to imply functional similarity. How

ever, a simple LRMSD threshold is insufficient to indicate functional similarity 

between any motif and a matching target. Some motifs match functional ho

mologs at lower values of LRMSD than other motif-target pairs, and LRMSD 

itself is affected by the number of matching points [21). 

Geometric comparison algorithms operate on the assumption that sub

structural and chemical similarity implies functional similarity. Our statistical 

model can be used to identify the degree of similarity sufficient to follow this 

implication. Given a match m with LRMSD r between motif Sand target T, 

exactly one of two hypotheses must hold: 

H0 : Sand Tare structurally dissimilar 

HA: S and T are structurally similar 

Our statistical model tests these hypotheses by comparing the given match 

LRMSD r to the motif profile Sn5 , which is essentially a large set of functionally 

unrelated proteins. Motif profiles provide very complete information about 

matches typical of H0 . If we suspect that a match m has LRMSD r indicative of 

functional similarity, we can use the motif profile to determine the probability 

p of observing another match m' with smaller LRMSD. This is accomplished 
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by computing the volume under the curve to the left of r, relative to the entire 

volume (see Figure 3.2c). The probability p, referred to as the p-value, is the 

measure of statistical significance. Note that when computing p for multiple 

matches of the same motif to different targets, the motif profile does not need 

to be recomputed, since it is dependent only on the motif and the reference 

set. 

If p is very low, then we say that m identifies unusually high geometric 

and chemical similarity, allowing us to follow the implication that this match 

is significantly similar and thus indicative of functional similarity. Technically 

speaking, we use a standard of statistical significance a, so that if p < a, we 

say that the probability of observing a match m' with LRMSD r' < r is so low 

that we reject the null hypothesis (Ho) in favor of the alternative hypothesis 

(fi4). Under these conditions, we call m statistically significant. 

Measuring volumes under motif profile curves, as demonstrated in Figure 

3.2c requires careful numerical treatment. We apply kernel density estima

tion procedures [84] to estimate population density from the motif profile. 

Since data is not always evenly spaced, we use Gaussian Kernel smoothing 

to interpolate between data points, as in previous work [21]. In addition, we 

avoid under- and over-smoothing by using optimal bin-widths determined by 

Sheather-Jones method [85, 86]. 

3.2 Cavity-Aware MASH 

We hypothesized that the sensitivity and specificity of our motifs could be 

further optimized by incorporating volumetric information that represents ac

tive clefts and cavities that must remain vacant for biological activities like 

ligand binding. For example, even though the motifs we defined exist on the 

surface of the protein around well studied active clefts and cavities, we have 

observed that matches are sometimes found in the interior of the protein. By 

representing active volumes in motifs, and insisting that they remain empty 

for biological activity in the target, we can eliminate matches that do not fulfill 
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this property. If the matching atoms of the target truly form a cognate active 

site with similar function, the matching atoms of the target should surround 

an empty cavity with similar shape. 

We begin by first describing how we modified our existing motif repre

sentation to include volume information describing active cavities, producing 

cavity-aware motifs. We then explain how we modified MA to produce CAMA, 

demonstrating how cavity-aware motifs can be used to also accelerate MA. Fi

nally, we describe how we adapted our statistical model, used in the previous 

section, to address matches to cavity-aware motifs. 

3.2.1 Cavity-Aware Motifs 

The cavity-aware motifs developed and used in this work are an integration 

of a point-based motif and a cavity-based motif. Cavity-aware motifs contain 

motif points taken from atom coordinates labeled with evolutionary data [26, 

27, 21, 13]. A motif S contains a set of m motif points {s1 , ... , sm} in three 

dimensions, whose coordinates are taken from backbone and side-chain atoms. 

Each motif point si in the motif has an associated rank p(si), a measure of the 

functional significance of the motif point. Each si also has a set of alternate 

amino acid labels l(si) C { GLY, ALA, ... }, that represent residues to which 

this amino acid has mutated during evolution. Labels permit our motifs to 

simultaneously represent many homologous active sites with slight mutations, 

not just a single active site. In this work, we obtain labels and ranks using the 

Evolutionary Trace [26, 27]. 

Cavity-aware motifs also contain a set of C-spheres C = { c1, c2, ... ck} with 

radii r(c1), r(c2), ... , r(ck) that are rigidly associated with the motif points. 

C-spheres are a loose approximation of solvent exposed volumes essential for 

ligand binding. C-spheres can have arbitrary radius, and can be centered at 

arbitrary positions. While this work targets the functional prediction of active 

sites that bind small ligands, this representation could be used to represent 

protein-protein interfaces and other generalized interaction zones. 
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Figure 3.3 : A diagram of a cavity-aware motif. 

Beginning with functionally relevant amino acids and bound ligand coordi
nates (a), cavity-aware motif points are positioned at alpha carbon coordinates 
(black dots, (b)), and C-spheres are positioned at ligand atom coordinates 
(transparent spheres, (b)). 
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C-sphere positions in this work were selected based on the coordinates of 

atoms in bound ligands. For example, in Figure 3.3, we modeled the heme

dependent enzyme nitric oxide synthase, a protein that catalyzes the synthesis 

of nitric oxide (NO) from an L-arginine substrate. This multi-step reaction 

takes place in a deep cleft and involves zinc, tetrahydrobiopterin, and hydride

donating (NADPH or H20 2) cofactors (87, 88]. Using PDB structure ldww, 

we centered C-spheres at several atom coordinates on the heme, in order to 

fill the heme-binding cavity, and placed one C-sphere to represent tetrahy

drobiopterin, which was further outside from the main cavity, as was shown 

in Figure 3.3. Future work could explore the generalized positioning of C

spheres. 
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3.2.2 Cavity-Aware Matching Criteria 

Matching Criteria 

CAMA compares a cavity-aware motif S to a target T, a protein structure 

encoded as n target points referred to as T = { t1, ... tn}, where each ti is taken 

from atom coordinates, and labeled l(ti) for the amino acid ti belongs to. A 

match M, is a bijection correlating all motif points in Stoa subset of T of the 

form M = { ( Sa1 , tb1 ), ( Sa2 , tb2 ) ••• (Sam, tbrn)}. Referring to Euclidean distance 

between points a and b as 11 a - bl I, an acceptable match requires: 

Criterion 1 Vi, Sa; and tb; are label compatible: l(tbJ E 

l(saJ· 

Criterion 2 Vi, I IA( saJ-tb; 11 < E, our threshold for geometric 

similarity. 

Criterion 3 VtNci llti - A(ci)ll > r(ci) 

where motif S is in LRMSD alignment with a subset of target T, via rigid 

transformation A. Criterion 1 assures that we have motif and target amino 

acids that are identical or vary with respect to important evolutionary diver

gences. Criterion 2 assures that when in LRMSD alignment, all motif points 

are within E of correlated target points. Finally Criterion 3 assures that no 

target point falls within a C-sphere, when the motif is in LRMSD alignment 

with the matching target points. CAMA outputs the match with smallest 

LRMSD among all matches that fulfill these criteria. Partial matches corre

lating subsets of S to T are rejected. 

3.2.3 Cavity Aware Match Augmentation 

CAMA is a two stage hierarchical matching algorithm, based on MA, that 

identifies correlations for motif points in order of rank. The first stage, Seed 

Matching is a hashing technique that exploits pairwise distances between motif 

points to rapidly identify correlations between the three highest ranking motif 
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Figure 3.4 : Two cases of cavity-aware matching. 

Mismatch 

Every time a match is generated by CAMA, an alignment of the motif points 
is generated to the matching points of the target. This specifies the precise 
positions of the C-spheres in the motif relative to the target. CAMA accepts 
matches to targets where no C-spheres contain any target atoms (a), and 
rejects matches where any target atom is within one or more C-spheres (b). 
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points and triplets of target points. Seed matching in CAMA is identical to 

seed matching in MA, and is not repeated here. These triplets are passed to 

the second stage, Augmentation, that expands seed matches to full correlations 

of all motif points. As an improvement over our method from earlier work [35], 

as correlations are being expanded, we insist that C-spheres remain empty. 

The final output is the correlation with the smallest LRMSD, satisfying all 

matching criteria. 

Seed Matching Seed Matching generates three-point correlations between 

the 3 highest ranking motif points and three distinct points in the target. These 

triplets are sorted in LRMSD and passed to Augmentation. See Section 3.1.3 

for a detailed description. 

Augmentation As we described in Section 3.1.3, Augmentation applies 

DFS to exhaustively identify target points that can be correlated to the highest 

ranked unmatched motif point while maintaining our matching criteria. To 

adapt MA to the comparison of C-spheres, each time we generate a potential 

correlation, we plot the positions of the C-spheres in rigid alignment with 

the motif. Then, for each C-sphere, we check if a target point exists within 

the C-sphere. If any target point is found within any C-sphere, the match is 

discarded. 
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As in Section 3.1.3, if there are no more unmatched motif points, we put 

this match into a heap that maintains the match with smallest LRMSD. If 

unmatched motif points remain, we put this partial match back onto the stack. 

Finally, we return to the stack, pop off the first match on the stack, and repeat 

this process until the stack is empty. 

C-spheres Accelerate MA In addition to eliminating matches that do 

not satisfy our matching constraints, C-Spheres can also eliminate some po

tential matches being considered by CAMA, increasing algorithmic efficiency. 

This is because the Augmentation stage is a depth first search that can be rep

resented as a branching search tree. Correlations of motif points and target 

points represent nodes in this tree, where seed matches represent root nodes. 

An edge between a parent node and child node represents an instance where 

the highest ranking unmatched motif point can be aligned with a target point, 

generating an expanded partial match with an additional correlated pair. Since 

multiple target points may be available to expand a partial match, the tree 

can branch from a parent node to several child nodes. This is depicted in the 

left of Figure 3.5, while the next unmatched motif points s3 , s4 , and s5 , are 

shown on the right. 

When testing an alignment, if the C-spheres contain a target point, then 

the children of this node, having correlations with only one additional motif

target pair, will have similar alignments and are likely to have C-spheres which 

also contain the same target point. Heuristically, we can eliminate the parent 

node, rather than continue to test additional partial matches. Pruning the 

tree in this manner reduces the number of comparisons necessary. 

3.2.4 Statistical Model 

Our method for measuring the statistical significance of matches computed 

with cavity-aware motifs is very similar to measuring the statistical significance 

of matches to a point-based motif. Again, for a given match m with LRMSD 
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Figure 3.5 : Tree of partial matches considered in CAMA. The tree branches 
on alternative correlations between the highest ranked unmatched motif point 
and an unmatched target point. For example, the three branches from the seed 
match illustrate that there are three target points that the highest unranked 
motif point can be correlated with. If optimal alignment of the motif with the 
correlated target points causes a target point to fall within one or more C
spheres, we can immediately eliminate the match without considering further 
correlations. 

r between motif S and target T, our earlier model assessed the probability p 

of observing a match with similar LRMSD r', when comparing the same motif 

and any protein with known structure. First, a match is computed between 

S and every member of a representative set of proteins, in order to establish 

a baseline degree of geometric similarity between S and the space of known 

protein structures. This set of matches is depicted as a frequency distribution, 

or motif profile, in Figure 3.2c. Figure 3.2c indicates how p, or the p-value, our 

measure of statistical significance, is computed. Given a standard of statistical 

significance a, we say that m is statistically significant if p < a. 

In the context of controlled experiments, where we know when matches 

identify functional homologs and when they do not, there are four possibilities: 

True positives ( TP), False positives ( F P), True negatives (TN), and False 

negatives ( F N). A match is a TP if it identifies a functional homolog, and if 

the match is statistically significant. A match is a FP, if the match identifies 

a functionally unrelated protein, and is statistically significant. A match is a 

TN if it is not statistically significant and matches a functionally unrelated 

protein. A match is a FN if it identifies a functional homolog, but is not 
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statistically significant. 

The impact of C-spheres on predictions made by cavity-aware MASH is a 

direct result of how C-spheres eliminate matches. During the augmentation 

phase, C-spheres eliminate partial matches that a point-based motif would not 

have eliminated. If the lowest LRMSD match is eliminated in this fashion, then 

the ultimate output of CAMA will have a higher LRMSD than the ultimate 

output of MA, which does not eliminate matches based on C-spheres. Matches 

from CAMA thus have equal or greater LRMSD than matches from MA, when 

using the same motif (MA disregards C-spheres). By our statistical model, 

greater LRMSDs generate greater p-values, and, if p becomes greater than a, 

a statistically significant match for a point-based motif becomes statistically 

insignificant when C-spheres are added. Thus, C-spheres convert FP matches 

under point-based motifs into TN matches with cavity-aware motifs by making 

some FP matches statistically insignificant. 

Due to variations in active site structure, some functional homologs have 

atoms that occupy C-spheres, when the match and the motif are optimally 

superimposed. In our earlier experimentation, which we review in Section 

4.2, we measure both the number of FP matches eliminated, as well as the 

number of TP matches lost by adding C-spheres. Given effective motifs, the 

number of TP matches lost is small in comparison to the number of FP matches 

eliminated. 

3.3 Discussion and Contributions 

One of the major strengths of MA is the modularity of the depth first search. 

By repeatedly testing and aligning partial matches, MA permits additional 

biological information to be integrated, such as priority ranks of functional 

significance and the C-sphere emptiness criteria. In the future, this modularity 

could permit additional geometric criteria and analyses to be tested, allowing 

for a wide range of additional modifications. 

The geometric variation threshold E affects the number of matches that 
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Seed Matching and Augmentation consider. If the match with lowest LRMSD 

has an alignment where the correlated motif and target point fall further than 

E, then MA and CAMA cannot observe this match. As a result, as long 

as E is set sufficiently high, most reasonable matches can be observed and 

considered, in the search for the single match with smallest LRMSD. This 

work uses E = 7 A . Setting E to very large values obviously increases the 

number of matches which must be considered, and lengthens the runtime of 

CAMA or MA. However, this additional expense can contribute to making 

MA robust to variations in the input data, such as geometric variations in 

matching structures, that could occur because of protein flexibility, as well as 

variations in priority ranking. 

3.3.1 Contributions 

Point-based MASH and cavity-aware MASH present several novel contribu

tions to the general problem of identifying matches for motifs representing 

known active sites. MASH is the first method to identify matches for mo

tifs that combine point-based structure representations with priority ranking 

information. In this work, ranks were obtained using data from the Evolu

tionary Trace [26, 12]. In addition, our cavity-aware motifs are the first motifs 

to combine point-based and volumetric representations of protein structure, 

and MASH is also the first method for finding matches for these motifs. In 

addition, we have also contributed a method for integrating priority rankings 

and volumetric representations into depth-first-search comparisons of protein 

structure. 

We have also presented a novel application of nonparametric statistical 

modeling to measuring the statistical significance of matches. Our data-driven 

model can be used to compute p-values which are specific to the motif used, 

and can be specialized to varying representative sets of protein structures. In 

the next chapter, we demonstrate that significant p-values can identify matches 

to functionally related proteins. 
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Chapter 4 

Testing the MASH pipeline 

This chapter demonstrates that both the point-based and the cavity-aware 

variations of the MASH pipeline are capable of identifying statistically sig

nificant matches to functionally related targets. In addition, we demonstrate 

that cavity-aware MASH transforms many statistically significant matches to 

functionally unrelated proteins into statistically insignificant matches. 

4.1 Testing point-based MASH 

To demonstrate the accuracy of MASH, we searched for motifs within struc

tures of evolutionarily related proteins, and then verified that matches were 

found to actual cognate amino acids. We then measured the statistical signif

icance of each match, and demonstrate that matches to cognate active sites 

tend to be statistically significant. 

4.1.1 Input Data 

Motif Points Our primary data (Figure 4.1) is 12 families of enzymes with 

known active sites. Each family is composed of a set of homologous sequences 

identified by BLAST, some of which have known structures in the Protein 

Data Bank [74] (PDB). Of the structures found, each family is assigned a 

major structure; the rest are minor. ET is applied on each family of sequences, 

and the significance ranks and labels generated are mapped onto the major 

structure for each family. Between 4 and 9 of the most functionally significant 

residues surrounding the active site on the major protein are selected, and 

their alpha carbons (Ca) become the points in the motif. (Ca) atoms were 

used in our motifs as preliminary data. Rather than debate the adequacy of 

47 
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Ca atoms to represent function, we seek only to document the correctness of 

our techniques. 

Functional Homologs We use targets identified by sequence similarity 

because each residue in the motif has a cognate residue in the target: we know 

what match to expect beforehand. Using functional analogs may seem more 

relevant for functional annotation, but successfully matching analogs would 

only demonstrate how well our motifs represent function. Because analogs 

lack easily identifiable cognate residues, using analogs would sacrifice precise 

verifiability. 

{16pk, lvpe, lphp} {lbqk, 8paz, laaj, laan, lag6, lb3i, lbaw, lbxa, lbxv, 
lpaz, lpza, lpzb, lpzc, lzia, lzib, 2plt, 2rac, 3paz, laac} {lamk, ltpe} 
{laky, 5ukd, lqf9, luke, lzin, lzio, lzip, 2ak2, 2ukd, 3ukd, 4ukd, lak2} 
{la6m, lymc, ldwr, ldws, ldwt, lm6c, lmbs, lmno, lmwd, lmyg, lpmb, 
lwla, lymb, lazi} {la3k, lslt, lsla, lslc, lqmj} {lfinA, lhcl, lhck, lb38} 
{lukrA, lxyn, lxnb, lyna} {3lzt, 2ihl, 2lz2, ljhlA, lghlA, lfbiX, llz3, lhhl, 
ljug, 2eql, lgd6A, lf6rA, lhfx} {7a3hA, lgOlA,legzA} {ljuk, lj5tA, li4nA} 
{lf8eA, lnn2, lnsbA} 

Figure 4.1 : Families used in MASH experimentation. 

PDB IDs of each family of homologs, bracketed to indicate mem
bership. Balded proteins are the major proteins, whose structures 
were used to construct motifs. 

Implementation Specifics MA was implemented in C/C++. Code was 

prototyped and run on a desktop Athlon 1900MP. Experiments were run on 

Athlon 1900+ CPUs. GH and MA memory footprints varied between 5 and 

20 megabytes, depending on input. 

4.1.2 MA Identifies Cognate Active Sites 

Our first goal is to demonstrate that MA is capable of identifying matches 

with cognate active sites. We search for each motif in the minor structures 

of the same family. These are homologous proteins (HPs). ET uses multiple 

sequence alignments, so a functional residue in one sequence correlates with 
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cognate residues of related function, at the same position, in all sequences of 

the family. Thus we can verify MA: if we find a cognate match where the target 

points are cognate to the motif points, we have a correct match, residue by 

residue. For comparison, we also searched for each motif in the minor proteins 

of the other families. These proteins are not homologous (NHPs). 

0 bservations In 69 out of the 73 motif-HP pairs (95.43), MA matches 

1003 of the source motif with cognate residues in the target. Of the remaining 

four cases, two of the target structures (lm6c and lmno) were experimental 

structures that had a point mutation that changed the label of residue 68 (in 

both cases) from a valine to an asparagine in order to over-stabilize oxygen 

binding in myoglobin (la6m). As a result, the labels of the points correspond

ing to residue 68 in both lm6c and lmno were incompatible, and, correctly, 

the points were not matched. While this was not intended, it demonstrates the 

ability of our algorithm to eliminate potential matches with incorrect labels. 

In the other two cases, a match existed with lower LRMSD than the cognate 

match. These occurred between major protein lamk with target ltpe, and 

lf8eA with lnsbA. In each case the cognate match had a higher LRMSD ( ap

prox. .5A) than the match MA identified. This is no fault of MA. Instead, 

it suggests that lamk and lf8eA are sub-optimal motifs that bear acciden

tal similarity to functionally unrelated structures: Ideally, motifs should have 

structural similarity only with proteins with functional similarity. Tuue failures 

of MA would be the opposite: We would return a match with LRMSD higher 

than the cognate match, showing that the cognate match was overlooked. This 

never occurs. From our experiments, we found that MA is accurate and effi

cient on biological data, identifying cognate residue correspondences, except 

when the motif bears incidental structural similarity to unrelated residues. 

Matches between motifs and HPs tended to have lower LRMSDs than 

between the same motif and NHPs. This is apparent in Figure 4.2, which plots 

LRMSD for all matches found. 9 out of 12 motifs considered had matches 
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Figure 4.2: Experimental Results: 12 motifs and 73 targets plotted by LRMSD 

of HPs (Blue, Fig. 4.2) with LRMSD lower than most matches of NHPs 

(Red, Fig. 4.2). Two of the motifs breaking this trend were lamk and lf8eA, 

motifs which had incidental similarity with functionally unrelated residues, 

suggesting again that these motifs are not specific representatives of function. 

The remaining motif, lfinA, was defined on a flexible active site, so cognate 

active sites, flexible themselves, had less geometric similarity. 

4.1.3 Cognate Active Sites are Statistically Significant 

Our second goal is to demonstrate that matches to cognate active sites can 

be statistically significant. We accomplished this by computing a motif profile 

for all motifs used, with a snapshot of the PDB from 8.17.2003. PDB files with 

multiple chains were divided into individual files, generating 55,305 structures. 

A handful of unparseable files were removed, and certain degeneracies were 

fixed, such as negatively indexed residues. We then calculated p-values for 

each match we found in the previous paragraph, to understand the relationship 

between statistically significant matches and matches to cognate active sites. 
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Observations The majority of p--values generated for HPs were between 1 % 

and 0.01 %. This is apparent in Figure 4.3, where we plotted p--values for all 

matches found. Most p-values generated for NHPs are above 10%. Notable 

exceptions are the p--values for matches of motifs lamk and lf8eA, which had 

accidental similarity to functionally unrelated structures. These had p--values 

above 10%. This verifies on a PDB-scale that lamk and lf8eA poorly rep

resent functional sites: they have geometric and chemical similarity to 103 

of all PDB proteins. The motif defined on lfinA, which had a flexible active 

site, also lacks statistical significance in its matches, because the geometry of 

functional residues may change relative to the motif. Matches of HPs repre

sent identifiably significant structural similarity, except where the motif itself 

poorly represents protein function. 
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Figure 4.3 : p-values of LRMSDs from Figure 4.2 (log scale) 

We also observed that computing motif profiles using random sampling 

directly improves performance. On average, brute force computation time 

was 12:48 (hrs:mins), while sampling took 0:38 on average. The best case 

fell from 2:40 to 0:08 and the worst case from 631:41 to 31:30. Sampling 

cuts runtime by almost exactly 95%. Sampling does efficiently estimate Dsi 

without statistically significant loss of accuracy. 
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4.1.4 Discussion 

On our data set of evolutionarily related proteins, our results show a correla

tion of statistically significant structural similarity to evolutionary relatedness 

between proteins, as long as the motifs properly represent function. This corre

lation indicates that statistically significant geometric and chemical similarity 

can be markers of cognate active sites. However, it should also be noted that 

there exist some statistically significant matches to functionally unrelated pro

teins. In particular, in a PDB-scanning scenario, where, given a motif, we seek 

to find all functional homologs based on statistically significant matches, 13 

of the matches to the PDB will always be statistically significant. In most 

cases, the set of functional homologs is far fewer than 13 of the PDB, and 

in the cases of highly overrepresented protein families in the PDB, the set of 

functional homologs is greater than 3 of the PDB. The usage of statistical sig

nificance to identify functional homologs produces incorrect predictions, but 

can be very successful in dramatically narrowing the set of possible homologs. 

4.1.5 A Performance Comparison of MA and Geometric Hashing 

We compared performance to our implementation of Geometric Hashing (GH), 

as described by Rosen [44], because the source code is not available. All 

published heuristics compatible with our data were implemented. GH has been 

applied many times [41, 40, 43, 61], but cannot be prioritized as is the case with 

MA. Our performance comparison was run by comparing the amount of time 

necessary to compute matches between all motifs and all target structures. 

Observations GH identified identical HP matches and similar NHP matches, 

but on our motifs of 4 to 9 motif points, and targets with 123 to 398 target 

points, MA was about 60 times faster. Average execution time was 6.195 

seconds for GH, and only 0.103 seconds for MA using identical thresholds. 

Without loss of accuracy, Seed Matching narrows the search to matches of 

the highest ranking motif points, whereas GH considers all points equally. 
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Evolutionary prioritization seems to strongly improve performance. 

4.2 Testing Cavity-Aware MASH 

We begin by demonstrating that cavity-aware motifs using C-spheres centered 

on atoms of bound ligands and cofactors eliminate many FPs while preserving 

most TPs. In controlled experiments, we compared the ability of these two 

types of cavity-aware motifs to eliminate FPs and preserve TPs, relative to 

identical motifs without C-spheres. 

4.2.1 Input Data 

Motif Points The motifs used in this experimentation begin as 18 point-

based motifs designed to represent a range of unrelated active sites in un

mutated protein structures with biologically occurring bound ligands. These 

are documented in Figure 4.4. Earlier work has produced examples of motifs 

designed with evolutionarily significant amino acids [21, 13] and amino acids 

with documented function [19], so these principles were followed in the design 

of our point-based motifs. Amino acids for use in 10 of the motifs were se

lected by evolutionary significance, and are taken directly from earlier work 

[13], and the remaining 8 motifs were identified by functionally active amino 

acids documented in the literature (marked* in Figure 4.4). 

The selection of motif points strongly influences motif sensitivity and speci

ficity. In this work, we seek to demonstrate that adding C-spheres can improve 

point-based motifs. For this reason, we take the selection of motif points and 

the number of TP and FP matches found, for each point-based motif, as given. 

These values are provided in Figure 4.6. 

C-Spheres C-spheres used in our experimentation were generated in two 

ways for each set of motif points, generating two variations we refer to as 

ligand-based and space-filling C-sphere designs. In general, a small number 
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Motifs Used in Experimentation 
PDB id Amino Acids Used Ligands Used #C Range 

16pk* R39,P45,G376,G399,K202 C1sH22Ns012F4P3 10 4-6 
lady* E81, T83,Rl 12,El30,Y264,R31 l Cl6H21NsOsP 10 4-6 
lani* D51,D101,S102,R166,H331,H412 Zn2+, 0 4 P 3 - 10 2-6 
lay! L249,S250,G251,G253,K254,T255 ATP,C20;- 10 4-8 

lb7y* Wl49,Hl 78,S180,E206,Q218,F258,F260 C19H25N507P, Mg2+ 10 4-8 
lczf 0180,0201,0202,A205,G228,S229,R256,K258,Y291 CaH15N05, Zn2+ 10 2-8 

ldid* F25,H53,056,F93,W136,K182, Mn 2+, C5H13N04 10 2-6 
ldww* C194, V346, F363, W366, Y367, E371, 0376, Heme, NHA 10 4-10 
lggm* E188,R311,E239,E341,E359,S361 C12H11N50aP 10 4-10 
lja7 S36,C76,W108,Q57,158,W63, CaH1sN05 10 4-8 
ljgl E97,G99,G 101,0160,Ll 79,G 183, C14H20N505S 10 6-8 
lkp3 R106,F139,E202,L286,R288,Y331 ATP 10 6-8 
lkpg Dl 7,G72,G74,W75,G76,F200 CsH11N02Se 10 6-6 
llbf E51,S56,P 57 ,F89, G91,Fl 12,E159,N 180,S211,G233 C12H1aNOgP 10 4-6 
lucn K12, P 13, G92,R105,Nl 15,Hl 18 04P3-, Ca2+, ADP 8 4-8 
2ahj P53,L120,Y127,V190,D193,l196 Fe3+, NO, C4Ha02, Zn2+ 10 4-10 
7mht P80,C81,S85, E 119,R163,R165 C14H20NaOsS 10 4-8 
8tln* M120,E143,Ll44,Y157,H231 C2H50S, Ca2+, Zn2+ 9 2-8 

Figure 4.4 : Motifs used, with example diagrams below. Starred (*) motifs 
use functionally documented amino acids. The column marked "#C" denotes 
the number of C-spheres in each motif. "R" denotes the range of C-sphere 
maximum diameters (in A) for the motif. 

PDB id 
16PK 
lADY 
lANI 
lAYL 
1B7Y 
lCZF 
lOID 
lDWW 
lGGM 
1JA7 
lJGl 
1KP3 
lKPG 
lLBF 
lUCN 
2AHJ 
7MHT 
8TLN 

Ligands Used in Experimentation 
Ligand Used 
Tetrafluorophosphopentylphosphonic Acid Adenylate Ester 
Histidyl-Adenosine Monophosphate 
Zinc Ion, Phosphate Ion 
Oxalate Ion, ATP 
AMP 
N-Acetyl-D-Glucosamine, Zinc Ion 
Manganase Ion, 2,5-Dideoxy-2,5-lmino-D-Glucitol 
Protoporphyrin Ix Containing Fe, NHA 
Glycyl-Adenosine-5'-Phosphate 
N-Acetyl-D-Glucosamine 
S-Adenosyl-L-Homocysteine 
ATP 
Selenomethionine 
1-(0-Carboxy-Phenylamino)-1-Deoxy-D-Ribulose- 5-Phosphate 
Phosphate Ion, Calcium Ion, ADP 
Iron (Iii} Ion, Nitrogen Oxide, 1,4-Diethylene Dioxide, Zinc Ion 
S-Adenosyl-L-Homocysteine 
Dimethyl Sulfoxide, Zinc Ion, Cale Ion 

Figure 4.5 : Chemical Names of Ligands Used in Experimentation 

(usually 10) C-spheres were selected for each motif used in our experimenta

tion. Ligand-based C-sphere designs center C-spheres at the coordinates of 

atoms in bound ligands and cofactors. For example, in Figure 3.3, we modeled 

the heme-dependent enzyme nitric oxide synthase, which catalyzes the synthe

sis of nitric oxide (NO) from an L-arginine substrate. This multi-step reaction 
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takes place in a deep cleft and involves zinc, tetrahydrobiopterin, and hydride

donating (NADPH or H20 2 ) cofactors [87, 88]. Using PDB structure ldww, 

we centered C-spheres at several atom coordinates on the heme, in order to 

fill the heme-binding cavity, and placed one C-sphere to represent tetrahydro

biopterin, which was further outside from the main cavity, as shown in Figure 

3.3. In some cases, not all atoms of the ligand were used, such as in heme in 

Figure 3.3, but selections were made to approximate the shape of the ligand 

binding cavity based on the position of atom coordinates available. 

Space-filling C-sphere designs seek to optimally represent the shape of the 

active cleft. This is accomplished by computing a Voronoi tessellation on the 

atom coordinates of the protein structure used to generate each motif. We use 

points in the Voronoi tessellation at the intersection of several planes, because 

they are equidistant to several atoms in the protein structure. This allows a 

sphere centered at these points to occupy maximum volume between points of 

the protein structure. For each atom in bound ligands and cofactors, we found 

the largest space-filling sphere containing it, and used that as a C-sphere. 

For both C-sphere designs, the maximum radius of any C-sphere was the 

distance to the nearest atom in the protein structure used to generate the 

motif. C-spheres can have any radius smaller than the maximum size. 

Functional Homologs In order to count TP and FN matches, it is essen

tial to fix a benchmark set of functional homologs. We use the functional classi

fication of the Enzyme Commission [89] (EC), which identifies distinct families 

of functional homologs for each motif used. Proteins with PDB structures in 

these families form the set of functional homologs we search for. Structure 

fragments and mutants were removed to ensure accuracy. 

Unrelated Proteins In order to measure FP and TN matches, it is 

essential to fix the set of functionally unrelated protein structures. The set 

we use is, initially, a snapshot of the PDB from Sept 1, 2005. For each motif, 
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the set of functional homologs is removed, producing a homolog-free variation 

of the PDB specific for each motif. Furthermore, the PDB was processed to 

reduce sequential and structure redundancy. In structures with multiple chains 

describing the same protein, only one copy of each redundant chain was used, 

and all mutants and protein fragments were removed. This produced 13599 

protein structures. The set of structures used was not strictly filtered for 

sequential nonredundancy because eliminating one member of any pair with 

too much sequence identity involves making arbitrary choices. Eliminating 

fragments and mutated structures, which seem to be the largest source of 

sequential redundancy, was the most reproducible and well defined policy. 

Implementation Specifics CAMA was implemented in C/C++. Code 

was prototyped on a 16-node Athlon 1900MP cluster and the Rice TeraCluster, 

a cluster of 272 800Mhz Intel Itanium2 processors. Final production runs ran 

on Ada, a 28 chassis Cray XDl with 672 2.2Ghz AMD Opteron cores. 

Empirical testing indicates that eliminating partial matches in the Aug

mentation phase causes CAMA to be approximately 3 times faster than testing 

C-spheres in complete matches. 

4.2.2 C-Spheres Eliminate FPs, Preserve TPs 

In this section, we demonstrate that C-spheres eliminate many FP matches 

while preserving most TP matches. It should also be noted that for any given 

point-based motif, infinite numbers of possible C-sphere centers and radii 

could be considered, and among these possibilities, some C-sphere configu

rations undoubtedly lead to more sensitive and specific cavity-aware motifs. 

Unfortunately, we cannot consider all possibilities. However, one natural ques

tion stands out: If C-spheres are made as large as possible within the active 

cleft, what is the effect on the elimination of FP matches? 

We first demonstrate that C-spheres affect the elimination of FP matches 

and the retention of TP matches. We compared the number of TP and FP 
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matches found with 18 point-based motifs to cavity-aware versions of the same 

motifs. The first cavity-aware version of these motifs uses ligand-based C

spheres, while the second version uses a space-filling C-sphere design, as men

tioned in Section 4.2.1. Scaling C-sphere radii between 0 and maximum radius 

in 20 increments, we have a comparison experiment between our two C-sphere 

designs and point-based motifs. 

Our data begins as 18 motifs {S1 , S2 , ... S18}. For each motif Si, we gen

erated 20 C-sphere size variations called { Sio, Si1 , ••• , Si19 }. If Si has C-

spheres { C1, C2, ... Ck}, with individual maximum radii T max ( C1), T max ( C2), ... 

r max (Ck)' then the variation sij E { sio' sip ... ' si19} sij has C-spheres of 

radii fgrmax(c1), fgrmax(c2), ... fgrmax(ck)· For example, Si19 has C-spheres 

of radii Tmax(c1), Tmax(c2), ... Tmax(ci), and sio would have only C-spheres of 

radii 0, making sio equivalent to a point-based motif. 

Since matches to Sip Si2 , ••. , Si19 have p-values greater than or equal to 

Sio, because they have C-spheres with non-zero radii, the number of FP and 

TP matches identified among Si1 , Si2 , ••• , Si19 is less than or equal to that of 

Sio· The number of homologs matched by each point-based motif, Si0 , is listed 

in the left of Figure 4.6. The number of TP and FP matches eliminated is 

calculated relative to the number matched by the point-based motif, and thus 

all Sio have 1003 of TP and FP matches, as in the leftmost point of the graph 

in Figure 4.6. Second from the left, we plot the percentage of TP and FP 

matches retained among Si1 , relative to Sio, for all i, and then average these 

percentages over all Sii. Continuing from left to right, we compute the average 

percentage of TP and FP matches, over all Si2 , then all Si3 , etc., again relative 

to sio· 

Observations Demonstrated in Figure 4.6, as C-sphere radius increases, 

for both C-sphere designs, the number of FP matches are reduced dramat

ically. C-spheres based on ligand and cofactor atoms eliminated very few 

matches until C-sphere radius increased to approximately 803 of maximum 
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Point-based Motif Perf. Average Percentage of TP and FP Matches 
Motif #H TP FP 
16pk 20 14 216 
lady 22 20 200 

100':' 

lani 75 75 205 
lay! 8 8 170 "O 

Q.) 

lb7y 9 0 170 ~ 
lczf 14 14 117 "' 
ldid 149 149 80 ~ 

Q. 

ldww 192 181 76 "' Q.) 

lggm 7 5 195 ,..Q 
u 

lja7 1008 448 57 ~ 
::E ljgl 13 13 196 

lkp3 35 35 162 Q. ..... 
lkpg 13 11 151 .__ 

llbf 11 11 50 Q. 
r.... 

lucn 153 133 162 
2ahj 23 6 186 "" 
7mht 10 9 160 

Cavity Size 

8tln 59 56 187 

Figure 4.6 : Average effect of cavity-aware motifs on TP and FP matches, 
over all motifs. The horizontal axis charts C-sphere radius, where the radius 
of all C-spheres scales simultaneously from zero to individual maximum radius 
(see Section 4.2.2). The vertical axis charts the average percentage, per motif, 
of TP and FP matches remaining, relative to their respective point-based 
motifs. The number of homologs, and the number of TP and FP matches for 
each point-based motif is shown at left. FP matches are dramatically reduced 
while most TP matches are preserved, for both C-sphere designs. However, 
space-filling C-sphere designs tend to eliminate more FP matches and reject 
more TP matches, while ligand-based C-sphere designs tend to eliminate less 
FP matches, but preserve more TP matches. 

radius, whereas C-spheres intended to maximally occupy the active cleft elim

inated TPs more rapidly. 

One motif, Phenylalanyl-tRNA Synthetase (lb7y), exhibited 0 sensitivity. 

The point-based version of lb7y matched no functional homologs, so no cavity

aware motifs based on lb7y matched any functional homologs either. For this 

reason, the percentage of TP matches eliminated by cavity-aware variations 

of lb7y is undefined, and therefore no TP and FP data (for consistency) is 

included in the averages plotted in Figure 4.6. Cavity-aware variations on 

lb7y still rejected more FPs as C-sphere radius increased. Point-based mo

tifs from lja7 and 2ahj exhibited low sensitivity, identifying less than 20% 

of the total number of true positives. Having a flexible active site, cavity-
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aware variations of 16pk were significantly less sensitive than its point-based 

counterparts. Overall, cavity-aware motifs eliminate many FP matches, while 

preserving most TP matches. 

C-spheres designed using ligand atom coordinates seemed to eliminate less 

matches in general than C-spheres designed to occupy maximum space in 

active cavities. These observations suggest that the latter C-sphere design 

was more strongly affected by the natural variation of active site structures in 

functionally related proteins. In combination with the earlier observation that 

C-spheres that preserved the most TP matches while eliminating the most FP 

matches were not the largest C-spheres, but instead around 803 of maximum 

radius, these observations emphasize the point that selecting C-spheres that 

occupy the most volume within the active cleft do not necessarily produce 

cavity-aware motifs that eliminate the most FPs and preserve the most TPs. 

4.3 Discussion 

The controlled experiments presented in this chapter, as well as in our earlier 

work [21, 38, 35, 13], demonstrate that point-based MASH and cavity-aware 

MASH are capable of identifying matches to cognate active sites, using motifs 

designed by hand. In the next chapter, we will demonstrate how we used 

MASH and cavity-aware MASH as a platform for developing techniques for 

refining motifs. 

One way to improve matching predictions is to use evolutionary infor

mation, mapped onto target protein structures, to eliminate matches that 

correlate motif points to evolutionarily insignificant amino acids. By using 

matches to evolutionarily significant amino acids alone, many FP matches 

can be eliminated [13]. Another approach is to refine motifs so that they have 

minimum geometric and chemical similarity to functionally unrelated proteins, 

while maintaining similarity to functionally related proteins. We target this 

problem in the next section. 
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Chapter 5 

Motif Profiling: A Motif Refinement 
Framework 

The point-based and cavity-aware versions of the MASH pipeline provide a 

tool for identifying statistically significant matches to motifs designed with 

expert knowledge. However, experts select amino acids for motifs based on 

documented roles in biochemical function, disregarding the possibility that 

some geometric configurations of certain amino acids may recur frequently in 

the space of protein structures. Humans are simply unable to precisely per

ceive subtle recurring trends in thousands of protein substructures. While this 

approach guarantees that matches to the motif maintain geometric similarity 

to an active site structure with documented function, a property essential for 

motif sensitivity, expert design does not guarantee that many matches do not 

also exist to many functionally unrelated proteins, thus lacking motif speci

ficity. 

MP is an abstract method for refining motifs with distinct geometric and 

chemical variations. To our knowledge, MP is a completely unique method 

for refining motifs. MP uses an underlying algorithm for computing matches 

to implement the abstract algorithm, requiring only that the similarity of 

matches is measured with LRMSD. In this document, variations of MA serve 

this purpose very effectively, but other efficient algorithms, like Geometric 

Hashing [58] or JESS [25], could be used as well. MP is not dependent on any 

specific comparison algorithm, requiring only efficient implementations and 

compatibility with motifs types used. 

60 
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5.1 The Motif Profiling Method 

As input, algorithms implementing MP begin with a list of motifs {S1 , S2 , ... , 

Sn} as input, and the set of known protein structures, 0. We then use MA 

to compute matches between each input motif, and the set of known protein 

structures, computing motif profiles {Ps1' Ps1' ... , Psn}. Measuring the me

dians of each profile { med(Ps1 ), med(Ps1 ), ••• , med(Psn)}, we determine the 

motif with highest median Sa. Sa is the output of MP, because we consider 

Sa to have the greatest geometric and chemical dissimilarity to 0 - a property 

we call Geometric Uniqueness. 

Medians are computed on kernel density smoothed motif profiles. While 

other statistics for quantitative comparison exist, such as the mode, our experi

mentation shows that comparing the medians of motif profiles is an elegant and 

effective approach for determining which motif is more Geometrically Unique. 

In addition, medians are not affected by extreme values at the tails of the 

distribution. Estimating the true median of the population from a sample is 

less prone to sampling errors and errors due to incorrect choice of smoothing 

parameters than mode estimation [90]. In our results, we show the connec

tion between medians and the actual distribution, demonstrating that motif 

profiles with higher medians are motif profiles with more and/ or higher match 

LRMSDs. In the context of two applications of MP, we will also demonstrate 

that MP can be extremely effective in identifying motif refinements that yield 

high sensitivity and specificity. 

Earlier in this document, we demonstrated that point-based and cavity

aware motif types can be effective for identifying cognate active sites. In 

both cases, the motifs used were based on expert knowledge from biochemical 

literature. In the remainder of this chapter, we describe two methods for 

refining these motifs. GS, which refines sections of amino acids for point-based 

motif design, and CS, which refines C-sphere definitions for cavity-aware motif 

design. 
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5.2 Geometric Sieving 

We hypothesized that selecting functionally active amino acids that also exist 

in uncommon geometric configurations can yield sensitive and specific motifs. 

To test this hypothesis, we first designed GS, a geometric analysis that identi

fies patterns in uncommon geometric configurations by measuring Geometric 

Uniqueness. We will apply GS to automatically refine motif designs, reducing 

the dependence of point-based MASH on experts, and simultaneously improv

ing the design of motifs. 

GS accepts an input set, a collection of candidate motif points that could be 

selected by another motif design method, such as those mentioned in Section 

2.1, or provided by a user seeking to improve a motif. GS also requires k, 

the number of candidate motif points expected in the output. The output of 

GS is the subset motif with k points that has highest Geometric Uniqueness. 

Combined with point-based MASH, GS provides a pre-processing stage for 

motif refinement that improves sensitivity and specificity. 

GS is a refinement process, not a motif discovery algorithm. If no subset 

motif of size k has geometric and chemical similarity to functionally homolo

gous active sites, then GS cannot select one that does. For this reason, the 

input set is assumed to contain a subset motif of size k, which has basic ge

ometric and chemical similarity to functional homologs of the input set. By 

this assumption, matches to functional homologs remain in the low-LRMSD 

tail at the lower left of the motif profile for many subset motifs, while func

tionally unrelated proteins, the vast majority of matches in a motif profile, 

gravitate around the large mode near the median LRMSD. The difference in 

LRMSD between this low-LRMSD tail and the major mode of the distribution 

causes matches to functional homologs to be statistically significant relative 

to the distribution overall [21]. With many different combinations of motif 

points to choose from, in the form of varying subset motifs, we can select the 

motif profile that maximizes the LRMSD difference between the low-LRMSD 
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tail and the major mode. As a result, matches to functional homologs will be 

maximally statistically significant for the input set considered. GS implements 

this task by analyzing motif profiles. 

5.2.1 The Geometric Sieving Algorithm 

GS has two phases: GATHER and ANALYZE, which are described in Algo

rithms 1 and 2. Ignoring the optimization step in Algorithm 1 for now, the 

GATHER phase uses MA to iteratively compute motif profiles (outer loop of 

Algorithm 1) for every subset motif of size k (inner loop of Algorithm 1). These 

motif profiles are passed to the ANALYZE phase. This phase calculates the 

medians of each motif profile, and identifies the subset motif with the highest 

median LRMSD. This subset motif is returned as the optimized motif. 

Algorithm 1 Gather 
Input: Input Motif S 
Input: Optimized motif size k 
for each T;, in ns do 

for all subset motifs S' of size k do 
Run MA with S' and T;, 
MA returns match M 
Store M in the motif profile Sn 

end for 
ELIMINATE (optimization step) 

end for 

Algorithm 2 Analyze 
Input: all motif profiles Sn 
from GATHER phase 
Calculate m(Sn) for all Sn 
Find the motif profile Sn 
with highest m(Sn) 
Output: S', the optimized motif 

The GATHER phase is embarrassingly parallel. Given a set of c proces

sors, we can obtain a (c - 1)-times linear speedup by offloading the task of 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

64 

calculating each match between the current subset motif S', target 1i pair to 

another processor. This produces a client/server architecture where the server 

implements GATHER, and offloads MA problems to the clients. 

One problem with offloading MA problems to client machines is the prob

lem of data locality. We are constantly computing matches between different 

motifs and different targets, on each client. When we originally implemented 

this software, all motifs were stored locally in client system memory, but tar

gets were stored as individual files on a globally accessible file server. File 

server load on larger runs with hundreds of simultaneous clients bottlenecked 

performance at the file server. Our initial solution was to store the files locally 

on each client in temporary disk space, but, given that each PDB structure is 

represented as a single file, simple act of copying the PDB from the file server 

to all client machines caused the file server to crash. We resolve this prob

lem by developing a binary representation of the entire PDB in a single file, 

compressing nearly seven gigabytes of data into approximately 1.4 gigabytes. 

We now read this file from local disk when initializing the distributed system, 

so all clients have low-latency access to all targets at all times. This resulted 

in an estimated 10 to 20 fold speedup on machines that could hold the entire 

binary PDB in memory, and vastly improved quality of service for other users 

on the development cluster. Further implementation details are available in 

Chapter 6. 

5.2.2 Accelerating GS 

Further modifications to GS can increase performance. In particular, let us 

now consider the optimization procedure ELIMINATE (Algorithm 3) which is 

called from GATHER. Note that when we call ELIMINATE during GATHER, 

all motif profiles are only partially computed. Eventually ANALYZE will iden

tify the optimized motif by selecting the motif profile that has the highest me

dian. A closer look at the computations happening during GATHER revealed 

that some motif profiles have medians significantly lower than others. Since we 
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are only interested in the motif profile with the highest median, we can stop 

computing matches for motif profiles that have significantly lower medians, 

saving computation time. For this reason, in Algorithm 1, we apply ELIM

INATE (see outer loop of Algorithm 1), which determines for which motif 

profiles we can stop computing matches. These motif profiles will be elimi

nated in the next loop through GATHER. ELIMINATE need not be applied 

at every iteration of the outer loop of GATHER, as it will have a limited effect. 

Instead, we define a parameter called the step size and we call ELIMINATE 

after step size iterations of the outer loop of GATHER. 

Algorithm 3 Eliminate 
Input: all motif profiles Sn from GATHER phase 
Calculate r(Sn) for all Sn 
Among all r(Sn), find l 
eliminate all r(Sn) with u < l 
return to GATHER 

As we pointed out above, when we call ELIMINATE during GATHER 

(see Algorithm 3), all motif profiles are only partially computed. At this 

point in the algorithm, comparing the medians of these partial motif profiles 

can be affected by sampling error. For this reason, ELIMINATE computes 

a 95% Confidence Interval r(Sfl) (see method of Efron and Tibshirani [91, 

92, 93]), which has 95% probability of containing the median m(Sn) of Sn. 
Therefore, for two partially computed motif profiles Sn, S~, if r(Sn) > r(S~) 

do not overlap, there is low probability that m(Sn) < m(S~). Since we are 

interested only in the motif profile with highest median LRMSD, it is thus 

unnecessary to finish computing S~ because S" is not the optimized motif 

with high probability. 

We apply this fact during ELIMINATE by finding l, the highest lower 

bound of all confidence intervals, and eliminate all subset motifs having confi

dence intervals with upper bound u < l. In the next loop through GATHER, 

we do not calculate matches for eliminated subset motifs. If only one sub-
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set motif remains, or if GATHER completes, we proceed to the ANALYSIS 

phase, which identifies the motif profile that has not been eliminated with that 

highest median. This is returned as the output of GS. 

5.2.3 Discussion 

Occasionally, unusual random samplings of n can occur, creating motif pro

files with medians that differ dramatically from the true median we intend to 

estimate. While this occurs very rarely, sampling more and more subset motifs 

exacerbates a multiple testing situation, which eventually leads to an unusual 

random sampling. Since we use statistical analyses like ELIMINATE to guide 

program logic, this can lead to accidental elimination of a subset motif. In or

der to reduce this possibility, ELIMINATE can be applied in a more adaptive 

manner, such as by running ELIMINATE less often when motif profiles have 

few samples. 

The motif size, the number of motif points in a motif, is partially related to 

Geometric Uniqueness. Larger motifs specify more geometric constraints, and 

so tend to have higher LRMSD matches than smaller motifs [21]. Thus, we 

avoid comparing motif profiles from subset motifs of different sizes, ensuring 

that only the true geometric and chemical differences drive the motif profile 

comparison. This is why k, the size of the optimized motif, is an input. The 

operation and success of GS is not affected by k, and our results hold over 

varying k, as we will demonstrate later. Selecting an ideal k a priori remains 

an open problem, and the subject of continuing research. 

5.3 Cavity Scaling 

We have observed that the selection of C-sphere positions and radii can dras

tically affect the number of TP and FP matches eliminated, significantly in

fluencing the effectiveness of some cavity-aware motifs. Some high-impact C

spheres have greater impact on FP match elimination than other low-impact 
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C-spheres. Without a method for identifying high-impact C-spheres, some 

cavity-aware motifs may not reduce as many FP matches as others, diluting 

the impact of adding volumetric representations to point-based motifs. 

In order to assist in the design of effective cavity-aware motifs, we have 

designed CS, a motif refinement algorithm that takes a cavity-aware motif, 

identifies high-impact C-spheres, and returns a refined cavity-aware motif con

taining only high-impact C-spheres as output. This section describes how CS 

identifies high-impact C-spheres. 

5.3.1 Markers of High-impact C-spheres 

We have observed that motif profiles derived from cavity-aware motifs that in

clude certain C-spheres have a tendency of shifting towards higher LRMSDs as 

C-sphere radius increases. Figure 5. la demonstrates motif profiles computed 

with a motif that has exactly one C-sphere. Each motif profile corresponds 

to identical motif points with a C-sphere at an identical position, where the 

only difference is that radius changes evenly between zero and the C-sphere's 

maximum radius. As size increases, the motif profile changes very little. In 

comparison, in Figure 5.lb, for the same motif points and a C-sphere in a dif

ferent position, as radius changes uniformly between zero and the C-sphere's 

maximum radius, many more matches shift towards higher LRMSDs, as men

tioned in Section 3.2.3. High-impact C-spheres cause cavity-aware motifs to 

become more Geometrically Unique. 

As matches shift towards higher LRMSDs, according to our statistical 

model in 3.2.4, statistically significant matches become statistically insignif

icant. This causes FP matches, which make up the dominating majority of 

matches computed in a motif profile, as mentioned in Section 3.2.4, to become 

TN matches. Therefore, C-spheres that cause more substantial shifts towards 

higher LRMSDs, as radius increases, cause more FP matches to become TN 

matches, relative to C-spheres that cause less substantial shifts in LRMSD. 

C-spheres that cause substantial shifts towards higher LRMSDs, therefore, 
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Figure 5.1 : Motif profiles for a low-impact C-sphere (a), and a high-impact 
C-sphere (b), as radius increases. For clarity, we provide 20 motif profiles for 
each C-sphere, showing how much the motif profile changes for a high-impact 
C-sphere. CS normally inspects only the motif profile with no C-spheres 
(the profile at the furthest left in both (a) and (b), and the motif profile 
corresponding to the C-sphere at maximum radius, at the furthest right in 
both (a) and (b). 

are high-impact C-spheres. This is the primary principle which allows CS to 

distinguish high-impact C-spheres from low-impact C-spheres. 

5.3.2 The Cavity Scaling Algorithm 

As diagrammed in Figure 5.2, CS independently examines motif profiles for 

each C-sphere of the input, identifying which C-spheres are high-impact. We 

measure changes in motif profiles by comparing the median LRMSD, in order 

to distinguish shifts towards higher LRMSDs. Given an input motif S and one 

of its C-spheres, ci, CS generates a variation of S which has no C-spheres, 

called SP. Using Sp, CS applies CAMA to compute a motif profile against the 

PDB, which we call Psp· We then generate another variation of S, called Sci' 

that has only C-sphere ci at its maximum radius, and compute a motif profile 

of Sc;, called Pc;, against the PDB. Comparison of the medians of Psp and 

Peil med(Psp), and med(PcJ, respectively, determines if ci is a high-impact 

C-sphere. In order to determine if med(Psp), and med(PcJ vary substantially 

enough to identify Ci as a high-impact C-sphere, we used a simple empiri

cal threshold of .5 LRMSD. An alternative threshold can be computed using 
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confidence thresholds from a method of Efron and Tibshirani [91, 92, 93]. 

CC0 ~ 
r.=:::::::======:::::::::======:::::::: 

A 

B~J 
LRMSD LRMSD 

Figure 5.2 : How CS detects low-impact C-spheres (a) and high-impact C
spheres (b). Motif profiles corresponding to high-impact C-spheres vary signif
icantly in their medians as C-sphere radius increases. Medians for low-impact 
C-spheres vary little. 

As we will verify in our experiments, refined cavity-aware motifs eliminate 

most FP matches and maintain TP matches in comparison to manually defined 

cavity-aware motifs. In the future, this could be applied at a larger scale 

to explore more general representations of cavity-aware motifs, and provide 

feedback about C-sphere placements in motif design. CS only tests existing C

spheres to determine which are high-impact, and does not address the problem 

of finding high-impact C-sphere positions from the general set of all possible 

C-sphere positions. This is a subject of continuing investigation. 

5.4 Discussion and Contributions 

Geometric Uniqueness is a discriminating factor for identifying motifs that 

differ substantially from all known protein structures. Even though measuring 

Geometric Uniqueness is computationally expensive, the process is embarrass

ingly parallel and can be made efficient on clusters of networked machines. 
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More importantly, as demonstrated by CS, Geometric Uniqueness reflects cri

teria that affect the set of matches found without being customized for novel 

criteria. As additional biological information is used to identify other matching 

criteria, Geometric Uniqueness can continue to reflect the LRMSD of matches 

found. 

MP is a technique that depends fundamentally on the existence of large 

amounts of data. As shown in Figure 6.11, biological matching criteria such 

as C-spheres can eventually eliminate so many matches that very few matches 

are found. Additional criteria could cause the measurement of the median to 

become ineffective, by destroying the monomodality of the motif profile, or by 

eliminating nearly all matches. 

5.4.1 Contributions 

MP is a novel and elegantly simple approach for refining motifs. While one 

method, MultiBind [17], is applicable to the refinement of point-based motifs, 

MP and the concept of Geometric Uniqueness are more general tools that can 

be applied in at least two settings, as we have demonstrated with GS and CS. 

MP is also the first fully automated algorithm for motif refinement, reducing 

dependence on expert knowledge. Finally, MP contributes a novel application 

of statistical median estimation to increase efficiency. In the next chapter, 

we will demonstrate experiments where MP identifies sensitive and specific 

refinements of several input motifs. 
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Chapter 6 

Experimentation on Motif Profiling Methods 

We have described GS and CS, two methods for refining motifs based on 

the abstract method of MP. In this chapter, we demonstrate that MP indeed 

identifies sensitive and specific motifs. 

First, we show that GS is a practical and efficient tool for motif opti

mization. Using input sets derived from 10 well-studied proteins, we show 

that different subset motifs derived from the same input set produce motif 

profiles that measurably vary in the median. We also demonstrate that esti

mating medians with a 953 confidence bound and eliminating subset motifs 

via ELIMINATE strongly reduces the number of calculations necessary to cor

rectly determine the motif profile with highest median. On our small data set, 

we made two key observations: First, motifs refined by GS, tested in the point

based MASH pipeline, were highly specific and among the most sensitive of all 

possible refinements. Second, evolutionary significant subset motifs tend to be 

more Geometrically Unique than motifs containing evolutionarily insignificant 

amino acids. 

Second, we perform a detailed analysis of each C-sphere in 18 cavity

aware motifs. CS identifies high-impact C-spheres, and high-impact C-spheres 

eliminate more FP matches than low-impact C-spheres. Using CS to refine our 

C-sphere selections, we produced refined motifs that we tested in the cavity

aware MASH pipeline. We observed that refined cavity-aware motifs preserve 

more TPs than our hand-designed motifs, while still eliminating many FPs. 

71 
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6.1 GS Identifies Sensitive and Specific Motifs 

In the previous section, we demonstrated that the point-based MASH pipeline 

was able to identify cognate active sites in functionally related proteins. Point

based MASH provides a foundation for the experimentation in this section, 

where we apply GS to refine motifs. In this section, we demonstrate that 

critical decisions in the design of GS permit GS to operate effectively and 

efficiently. We then demonstrate that optimized motifs generated by GS are 

in fact sensitive and specific, using the point-based MASH pipeline, and likely 

to contain evolutionarily significant and functionally documented amino acids. 

We observed first that median LRMSD varies distinctly in the motif pro

files of subset motifs derived from the same input set, and that changes in 

motif profiles correlate strongly with changes in median LRMSD. These dif

ferences in median LRMSD demonstrate that Geometric Uniqueness is ade

quately measured by the median LRMSD. We also observed that applying 

median estimation can substantially reduce the computation time necessary 

for identifying the most Geometrically Unique subset motif. These observa

tions, on our small data set, demonstrate that GS is able effectively distinguish 

and isolate potential optimized motifs. 

Then we test the sensitivity and specificity of refined motifs by comparing 

their performance to all possible refinements of the same input set, demon

strating that the subsets identified by GS are among the most sensitive and 

specific refinements possible. In addition, we will also study the importance 

of functionally documented, evolutionarily significant, and evolutionarily in

significant amino acids, and their impact on Geometric Uniqueness in mo

tif refinements. These experiments demonstrate that GS identifies sensitive 

and specific optimized motifs, corroborating existing intuitions on motif de

sign, which incorporate functionally documented and evolutionarily significant 

amino acids. 
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6.1.1 Primary Data 

Input Sets The input sets chosen for this work were taken from ten well-

studied proteins, listed in Figure 6.1. Each input set included between 10 

and 13 motif points, and the spatial coordinates used for each were derived 

from the a-carbons of these amino acids. The precise amino acids used are 

specified and diagrammed in Figure 6.2, where the "tag" column identifies 

the amino acid in the diagram, the "AA" column lists the amino acid type, 

and "#" specifies the residue number. The ET rank ("Rank") is the degree 

of evolutionary significance, as reported by ET, where lower values are more 

evolutionarily significant. Diagrams were generated using Pymol [94]. 

PDB Code Protein Name Organism 
lacb a:-Chymotrypsin Bos taurus 
lrx7 Dihydropholate Reductase Escherichia coli 
3lzt Lysozyme Gallus gallus 
lczf Endo-polygalacturonase Aspergillus niger 
lepO Dtdp-4-keto-6-deoxy-d-hexulose 3,5-epimerase Methanobacterium thermoautotrophicum 
lgwz Tyrosine Phosphatase SHP-1 Homo sapiens 
ljuk lndole-3-Glycerolphosphate Synthase Sulfolobus solfataricus 
lkpg Mycolic Acid Cyclopropane Synthase CMAAl Mycobacterium tuberculosis 
lnsk Nucleoside Diphosphate Kinase Homo sapiens 
lukr Endo-1,4-Beta-Xylanase C Aspergillus niger 

Figure 6.1 : Proteins used to test GS. 

Selection Criteria Earlier work has produced examples of motifs de-

signed with evolutionarily significant amino acids [21] and amino acids with 

documented function [19], which were sensitive and specific. Inspired by these 

approaches, we selected evolutionarily significant ( E, in Figure 6.2) and func

tionally documented ( D, in Figure 6.2) amino acids for each of our ten input 

sets, except Lysozyme (3lzt). Functionally documented amino acids are listed 

in Figure 6.5. We also included evolutionarily insignificant amino acids ( 1 , 

in Figure 6.2), chosen from the same region of the protein. We chose evolu

tionarily insignificant amino acids by first generating a sphere centered at the 

centroid of the evolutionarily significant and functionally documented amino 

acids. The sphere was sized just large enough to contain these amino acids. 

From the set of all amino acids having at least one atom within this sphere, 
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Diagram 

lrx7 

Entrances to Active Cavity 

tag AA 
Al F 
A2 cE 
A3 HD 
A4 cE 
A5 GI 
A6 gI 
A7 DD 
A8 MI 
A9 DE 

AlO gD 
All gE 
Bl L 
B2 AE 
B3 VI 
B4 IE 
B5 GD 
B6 pE 
B7 WD 
B8 AI 
B9 pD 
BlO TE 
Bll RE 
Bl2 yE 
Bl3 DE 
Cl C 
C2 EE 
C3 gE 
C4 pE 
C5 NE 
C6 AE 
C7 DE 
C8 yE 
C9 NE 
ClO WE 

Dl N 
D2 DD 
D3 DE 
D4 DD 
D5 LI 
D6 HD 
D7 NI 
D8 RD 
D9 KD 

DlO yE 

# Rank 
41 47.91 
42 3.97 
57 7.22 
58 3.97 
59 38.39 
96 73.41 
102 1.90 
192 29.96 
194 3.10 
195 1.93 
214 2.03 

4 66.00 
7 16.00 

13 63.00 
14 1.00 
15 1.00 
21 27.00 
22 1.00 
29 63.00 
31 34.00 
46 34.00 
57 1.00 
100 36.00 
122 3.00 

6 42.00 
35 23.00 
36 1.00 
38 55.00 
39 55.00 
42 31.00 
52 10.00 
53 15.00 
59 44.00 
123 42.00 
178 1.64 
180 1.00 
201 1.85 
202 2.09 
204 17.69 
223 5.54 
253 17.78 
256 1.61 
258 1.00 
291 1.00 

Figure 6.2 : Input sets used to test GS I 

"AA": amino acid type; "#": PDB residue number; "Rank": ET rank. 
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tag AA # Rank 
Diagram El g 53 5.32 

E2 RD 61 3.71 
E3 LI 63 14.53 
E4 HD 64 3.0S 
E5 FI 65 17.47 
E6 KE 73 1.00 
E7 RE 90 1.00 
ES rr 114 14.60 
E9 GI 146 19.S5 
ElO DE 172 2.56 
Fl Q 327 1.50 
F2 LI 330 15.10 
F3 gr 326 11.20 
F4 WE 367 1.71 
F5 rr 452 24.69 
F6 HD 454 2.09 
F7 CDE 455 1.19 

F4 FS GE 45S 1.00 
F9 1D 459 11.06 
FlO yr 453 12.22 

Gl y 52 17.29 

}juk · G2 KD 53 2.43 
~- ,;; •. ,;,;."# G3 KI 55 11.93 

G4 gr 5S 9.20 
G5 yr SS 17.16 
G6 FE S9 1.04 
G7 GE 91 1.06 
GS KD 110 1.94 
G9 RD 182 1.91 
GlO GDE 233 1.10 

Hl T 30 15.39 
H2 QI 31 14.92 
H3 TI 32 13.66 
H4 yD 33 2.20 
H5 GDE 72 1.00 
H6 GDE 74 1.00 
H7 GE 76 1.00 
HS AI 77 16.72 
H9 QD 99 2.70 
HlO FE 200 1.00 

Figure 6.3 : Input sets used to test GS II 

Input sets used. "AA": amino acid type; "#": PDB residue number; "Rank": 
ET rank. 
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Diagram tag AA # Rank 
I1 l 9 21.28 
12 Al 10 21.64 
I3 KDE 12 2.51 
14 pE 13 4.16 
15 yD 52 6.57 
I6 RD 105 3.94 
17 NDE 115 3.39 
18 ll 116 22.74 
I9 ll 117 19.26 

110 WD 118 4.80 
Jl y 70 1.00 
J2 WDE 72 1.00 
J3 vi 73 10.12 
J4 AI 78 10.05 
J5 EDE 79 1.00 
J6 yDE 81 2.21 
J7 TI 112 16.69 
J8 DI 113 11.96 
J9 QDE 129 1.00 

JlO GDE 170 1.79 

Figure 6.4 : Input sets used to test GS III 

Input sets used. "AA": amino acid type; "#": PDB residue number; "Rank": 
ET rank. 

the most evolutionarily insignificant amino acids were selected. Occasionally 

this sphere had to be expanded slightly (no more than 103 increase in radius) 

when no evolutionarily insignificant amino acids intersected it. 

PDB ID Amino Acids and Citations EC class Subset Size 
lacb Ser195 His57 Asp102}9.'[ 3.4.21.1 7 
lrx7 Trp22}9E[, and Glyl5, Asp27, Phe31, His45, Ile50, Gly96}97[ 1.5.1.3 10 
3lzt Control: Amino acids selected only for Evolutionary Significance. 3.2.1.17 8 
lczf Asp180, Asp202, His223, Arg256, Lys258}98l 3.2.1.15 6 
lepO Ser53, Arg61 and His64}99l 5.1.3.13 6 
lgwz His454, Cys455, Ile459,_l10q}_ 3.1.3.48 6 
ljuk Lys53, LysllO, Argl82, Gly233 J101J. 4.1.1.48 6 
lkpg Gly72, Gly74, GLN99, Tyr33}10~ 2.1.1. 79 6 
lnsk Lys12, Tyr52, Argl05, Asn115, His118}10:IT 2.7.4.6 6 
lukr Tyr70, Trp72, Glu79, Tyr81, Gln129, Glul 70 JlO~ 3.2.1.8 6 

Figure 6.5 : Functionally documented amino acids 

Amino acids with documented function (and citations) from each input set. We also provide the EC class 
this set is derived from, and the size of the subset motifs (k} used when running GS. 

Using chosen evolutionarily significant and functionally documented amino 
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acids as part of each input set, we postulated that these "motif-worthy" amino 

acids, and not the evolutionarily insignificant amino acids, would ultimately 

result in the most sensitive and specific motifs. For this reason, k, the size 

of the subset motifs being considered for the optimized motif, was chosen in 

each case as the total number of evolutionarily significant and functionally 

documented amino acids in each input set. This guarantees that one subset 

motif from each input set would contain only evolutionarily significant and 

functionally documented amino acids. It also guarantees that the other subset 

motifs will contain all or some of the evolutionarily insignificant amino acids. 

As a control, the Lysozyme input set (31zt) was composed entirely of evolu

tionarily significant amino acids, to study the effect of having no evolutionarily 

insignificant amino acids. Conversely, in Endo-polygalacturonase (lczf), there 

are 8 motif-worthy amino acids, but we chose k = 6 to get a broader under

standing of the relationship between k and the number of motif-worthy amino 

acids. For lgwz, ljuk, lkpg, lnsk, and lukr, several evolutionarily significant 

amino acids were also functionally documented (see amino acids labeled DE in 

Figure 6.2). 

We will refer to the set of input sets as {S1 , S2 , ... , S10}, and refer to the 

subset motifs of each Si as Si1 , Si2 , ••• , Si1, where l is the total number of 

subset motifs for Si. 

Functional Homologs In order to measure sensitivity and specificity, it 

is essential to fix a set of functional homologs for benchmarking. For this work, 

we use the functional classification of the Enzyme Commission [89] (EC), which 

identifies families of functional homologs for each input set used (see Figure 

6.5). Input sets were chosen from distinct EC families. Proteins with PDB 

structures in each family form the set of functional homologs we search for. 

Structure fragments, mutants, and structures with artificially induced long 

distance conformational changes, were removed. We will refer to the set of 

functional homologs for any input set Si as H(Si)· 
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The Protein Data Bank In this paper, we use 0 5 , as mentioned in Sec

tion 3.1.4, which is sampled from the set of crystallographic protein structures 

in the PDB on Sept 1, 2005. PDB entries with multiple chains were divided 

into separate structures, producing 79322 structures. While this could prevent 

the identification of matches to active sites that span multiple chains, it is not 

clear from the PDB file format how to determine which chains are intended 

to be in complex. Incorrectly combining chains can lead to searches within 

physically impossible colliding molecules. Since none of the active sites used 

in this study span multiple chains, separation was the most reproducible and 

well defined policy. 

Implementation Specifics GS was implemented in C/C++ using the 

Message Passing Interface [105] (MPI) protocol for interprocess communi

cation, and prototyped on a cluster of 16 dual Athlon 1900MP machines 

with 1 gigabyte of RAM. Final data was run on the Rice Terascale Cluster 

(http://www. rte. rice. edu/), a gigabit ethernet network of 140 dual Ita

nium2 machines, each running at 900Mhz, with 2 gigabytes of RAM per ma

chine. Final data was also run on Ada, an experimental 28 chassis Cray XD 1 

with 672 2.2Ghz AMD Opteron cores. Each chassis on Ada is configured with 

six individual machines on a unified power source and an infiniband backbone, 

and each machine has two dual-core processors and 8 gigabytes of memory. 

The parameter E, described in Section 2.2 was set to 7 A. 

6.1.2 Median LRMSD Differentiates Motif Profiles 

As mentioned in Section 6.1.1, our input sets were defined on both evolution

arily significant and insignificant amino acids, as well amino acids with docu

mented function. Since GS calculates motif profiles for every possible subset 

motif, we hypothesized that the diversity of these input sets would present 

a spectrum of motif profile medians, and that medians within this spectrum 

would vary sufficiently to justify motif profile comparison by measuring median 
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LRMSD. 

' ' MatchLRMSD 

(a) 

, . 
Match LRMSD 

(d) 

(g) 

(b) (c) 

(e) (f) 

' . ' . Match LRMSD MatchLRMSD 

(h) (i) 

(j) 

Figure 6.6 : Motif profile variation among different subset motifs 

Motif profile examples from (a) lacb, (b) lrx7, (c) 3lzt, (d) lczf, (e) 
lepO, (f) lgwz, (g) ljuk, (h) lkpg, (i) lnsk, (j) lukr. In each picture, 
the motif profile with highest and lowest median are darkened. These 
correspond to the rugplot on the horizontal axis, where the darkened 
hashes plot the highest and lowest median LRMSD. 
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Experiment Each of our ten input sets has between 10 and 13 motif 

points, and a specific k for each input set. GS computed motif profiles for every 

combination of k motif points in each input set. For example, a-Chymotrypsin 

and DHFR each contained, respectively, 7 and 10 amino acids that were either 

evolutionarily significant or functionally documented, out of the 11 and 13 

amino acids total. Running GS with k = 7 and k = 10, respectively, GS 

exhaustively analyzed all combinations of 7 and 10 (resp.) amino acids as the 

subset motifs considered. We expected the differences between subset motifs to 

create a spectrum of median LRMSDs from the motif profiles calculated. The 

Lysozyme input set, a control composed entirely of evolutionarily significant 

amino acids, lacked evolutionarily insignificant amino acids. Running with 

k = 8 out of 10 amino acids in the input set, we expected Lysozyme's input 

set to also lack a broad spectrum of median LRMSDs. 

Observations The medians of the motif profiles generated (vertical hashes 

on the x-axes in Figure 6.6) from a-Chymotrypsin, DHFR, and Lysozyme, oc

curred in ranges of .9 LRMSD, .7 LRMSD and .4 LRMSD, respectively. This 

behavior was typical of the 7 remaining input sets. Motif profiles correspond

ing to the highest medians clearly had more matches at higher LRMSDs than 

motif profiles at the lowest medians, and thus higher Geometric Uniqueness. 

This is demonstrated by darkened hashes and darkened curves in Figure 6.6, 

where the biggest differences in medians (darkened hashes) correlated to ob

vious differences in motif profiles (darkened curves). Differences in medians 

in a-Chymotrypsin and DHFR were greater than in Lysozyme, which did not 

contain a spectrum of evolutionarily insignificant and significant amino acids. 

Higher median LRMSD in this application is clearly directly associated with 

more and higher match LRMSDs, showing on these examples that medians 

can be used to measure Geometric Uniqueness. 
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6.1.3 Median Estimation Accelerates Performance 

with Minor Loss of Accuracy 

81 

Our implementation of GS uses online estimation of motif profile medians, 

reducing the number of matches that need to be calculated before the opti

mized motif is identified. Using input sets from Section 6.1.2, we first gener

ated matches without using the ELIMINATION optimization, mentioned in 

Section 5.2. Next, we repeated this calculation with the ELIMINATION op

timization, with step sizes of 100 and 500, to stop sampling on motif profiles 

that clearly did not have the highest median LRMSD, thereby reducing the 

number of matches necessary. 

Observations Median estimation substantially reduces running time nec

essary to determine the optimized motif. Using exhaustive sampling, the seven 

input sets run in Ada took an average of 1556:57:46 (hrs:mins:secs) of dis

tributed computing time to complete, taking 2-3 hours to complete on 600 

Opteron cores. Using a step size of 500 matches, these seven sets took an 

average of 113:31:54, and at a step size of 100 matches, took an average of 

only 30:14:31, or about 3 minutes on 600 cores. Similar performance increases 

occurred for input sets run on the Rice Terascale Cluster, but relative runtime 

was longer because of differences in processor speed. GS operating on step 

sizes of 100 can identify the optimized motif an average of 10 times faster than 

GS without median estimation. 

The reason for this speedup follows directly from the early elimination of 

motifs that, with high probability, do not have the highest median. This is 

apparent in the number of matches necessary: For exhaustive sampling, the 

ten input sets computed an average of 1,095,631 matches. But at a step size 

of 500, only 171,214 matches were computed, on average, before determining 

the motif with the highest median LRMSD. At a step size of 100, an average 

of 79,649 were computed before finding the optimized motif. GS operating on 

step sizes of 100 can identify the optimized motif with an average of 10 times 
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Input Set Time-Full Matches-Full Time-500 Matches-500 Time-100 Matches-100 
lacb* 12545:33:20 1,322,230 2683:07:40 186,883 1424:13:20 97,836 
lrx7* 10826:50:00 1,211,266 915:20:40 203,356 554:56:40 107,657 
3lz7* 1204:52:00 184,395 227:56:00 97,593 942:00:00 92,099 
lczf 2678:24:24 1,068,902 156:46:40 179,020 39:43:20 91,107 
lepO 1239:13:20 1,107,251 76:06:40 181,800 25:16:40 76,864 
lgwz 1167:40:00 1,109,775 103:26:40 187,627 25:23:20 80,708 
ljuk 1059:06:40 1,100,452 100:33:20 183,086 22:13:20 87,098 
lkpg 1224:53:20 1,092,748 80:26:40 179,721 22:46:40 78,014 
lnsk 1499:00:00 1,126,496 127:10:00 177,201 41:00:00 69,145 
lukr 2030:26:40 1,063,797 150:13:20 110,043 35:40:00 74,613 

Figure 6. 7 : Computational speedups from Median Estimation. 

Here we show the differences, in execution time and number of matches computed, between 
step sizes of 100, 500, and full sampling. * =These runs were done on the Rice TeraC!uster. 
Remaining runs were done on Ada. 
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less matches than GS without median estimation. Figure 6. 7 describes the 

precise number of matches and time consumed. 

Median estimation is very accurate. In every case described in Figure 6. 7, 

median estimation identified the same optimized motif as GS using full sam

pling. However, at step size 100, GS also identifies an alternative subset motif 

for 3lzt and lgwz. GS was unable to eliminate the alternative subset motif 

because overlapping confidence intervals (see Section 5.2.1) did not separate 

by the time sampling was complete. The same was true at a step size of 500 for 

3lzt, lgwz, and 1 ukr. This suggests that for some motifs, achieving certainty 

of the optimized motif beyond 95% confidence can require sampling more than 

53 of the PDB. Given the large computational advantages of this approach, 

additional sampling on alternative optimized motifs is only a minor computa

tional cost. Furthermore, the presence of alternative optimized motifs provides 

additional information to the user, who may consider both of them, in practice. 

It was particularly interesting that GS identified alternative optimized motifs 

on the input sets which had either no sensitive and specific subset motifs (lgwz 

and lukr), or were entirely composed of sensitive and specific motifs (3lzt, see 

Section 6.1.4). Ultimately, the ability to identify alternative optimized motifs 

is an advantage in the search for effective motifs, but more careful study is 
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required to understand the circumstances under which alternative optimized 

motifs occur. Median estimation strongly accelerates the determination of the 

optimized motif with minor sacrifices in accuracy. 

6.1.4 Optimizing Geometric Uniqueness Improves 

Motif Effectiveness 

GS was designed for the purpose of improving the sensitivity and specificity 

of motifs by identifying the subset motif with highest median LRMSD, our 

measure of Geometric Uniqueness. We demonstrate that optimized motifs on 

our ten input sets are among the most sensitive and specific of all possible 

motifs definable from the input sets. 

Experiment Beginning with each Si of our input sets S1, S2, ... , S10, we 

generate all possible subset motifs Sill Si2 , ••• , Si1 • We then apply point-based 

MASH to compute matches and p-values between every subset motif Sij and 

every protein structure in 0 5 U H(Si)· 

For any motif Si, a true positive match is a match to a member of H(Si) 

with a p-value below a, our standard for statistical significance. A false positive 

match is a match with a protein outside H(Si), but with p-value less than a. 

True negative matches are matches to a protein outside H(Si) with a p-value 

above a, and false negative matches are matches to a member of H(Si) with 

a p-value below a. For every subset motif generated, these values allow us to 

calculate sensitivity and specificity. Holding a at .02, specificity was always 

slightly above 98%. 

Observations In exhaustive comparison to all possible motifs definable 

from the input sets at their respective subset sizes, GS identified optimized 

motifs that, used with the point-based MASH pipeline, were quite sensitive at 

a high level of specificity (see Figure 6.8). From each of the 10 input motifs 

we tested, GS produced 8 optimized motifs with greater sensitivity than the 
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average subset motif from the same input set. 5 of these optimized motifs had 

perfect sensitivity. Figure 6.9 demonstrates the spectrum of sensitivity among 

the subset motifs observed. It is apparent that the sensitivity displayed by 

different subset motifs is radically affected by the selection of amino acids. 

.·-~"i'. ---

(a) (b) 
.......... J..•. 

·.·':."'::'M\:"~!r( .. v' • 
• Miii • I • 'f:, • 

•• ....... ~ .... .le •• 

" ~ 

"! = L-~-~--..-:-.::.;;_.:..,.::..::_---.,...J 
:u u u u d 

.. 

(d) (e) 

" ··- .. : 
] u u u UI :U U 

(g) (h) (i) 

(j) 

Figure 6.8 : Comparison of subset motifs sensitivity I 

Sensitivity (vertical axis) of (a) lacb, (b) lrx7, (c) 3lzt, (d) lczf, (e) 
lepO, (f) lgwz, (g) ljuk, (h) lkpg, (i) lnsk, (j) lukr, vs median LRMSD 
(horizontal axis). The most geometrically unique subset motifs, circled 
in grey, tended to be among the most sensitive, except in the case of 
beta-Xylanase (lukr), where no subsets of the motif were very sensitive. 
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Sensitivity lacb lrx7 3lzt lczf lepO lgwz ljuk lkpg lnsk lukr 
Max 1003 98.73 96.73 1003 1003 67.43 1003 1003 1003 58.43 
Avg 94.23 90.43 93.43 93.83 75.53 51.23 93.93 93.43 81.73 29.23 
GS 1003 93.33 96.33 1003 1003 46.63 1003 1003 86.33 27.03 

Figure 6.9 : Comparison of subset motifs sensitivity II 

The table above specifies the sensitivity of the most sensitive subset motif, the average 
sensitivity of all subset motifs, and the sensitivity of the optimized motif identified by GS. 
All data represents sensitivity while specificity is held at 983. 

We provide maximum and average sensitivity of every subset motif derived 

from our input sets, as well as the sensitivity of the optimized motif identified 

by GS, in Figure 6.9. The two input sets that did not perform well, lgwz 

and lukr, displayed no subset motifs with high sensitivity. While these input 

sets were created with the same criteria as the other input sets, it is clear 

that highly sensitive motifs are not within these two input sets. Overall, GS 

performed well, identifying optimized motifs among the most sensitive of 8 out 

of 10 input sets, except where no effective motif could be found. 

6.1.5 Geometric Uniqueness Correlates 

with Evolutionary Significance 

In this section, we investigate if evolutionarily significant amino acids are also 

structurally dissimilar from all known protein structures, or Geometrically 

Unique. 

Experiment Using the motif profiles calculated over 0 5 , we have a repre-

sentation of the median LRMSD of every subset motif in our input sets. Since 

we also have the evolutionary significance of every amino acid in our input sets, 

we can evaluate the evolutionary significance of every subset motif relative to 

its Geometric Uniqueness. We represent the total evolutionary significance of 

a subset motif as the sum of the ET ranks of its elements. Increasing sums 

relate to decreasing evolutionary significance, displayed on the vertical axis in 

Figure 6.10. Median LRMSD was plotted on the horizontal axis. 
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Figure 6.10 
significance 

Relationship between geometric uniqueness and evolutionary 

Relationship of Geometric Uniqueness (horizontal axis) to Evolutionary 
Significance (vertical axis) in (a) lacb, (b) lrx7, (c) 3lzt, (d) lczf, (e) 
lepO, (f) lgwz, (g) ljuk, (h) lkpg, (i) lnsk, (j) lukr. Geometrically 
Unique subset motifs tended to be evolutionarily significant. 

0 bservations Motif profiles with the highest median corresponded to 

the subset motif with the most evolutionarily significant amino acids (grey 

circles in Figure 6.10). In all cases but Lysozyme (31zt), the input sets used 
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demonstrate how evolutionary significance increases proportionately to de

creasing median LRMSD. In Lysozyme, a control set where every candidate 

motif point was evolutionarily significant, no apparent trend is visible. Band

ing and grouping, apparent in some input sets, seems to be related to the 

amino acid composition of subset motifs involved. For example, subset motifs 

with one evolutionarily insignificant amino acid tend to group together, at 

higher median LRMSDs than subset motifs with two evolutionarily insignifi

cant amino acids. While this is only a small experiment with 10 examples, the 

existence of this apparent trend suggests that Geometric Uniqueness may be 

tied to evolutionary conservation. 

6.1.6 Discussion 

In this section, we presented experimentation using GS, a novel distributed 

algorithm for exhaustively refining input sets of candidate motif points into 

optimized motifs used in point-based MASH. We have implemented GS with 

techniques and optimizations suitable for large scale distributed systems, test

ing it successfully on a cluster with more than 600 CPUs. We demonstrated 

the refinement of ten well studied input sets using GS. Using point-based 

MASH, these optimized motifs functioned at a very high level of specificity 

and were among the most sensitive of all motifs definable from these input 

sets. In addition, using GS in conjunction with the Evolutionary Trace per

mitted us to demonstrate examples where amino acids that are evolutionarily 

significant are also Geometrically Unique. Our current observations show that 

GS is a powerful motif refinement algorithm that can be used in conjunction 

with other motif design techniques in an effort to create sensitive and specific 

motifs. GS can thus be used as an improvement for point-based MASH, and 

other pipelines using point-based motifs, in the form of a preprocessing step. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

6.2 Cavity Scaling Identifies Effective Cavity-Aware 

Motifs 

88 

In the previous chapter, we described how CS uses MP to identify high-impact 

C-spheres. In this section, we provide verification for these claims by first 

demonstrating the distinct correlation between high-impact C-spheres and 

changes in the median LRMSD of motif profiles, as C-sphere radius increases. 

We then demonstrate that cavity-aware motifs that have been refined using 

CS preserve more TP matches and eliminate nearly as many FP matches, as 

C-sphere radius increases. Our results are computed on the same input data 

as in Section 4.2.1, so we do not repeat the description of this data set here. 

6.2.1 Analysis of Individual C-spheres 

Some C-spheres have a greater impact on FP match elimination than other 

C-spheres. We performed CS on each C-sphere in each of our 18 motifs, 

identifying which C-spheres were high-impact. layl, used in Figure 6.11 is 

an excellent example, having several high- and low-impact C-spheres. All 

motifs had related behavior: Some motifs had many high-impact C-spheres, 

and others (lczf, 16pk, 8tln) had none, but significant increases in motif profile 

medians remained correlated to the elimination of FP matches in all examples. 

Observations Motif profiles of some single-C-sphere motifs, computed 

over increasing radii, shift significantly in the median towards higher LRMSDs. 

These single-C-sphere motifs eliminate more FP matches as radii increase. 

Alternatively, motif profile medians of other single-C-sphere motifs that do not 

eliminate many FP matches also do not shift towards higher LRMSDs as radii 

increase. This is apparent in Figure 6.11, where we detail this effect for single 

C-sphere motifs based on layl. In the inset graphs, identical copies of the layl 

motif that contain only C-spheres 4 or 6 undergo significant changes in motif 
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Figure 6.11 : Effect of individual C-spheres on motif specificity 

As C-sphere size uniformly increases, as described in Section 4.2.2 (horizon
tal axis), some high-impact C-spheres, such as 4 and 6, eliminate more FP 
matches (vertical axis) than others, such as 10 and 9. Line plots show the 
number of remaining FP matches for a specific single-C-sphere motif, and for 
a motif containing all C-spheres. C-sphere positions relative to cavity shape 
are illustrated in the inset graphic. High-impact C-spheres, such as C-sphere 
6, generate motif profiles whose medians shift towards higher LRMSDs as C
sphere radius increases. Other C-spheres, which do not eliminate as many 
FP matches, such as C-sphere 10, do not affect motif profiles as much. CS 
identifies C-spheres that eliminate more FP matches. 
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profile medians, towards higher LRMSDs, as radius increases. Simultaneously, 

as seen in the main graph, these single-C-sphere motifs, containing only C-
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sphere 4 or 6, rapidly eliminate FP matches. layl motif copies with only 

C-spheres 9 or 10 experience insignificant changes in motif profile medians, 

and also eliminate FP matches more slowly, as radius increases. C-sphere 

positions relative to active site geometry are provided in the inset graphic 

in Figure 6.11. No correlation between high-impact C-spheres and cavity 

topography was apparent, emphasizing the difficulty of designing motifs with 

high-impact cavities. 

Motifs with only one C-sphere eliminate very few TP matches, but careful 

inspection indicates that individual cavities cause different TP matches to be 

rejected. This effect accumulates into the slow loss of TP matches observed in 

section 4.2.2. 

6.2.2 Automatically Refined Cavity-aware Motifs 

In an experimental function prediction setting, rules and automated techniques 

for defining sensitive and specific motifs are important for high throughput 

function predictions. Having shown in the previous section that CS can iden

tify high-impact C-spheres, we use CS to generate motifs containing only high

impact C-spheres, and demonstrate that they are reasonably effective. 

Experiment We applied CS on every C-sphere in every motif, and iden

tified a set of high-impact C-spheres for all motifs except lczf, 16pk and 8tln. 

We repeated the experiment described in Section 4.2.2 for the remaining mo

tifs, using only high-impact C-spheres. We refer to these as automatically 

refined motifs. We compared our results to manually designed motifs used in 

Section 4.2.2, which contained all C-spheres. 

Observations Like the axes of Figure 4.2.2, Figure 6.12 plots percent of 

maximum size (horizontal axis) versus the average percent of remaining TP 

and FP matches (vertical axis). Automatically refined cavity-aware motifs 

reject a large majority of FP matches, retaining a few more than manually 
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Figure 6.12 : TP /FP matches preserved when using automatically refined 
cavity-aware motifs. 

Axes here are identical those of Figure 4.6. Automatically refined motifs (gray) 
reject a large majority of FP matches, retaining slightly more than manually 
designed (black) motifs. Automatically refined motifs also preserve slightly 
more TP matches than manually designed motifs. 

designed motifs. This is expected because low-impact cavities still eliminate 

some FP matches that are not eliminated in automatically refined motifs. Au

tomatically refined motifs retained more TP matches on average than manually 

designed motifs, for the same reasons. 

6.3 Discussion 

We have tested two applications of the MP method, GS and CS. Together, 

these methods demonstrate that MP is capable of identifying sensitive and 

specific motif refinements in an automated way. In addition, using GS, we 

have demonstrated that efficient parallelization across many computers, and 

statistical median estimation can be used to mitigate the high computational 

costs of computing hundreds of motif profiles. These performance optimiza

tions make the refined motifs computed by MP a practical and accessible form 

of motif refinement. 

More importantly, however, MP represents an orthogonal direction in cur-
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rent the design of effective motifs. While many motifs are designed with ex

pert knowledge about specific biological systems, and while the importance 

of expert knowledge is not diminished by MP, MP refines geometric aspects 

of motifs that human experts are incapable of perceiving. By selecting re

finements of existing motifs, both point-based and cavity-aware, MP reduces 

the geometric and chemical similarity of existing motifs to the space of all 

known protein structures. MP demonstrates that computational refinement of 

existing motifs can compliment expert knowledge in motif design. 
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Chapter 7 

Conclusions 

Inspired by the need to determine protein functions on a large scale, this the

sis presents one approach for identifying instances of geometric and chemical 

similarity to known active sites. We first designed MASH, a computational 

pipeline for identifying matches of geometric and chemical similarity between 

motifs and target proteins. We then used this pipeline to develop MP, a 

method for automated motif refinement that compliments expert knowledge 

in the design of motifs. MP is a unique and elegantly simple contribution to 

the study of motif refinement. While MULTIBIND [17] could also be applied 

to motif refinement, MP is the first to demonstrate measurably refined mo

tifs. MP measures Geometric Uniqueness, which is a unique and generalizable 

concept that could be extended to refine other types of motifs, as we have 

demonstrated with point-based and cavity-aware motifs. 

We designed point-based MASH to find matches for motifs that encode 

geometric information with chemical labels, priority rankings and alternate 

residue labels. MA, the algorithm we designed to identify matches, is the 

first algorithm that accepts ranking and alternate labels. We also developed 

a data-driven statistical model for measuring statistical significance. Testing 

these components together as point-based MASH, we observed that statisti

cally significant matches could identify cognate active sites. 

Next, we extended our input motifs with C-spheres representing active 

clefts essential for protein function. We use C-spheres to reject potential 

matches that do not identify similar cleft geometry. In addition, CAMA, 

our adaptation of MA for matching cavity-aware motifs, uses C-spheres for 

algorithmic optimization. Eliminating matches with C-spheres increases p-

93 
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values. In comparison to point-based motifs, cavity-aware motifs match many 

fewer FP matches while preserving most TP matches. 

Cavity-aware motifs, which combine point-based and volumetric represen

tations, represent a unique contribution to the study of active site representa

tions. Cavity-aware MA is also the first algorithm that accepts cavity-aware 

motifs as input. Having demonstrated that these motifs can be successful in 

identifying matches to functionally related proteins, cavity-aware motifs can 

be useful starting points for other studies on protein structure representations. 

Cavity-aware motifs also suggest that integration of several types of related bi

ological data can sometimes yield hybrid representations that can be effective 

identifiers of similar functional sites. 

Point-based and cavity-aware MASH provided a platform to study the 

problem of motif refinement. We developed MP, a purely geometric analysis 

that uses Geometric Uniqueness as a criterion for motif refinement. Geomet

ric Uniqueness estimates the relative geometric dissimilarity between a given 

motif and the set of all functionally unrelated proteins. As a motif refinement 

criterion, Geometric Uniqueness is orthogonal to existing expert knowledge, 

demonstrating that MP can compliment human experts in the design of effec

tive motifs. 

We applied MP in the refinement of point-based motifs, producing GS, an 

algorithm which refines selections of potential motif points into a subset motif 

with maximized Geometric Uniqueness. We implemented an efficient parallel 

version of GS that used statistical median estimation for further efficiency. In 

our experiments, we observed that GS identified optimized motifs which were 

among the most sensitive and specific of all possible refinements. We also ap

plied MP in the refinement of cavity-aware motifs, producing CS, an algorithm 

which identifies high-impact C-spheres that eliminate many FP matches. Re

fined cavity-aware motifs, containing only high-impact C-spheres, tended to 

identify more TP matches while eliminating nearly as many FP matches as 

manually designed cavity-aware motifs. 
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Overall, our results demonstrate that large scale matching techniques can 

enable a data-driven statistical model that can identify matches to cognate 

active sites. Our results also demonstrate that large scale geometric com

parison can be used for measuring Geometric Uniqueness, a novel geometric 

measurement applicable to motif refinement on several types of motifs. These 

methods provide one approach to the problem of Geometric and Chemical 

Matching problem, and one of the first approaches to the problem of Mo

tif Refinement. Combined, we have completed and tested one comprehensive 

approach applicable to the identification of similar active sites. 

In the near future, GS and CS could be combined to produce a new pipeline 

for designing motifs with optimal residue selection and high-impact C-spheres, 

potentially yielding additional sensitivity and specificity. Also, improvements 

to the design of C-spheres using different geometry, such as polyhedra and 

voxels, could also provide a higher resolution representation of active site cav

ities, which may eliminate more TP matches. Finally, additional analysis of 

multiple protein structures may yield further improvements in sensitivity and 

specificity. 

In the distant future, our approach to the identification of enzymatic ac

tive sites could be extended or modified for the many upcoming challenges of 

building a more complete strategy for protein function prediction. In addi

tion to the problem of predicting enzymatic active sites, which we have not 

solved, many challenges await in the prediction of different sites on protein 

surfaces, such as protein-protein and protein-DNA interaction sites. These 

sites have very different geometric properties, and often involve interactions 

between more amino acids, but may be identifiable using the same basic prin

ciples we applied for the design of MASH and MP. In particular, the use of 

MP could be applicable for the design of motifs that represent protein-protein 

interaction sites, since the large number of amino acids involved with protein

protein interactions undoubtedly contain many subset motifs that have little 

Geometric Uniqueness. Finally, one of the great advantages of protein-protein 
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interaction surfaces is that their large geometric size encourages the design of 

geometrically large motifs, which naturally occur less often and have greater 

Geometric Uniqueness. 

The application and re-application of geometric comparison was a recurring 

theme throughout our investigation. This suggests that algorithms like MA, 

used for computing aggregate measurements like Geometric Uniqueness, will 

continue to play a critical role in geometric observation systems and their 

applications to Functional Annotation. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

Bibliography 

[1] Sowa M.E., He W., Slep K.C., Kercher M.A., Lichtarge 0., and Wensel 

T.G. Prediction and confirmation of a site critical for effector regulation 

of RGS domain activity. Nat. Struct. Biol., 8:234-237, 2001. 

[2] Altschul S.F., Gish W., Miller W., Myers E.W, and Lipman D.J. Basic 

local alignment search tool. J. Mal. Biol., 215:402-410, 1990. 

[3] Altschul S.F., Madden T.L., Schaffer A.A., Zhang J., Zhang Z., Miller 

W., and Lipman D.J. Gapped blast and psi-blast: a new generation of 

protein database search programs. Nucl. Acids. Res., 25(17):3389-3402, 

Sept 1997. 

[4] Binkowski T.A., Naghibzadeh S., and Liang J. Castp: Computed atlas of 

surface topography of proteins. Nucl. Acid. Res., 31(13):3352-55, 2003. 

[5] Liang M.P., Banatao D.R., Klein T.E., Brutlag D.L., and Altman R.B. 

Webfeature: an interactive web tool for identifying and visualizing func

tional sites on macromolecular structures. Nucl. Acids Res., 31(13): 

3324-7, 2003. 

[6] Laskowski R.A., Luscombe N.M., Swindells M.B., and Thornton J.M. 

Protein clefts in molecular recognition and function. Protein Science, 5: 

2438-2452, 1996. 

[7] Levitt D.G. and Banaszak L.J. POCKET: a computer graphics method 

for identifying and displaying protein cavities and their surrounding 

amino acids. Journal of Molecular Graphics, 10(4):229-34, Dec 1992. 

97 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

98 

[8] Lichtarge 0. and Sowa M.E. Evolutionary predictions of binding surfaces 

and interactions. Curr. Opin. Struct. Biol., 12(1):21-27, 2002. 

[9] Madabushi S., Yao H., Marsh M., Kristensen D.M., Philippi A., Sowa 

M.E., and Lichtarge 0. Structural clusters of evolutionary trace residues 

are statistically significant and common in proteins. J. Mal. Biol., 316: 

139-154, 2002. 

[10] Lichtarge 0., Sowa M.E., and Philippi A. Evolutionary traces of func

tional surfaces along g protein signaling pathway. Meth. Enzymol., 344: 

536-556, 2002. 

[11] Yao H., Kristensen D.M., Mihalek I., Sowa M.E., Shaw C., Kimmel 

M., Kavraki L., and Lichtarge 0. An accurate, sensitive, and scalable 

method to identify functional sites in protein structures. J. Mal. Biol., 

326:255-261, 2003. 

[12] Mihalek I., Res I., and Lichtarge 0. A family of evolution-entropy hybrid 

methods for ranking of protein residues by importance. J. Mal. Biol., 

336(5):1265-82, 2004. 

[13] Kristensen D.M., Chen B.Y., Fofanov V.Y., Ward R.M., Lisewski A.M., 

Kimmel M., Kavraki L.E., and Lichtarge 0. Recurrent use of evolu

tionary importance for functional annotation of proteins based on local 

structural similarity. Protein Science, 15(6):1530-6, Jun 2006. 

[14] M.A. Huynen, B. Snel, C. von Mering, and P. Bork. Function prediction 

and protein networks. Curr Opin Cell Biol, 15(2):191-198, April 2003. 

[15] E. N avieva, K. Jim, A. Agarwal, B. Chazelle, and M. Singh. Whole

proteome prediction of protein function via graph-theoretic analysis of 

interaction maps. Bioinformatics, 2l:i302-310, 2005. 

[16] M. Lappe and L. Holm. Algorithms for protein interaction networks. 

Biochem Soc Trans, 33(3):530-534, June 2005. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

99 

[17] Shatsky M., Shulman-Peleg A., Nussinov R., and Wolfson H.J. The mul

tiple common point set problem and its application to molecule binding 

pattern detection. J. Comp. Biol., 13(2):407-28, 2006. 

[18] Kinoshita K. and Nakamura H. Identification of protein biochemical 

functions by similarity search using the molecular surface database ef

site. Protein Science, 12:15891595, 2003. 

[19] Laskowski R.A., Watson J.D., and Thornton J.M. Protein function pre

diction using local 3D templates. Journal of Molecular Biology, 351: 

614-626, 2005. 

[20] Stark A., Sunyaev S., and Russell RB. A model for statistical significance 

of local similarities in structure. J. Mol. Biol., 326:1307-1316, 2003. 

[21] Chen B.Y., Fofanov V.Y., Kristensen D.M., Kimmel M., Lichtarge 0., 

and Kavraki L.E. Algorithms for structural comparison and statistical 

analysis of 3D protein motifs. Proceedings of Pacific Symposium on 

Biocomputing 2005, pages 334-45, 2005. 

[22] Binkowski T.A., Freeman P., and Liang J. pvSOAR: Detecting similar 

surface patterns of pocket and void surfaces of amino acid residues on 

proteins. Nucl. Acid. Res., 32:W555-8, 2004. 

[23] J. Shapiro and D.L. Brutlag. Foldminer and lock 2: protein structure 

comparison and motif discovery on the web. Nucleic Acids Res, 32: 

W536-41, 2001. 

[24] Laskowski R.A. SURFNET: A program for a program for visualizing 

molecular surfaces, cavities, and intramolecular interactions. Journal 

Molecular Graphics, 13:321-330, 1995. 

[25] Barker J.A. and Thornton J.M. An algorithm for constraint-based struc

tural template matching: application to 3D templates with statistical 

analysis. Bioinf., 19(13):1644-1649, 2003. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

100 

[26] Lichtarge 0., Bourne H.R., and Cohen F.E. An evolutionary trace 

method defines binding surfaces common to protein families. J. M ol. 

Biol., 257(2):342-358, 1996. 

[27] Lichtarge 0., Yamamoto KR., and Cohen F.E. Identification of func

tional surfaces of the zinc binding domains of intracellular receptors. 

J.Mol.Biol., 274:325-7, 1997. 

[28] C.A. Innis, J. Shi, and T.L. Blundell. Evolutionary trace analysis of 

tgf-beta and related growth factors: implications for site-directed muta

genesis. Protein Eng., 13(12):839-47, 2000. 

[29] 0. Lichtarge, H. Yao, D.M. Kristensen, S. Madabushi, and I. Mihalek. 

Accurate and scalable identification of functional sites by evolutionary 

tracing. J. Struct. Fune. Gen., 4:159-66, 2003. 

[30] Binkowski T.A., Adamian L., and Liang J. Inferring functional relation

ships of proteins from local sequence and spatial surface patterns. J. 

Mol. Biol., 332:505-526, 2003. 

[31] Liang J., Edelsbrunner H., and Woodward C. Anatomy of protein pock

ets and cavities: measurement of binding site geometry and implications 

for ligand design. Protein Science, 7:1884-1897, 1998. 

[32] Binkowski T.A., Joachimiak A., and Liang J. Protein surface analysis 

for function annotation in high-througput structural genomics pipeline. 

Protein Science, 14:2972-2981, 2005. 

[33] Glaser F, Morris R.J., Najmanovich R.J., Laskowski R.A., and Thornton 

J.M. A method for localizing ligand binding pockets in protein struc

tures. Proteins, 62(2):479-88, 2006. 

[34] Liang J. Edelsbrunner H., Facello M. On the definition and the con

struction of pockets in macromolecules. Discrete Applied Mathematics, 

88:83-102, 1998. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

101 

[35] Chen B.Y., Bryant D.H, Fofanov V.Y., Kristensen D.M., Cruess A.E., 

Kimmel M., Lichtarge 0., and Kavraki L.E. Cavity-aware motifs reduce 

false positives in protein function prediction. Proceedings of the 2006 

IEEE Computational Systems Bioinformatics Conference (CSE 2006), 

pages 311-23, August 2006. 

[36] Porter C.T., Bartlett G.J., and Thornton J.M. The catalytic site atlas: 

a resource of catalytic sites and residues identified in enzymes using 

structural data. Nucleic Acids Research, 32:Dl29-D133, 2004. 

[37] Shatsky M., Shulman-Peleg A., Nussinov R., and Wolfson H.J. Recog

nition of binding patterns common to a set of protein structures. Pro

ceedings of RECOMB 2005, pages 440-55, 2005. 

[38] Chen B.Y., Fofanov V.Y., Bryant D.H., Dodson B.D., Kristensen D.M., 

Lisewski A.M., Kimmel M., Lichtarge 0., and Kavraki L.E. Geo

metric Sieving: Automated distributed optimization of 3D motifs for 

protein function prediction. Proceedings of The Tenth Annual Inter

national Conference on Computational Molecular Biology (RECOMB 

2006 ), pages 500-15, April 2006. 

[39] Sheikh S.P., Zvyaga T.A., Lichtarge 0., Sakmar T.P., and Bourne H.R. 

Rhodopsin activation blocked by metal-ion-binding sites linking trans

membrane helices c and f. Nat., 383:347-350, 1996. 

[40] Verbitsky G., Nussinov R., and Wolfson H.J. Structural comparison 

allowing hinge bending. Prat: Struct. Funct. Genet., 34(2):232-254, 

1999. 

[41] Bachar 0., Fischer D., Nussinov R., and Wolfson H. A computer vision 

based technique for 3-d sequence independent structural comparison of 

proteins. Prat. Eng., 6(3):279-288, 1993. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

102 

[42] Wallace A.C., Borkakoti N., and Thornton J.M. TESS: A geometric 

hashing algorithm for deriving 3D coordinate templates for searching 

structural databases. application to enzyme active sites. Prat. Sci., 6: 

2308-2323, 1997. 

[43] Wallace A.C., Laskowski R.A., and Thornton J.M. Derivation of 3D 

coordinate templates for searching structural databases. Prat. Sci., 5: 

1001-13, 1996. 

[44] Rosen M., Lin S.L., Wolfson H., and Nussinov R. Molecular shape com

parisons in searches for active sites and functional similarity. Prat. Eng., 

11(4):263-277, 1998. 

[45] Norel R., Fischer D., Wolfson H.J., and Nussinov R. Molecular surface 

recognition by a computer vision-based technique. Prat. Eng., 7:39-46, 

1994. 

[46] Norel R., Petrey D., Wolfson H.J., and Nussinov R. Examination of 

shape complementarity in docking of unbound proteins. Prat: Struct. 

Funct. Genet., 36:307-317, 1999. 

[47] Connolly M.L. Solvent-accessible surfaces of proteins and nucleic acids. 

Science, 221:709-713, 1983. 

[48] Ferre F., Ausiello G, Zanzoni A, and Helmer-Citterich M. Surface: a 

database of protein surface regions for functional annotation. Nucl. Acid. 

Res., 32:D240-4, 2004. 

[49] Rhodes N., Clark D.E., and Willett P. Similarity searching in databases 

of flexible 3D structures using autocorrelation vectors derived from 

smoothed bounded distance matrices. J Chem Inf Model., 46(2):615-

9, 2006. 

[50] Holm L. and Sander C. Protein structure comparison by alignment of 

distance matrices. J. Mal. Biol., 233:123-138, 1990. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

103 

[51] Grindley H.M., Artymiuk P.J., Rice D.W., and Willett P. Identification 

of tertiary structure resemblance in proteins using a maximal common 

subgraph isomorphism algorithm. J. Mol. Biol., 229:707-21, 1993. 

[52] Brint A.T., Davies H.M., Mitchell E.M., and Willett P. Rapid geometric 

searching in protein structure. J. of Mol. Graph., 9:48-53, 1989. 

[53] Artymiuk P.J., Poirrette A.R., Grindley H.M., Rice D.W., and Willett 

P. A graph-theoretic approach to the identification of three dimensional 

patterns of amino acid side chains in protein structures. J. M ol. Biol., 

243:327-344, 1994. 

[54] Kuntz l.D., Blaney J.M., Oatley S.J., Langridge R., and Ferrin T.E. A 

geometric approach to macromolecule-ligand interactions. J. Mol. Biol., 

161:269-288, 1982. 

[55] Smart 0.8., Goodfellow J.M., and Wallace B.A. The pore dimensions of 

gramacidin A. Biophysics Journal, 65:2455-2460, 1993. 

[56] Williams M.A., Goodfellow J.M., and Thornton J.M. Buried waters 

and internal cavities in monomeric proteins. Protein Science, 3: 1224-35, 

1994. 

[57] Edelsbrunner H. and Mucke E.P. Three-dimensional alpha shapes. ACM 

Trans. Graphics, 13:43-72, 1994. 

[58] Lamdan Y. and Wolfson H.J. Geometric Hashing: A general and efficient 

model based recognition scheme. Proc. IEEE Conj. Comp. Vis., pages 

238-249, Dec 1988. 

[59] Wolfson H.J. and Rigoutsos I. Geometric Hashing: An overview. IEEE 

Comp. Sci. Eng., 4(4):10-21, Oct 1997. 

[60] Leibowitz N., Nussinov R., and Wolfson H.J. MUSTA a general efficient 

automated method for multiple structure alignment and detection of 

common motifs. J. Comp.Biol, 8:93-121, 2001. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

104 

[61] Leibowitz N., Fligelman Z.Y., Nussinov R., and Wolfson H.J. Automated 

multiple structure alignment and detection of a common substructural 

motif. Prot: Struct. Fune. Genet., 43:235-245, 2001. 

[62] Shatsky M., Nussinov R., and Wolfson H.J. A method for simultaneous 

alignment of multiple protein structures. Proteins, 56(1):143-56, 2004. 

[63] Russell R.B. Detection of protein three-dimensional side chain patterns. 

new examples of convergent evolution. J. Mol. Biol., 279:1211-27, 1998. 

[64] Ullman J.R. An algorithm for subgraph isomorphism. J. Assoc. Comp. 

Mach., 16:31-42, 1976. 

[65] Alt H., Mehlhorn K., Wagener H., and Welzl E. Congruence, similarity, 

and symmetries of geometric objects. Discrete Comput. Geom., 3:237-

256, 1988. 

[66] Akutsu T. On determining the congruity of point sets in higher dimen

sions. In Proc. ISAAC: 5th Symp. Alg. Comp., 1994. 

[67] Akutsu T., Tamaki H., and Tokuyama T. Distribution of distances and 

triangles in a point set and algorithms for computing the largest common 

point set. Discrete Comput. Geom., 20:307-331, 1998. 

[68] Daniel P. Huttenlocher, Klara Kedem, and Jon M. Kleinberg. On dy

namic voronoi diagrams and the minimum hausdorff distance for point 

sets under euclidean motion in the plane. In Symposium on Computa

tional Geometry, pages 110-119, 1992. 

[69] L. Paul Chew, Michael T. Goodrich, Daniel P. Huttenlocher, Klara Ke

dem, Jon M. Kleinberg, and Dina Kravets. Geometric pattern matching 

under Euclidean motion. In Proc. Fifth Canadian Conference on Com

putational Geometry, pages 151-156, 1993. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

105 

[70] L. Paul Chew, Dorit Dor, Alon Efrat, and Klara Kedem. Geometric 

pattern matching in cl-dimensional space. In European Symposium on 

Algorithms, pages 264-279, 1995. 

[71] Jeff M. Phillips and Pankaj K. Agarwal. On bipartite matching under 

the rms distance. In Proceedings of the 18th Canadian Conference on 

Computational Geometry (CCCG'06), pages 143-146, 2006. 

[72] M.T. Goodrich, J.S.B. Mitchell, and M.W. Orletsky. Practical methods 

for approximate geometric pattern matching under rigid motions (pre

liminary version). In Symposium on Computational Geometry, pages 

103-112, 1994. 

[73] P. Indyk, R. Motwani, and S. Venkatasubramanian. Geometric matching 

under noise: Combinatorial bounds and algorithms. In SODA: ACM

SIAM Symposium on Discrete Algorithms, 1999. 

[74] Berman H.M., Westbrook J., Feng Z., Gilliland G., Bhat T.N., Weissig 

H., Shindyalov l.N., and Bourne P.E. The protein data bank. Nucleic 

Acids Research, 28:235-242, Sept 2000. 

[75] Murzin A.G., Brenner S.E., Hubbard T., and Chothia C. SCOP: A struc

tural classification of proteins database for the investigation of sequences 

and structures. J. Mol. Biol, 247:536-540, 1995. 

[76] Orengo C.A., Michie A.D., Jones S., Jones D.T., Swindells M.B., and 

Thornton J.M. Cath- a hierarchic classification of protein domain struc

tures. Structure, 5(8):1093-1108, 1997. 

[77] Laskowski R.A., Watson J.D., and Thornton J.M. ProFunc: a server for 

predicting protein function from 3D structure. Nucleic Acids Res., 33: 

W89-93, 2005. 

[78] Zdobnov E.M. and Apweiler R. Interproscan: an integration platform 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

106 

for the signature-recognition methods in InterPro. Bioinformatics, 17: 

847848, 2001. 

[79] Krissinel E. and Henrick K. Protein structure comparison in 3D based on 

secondary structure matching (SSM) followed by ca alignment, scored by 

a new structural similarity function. Kungl,A.J. and Kungl,P.J. (eds), 

Proceedings of the 5th International Conference on Molecular Structural 

Biology, page 88, 2003. 

[80] Diestel R. Graph Theory. Springer, New York, USA, 1997. 

[81] Freidman J.H., Bentley J.L., and Finkel R.A. An algorithm for finding 

best matches in logarithmic expected time. ACM Trans. on Mathemat

ical Software, 3(3):209-226, 1977. 

[82] de Berg M., van Kreveld M., and Overmars M.H. Computational Geom

etry: Algorithms and Applications. Springer, Berlin, Germany, 1997. 

[83] Birnbaum Z.W. and Tingey F.H. One-sided confidence contours for 

probability distribution functions. Ann. Math. Stat., 22( 4):592-596, Dec 

2003. 

[84] Silverman B.W. Density Estimation for Statistics and Data Analysis. 

Chapman and Hall: London, 1986. 

[85] Jones M.C., Marron J.S., and Sheather S.J. A brief survey of bandwidth 

selection for density estimation. J. Amer. Stat. Assoc., 91:401-407, Mar 

1996. 

[86] Sheather S.J. and Jones M.C. A reliable data-based bandwidth selections 

method for kernel density estimation. J. Roy. Stat. Soc., 53(3):683-690, 

1991. 

[87] Crane B.R., Arvai A.S., Ghosh S., Getzoff E.D., Stuehr D.J., and Tainer 

J.A. Structures of the nw-hydroxy-1-arginine complex of inducible ni-



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

107 

tric oxide synthase oxygenase dimer with active and inactive pterins. 

Biochemistry, 39:4608-4621, 2000. 

[88] Adak S., Wang Q., and Stuehr D.J. Arginine conversion to nitroxide by 

tetrahydrobiopterin-free neuronal nitric-oxide synthase. J. Biol. Chem., 

275:33554-33561, 2000. 

[89] International Union of Biochemistry. Nomenclature Committee. Enzyme 

Nomenclature. Academic Press: San Diego, California, 1992. 

[90] Cassella G. and Berger R.L. Statistical Inference. Brooks/Cole Publish

ing Co., New York, USA, 1990. 

[91] Efron B. and Tibshirani R. The bootstrap method for standard errors, 

confidence intervals, and other measures of statistical accuracy. Statis

tical Science, 1(1):1-35, 1986. 

[92] Efron B. Better bootstrap confidence intervals (with discussion). J. 

Amer. Stat. Assoc., 82:171, 1987. 

[93] Efron B. and Tibshirani R.J. An Introduction to the Bootstrap. Chapp

man & Hall, London, 1993. 

[94] Delano W.L. The PyMol molecular graphics system (2002), on world 

wide web: http: //www.pymol.org, 2002. 

[95] Blow D.M., Birktoft J.J., and Hartley B.S. Role of a buried acid group 

in the mechanism of action of chymotrypsin. Nature, 221(178):337-40, 

Jan 1969. 

[96] Reyes V.M., Sawaya M.R., Brown K.A., and Kraut J. Isomorphous 

crystal structures of Escherichia coli dihydrofolate reductase complexed 

with folate, 5-deazafolate, and 5,10-dideazatetrahydrofolate: mechanis

tic implications. Biochemistry, 34:2710-2723, 1995. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

108 

[97] Bystroff C., Oatley S.J., and Kraut J. Crystal structures of Escherichia 

coli dihydrofolate reductase: the nadp+ holoenzyme and the folate

nadp+ ternary complex. substrate binding and a model for the trasition 

state. Biochemistry, 29:3263-3277, 1990. 

[98] van Santen Y., Benen J.A., Schroter K.H., Kalk K.H., Armand S., Visser 

J., and Dijkstra B.W. 1.68-a crystal structure of endopolygalacturonase 

ii from aspergillus niger and identification of active site residues by site

directed mutagenesis. J. Biol. Chem., 274(43):30474-30480, Oct 1999. 

[99] Christendat D., Saridakis V., Dharamsi A., Bochkarev A., Pai E.F., Ar

rowsmith C.H., and Edwards A.M. Crystal structure of dtdp-4-keto-

6-deoxy-d-hexulose 3,5-epimerase from methanobacterium thermoau

totrophicum complexed with dtdp. J. Biol. Chem., 275:24608-24612, 

1999. 

[100] Yang J., Liu L., He D., Song X., Liang X., Zhao Z.J., and Zhou G.W. 

Crystal structure of the catalytic domain of protein-tyrosine phosphatase 

shp-1. J. Biol. Chem., 273:28199-28207, 1999. 

[101] Knochel T.R., Hennig M., Merz A., Darimont B., Kirschner K., and Jan

sonius J.N. The crystal structure of indole-3-glycerol phosphate synthase 

from the hyperthermophilic archaeon sulfolobus solfataricus in three dif

ferent crystal forms: effects of ionic strength. J. Mal. Biol., 262:502-515, 

1996. 

[102] Huang C.C., Smith C.V., Glickman M.S., Jacobs W.R. Jr., and Sacchet

tini J.C. Crystal structures of mycolic acid cyclopropane synthases from 

mycobacterium tuberculosis. J. Biol. Chem., 277: 11559-11569, 2002. 

[103] Webb P.A., 0. Perisic, Mendola C.E., Backer J.M., and R.L. Williams. 

The crystal structure of a human nucleoside diphosphate kinase, nm23-

h2. J. Mal. Biol., 251:574-587, 1995. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

109 

[104] Krengel U. and Dijkstra B.W. Three-dimensional structure of endo-1,4-

beta-xylanase i from aspergillus niger: Molecular basis for its low ph 

optimum. J. Mol. Biol., 263:70-78, 1996. 

[105] Snir M. and Gropp W. MP!: The Complete Reference (2nd Edition). 

The MIT Press, 1998. 


