
Abstract. This paper presents a new algorithm which generates time-optimal
trajectories given a path as input. The algorithm improves on previous approaches
by generically handling a broader class of constraints on the dynamics. It eliminates
the need for heuristics to select trajectory segments that are part of the optimal
trajectory through an exhaustive, but efficient search. We also present an algorithm
for computing all achievable velocities at the end of a path given an initial range
of velocities. This algorithm effectively computes bundles of feasible trajectories
for a given path and is a first step toward a new generation of more efficient
kinodynamic motion planning algorithms. We present results for both algorithms
using a simulated WAM arm with a Barrett hand subject to dynamics constraints
on joint torque, joint velocity, momentum, and end effector velocity. The new
algorithms are compared with a state-of-the-art alternative approach.

1 Introduction
A path is a continuous curve describing the joint positions desired for a robot to move
through. It is often represented by a sequence of waypoints with positions between
them obtained through interpolation. A trajectory is a re-parameterization of a path as a
function of time. The trajectory generation process is subject to the dynamics constraints
of the underlying system. Finding time-optimal trajectories for robots with many degrees
of freedom (DOFs) subject to complex dynamics and geometric constraints is a challeng-
ing problem that arises naturally in many robotics applications ranging from welding
and painting to humanoid robots [1] and even spacecraft [2]. In practice, conservative
safety constraints (e.g., by assuming quasistatic dynamics) are often used to simplify
the trajectory generation problem, but this leads to either sub-optimal performance or
more powerful hardware requirements than strictly necessary. If a task cannot be accom-
plished quasistatically, the task may still be dynamically feasible, in which case there are
necessarily minimum velocity constraints which have generally, previously been ignored.

Many in the control community, such as [3], have made progress in solving planning
problems which are constrained by dynamics, e.g., through constraints on torque, veloc-
ity, and momentum. Likewise, those in the path planning community, typically using
sampling-based planning [4,5], have made progress in cluttered environments where
collision and geometric constraints arise, e.g., on pose, orientation, and end effector
contact. Nevertheless, motion planning problems for high DOF systems subject to both
complex geometric and dynamics constraints still pose a formidable challenge. The
typical motion planning pipeline for high DOF systems often consists of first performing
sampling-based planning to generate a path which is then fed into a trajectory generator
or controller. In this case, any sense of optimality or feasibility for the dynamics is lost as

In Proceedings of Algorithm Foundations of Robotics XII, Goldeberg, Abbeel, Bekris and Miller,
(eds), Springer, 2020, 368-383.

A General Algorithm for Time-Optimal Trajectory
Generation Subject to Minimum and Maximum

Constraints

Stephen D. Butler, Mark Moll, and Lydia E. Kavraki

Rice University, Department of Computer Science, Houston, TX 77005, USA

the path is generated without the dynamics. Kinodynamic motion planners that consider
both the dynamics and geometric constraints do exist, e.g. [6], but the size of the state
space of the problem still increases exponentially for high-DOF systems. Our work
aspires to push the envelop on solving high-DOF problems with dynamics efficiently.

Admissible velocity propagation (AVP) [7] is a promising new method which com-
bines sampling-based planning and time-optimal trajectory generation to make the
kinodynamic planning problem significantly more tractable. AVP builds on tree-based
motion planning algorithms (e.g., [8,9]), which iteratively construct a tree of configura-
tions connected by path segments. In AVP, a tree-based planner performs an additional
step for each new path segment: it computes a bundle of all dynamically feasible trajec-
tories. In this manner, the planner finds the interval of all admissible velocities (AVI)
that can be reached at each sampled configuration. By computing the path segment-AVI
pairs the search space is significantly shrunk since while position is sampled as a point,
the velocity component of state is sampled as a volume. By sampling entire volumes of
the state space, kinodynamic motion planning times are significantly improved. Unfortu-
nately, the classical algorithms [10,11] which compute the AVI needed by AVP planners
have been criticized as difficult to implement, not very robust, and difficult to extend to
other dynamics constraints such as observed in [12,13]. The classical methods only work
for those specific constraints for which they were written. No proof of completeness
exists for these algorithms despite their determinism.

This paper presents two algorithms. The first algorithm, which we will refer to as
Traj Alg hereafter, generates a time-optimal trajectory over a path given some starting
and ending velocity. That is, given a path, a robot description, and a set of additional
constraint functions, the trajectory returned is of the shortest time possible. The second
algorithm, which we will refer to as AVI Alg hereafter, computes the AVI over a path
instead of a single trajectory like Traj Alg.

Both algorithms we present are efficient, robust, and generalize to a large class of
constraints. While previous algorithms would require considerable extension or indeed a
complete rework to reason over constraints other than torque or velocity, our algorithms
require the user only input a parameterization of their novel constraint function, which is
the bear minimum to even define a problem. So long as the user’s constraint adheres to
the class of constraints which we detail in 6, our algorithm will either return the solution
or report that no solution exists. This class includes all those constraints presented
previously in the phase plane literature and a considerable number more for which we
present a few examples.

In addition to a considerable expansion in generality, we show in the results section
that our algorithms outperform the state-of-the-art methods as implemented in TOPP
[14] in terms of compute time. Additionally, our algorithms never fail to find a solution
despite the stressful test cases which cause TOPP to not find solutions. Our algorithms
challenge the fundamental assumptions of the classical methods through an exhaustive,
but efficient search process. We plan as future work to present a proof of completeness.

2 Related Work

Work on the path-constrained time-optimal problem began in the early 1980s by [10,11].
These works attempt to encode dynamical constraints into a phase plane delineated

by inadmissible regions and proved that time-optimal trajectories result from finding
profiles in the phase plane which maximize the integral of phase velocity. [10,11] are both
specific only to torque constraints, fail at undifferentiable points, and cannot guarantee
that they will find a solution even if one exists.

Recently, convex optimization [13,15] is another approach which has been used to
solve the path parameterization problem. Convex optimization is similarly efficient in
terms of computation time to phase plane navigation and has the added benefit of being
able to optimize for quantities other than time. However, introducing new constraints
requires that convexity is maintained and no extension has been presented so far to
efficiently solve the AVI problem.

Phase plane navigation, however, can solve the AVI problem as efficiently as it
solves the path parameterization problem. Much like the move from the workspace to
the configuration space for geometric robot motion planning, the phase plane takes the
state of the robot and transforms it into a point and trajectories into curves in the phase
plane. This gives us a new space in which to solve the optimal-trajectory generation
problem. Unfortunately, the early algorithms of [10,11] are difficult to extend to new
constraints beyond joint torque and joint velocity constraints [16].

Recent work in phase plane navigation by [12], which builds on [11,16], enforces a
specific type of path to simplify the problem and works only over velocity and accel-
eration constraints. Specifically, [12] uses a type of “circular blend” at each way-point
which prevents a general path which does not have this feature from being input to the
algorithm. There is no clear way to extend this method to torque or other constraints.

In the case of torque constraints, which the classical method, e.g. [10,11], was
designed for, zero inertia points along the path which cause the maximum and minimum
phase acceleration to be undefined were overlooked. These points were identified by
[17], but continued to be mishandled or ignored leading to poor, erratic looking solution
trajectories. An approach for identifying and determining the slope at zero inertia
switching states for rigid body robots was developed by [18].

The TOPP library [14] is the most recent implementation of the algorithms originated
by [10,11] and incorporates the extensions and improvements by the authors mentioned
previously, e.g., [16,17,18], and we use it as our point of comparison.

Through all of the mentioned related works, the focus has been on specific con-
straints, typically torque and velocity. This paper generalizes to a much broader class of
constraints, as defined in 6, and eliminates the need for a case-by-case analysis, thereby
making it trivial to provide novel constraints as input to our algorithms. Additionally,
these previous works operate by seeking only specifically those switching states and
corresponding profiles which form the solution. We abandon this tenet and perform an
exhaustive search over all possible switching states.

3 Problem Definitions

Traj Alg computes a time-optimal trajectory from the following inputs:

A path. A path is specified by C2 curves for each DOF, q(s). Without C2 continuity the
acceleration is undefined where the second derivative is discontinuous which could
lead to undefined behavior in the navigation policy at these points.

System-control dynamics. Specifically, the algorithm requires functions that compute
the maximum acceleration s̈max(s, ṡ) and minimum acceleration s̈min(s, ṡ) in the
phase plane. The phase plane itself is described in more detail in section 4.

Path start and end states. The initial position and velocity (so, ṡo) and the final posi-
tion and velocity (s f , ṡ f) along the path.

Dynamics constraints. Inequalities of the form ṡmin(s)≤ ṡ(s)≤ ṡmax(s) which deter-
mine the maximum or minimum phase velocity for a point s along the path. We will
show in detail how one parameterizes constraints for the phase plane in section 6.

The objective function for minimization is time: T =
∫ t f

to dt. The output of our algo-
rithm is then a trajectory, q(t) and q̇(t) (to ≤ t ≤ t f), where q is a full configuration of
the system.

AVI Alg extends Traj Alg and takes as input in place of discrete starting and ending
states a range of starting velocities [ṡmin,o, ṡmax,o], which we will refer to as the input
AVI. The output correspondingly is the AVI at s f : [ṡmin, f , ṡmax, f]. For any admissible
output velocity we can efficiently extract the corresponding time-optimal trajectory.

4 Classical Phase Plane Navigation Overview

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

ṡ
-

p
a
th

 v
e
lo

ci
ty

s - path distance

Phase Plane

β Vector Field
α Vector Field

Start and End State
Forward Profile

Backward Profile
Inadmissible Region

Intersection State

Start State End State

Fig. 1. Example phase plane.

Before we present our algorithms, it
is important to understand classical
phase plane navigation. The phase
plane is defined by the path veloc-
ity ṡ and the path position s. The
scalar s indicates the position along
the path q(s). The velocity and ac-
celeration for all joints in the con-
figuration space can be derived from
q(s(t)) using the chain rule.

q̇ = dq
ds ṡ q̈ = dq

ds s̈+ d2q
ds2 ṡ2 (1)

The transformation of constraints to the phase plane is useful because it creates a
lower-dimensional space in which the time-optimal trajectory can be computed more
efficiently. A profile, such as the blue and gold curves in figure 1, is defined as a curve in
the phase plane. A solution trajectory is any profile or concatenation of profiles from
the starting to ending state which do no cross into the inadmissible region. If a solution
trajectory maximizes the area under its curve, then it is the time optimal-trajectory [10].
Hence, maximizing ṡ over a path is equivalent to minimizing the total time for its
corresponding trajectory.

For the simple example in figure 1, the solution trajectory can be found by following
the β and α vector fields forward and backward from the start and end states, respec-
tively. The β vector field is defined by the maximum acceleration, β = s̈max(s, ṡ), which
the system is capable of at a given state and α is defined likewise as the minimum
acceleration, α = s̈min(s, ṡ). We will refer to profiles which progress monotonically left

to right, and thus which try to follow the β vector field as forward profiles and having
the forward directional type. Backward profiles are the opposite, they flow right to left
following α .

Clearly, there are no valid profiles originating at the start or end state which can rise
to values of ṡ above those shown in figure 1 since they were created by applying extremal
control inputs, i.e., following the β/α fields. Thus, the trajectory resulting from these
profiles is time-optimal.

In figure 1, the intersection between the forward and backward profile is denoted by
an intersection state. In prior work this intersection would not be computed explicitly,
intersections were assumed when it was detected that one profile was above another at
some value s. For our methods, intersections between profiles are discovered using curve
intersection methods. These intersections are valuable to our algorithms since we need
them to develop a graph of profiles in the phase plane.

To construct profiles we navigate. We refer to their construction as navigation,
instead of merely integration, because a navigation policy is employed to step-by-step
generate profiles. For example, to construct the profile originating from the starting
state, the algorithm asks the navigation policy what phase acceleration s̈ it should use to
integrate the equations of motion based on its current [s, ṡ] state. The phase acceleration
which is returned by the policy is then integrated to arrive at some new state. Usually, the
acceleration returned by the policy will be equivalent to the β or α vector fields. This
“bang-bang control” ensures that profiles are always maximizing ṡ with each step.

However, the navigation policy may deviate to some value between β and α when it
hits an inadmissible region. Inadmissible regions are induced by the dynamics constraints
of a system and are delineated by maximum or minimum velocity curves (maxVC)
(minVC). Since, the states in these regions violate constraints they cannot be entered by
a valid profile. In the instance where a profile has intersected the maxVC, the navigation
policy will attempt to guide the profile along the maxVC and so may return a value
between β and α . Since no valid states exists above the maxVC, following the maxVC
constitutes maximizing ṡ.

In general, the inadmissible regions and β/α vector field interactions are complex,
requiring many profiles and a phase plane navigation algorithm is needed. At a high
level, all phase plane navigation algorithms perform the following steps, which will be
explained in more detail below:

1. Compute maximum and minimum velocity curves (maxVC/minVC), respectively.
2. Compute constraint switching states.
3. Construct maximum limiting profiles (MLP) from constraint switching states.
4. Connect start to end state (Traj Alg) or connect start to end AVI (AVI Alg)

Computing the minVC and maxVC is usually a straightforward substitution of the
terms in equation 1 into the functions which define specific system constraints. We show
how this is done for several constraints in section 6.

If a profile originating at the start or end state intersects the maxVC and has no viable
direction of navigation, then it is necessary to identify new states in the space to connect
to. These states are referred to as switching states. In terms of the control, they are points
where the control input switches from following α to β or vice versa. A priori, it is
unknown which switching states will be needed to traverse the plane. Any point along

the maxVC could potentially be a switching state. In [14], the identification of these
necessary switching states follows from several heuristics designed for different types of
constraints.

The MLP is formed from a set of profiles which originate from switching states along
the maxVC. MLP construction follows by navigating profiles forward and backward
from the constraint switching states, which we will refer to as expansion. In [14], profiles
are expanded without means of accounting for connectivity between profiles or continuity
to states such as the start or end states. This lack of information leads to many problems,
both in determining if the resulting profiles form a solution trajectory and in determining
if the resulting velocity intervals are in fact feasible. That is, the prior methods may report
a feasible trajectory infeasible, i.e., a false negative, or report an infeasible trajectory
as feasible, i.e., a false positive. Our algorithms do not have this problem thanks to a
key contribution in the form a graph data structure which allow us to efficiently extract
the time-optimal trajectory if it exists and report definitively that no solution trajectory
exists if it does not.

For trajectory generation, the classical method attempts to connect the starting and
ending states either directly together as we saw in figure 1 or through the MLP. For
AVI, the algorithm presented in [14] attempts a bisection search. Profiles are iteratively
expanded from the start range to find the maximum final ṡ. It then proceeds to perform
the same search at the end trying to find the minimum final ṡ. This process is described
in more detail later as we deviate from the classical method in AVI computation.

5 Traj Alg and AVI Alg, Algorithms for Phase Plane Navigation

This section elaborates the key contributions of our work in phase plane navigation. Our
algorithms follow the same general flow as what is presented in the previous section.
However, we replace the methods used in each step from section 4 with our own to
resolve the issues we identified and improve the generality to new novel dynamics
constraints. For example, rather than trying to only find the subset of switching states
which forms the solution, we exhaustively find all possible switching states as outlined
in 5.1. To manage the exhaustive set of profiles and intersection states, we introduce a
data structure that can be searched for the time-optimal trajectory or used in service of
finding the AVI as outlined in 5.2. The following subsections apply to both Traj Alg and
AVI Alg until section 5.3 where they split.

5.1 Identification of Constraint Switching States

We refer to a state as navigable if there exists an infinitesimal expansion to the left and
to the right in the phase plane which does not enter the inadmissible region. In figure 2,
we can see that point marked 1 on the maxVC is navigable. If the slope of the maxVC
is between the slopes formed by the β and α vectors, which we will refer to as the
navigation cone, then the maxVC can be followed. The navigation cone for the point
marked 2 is directed into the inadmissible region and thus this point is un-navigable.

We do not seek switching states along the minVC. If there exists a state above the
minVC at some s, then this state is necessarily better than the one on the minVC, since it

un-navigable region
singularity

tangent switch state

β acceleration

α acceleration

ṡ

s

Phase Plane
α = β{

navigable region

1

2

Fig. 2. Phase plane plot illustrating navigability
along the maxVC. The α and β vectors are shown
only the points marked in the figure.

has a higher ṡ. However, if the maxVC
and minVC coincide, i.e., no state exists
above the minVC, then the path is infeasi-
ble as there is no way to traverse the plane
without entering the inadmissible region.

General Switching States In general,
any state along the maxVC which is
navigable is a potential switching state.
Also, all states within a navigable range
are equivalent. That is, any state on the
maxVC is equivalent to its navigable
neighbors because expansion of said state
will generate a profile which necessarily passes through its neighbors. The navigation
policy always directs a profile in the direction which maximizes ṡ, which in this case
is along the maxVC since no direction can result in a higher ṡ in the next step. Thus,
finding all navigable regions and picking at least one point in the range is equivalent
to finding all possible constraint switching states. We define a function navigable(s, ṡ)
which evaluates whether the slope of the maxVC bisects the navigation cone. This func-
tion is evaluated at finely discretized points along the path to find the valid regions and
hence all general switching states. We assume navigable(s, ṡ) is Lipschitz continuous
and that the integration step size is chosen such that the function is monotonic between
any two consecutive discretized points. There are two degenerate cases where the general
method fails: tangent switching states between discrete states and zero inertia switching
states.

Tangent Switching States When the β vector is tangent to the slope of the maxVC we
have a point of navigability. If the β vector is above the maxVC at a discrete state and
below the maxVC at an adjacent discrete state, then we can use bisection to find the
tangent switch state in the interval between them.

Zero Inertia Points As we will show in section 6, a change in sign of the inertial term
causes a divide-by-zero scenario. The zero inertia points (ZIPs) corresponding to such
an event are easy to identify. Similar to [14], we find these switching states via checking
each discretized neighboring state along the maxVC for whether there is a change in
sign of the denominator term in the equation which defines s̈max and s̈min. The ZIP is
then located through interpolation between these two states.

Once located, a simple method to determine the slope of best fit for a ZIP is to project
segments to the left and right of the ZIP. For each segment a search can be performed to
find the angle which minimizes the difference in slope between the segment and the β or
α vector at the segments end point. Typically, the segment’s s component should be held
equal to the discretization length of the path to ensure that that the segment’s projected
endpoint is sufficiently far from the ZIP which is being avoided.

5.2 Constructing the Maximum Limiting Profiles

With all switching states found, the order of expansion does not matter and, indeed, they
can be generated in parallel. Additionally, all switching states are expanded in the same

*
Switching State

Intersection State
Forward Profile
Backward Profile
maxVC

s

ṡ

Phase Plane

If Profile 3 constructed before 1

If Profile 1 constructed before 3
*

*

*

**

*
1

2

4 5 6

1

2

4 5 6

1

2 3

4 5

6

1-3

3

3

Fig. 3. Phase plane plot with numbered profiles and corresponding continuity graphs. Shaded
nodes have continuity to the start and end states.

way except for those which occur at ZIPs which we discussed in section 5.1. This makes
our algorithms very easy to parallelize.

In the event that any expansion would lead to a profile intersecting the minVC
the algorithm will report that the path is infeasible and halt. Since the profile which
intersected the minVC was following the β or α vector field, there exists no control
which would avoid the inadmissible region. Also, the profile in question must have
originated from the maxVC since it was a candidate MLP profile. Since, it originates
from the maxVC, it is then clear that no profile can span the phase plane without also
intersecting this profile and hence leading to the minVC. Thus, in this event, the path is
known to be infeasible.

We will construct a graph, called the continuity data structure or continuity graph,
with profiles and their intersections corresponding to vertices and edges, respectively.
Our algorithms will search this graph to find the profiles and intersections leading from
start to end state. If such a path from start to end exists, this path can be used to extract
the time-optimal trajectory, or else the path is reported infeasible.

Since switching states can be expanded in any order, there are many possible graphs
which can be constructed for the same problem. One might then be concerned that this
could lead to multiple solution trajectories. We illustrate in figure 3 two possible graphs,
which result depending on the order of construction of profiles 1 and 3.

However, the nodes and edges in our graph all have spatial meaning. Regardless of
which graph is constructed, the spatial relationship between elements is the same. For
example, paths [1-3-4-5-6] and [1-4-5-6] are equivalent as when we evaluate the paths
monotonically from left to right, the exact same curve in the phase plane is constructed.
Hence, the first path returned by any search method over the graph is the time-optimal
solution. Based on the properties of profiles, the algorithms cannot generate multiple
spatially-distinct paths between states in the phase plane. We do not provide a full proof
here; however, we outline some of the intuition and properties of profiles.

In the first case, 1 is constructed before 3 resulting in the second graph. Navigation
of 3 would halt when it intersects 1. Further expansion of a profile after it intersects a
profile of the same directional type, i.e., forward or backward, is unnecessary. This is
clear because profiles of the same type follow the same navigation policy and hence if
two profiles share a state they will deterministically navigate the same way from the
shared state regardless of how they got there. Halting a profile’s navigation after like-type

intersection shrinks the amount of additional navigation and the number of intersections
that would result. In the second case, 3 is constructed before 1, and so 1 would halt upon
intersecting 3 generating the first graph.

Note, profiles of different type cannot intersect more than once as this would lead to
a contradiction of α and β . Without loss of generality consider a forward profile which
has just intersected a backward profile. The forward profile will have intersected from
below and to the left of the backward profile. The profile cannot have intersected from
the left and above because this would mean that α > β at this point and thus would be
inadmissible. After intersection, the forward profile would necessarily have to intersect
the backward profile from above which as we have just pointed out is inadmissible.

5.3 Solution Extraction

Traj Alg With all of the hard work finished, i.e., constructing the MLP, all that Traj Alg
needs to do is expand the starting and ending states. The resulting continuity graph as
described in the previous section can then be searched for the solution trajectory.

AVI Alg Computing admissible velocity intervals requires a bit more work. There is not
a single ṡ value to start from and so there is not a single start state to expand. Different ṡo
values can result in different ṡ f ,max and ṡ f ,min. We illustrate the various steps of AVI Alg
in figure 4 needed to find ṡ f ,max and ṡ f ,min.

First, AVI Alg will find the ṡ f ,max. In the ideal situation, plot 2 in figure 4 or step
1(b) in AVI Alg 1, the MLP already intersects the starting AVI in which case we can
proceed to step 1(c). However, a set of profiles, such as 1 and 2, expanded during MLP

s

ṡ

*

*
2 3

4 5

AVI
In

s

ṡ

*

*
2 3

4 5

AVI
In

X

*
Switching State

Intersection State
Forward Profile
Backward Profile
maxVC

2

4 5

3

X

s

*

*
2 3

4 5

X

s

*

*
2 3

4

5

AVI
In

X

1 2

3 4

AVI
In

X

X

X

termination

minProfile
continuity

Forward Test
Profile
Backward Test
Profile

Fig. 4. Plot 1 illustrates condition 1a. Plot 2 illustrates condition 1b and 1c. Plot 3 illustrates
condition 1d. Plot 4 illustrates both conditions 1(e) and 2(a) in algorithm 1.

Algorithm 1: AVI Alg: algorithm to find the maximum and minimum reachable ṡ
at the end of the path.

1. Find the ṡmax, f :
(a) If the MLP (the set of profiles with continuity to the minProfile) reaches so and is below

the starting AVI, return no solution exists, else go to step 1(b).
(b) If the MLP intersects the starting AVI, go to step 1(c), else go to step 1(d).
(c) If the MLP reaches s f , then ṡmax, f is equivalent to this intersection and go to step 2, else

go to step 1(e).
(d) Bisection search, using forward test profiles, from start AVI to MLP or to highest ṡ f . If

MLP is intersected go to step 1(c), else if s f reached then ṡmax, f has been found, else
return no solution.

(e) Bisection search, using backward test profiles, for highest ṡ at ṡ f which intersects the
MLP or reaches the start AVI. If MLP intersected or start AVI reached, ṡmax, f is found,
else return no solution exists.

2. Find the ṡmin, f :
(a) Bisection search, using backward test profiles, to find ṡmin, f between the minVC(s f) as

a lower bound and ṡmax, f found in part 1 as the upper bound.

construction may be disconnected from the profiles which actually span the plane such
as in plot 1. To deal with this situation we redefine the MLP.

We will refer to the profile, out of all profiles constructed for the MLP, with the
lowest value of ṡ along its entire length as the minProfile. Clearly, if the MLP is to span
the plane, this profile must be part of the solution. This profile like all those generated
during MLP construction originates on the maxVC. No other profile can span the s
space of the minProfile without also passing through the origin switching state of the
minProfile. AVI Alg can then use the continuity data structure to find all those profiles
with continuity to the minProfile which now constitute the new MLP.

If the start AVI is above the MLP or below the minVC, steps 1(a) and 1(b) in
algorithm 1, then the path velocity is too fast or too slow and so AVI Alg returns no
solution exists.

If we reach step 1(d), i.e., the MLP either reaches so and is above the AVI input or
does not reach so, then AVI Alg will perform a bisection search. The bisection search is
conducted over the starting AVI, i.e., at so, from ṡo,min to ṡo,max as illustrated in plot 3.
Over this interval of starting states, forward test profiles are expanded. The nature of the
termination condition for a test profile determines if the search moves up or down the ṡo
interval until the test ṡ converges on some ε . If the test profile terminates on the minVC,
then the test ṡ increases as higher ṡ are less likely to hit the minVC. Likewise, if the test
profile terminates on the maxVC then ṡ is decreased. If the test profile terminates at s f ,
then the ṡ is increased. If the MLP is intersected at any point, then AVI Alg proceeds to
step 1(c). These are all the features in the space which can cause termination and thus
the search must converge with one of these final conditions. The resulting conditions
and the branch they cause in the algorithm are enumerated in step 1(d).

If step 1(e) is reached, AVI Alg has not found s f ,max but has connected the start AVI
to the MLP and the MLP does not reach s f . Thus we perform a similar bisection search
as 1(d) except at s f . Clearly, backward test profiles are used in the place of forward test
profiles. The ṡ f interval used for bisection spans from the maxVC(s f) to the minVC(s f).

With ṡ f ,max found, the next step, 2(a), is to find ṡ f ,min. To do this, perform the same
search as in 1(e), except instead of biasing search up after terminating at a profile which
has continuity to the start, we bias our search down as the goal is to find the smallest ṡ
possible. The ṡ f interval used for bisection spans from the ṡ f ,max to the minVC(s f).

6 Phase Plane Parameterizations

The constraints which Traj Alg and AVI Alg can handle is defined as those constraints
which form maximum and/or minimum curves which do not lead to more than one
homotopy class of solution profiles. Our algorithms currently do not handle those
constraints which [11] described as “inadmissible islands,” so called because all of
the space around these regions is admissible isolating them from other regions of
inadmissibility. All of the constraints presented here fall into the class which Traj Alg
and AVI Alg can handle. Determining if a constraint can create “inadmissible islands”
is usually straight forward as the minimum and maximum curves defined by such a
constraint form an or relationship, i.e. a state is valid if it is above the minimum or below
the maximum, instead of an and relationship, i.e. a state is valid if it is both above the
minimum and below the maximum.

Torque Constraints For torque constraints, consider rigid body robots whose dynamics
can be described as:

τmin ≤M(q)q̈+ q̇T C(q)q̇+G(q)≤ τmax (2)

We substitue the terms from 1 into 2 and alias the terms as a, b, c as seen in [14]. We
have also changed our notation so that evaluation results in a scalar value of torque on
the axis of some joint i.

ai(s) = Mi(q(s)) dq
ds bi(s) = Mi(q(s)) d2q

ds2 + dq
ds

T
Ci(q(s)) dq

ds ci(s) = Gi(s) (3)

Substituting 3 back into 2 leaves us with the simplified phase plane parameterized
equations of motion for a rigid body robot.

τi,min ≤ ais̈+biṡ2 + ci ≤ τi,max (4)

Note that the ai term is the inertial component, bi is the Coriolis component, and ci
incorporates the external force terms. Rearranging terms from 4 we get

τi,min−bi ṡ2−ci
ai

≤ s̈i ≤
τi,max−bi ṡ2−ci

ai
(5)

taking care to note that the sign of the inertial term a will determine whether the resulting
s̈ is that joints maximum, s̈i,max, or minimum, s̈i,min, since the sign of a can flip the
direction of the inequalities. With the system parameterized for the phase plane, we see
that it is very easy to solve for the maximum acceleration for a given state [s, ṡ] from 5.

To compute the maxVC and minVC we must solve for when α(s, ṡ)≥ β (s, ṡ). To do
this we take some maximum constraint, i, and some minimum constraint, j, as defined
in 5 to get:

−bi ṡ2−ci
ai

≤ −b j ṡ2−c j
a j

⇒ −bi ṡ2

ai
+

b j ṡ2

a j
≤ −c j

a j
+ ci

ai
(6)

Note that we have pulled the constant τ term into the constant c term. Isolating the ṡ
terms, we see that whether ṡ is a solution to the maximum or minimum velocity curve at
s is dependent upon the sign of the denominator in 7.

ṡ(s)≤
√(−c j

a j
+ ci

ai

)
/
(−bi

ai
+

b j
a j

)
(7)

Thus we can evaluate 7 with every combination of joints i, and joints j to find the minVC
and maxVC.

Velocity Constraints Unlike torque constraints, which involve considering the full body
dynamics of the robot, velocity constraints are much more straightforward. Here we
repeat the constraint as seen in prior work [16]:

ṡmax(s) = min
i

q̇i,max/
dq
ds i(s) (8)

Momentum Constraints While the torque constraint parameterization appears intimi-
dating, many constraints are very easy to parameterize. A common constraint in safety
critical environments where robots are in close proximity to people or fragile hardware
is the momentum constraint. Here we present a parameterization to prevent the robot
from exceeding some maximum linear momentum for a given link in the system. The
angular momentum is parameterized similarly. Linear momentum in a rigid body robot,
for a link i, can be computed from the Jacobian and center of mass as follows

hi = vimi = Ji(q)q̇mi (9)

Substituting 1 into 9 and solving for ṡ gives us

ṡi,max(s) =
hi,max

mi

(
Ji(q(s)) dq

ds

)−1 (10)

which we can compute for each link. As usual, we take the lowest ṡ as the maxVC.

Workspace Proximity Constraints In the early work of [10,11], the phase plane con-
straints were parameterized in the context of the end effector for workspace planning
and control instead of joint constraints. We extend this to a new, interesting constraint
wherein a user might wish to slow the end effector or some other link when it is in
proximity to some tool or object they wish it to interact with. When controlling an end
effector to grasp an object, we might wish to add a threshold or some function which
lowers the velocity limit as the end effector gets close to an object to improve accuracy.
A hard threshold on end effector velocity when within a certain distance of an object can
create jumps in the maxVC which our results show are handled without fail. We can find
the maxVC for an arbitrary point on the robot by removing mass from equation 10:

ṡmax(s) = vmax(s)
(
J(q(s)) dq

ds

)−1 (11)

7 Results

To evaluate our algorithms, we set up a series of simulation experiments for a 7-DOF
WAM arm with the attached 4-DOF Barret hand using OpenRAVE [19] (see Fig. 5).
To generate paths for the experiments, we randomly sample four configurations in

the C-space of the Barret-WAM arm. A C2 curve is interpolated through these four
configurations via piece-wise quintic spline interpolation. In this fashion, we generate a
test set of 1,000 random paths. The s length of each path segment is set to one resulting
in paths of length three and discretized by ε = 0.001. Every state along these curves
is reachable quasi-statically by the Barret-WAM arm. The input AVI are also set for
each curve to span from the minVC to the maxVC. Thus, if an algorithm reports the
path infeasible, it is a failure of the algorithm, i.e., a false negative. To check for false
positives we evaluate the solution profiles for continuity and constraint violation. Only
those cases which pass both tests are counted in the success rate.

Fig. 5. A path for the Barrett-WAM arm
between four random waypoints, used
as input for TOPP and our algorithms.

In our experiments we compare the TOPP li-
brary [14] with our algorithms. TOPP supports
both joint torque and velocity constraints and so
we compare our algorithms using both of these
types of constraints. These limits are included in
the OpenRAVE supplied model. Our algorithms
generalize to a broad class of constraints. We show
below results for momentum and end effector ve-
locity constraints which are within this class. Prior
methods (like TOPP) cannot handle these types
of constraints, so no direct comparison is possible.
For momentum, we impose linear momentum lim-
its of [0.75,0.75,0.75,0.65,0.65,0.75,0.75,0.75]
(kg·m/s) to links wam0 through wam7, respec-
tively. For end effector velocity we impose a limit
of 0.5 m/s on wam7’s center of mass.

Traj Alg The objective of this work is to improve the success rate and generality of time-
optimal trajectory generation; however, the algorithms presented also outperform the
state-of-the-art method in computation time (see table 1). One would think that growing
the number of potential switching states, profiles, and introducing intersection routines
would decrease performance. However, the prior method, such as implemented in TOPP,
expends considerable effort vetting switching states before expansion as including an
unnecessary or missing a necessary switching state can result in failure. In table 1 we can
see that this effect results in an over 65% improvement in the time it takes to generate
the profiles which store the solution. Our graph structure also greatly speeds up the time
it takes to extract the trajectory by several orders of magnitude.

Comparing the success rates, TOPP does fairly well. However, considering that these
are deterministic algorithms we should expect 100% success rates. For Traj Alg we see
that the time-optimal trajectory was found for every test case.

AVI Alg In this section we evaluate the performance of TOPP and AVI Alg. We measure
success rate, generation time, and the height of the velocity intervals found. The velocity
intervals found should be fairly similar for both algorithms given the same constraints,
but one would expect some loss in TOPP due to the heuristics employed.

For TOPP, we see a notable drop in the success rate for the harder AVI problem
which is the focus of this work. This is mostly due to the fact that some of the heuristics

Table 1. Success rate and trajectory computation time for TOPP and Traj Alg. The trajectory
generation time can be broken down into generation time (Tg) and extraction time (Te). Results are
an average over 1000 random test cases.

Algorithm Constraints Success (%) Tg (s) Te (s) Tg +Te (s)

TOPP torque 98.0 0.248 0.174 0.422
TOPP torque + velocity 99.6 0.278 0.324 0.601
Our algorithm torque 100 0.184 0.004 0.188
Our algorithm torque + velocity 100 0.184 0.003 0.187
Our algorithm torque + momentum 100 0.191 0.003 0.194
Our algorithm torque + momentum + end eff. vel. 100 0.192 0.002 0.194

Table 2. Success rate and AVI generation time for TOPP and AVI Alg. Results are an average over
1000 random test cases. †: 3 successful cases are not enough to produce statistically significant
times or ranges for comparison.

AVI Generation AVI Size
Algorithm Constraints Success (%) Time (s) (ṡ units)

TOPP torque 90.8 0.226 0.757
TOPP torque + velocity 0.3 † †
Our algorithm torque 100 0.182 0.761
Our algorithm torque + velocity 100 0.181 0.399
Our algorithm torque + momentum 100 0.188 0.316
Our algorithm torque + momentum + end eff. vel. 100 0.190 0.272

used by TOPP for the point-to-point problem cannot be easily generalized to the AVI
problem. Comparing tables 1 and 2, we see a drop from 98.0% to 90.8% for the cases
with joint torque constraints and complete failure when joint velocity constraints are
added. Ignoring the complete failure case, losing 10% of cases would be catastrophic for
a kinodynamic motion planning algorithm relying on these algorithms for determining
feasibility. This data suggests that the algorithm implemented in [14] is not complete.

Other arms The performance differences between TOPP and our algorithms vary based
on the kinematics and dynamics of the robot, but they can be quite large. For example, for
a 5-DOF arm with unit-length and unit-mass links the success rate from TOPP drops to
84.3% for trajectory generation and 52.7% for AVI computation under torque constraints
of 20 units for each joint. In contrast, the success rate of our algorithms remains 100%.

Minimum Velocity Constraints: A Case Study In this section we illustrate a fully dynamic
planning problem representative of the painting/welding application mentioned in the
introduction. In addition to all the previous constraints, we now also impose a minimum
velocity limit on the end effector of 0.05 m/s. The end effector velocity limits make sure
that neither too little nor too much paint is deposited. The momentum limits ensure some
measure of safety for human co-workers. The joint torque and velocity limits simply
follow from the robot’s dynamics constraints.

Finding a time-optimal trajectory for a given path subject to all these constraints is
extremely challenging. Standard workspace time-optimal control methods that solve
boundary value problems cannot be applied as we wish to follow a given path. Algorithms

	0
	0.5
	1

	1.5
	2

	2.5
	3

S	
(u
ni
tle

ss
)

torque
joint	velocity

end	effector	velocity
momentum

-1

-0.5

	0

	0.5

	1

Ve
lo
cit
y	
(m

/s
)

ShoulderYaw
ShoulderPitch
ShoulderRoll

Elbow
WristYaw
WristPitch
WristRoll

JF1
JF2
JF3
JF4

-1

-0.5

	0

	0.5

	1

To
rq
ue

	(N
-m

)

ShoulderYaw
ShoulderPitch
ShoulderRoll

Elbow
WristYaw
WristPitch
WristRoll

JF1
JF2
JF3
JF4

	0
	0.2
	0.4
	0.6
	0.8
	1

	1.2

M
om

en
tu
m
	(k

g-
m
/s
)

wam0
wam1
wam2
wam3
wam4
wam5
wam6
wam7

	0
	0.2
	0.4
	0.6
	0.8
	1

	1.2

	0 	2 	4 	6 	8 	10 	12 	14

Ve
lo
cit
y	
(m

/s
)

Time	(s)

End	Effector

Fig. 6. Phase plane plot along with the resulting trajectories which correctly saturate the constraints.
The colored time vs. s plot indicates which constraint is saturated.

like TOPP do not support minimum constraints, momentum constraints, or end effector
velocity constraints. In addition, they tend to perform poorly on non-quasistatic paths. In
contrast, by merely inputing the parameterizations for these constraints (discussed in
Section 6) into our algorithm we are able to find time-optimal trajectories.

Figure 6 shows the trajectory generated for a given path. The plots below it show the
torques and velocities for all joints, the momentum for each link, and the end effector
velocity, respectively. Each curve has been normalized based on its constraint limit. A
value above 1 or below −1 would indicate that a constraint is being violated. The first
plot is color coded based on the active constraint at each point in time. For example, the
first purple segment indicates that joint velocity is the active constraint. We can trace
down to the velocity vs. time plot and see that indeed at least one joint’s limit is saturated.
This is indicated by the plateau at the normalized value of 1. Walking along the first plot
we can see that at every time point some constraint is saturated.

8 Conclusion

We have presented novel algorithms for time-optimal trajectory generation and the
computation of AVI. We have shown that they outperform classical methods in terms

of success rate and performance, and generalize to a broader class of constraints than
prior work. A proof of completeness and further theoretical analysis of the algorithms
are future work.

Acknowledgments Work on this paper has been supported in part by NSF 1139011,
NSF 1317849, and NSF 1514372.

References
1. Pham, Q.C., Nakamura, Y.: Time-optimal path parameterization for critically dynamic

motions of humanoid robots. In: IEEE-RAS Intl. Conf. on Humanoid Robots. (2012) 165–170
2. Nguyen, H., Pham, Q.: Time-optimal path parameterization of rigid-body motions: Ap-

plications to spacecraft reorientation. J. of Guidance Control and Dynamics 39(7) (2016)
1667–1671

3. Ansari, A.R., Murphey, T.D.: Sequential action control: Closed-form optimal control for
nonlinear systems. IEEE Trans. on Robotics 32(5) (October 2016) 1196–1214

4. Berenson, D., Srinivasa, S.S., Ferguson, D., Kuffner, J.J.: Manipulation planning on constraint
manifolds. In: IEEE Intl. Conf. on Robotics and Automation. (2009) 625–632

5. Jaillet, L., Porta, J.: Path planning under kinematic constraints by rapidly exploring manifolds.
IEEE Trans. on Robotics 29(1) (2013) 105–117

6. Elbanhawi, M., Simic, M.: Sampling-based robot motion planning: A review. IEEE Access 2
(2014) 56–77

7. Pham, Q.C., Caron, S., Nakamura, Y.: Kinodynamic planning in the configuration space via
admissible velocity propagation. In: Robotics: Science and Systems, Berlin, Germany (2013)

8. Hsu, D., Latombe, J.C., Motwani, R.: Path planning in expansive configuration spaces. Intl. J.
of Computational Geometry and Applications 9(4-5) (1999) 495–512

9. Kuffner, J., LaValle, S.M.: RRT-Connect: An efficient approach to single-query path planning.
In: IEEE Intl. Conf. on Robotics and Automation, San Francisco, CA (2000) 995–1001

10. Bobrow, J., Dubowsky, S., Gibson, J.: Time-optimal control of robotic manipulators along
specified paths. The Intl. Journal of Robotics Research 4(3) (1985) 3–17

11. Shin, K., McKay, N.: Minimum-time control of robotic manipulators with geometric path
constraints. IEEE Trans. on Automatic Control 30(6) (1985) 531–541

12. Kunz, T., Stilman, M.: Time-optimal trajectory generation for path following with bounded
acceleration and velocity. In: Robotics: Science and Systems, Sydney, Australia (2012)

13. Hauser, K.: Fast interpolation and time-optimization on implicit contact submanifolds. In:
Robotics: Science and Systems, Berlin, Germany (2013)

14. Pham, Q.C.: A general, fast, and robust implementation of the time-optimal path parameteri-
zation algorithm. IEEE Trans. on Robotics 30(6) (2014) 1533–1540

15. Verscheure, D., Demeulenaere, B., Swevers, J., Schutter, J.D., Diehl, M.: Time-optimal path
tracking for robots: A convex optimization approach. IEEE Trans. on Automatic Control
54(10) (2009) 2318–2327

16. Žlajpah, L.: On time optimal path control of manipulators with bounded joint velocities and
torques. In: IEEE Intl. Conf. on Robotics and Automation. (1996) 1572–1577

17. Shiller, Z.: On singular time-optimal control along specified paths. IEEE Trans. on Robotics
and Automation 10(4) (1994) 561–566

18. Pham, Q.C.: Characterizing and addressing dynamic singularities in the time-optimal path
parameterization algorithm. In: IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems.
(2013) 2357–2363

19. Diankov, R.: Automated Construction of Robotic Manipulation Programs. PhD thesis,
Carnegie Mellon University, Robotics Institute (August 2010)

	A General Algorithm for Time-Optimal Trajectory Generation Subject to Minimum and Maximum Constraints*-.5

