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ABSTRACT

Mapping the Structural Landscape of Protein Families with Geometric Feature Vectors

by

Drew Bryant

This thesis describes two key results that can be used separately or in combination for

protein function analysis. The Family-wise Analysis of SubStructural Templates (FASST)

method uses all-against-all substructure comparison to determine family-wide sub-group

organization by quantifying the substructural variation within a protein family. The re-

sults demonstrate examples of automatically determined sub-groups that can be linked to

phylogenetic distance between family members, segregation by ligation state, and orga-

nization by ancestry among convergent protein lineages. The Motif Ensemble Statistical

Hypothesis (MESH) framework constructs a representative template for each of the sub-

groups determined by FASST to build motif ensembles that are shown through a series of

function prediction experiments to improve the function prediction power of existing tem-

plates. This work provides an unbiased, automated assessment of the structural variability

of identified substructures among protein structure families and a technique for exploring

the relation of substructural variation to protein function.
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Illustrations

1.1 Protein substructures. The xylose isomerase protein shown above has a

sequentially non-contiguous, but spatially compact set of 5 functional

residues that are shown above in stick representation. These 5 catalytically

important residues constitute a substructure of the protein and can be

represented by a motif/template. The Cα atom of each residue is modeled

by the template along with one or more amino acid type labels. This

template can then be compared to other protein structures to identify

matching substructures which share chemical and geometric similarity to

the template. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.1 Same fold, different functions. Dihydropteroate synthase (1AD4),

tryptophan synthase (1A5S), and triose-phosphate isomerase (1AW1) are

examples of proteins sharing the same TIM-barrel fold while catalyzing

very different enzymatic reactions. Each structure is colored from blue

(N-terminal) to red (C-terminal) with the bound ligand shown as pink

spheres. Variable loop regions near the C-terminal end that link the main

secondary structure elements are able to implement a variety of different

functions by incorporating different substructural elements [1, 2]. . . . . . 10
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2.2 Substructural conservation in the heme-dependent peroxidases. The

catalytic site of the mammalian enzyme shares a common catalytic

substructure with the sequentially and topologically distinct fungal version

of the enzyme. The 5 catalytically necessary residues are shown with

sphere representation at each Cα position above. The heme prosthetic

group is shown in stick representation for reference in each structure above. 11

2.3 Different folds, same function. Subtilisin and chymotrypsin have

convergently evolved to contain a functionally equivalent set of 3 residues

called the “catalytic triad” [3]. . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4 Automated substructure selection methods. The structure of

triose-phosphate isomerase (TIM) (PDB 1AW1) is shown above with the

ligand in stick representation and cavity regions as surface and mesh

forms. CASTp [4] identifies a total of 40 different cavities (of widely

varying size) for TIM; the cavity associated with the ligand binding site is

shown alone. Surfnet [5] identifies interface regions between molecules,

and above is shown the interface region between TIM and the bound

ligand. For both CASTp and Surfnet, the residues associated with the

identified cavities can serve as a source of substructure motifs to be used

as input to the FASST-MESH method. . . . . . . . . . . . . . . . . . . . . 14
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2.5 GIRAF and FASST clustering of the serine proteases. The trypsin-like

and subtilisin-like serine proteases are identified as separate clusters by

both GIRAF and FASST, although the clustering approaches themselves

differ. The trypsin-like cluster shown for GIRAF is actually an

agglomeration of 19 individual clusters that Kinjo et al. identified

manually. While FASST is only comparing the 3 Cα atoms of the catalytic

triad, GIRAF compares the largest common substructure between every

pair of bindings sites (nodes in the graph); the mean/std.dev. of the

binding site atoms compared in the GIRAF-based network is 32/11, much

larger than the 3 atoms used by FASST. While GIRAF and FASST differ

in approach, the two methods are in agreement as to how the serine

proteases should be structurally partitioned. Adapted from Kinjo et al.

(2009) [6]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.6 Geometric sieving. A crude motif for chymotrypsin, containing both

catalytic and nearby non-catalytic residues, is shown above with spheres

indicating each of the 11 motif points. Every 7-point subset of the

11-point input motif is matched against a random sample of the PDB and

these
(11

7
)

= 330 smoothed pdfs are shown above on the right. The pdfs

with highest and lowest medians are outlined in bold black while the other

328 profiles are in lighter gray. Hash marks along the x-axis denote the

locations of each of the 330 medians. Geometric sieving selects the motif

point subset with highest median because it is the most “geometrically

unique” and least likely to match functionally unrelated targets at a given

LRMSD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
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2.7 Cavity-aware motifs. (a) The cavity-aware motif shown above is a

hybrid model that combines both motif points (black circles) and cavity

spheres (white circles). (b) Cavity-aware motifs eliminate erroneous

matches where matched proteins lack similar cavity volumes. Both

matches shown align with low LRMSD to the cavity-aware motif points,

but the bottom, erroneous match is eliminated because it violates one

more of the empty cavity sphere regions of the cavity-aware motif. (c) The

number of matches eliminated by a cavity-aware motif depends on both

the size and placement of cavity spheres. Cavity Scaling (CS) considers

each cavity sphere individually at a range of radii. Cavity spheres that

cause large shifts in pdf median are termed high impact while spheres that

have little or no effect on pdf median are termed low impact. . . . . . . . . 21

3.1 Clustering geometric feature vectors. (a) Superposition of the

propagated motifs for the animal and non-animal heme-dependent

peroxidases of EC 1.11.1.7 demonstrates geometric variability. The color

of each aligned substructure corresponds to its cluster assignment in (c),

and it can be seen that closely aligned substructures in (a) correspond to

co-located points in the intra-family ontology shown in (c). (b) Applying

FASST to the family of peroxidases yields a family-wise geometric

feature vector for each catalytic substructure in the family, reducing each

substructure shown in (a) to a point in the intra-family ontology. Gaussian

mixture model (GMM) clustering of the geometric feature vectors,

projected onto a space of reduced dimension, identifies four clusters

denoted by color. The gray isocontours show the smoothed density of

substructures in each part of the geometric feature space. Each cluster

identified constitutes a sub-group within the intra-family ontology. . . . . . 24
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4.1 Phylogenetic-based intra-family ontologies. (a) Substructures positions

in the intra-family ontology colored by Family-level taxanomic

classification reveal that phylogenetic distance between proteins is the

main source of substructural diversity within the the family of

heme-dependent peroxidases. (b) Xylose isomerase structures from 12

different species of bacteria and thermophilic archaea form sub-groups

that can be mapped to the Family-level of taxonomic classification. . . . . 35
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dipeptide in red and template/motif residues shown in blue. Side-chains of

the template residues are shown for reference, but only Cα coordinates are

used by LabelHash in this paper. The yellow, semi-transparent volume

corresponds to the superimposed benzylsuccinic acid ligand of

[PDB:1HYT]. The coordinated Zn2+ ion is depicted as a small green

sphere in the center of the template residues. The binding positions of the

two ligands are superimposed to illustrate where the occupied regions of

the thermolysin binding site differ between the two ligands. (b) Applying

FASST to the family of thermolysin structures reveals that apo and holo

structures segregate into different regions of the intra-family ontology.

The segregation of structures seen indicates that the template residues

undergo conformational change upon binding a ligand. The location of

particular structures in the intra-family ontology are labeled for reference.

(c) Holo outlier structure [PDB:1FJT] with bound valine-lysine dipeptide.

The ligand sits in the side-chain recognition pocket of the thermolysin but
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change of the template residues. (d) Phenol ligand of holo outlier structure

[PDB:1FJW] superimposed with the [PDB:1FJT] binding site for

consistent reference. The phenol ligand also sits in the side-chain

recognition pocket and does not induce conformation change of the

template residues. (e),(f),(g) Ligated inhibitors from [PDB:5TLN],

[PDB:1PE5], and [PDB:1HYT], respectively, in semi-transparent yellow

superimposed with the [PDB:1FJT] binding site. These 3 inhibitors

interact directly with the coordinated Zn2+ ion and induce conformational

change in the binding site. . . . . . . . . . . . . . . . . . . . . . . . . . . 40



xi

4.3 Catalytic triad diversity among serine protease families. Comparing

the geometry of the ubiquitous HIS-ASP-SER catalytic triad across 730

structures, 52 species, and 7 EC families demonstrates the scalability of

FASST to very large numbers of structures. All of the divergently-related

families of the chymotrypsin clan form a single dense sub-group while the

convergently-related subtilase family forms a separate sub-group in the

intra-family ontology. The highly diverse family of lipases form several

small sub-groups distinct from both the chymotrypsin-like and

subtilisin-like structures. Several trypsin outlier structures are labeled and

the references corresponding to each PDB entry document sources of

catalytic site deviation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.1 Robustness of clusters to data removal during 5-fold cross validation.

During each step of cross-validation, FASST-MESH is used to identify

clusters and construct a motif ensemble for the family of peroxidases seen

here. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47



xii

5.2 Sub-groups identified by FASST-MESH within the β -lactamases.

Applying FASST to expose the substructural diversity of a catalytic

substructure among the β -lactamases reveals many distinct sub-groups

within the family. The GMM clustering step of FASST identifies 13

sub-groups within the family and the colors/shapes of points in the

intra-family ontology correspond to sub-group assignment. MESH then

constructs one consensus motif for each sub-group identified, resulting in

an ensemble of 13 motifs. Functional annotation sensitivity improves

from 35.0% (single-structure motif) to 81.2% when using the motif

ensemble constructed by FASST-MESH. For the highly diverse family of

β -lactamases, the intra-family ontology output by FASST shows that

many distinct sub-groups exist within the family. MESH takes advantage

of this information to more completely model the geometric diversity

present, thereby improving functional annotation coverage of the family.

Mapping Family- and Phylum-level phylogenetic data to each of the

substructures as shown in the corresponding plots on the right reveals that

some, but not all, of the sub-groups identified are due to evolutionary

distance between proteins. For example, the Bacillaceae proteins can be

seen to form a single sub-group while Enterobacteriaceae proteins are

distributed throughout the intra-family ontology in several sub-groups,

indicating that another biological factor is working in concert with

phylogenetic distance among the family of β -lactamases to produce the

structural diversity uncovered by FASST. . . . . . . . . . . . . . . . . . . 48



Tables

5.1 Full protein family dataset used for functional annotation

experiments. For each EC class family, a single PDB structure was used

to define an input motif (template). The list of amino acid numbers are

documented functional residues found within the primary PDB

(www.pdb.org) reference corresponding to each PDB structure. The

superscript labels above each amino acid number are the possible amino

acid types that can match at each motif point; further details of alternate

amino acid label use can be found here [7]. Where multiple amino acid

labels per motif point appear, they were determined using ConSurf [8]. . . . 51

5.2 Functional annotation performance of motif ensembles versus

single-structure motifs at significance threshold of α = 0.01. For each

single-structure motif, a motif ensemble was constructed using

FASST-MESH. Next to each % sensitivity value is the total number of true

positive (TP) matches; next to each % specificity value is the total number

of false positive (FP) matches. The performance of motif ensembles was

assessed using 5-fold cross validation and the sensitivity/specificity values

correspond to mean ± standard deviation across the 5 folds. The x-fold

improvement is calculated as: mean motif ensemble performance divided

by single-structure performance. . . . . . . . . . . . . . . . . . . . . . . . 52



1

Chapter 1

Introduction

This thesis introduces a novel method to identify the variation of protein substructure ge-

ometry within a family of related proteins and a complementary method to construct gen-

eralized computational models of protein substructure motifs. The methods introduced

here identify distinct clusters or sub-groups within a protein family by combining geomet-

ric comparisons among all protein structures within the family with unsupervised machine

learning for cluster identification. The sub-group organization of a protein family is consid-

ered an intra-family “ontology” based upon substructure similarity. Using biological meta-

data, this thesis explains the significance of the identified sub-groups and then demonstrates

how identified sub-groups can be used to construct sensitivity-improved substructure tem-

plates.

1.1 Protein Substructures

Understanding the link between protein structure and protein function is a fundamental

problem that underlies diverse application areas including drug target identification, pro-

tein function prediction, and structure-based evolutionary analysis. The specific few amino

acids that mediate the drug-binding affinity of targeted binding sites are an example of a

substructure within a protein (see Fig. 1). The catalytic substructures of enzymatic proteins

are intrinsically linked to enzyme function [9, 10, 11, 12], and establishing a mechanistic

understanding of how specific structural features affect protein function is a central prob-
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Figure 1.1 : Protein substructures. The xylose isomerase protein shown above has a
sequentially non-contiguous, but spatially compact set of 5 functional residues that are
shown above in stick representation. These 5 catalytically important residues constitute
a substructure of the protein and can be represented by a motif/template. The Cα atom
of each residue is modeled by the template along with one or more amino acid type la-
bels. This template can then be compared to other protein structures to identify matching
substructures which share chemical and geometric similarity to the template.

lem in structural genomics [13]. The analysis of the physico-chemical properties of the

few amino acids constituting these substructures, common to families of functionally re-

lated proteins, can provide direct insight to the structural features that dictate a particular

enzymatic function [10]. For example, the family of serine proteases is a well-established

case of a common functional substructure, the HIS-ASP-SER catalytic triad, dictating a

common function in the absence of sequence or fold similarity between chymotrypsins,

subtilisins, and lipases [3, 14]. Conversely, in the case of TIM barrel proteins that share

both sequence and fold similarity, differing functional substructures within the catalytic

site imbue differing functions [15]. Therefore, because these functional substructures are

essential determinants of protein function, computational approaches to analyze and com-

pare substructures among proteins can provide fundamental insight to the molecular mech-
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anisms that mediate protein function.

1.2 Significance of Substructure Analysis

Substructure analysis is of practical importance for identifying proteomic drug targets,

finding potential drug side-effects, predicting protein function, and evolutionary analysis.

Binding site substructures have been considered “receptor-based pharmacophores” [16],

allowing a specific few amino acids to indicate likely interaction with a specific ligand-

based pharmacophore. Substructural similarity at ligand-binding sites among proteins is

indicative of similarity in ligand- and drug-binding properties [12, 11]. Exploitation of this

property has been applied recently to identify new targets for existing drugs [17] and to

computationally analyze potential drug side-effects [16]. Specifically, cross-species sub-

structure analysis of binding sites among families of functionally homologous proteins can

play an important role in lead evaluation [18, 16], and therefore computational approaches

to analyze family-wise substructural variation are particularly relevant for modern drug

development.

Furthermore, substructure comparison of catalytic sites among proteins has been shown

to be a powerful technique for predicting the function of protein structures [14, 19, 20] and

is an important component of structural genomics initiatives that seek to map and func-

tionally annotate the space of protein structures [21, 13]. Finally, enzymes evolve under

selective pressure to maintain biologically necessary functions [22], and functional sub-

structure conservation in the absence of sequence of fold conservation has been established

[23, 24]; substructure comparison may be the only way to establish homology between pro-

teins that have significantly diverged in both sequence and fold [25]. Given the biological

relevance of substructure analysis and the proliferation of available structures in the Protein

Data Bank [26], computational approaches to substructure analysis can make meaningful
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contributions to our understanding of proteomics.

1.3 Overview

This thesis departs both from finding functionally significant substructures and from com-

paring substructures to identify biologically relevant matching proteins. Here, a meta-level

approach to substructure analysis is presented that combines substructure comparison, un-

supervised learning, dimensionality reduction and non-parametric statistical analysis to au-

tomatically identify intra-family “ontologies” by analyzing the structural diversity of a fam-

ily of proteins. In this thesis, functionally homologous protein families are partitioned into

sub-groups based upon substructural similarity, and the sub-group organization for a family

is what this thesis refers to as an intra-family ontology.

The first method presented in this thesis, called the Family-wise Analysis of SubStruc-

tural Templates (FASST) method, can be used to identify the substructure-based intra-

family ontology of a family of proteins, which automatically partitions a family into sub-

groups based upon substructural similarity. The second method, the Motif Ensemble Statis-

tical Hypothesis framework (MESH), exploits the substructure-based intra-family ontolo-

gies output by FASST to construct refined substructure representations that improve the

function prediction power of existing templates.

1.3.1 FASST

FASST proceeds as follows. For a given enzyme family, a substructure template of the

catalytic site is first defined from a literature reference or other source of substructure tem-

plates [27, 28, 29, 30, 4, 31, 32, 33]. Instances of the motif are then identified in each

family member structure by a substructure search algorithm—LabelHash here [7]. Next,

all-against-all pair-wise Least Root Mean Square Deviation (LRMSD) distance compar-
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isons are computed between family members. The LRMSD of the catalytic site substruc-

ture from a given protein to the remainder of the family then encodes the family-wise

relationship of the family members to one another as vectors of geometric features. Each

geometric feature vector can then be interpreted as a point in a high-dimensional geometric

feature space, where nearby points in this space indicate similar family-wise relationships

for the corresponding substructures. The location of each protein substructure in geometric

feature space is used to identify the place of each substructure in the overall substructure-

based intra-family ontology output by FASST and to identify the amount of substructural

variation present within a family. FASST then uses a Gaussian Mixture Model (GMM)

clustering approach for unsupervised learning of the sub-groups within intra-family on-

tologies. A substructure-based intra-family ontology can then be compared to a biological

ontology by mapping meta-data to each substructure for further analysis.

1.3.2 MESH

MESH utilizes the sub-groups identified by FASST to construct refined substructure tem-

plates that have improved sensitivity, and this procedure is demonstrated through a series

of protein function prediction experiments. MESH constructs a representative motif for

each identified sub-group. The collection of representative motifs, for the family, consti-

tutes a single motif ensemble. To provide a statistically rigorous framework for calculating

the statistical significance of substructure matches identified by motif ensembles, this thesis

introduces a non-parametric model of substructural similarity for multi-structure templates.

1.3.3 Results

This thesis demonstrates with FASST that sub-groups within substructure-based intra-

family ontologies can suggest biological sources of structural variation within a protein
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family. For the heme-dependent peroxidase family (EC 1.11.1.7) and the xylose isomerases

(EC 5.3.1.5), this thesis shows that the observed intra-family ontology can be explained by

the phylogenetic distance between members of the family. Structures of the thermolysin

family of bacterial proteases are observed to have catalytic sites with both discrete and

continuous modes of flexibility, and structures are known to transition between discrete

structural conformation states upon ligation. Analysis of the family-wise structural variety

of the serine protease catalytic triad, incorporating over 700 structures from 52 different

species and 7 EC classes, demonstrates the ability of FASST to detect substructure varia-

tion among convergently related families where the template substructure resides in many

configurations, including some spanning peptide chains.The substructural variation present

within each family is automatically identified from the intra-family ontologies output by

FASST.

MESH constructs sensitivity-improved motif ensembles from single structure motifs.

The performance of the combined FASST-MESH methods is demonstrated in a series of

protein function prediction experiments. When compared to single structure motifs, this

thesis demonstrates that the FASST-MESH framework can significantly improve functional

annotation sensitivity for structurally variable families of proteins, while maintaining an-

notation specificity, for the 15 protein families included in the study.

1.4 Contributions

Establishing a rational basis for structural variation, particularly at functional sites, has

critical applications for drug target identification, side-effect prediction, protein function

prediction, and molecular evolutionary analysis. In protein families that exhibit a common

function, shared chemistry and geometry at catalytic site substructures provides a common,

local point of comparison among proteins that may otherwise be highly differentiated at the
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sequence, fold, or domain topology levels.

The biological relevance of the functional substructures modeled by templates can be

exploited for exploratory investigations of the role and structural conservation/variation of a

substructure within a large protein family; the utility of this approach is demonstrated using

FASST by comparing the structure-based intra-family ontologies output by FASST to bio-

logical ontologies such as phylogeny. Furthermore, selecting a single-structure template as

a consensus model of a family-wide functional substructure can prove difficult [9] when

functionally conserved protein families become large and species-diverse. The MESH

framework transforms single-structure templates into motif ensembles to account for in-

creasing family-wide substructural diversity and provides a robust procedure for identify-

ing statistically significant matches to the motif ensemble as a whole. FASST and MESH

directly contribute to substructure-based analysis by providing a template assessment and

refinement procedure. FASST provides an additional avenue of exploratory investigation

for selected substructures within a family of interest.

The popularity of incorporating only sequentially non-redundant structure subsets∗ in

computational studies ignores a wealth of additionally available protein structures. As

particularly demonstrated in Chapter 4.2, structures for sequentially identical proteins can

harbor highly informative structural trends that can be connected with how the structure was

crystallized and the ligation state of the protein when crystallized. Furthermore, including

all available structures distinguishes outlier structures with more clarity and confidence

than would be possible if only using a small subset of structures, and significant outlier

structures are noted throughout Chapters 4.1, 4.2, and 4.3 in the analysis of intra-family

ontologies output by FASST.

Pair-wise substructure comparison alone does not reveal all of the inter-connected struc-

∗ASTRAL,nrPDB,etc.
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tural relationships within a protein family. The family-wise substructure comparison ap-

proach implemented by FASST operates at a meta-level to pair-wise techniques in order to

identify high-level trends latent to functional sites. By correlating high-level trends in sub-

structure variation with biological metadata such as phylogeny, ligation state, and protein

ancestry, FASST can be used as a tool for the exploratory analysis of structure-function

relationships across large numbers of structures.

This thesis demonstrates an automated approach to augment existing substructure tem-

plates already available in repositories such as the Catalytic Site Atlas [29] by geometrically

enriching motifs for families that exhibit high structural variability. As both the number and

diversity of available structures for a given protein family continue to increase, the enhance-

ment of substructure-based functional annotation methods to accommodate large families

is necessary. The automated enrichment of available templates strengthens the function

prediction power of these templates and facilitates the use of substructure-based analysis

methods for large-scale, automated annotation of novel structures.
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Chapter 2

Background

2.1 The Role of Substructures in Protein Evolution

The mechanisms of evolutionary conservation operate at multiple levels of resolution, from

DNA and amino acid sequence to domain organization and fold topology to functional sub-

structures, such as catalytic sites, and the rate of evolutionary divergence at these levels

differs [23, 24]. In the absence of discernible sequence similarity, protein homology has

been confirmed on the basis of topological similarity between structures, but over immense

evolutionary time periods, even the fold topology of a protein may begin to drift[34]. In

addition to fold topology, catalytic site substructures, including the chemistry of the amino

acids involved in catalysis and the 3-dimensional orientation of these amino acids, are es-

sential units of evolutionary conservation, because significant alterations to these substruc-

tures can result in loss of enzymatic function [22]. Protein substructures can therefore be

considered one of the smallest proteomic elements of evolutionary conservation and should

be considered in addition to sequence and topology when tracing the evolutionary history

of protein families.

Protein substructures are capable of directly modulating differing enzymatic function

among proteins sharing a common fold. The fold of triose-phosphate isomerase (TIM),

termed “TIM-barrel”, is an alternating α/β topology consisting of 8 units ((αβ )8) and has

been identified in proteins of widely varying enzymatic function. Examples of oxidoreduc-

tases, transferases, hydrolases, lyases, and isomerases that incorporate the TIM-barrel fold
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Figure 2.1 : Same fold, different functions. Dihydropteroate synthase (1AD4), tryptophan
synthase (1A5S), and triose-phosphate isomerase (1AW1) are examples of proteins sharing
the same TIM-barrel fold while catalyzing very different enzymatic reactions. Each struc-
ture is colored from blue (N-terminal) to red (C-terminal) with the bound ligand shown as
pink spheres. Variable loop regions near the C-terminal end that link the main secondary
structure elements are able to implement a variety of different functions by incorporating
different substructural elements [1, 2].

have all been identified [2]. These TIM-barrel proteins are able to exhibit diverse func-

tions while sharing a common topology by varying the residue composition of loop regions

near the C-terminus as shown in Fig. 2.1 [1, 2]. The catalytic region of these enzymes

are composed of residues separated in sequence but co-located with the C-terminal end

in the folded peptide structure [1]. Therefore, because of the direct relationship between

substructures and protein function, methods to analyze and compare substructures among

proteins are important tools for understanding the link between structure and function.

Many striking examples of substructure conservation in the absence of higher-level

topology and sequence conservation have been demonstrated [24] as well as many instances

of convergent evolution to similar substructures from distinct ancestral sources [14, 19, 35].

The heme-dependent peroxidases, analyzed in Section 4.1, have been theorized to share an

extremely ancient common ancestor [36] but bear little similarity to one another among

modern species. As shown in Fig. 2.2, the mammalian and fungal versions of the en-

zyme are topologically distinct, and the sequence identity between the two proteins is only
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Figure 2.2 : Substructural conservation in the heme-dependent peroxidases. The cat-
alytic site of the mammalian enzyme shares a common catalytic substructure with the se-
quentially and topologically distinct fungal version of the enzyme. The 5 catalytically nec-
essary residues are shown with sphere representation at each Cα position above. The heme
prosthetic group is shown in stick representation for reference in each structure above.

9%∗. However, both the mammalian and fungal peroxidases share a common functional

substructure in the catalytic site as shown in Fig. 2.2.

Convergent evolution to a common functional substructure–the “catalytic triad”–has

been well-documented for the serine proteases [3]. The catalytic triad residues (HIS-ASP-

SER) cleave ligand peptides at specific locations which depend upon the peptide’s residue

sequence. While these serine proteases share a common catalytic substructure, the over-

all fold between the chymotrypsin, subtilisin, and lipase superfamilies differ, as shown in

Fig. 2.3. Therefore, substructure-based methods are capable of comparing very distantly re-

lated, or convergent components of protein structures where sequence- and topology-based

methods may fail, because common substructures that can be linked to common functions

may exist in the absence of fold or sequence similarity.

∗Maximum possible sequence identity between all possible pairs of chains from structures 1CXP (mam-

malian) and 1ARU (fungal)
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Figure 2.3 : Different folds, same function. Subtilisin and chymotrypsin have conver-
gently evolved to contain a functionally equivalent set of 3 residues called the “catalytic
triad” [3].

2.2 Substructure Identification Methods

Computational methods for finding functionally significant substructures and methods for

comparing substructures to identify biologically relevant proteins with matching substruc-

tures are two complementary components of substructure analysis. As far as approaches

capable of finding substructures are concerned, earlier work includes ligand-binding cav-

ity identification (CavBase [27], CASTp [4]), structural pattern recognition (GASPS [30],

FEATURE [37]), computational scanning mutagenesis (SNAP [33]), evolutionary analysis

(ET [38], ConSurf [8]), expert knowledge (CSA [29]), and automatically curated databases

(LigBase [28], SFLD [10], LigASite [32]). Substructures identified by these methods can

be computationally represented, either in full or in part, by templates (also known as motifs)

that model both the geometric and physico-chemical properties of a given substructure†.

Substructure identification methods are a necessary component of large-scale auto-

mated pipelines and the FASST-MESH method introduced here is agnostic as to the source

†Other names used in the literature include local functional sub-domains, functional epitopes, amino acid

constellations, receptor-based pharmacophores, and binding hot spots.
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of substructure motifs. Methods for identifying cavities‡ on protein surfaces have been

investigated because enzymatic sites typically occur within the specific chemical microen-

vironments created by cavities. For example, the Computed Atlas of Surface Topography

of proteins (CASTp) identifies cavities of varying size using alpha shapes [4]. An example

of a cavity identified by CASTp is shown in Fig. 2.4. Directly translating all of the amino

acids that compose a cavity to a motif is often suboptimal in terms of predictive power of

the resulting motif, but this is addressed in Section 2.5. The Surfnet method can be used

to identify interface regions between molecules and an example of a protein-ligand inter-

face is shown in Fig. 2.4. Focusing the problem of identifying functional components of

proteins towards relatively smaller regions of the protein structure, such as cavities, greatly

reduces the complexity of automated motif selection and refinement.

2.3 Substructure Comparison Methods

Computationally identifying substructure matches in other proteins with statistically sig-

nificant similarity to a template can indicate that a matched protein may share functional

characteristics with the template [14]. Diverse approaches to template search and/or com-

parison have been developed and include: SPASM [39], ASSAM [40], PINTS [41], Jess

[20], SiteEngine [42], Query3D [43], ProFunc [44, 45], ProKnow [46], SitesBase [31],

GIRAF [47], MASH [48], LabelHash [7], SOIPPA [25], FEATURE [37], and pevoSOAR

[49] to name a few.

While substructure comparison is a major component of FASST-MESH, the particular

method selected for pair-wise substructure comparison need only be capable of generating

LRMSD alignments between substructures. In this work, the LabelHash method [7] was

‡Also known as clefts or pockets
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Figure 2.4 : Automated substructure selection methods. The structure of triose-
phosphate isomerase (TIM) (PDB 1AW1) is shown above with the ligand in stick repre-
sentation and cavity regions as surface and mesh forms. CASTp [4] identifies a total of 40
different cavities (of widely varying size) for TIM; the cavity associated with the ligand
binding site is shown alone. Surfnet [5] identifies interface regions between molecules, and
above is shown the interface region between TIM and the bound ligand. For both CASTp
and Surfnet, the residues associated with the identified cavities can serve as a source of
substructure motifs to be used as input to the FASST-MESH method.

used for pair-wise substructure matching. Because FASST-MESH does not make heuristic

assumptions tied to a specific substructure matching method or substructure model (such

as Cα -only, Cα+Cβ , pseudoatoms, etc.), different comparison methods or motif repre-

sentations can be utilized. The ability of FASST-MESH to consume many different types

of input motifs/methods is important for several reasons: many of the previously men-

tioned substructure comparison methods are targeted towards different scales of molecular

comparison (ex. whole structure, domains, large cavities, 5-10 residues, 2-4 residues);

biological queries should utilize the most sensical substructure model for the problem;

providing a clean API for many different methods allows for cross-comparison/consensus

among approaches to be used. The FASST-MESH method operates at a meta-level to these

substructure comparison methods by synthesizing many pair-wise comparisons to identify
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high-level trends for large sets of protein structures (see Section 3 for further details).

2.4 All-against-all Comparison Methods

The FASST method presented here directly complements the k-partite [50], bipartite [51,

6] and product-graph-max-clique [52] approaches to all-against-all common substructure

identification, because these methods can successfully identify common substructures be-

tween two [51, 52, 6] or more [50] binding sites. Several of the afore mentioned all-against-

all methods have also been used to construct “similarity networks” of known ligand bind-

ing sites by using pair-wise similarity scores between binding sites in combination with

linkage-based [51, 52, 6] clustering to build graphs of related sites. The GIRAF-based

[47] approach to all-against-all comparison is highlighted here for detailed comparison to

FASST-MESH.

For every structure in the PDB, GIRAF selects all residues that are < 5Å from a bound

ligand and structures without a bound ligand are skipped; the residues selected are now

“binding sites”. Each binding site is then decomposed into tetrahedra (Delaunay tessella-

tion) using all atoms (i.e. backbone atoms and side-chain atoms). Next, each tetrahedra

is inserted into a relational database that is indexed by the constituent atom types, tetrahe-

dra volume, and edge lengths. To identify a match to a given binding site, the database is

queried for similar tetrahedra; the atoms representing the query and matched binding sites

are then considered two graphs (i.e. all atoms of the binding site, not just the tetrahedra,

are included). Iterative max-weight bipartite graph matching is then performed between

the two binding site graphs; edge weights correspond to the Euclidean distance between

paired atoms (i.e. one from each binding site) when optimally superimposed, and only

atoms < 2Å apart are considered to be paired. For each iteration, the graphs are maxi-

mally matched (maximize number of paired atoms while minimizing RMSD) and then the
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Figure 2.5 : GIRAF and FASST clustering of the serine proteases. The trypsin-like
and subtilisin-like serine proteases are identified as separate clusters by both GIRAF and
FASST, although the clustering approaches themselves differ. The trypsin-like cluster
shown for GIRAF is actually an agglomeration of 19 individual clusters that Kinjo et al.
identified manually. While FASST is only comparing the 3 Cα atoms of the catalytic triad,
GIRAF compares the largest common substructure between every pair of bindings sites
(nodes in the graph); the mean/std.dev. of the binding site atoms compared in the GIRAF-
based network is 32/11, much larger than the 3 atoms used by FASST. While GIRAF and
FASST differ in approach, the two methods are in agreement as to how the serine proteases
should be structurally partitioned. Adapted from Kinjo et al. (2009) [6].
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matching components are used to re-align the two binding sites into LRMSD alignment;

this process iterates until the alignment converges. The final similarity score S for a pair

of binding sites is then given by a combination of a modified Tanimoto coefficient§ and

LRMSD of the superimposed binding sites. The statistical significance of a match score S

is obtained by calculating the p-value of the match given a random sample of binding sites

in the database. See Kinjo et al. 2007 [47] and 2009 [6] for complete details.

The all-against-all, GIRAF-based approach from Kinjo et al. 2009 identifies clusters

of “similar” binding sites using a similarity network approach that differs fundamentally

from the FASST method introduced here. While FASST-MESH is presented fully in Chap-

ter 3, important distinctions between the work of Kinjo et al. are outlined here. Given

multiple binding sites, GIRAF may identify a different common substructure between each

pair of sites; these common substructures can vary widely in size (number of atoms) and

geometric similarity (LRMSD). FASST, however, compares a single substructure consis-

tently between proteins; proteins either have the substructure or do not. Therefore, FASST

is concerned with analyzing the geometric variability of a particular substructure among

a set (i.e. family) of proteins while GIRAF may compare a different substructure between

every pair of proteins. Furthermore, GIRAF employs a similarity measure that requires rel-

ative weighting of the match size and match LRMSD terms, while FASST uses the LRMSD

distance metric alone.

Superficially, the “similarity network” of serine proteases (see Fig. 2.5) is very similar

to the FASST clustering (as shown in Fig. 4.3) as far as cluster membership, but the method

for determining sub-groups or clusters differs. An edge weight in the GIRAF-based net-

work is the match p-value between a given pair of binding sites (nodes); the full graph is

arrived at by selecting a global p-value threshold and only edges with p-value smaller than

§Tanimoto coefficient for sets A and B: T (A,B) = |A∩B|
|A|+|B|−|A∩B|



18

this threshold are retained. Clusters within the graph are identified using a hybrid technique

that combines hierarchical single-linkage clustering followed by agglomerative complete-

linkage clustering to arrive at the final clusters [6]. Therefore, the binding sites constituting

a GIRAF cluster do not necessarily share any common substructure. The mean size of the

common substructure between pairs for the GIRAF-based network in Fig. 2.5 is 32 atoms

per binding site with a standard deviation of 11; FASST is only comparing the 3 Cα atoms

of the catalytic triad among all of the serine protease structures (triad residues are shown in

Fig. 2.3).

It is interesting to note that both GIRAF and FASST reach a similar conclusion given the

fundamental differences in the methods, and it is likely attributed to the strong geometric

distinctions between the subtilisins and trypsins at both catalytic triad residues and the

surrounding binding cleft. The substructure-based all-against-all comparison implemented

by FASST is most analogous to the seminal work of Holm and Sander [53] on mapping

protein fold space via all-against-all Dali comparisons [54].

2.5 Motif Refinement and Optimization

The success of substructure comparison/search algorithms relies on high-quality motifs

that accurately capture the geometric and chemical characteristics of a given functional

site. Well-designed motifs should be both structurally similar to functionally analogous

substructures and structurally different from functionally unrelated substructures in order

to be used for accurate function prediction.

Previous work on Geometric Sieving (GS) has demonstrated utility for selecting a sub-

set of residues from a larger functional site to build high-specificity motifs [55, 48]. GS

estimates the probability density function (pdf) of all k-sized subsets from the original n-

point motif (
(n

k
)

subsets) by computing matches from each subset motif to a random sam-
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Figure 2.6 : Geometric sieving. A crude motif for chymotrypsin, containing both catalytic
and nearby non-catalytic residues, is shown above with spheres indicating each of the 11
motif points. Every 7-point subset of the 11-point input motif is matched against a random
sample of the PDB and these

(11
7
)

= 330 smoothed pdfs are shown above on the right.
The pdfs with highest and lowest medians are outlined in bold black while the other 328
profiles are in lighter gray. Hash marks along the x-axis denote the locations of each of the
330 medians. Geometric sieving selects the motif point subset with highest median because
it is the most “geometrically unique” and least likely to match functionally unrelated targets
at a given LRMSD.

ple of the Protein Data Bank (PDB) [56]. When selecting an optimized k-point subset of

the n-point input motif, picking the subset motif with highest pdf median produces the

most specific output motif, because this motif will match most unrelated protein structures

with higher LRMSD (dissimilar to unrelated structures); subset motifs with low medians

necessarily match more unrelated proteins with lower LRMSD (more similar to unrelated

structures). As shown in Fig. 2.6, the medians of the bandwidth smoothed pdfs are used

to differentiate the performance of each subset motif and the k-point subset that produced

the highest median value is ultimately selected as the most “geometrically unique” subset

motif.

Previous work on Cavity Scaling (CS) [57, 58] exploits the correlation between protein
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function and the presence of co-located ligand-binding cavities to improve the specificity of

input motifs. The cavity-aware motif shown in Fig. 2.7(a) is a hybrid model that combines

models for binding site residues and binding site cavity volumes, which are modeled by

cavity spheres. Matches to a cavity-aware motif must geometrically match the motif points

and have a cavity of similar volume to the motif. The additional cavity volume constraint

is able to eliminate many spurious matches to substructure that share similar residues to

the motif but lack a similar cavity volume. Different approaches for selecting and placing

cavity spheres within a cavity-aware motif were investigated, because every additional cav-

ity sphere further constrains the possible matches. Cavity spheres that eliminate very few

matches are termed low impact while those that eliminate many matches are termed high

impact. Fig. 2.7(c) shows how low and high impact cavity spheres can be distinguished

by analyzing bandwidth smoothed pdfs, where each pdf represents an identical copy of the

motif points but with a different sphere size. This process of identifying high impact cavity

spheres is termed Cavity Scaling (CS).

Designing high-quality templates that accurately capture the functional essence of a

substructure is critical and the performance of template-driven substructure comparison

methods depends directly on the biological relevance of input templates. The FASST-

MESH method introduced here contributes to both the identification and matching of tem-

plates.
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Figure 2.7 : Cavity-aware motifs. (a) The cavity-aware motif shown above is a hybrid
model that combines both motif points (black circles) and cavity spheres (white circles).
(b) Cavity-aware motifs eliminate erroneous matches where matched proteins lack similar
cavity volumes. Both matches shown align with low LRMSD to the cavity-aware motif
points, but the bottom, erroneous match is eliminated because it violates one more of the
empty cavity sphere regions of the cavity-aware motif. (c) The number of matches elim-
inated by a cavity-aware motif depends on both the size and placement of cavity spheres.
Cavity Scaling (CS) considers each cavity sphere individually at a range of radii. Cavity
spheres that cause large shifts in pdf median are termed high impact while spheres that have
little or no effect on pdf median are termed low impact.
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Chapter 3

Methods

The family-wise substructure analysis method developed here (FASST) takes as input a

user-defined substructure template called a motif and a family of protein structures, as

defined by EC classification here, and outputs a substructure-based intra-family ontology

that identifies one or more sub-groups of proteins within the larger family. Subsequent

application of MESH to the sub-groups identified by FASST constructs a set of consen-

sus motifs, collectively referred to as a motif ensemble, that can be used to represent the

structural variety of the family for function prediction experiments. The combined FASST-

MESH procedure is as follows: (FASST: Step 1) using LabelHash [7] (available online

at http://labelhash.kavrakilab.org), or a another substructure search method (FASST is not

tied to a particular search method), compute matches of the user-defined motif to identify

analogous substructures in all family members, thereby creating one propagated motif per

member; (FASST: Step 2) compute an all-against-all LRMSD alignment of each propa-

gated motif, yielding a vector of substructure distances for each family member which we

call a geometric feature vector; (FASST: Step 3) perform dimensionality reduction on the

set of geometric feature vectors via principal components analysis (PCA) [59] and project

each geometric feature vector onto the number of PCs necessary to preserve 90% of the

original variance; (FASST: Step 4) cluster the dimensionality-reduced geometric feature

vectors using a Gaussian Mixture Model (GMM) [60] to create a substructure-based intra-

family ontology that identifies sub-groups within the family; (MESH: Step 5) build a set of

consensus motifs to represent the sub-groups of the family by selecting an exemplar struc-
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ture from each sub-group or averaging substructures within a group; (MESH: Step 6) for

functional annotation, match the consensus motifs against the Protein Data Bank (PDB) to

search for proteins with substructural similarity to the original structure family and identify

statistically significant matches using our non-parametric hypothesis testing framework for

substructural similarity [48, 61], which is adapted and extended here to accommodate motif

ensembles. Each of the steps is outlined in detail below.

3.1 Step 1: Motif Definition and Propagation

To quantify the geometric similarity between a pair of catalytic substructures, the LRMSD

distance metric is commonly used, but to model the geometric similarity between a given

catalytic site and a family of catalytic site substructures we introduce a simple extension to

pair-wise LRMSD that will be referred to as geometric feature vectors.

The procedure for building geometric feature vectors begins with a single, user-defined

motif, S∗, that represents the geometry and chemistry of a shared substructural element

within the family. The S∗ for each of the families included in this study were constructed

from documented residues in the literature reference associated with each PDB structure

Figure 3.1 (preceding page): Clustering geometric feature vectors. (a) Superposition of
the propagated motifs for the animal and non-animal heme-dependent peroxidases of EC
1.11.1.7 demonstrates geometric variability. The color of each aligned substructure corre-
sponds to its cluster assignment in (c), and it can be seen that closely aligned substructures
in (a) correspond to co-located points in the intra-family ontology shown in (c). (b) Apply-
ing FASST to the family of peroxidases yields a family-wise geometric feature vector for
each catalytic substructure in the family, reducing each substructure shown in (a) to a point
in the intra-family ontology. Gaussian mixture model (GMM) clustering of the geometric
feature vectors, projected onto a space of reduced dimension, identifies four clusters de-
noted by color. The gray isocontours show the smoothed density of substructures in each
part of the geometric feature space. Each cluster identified constitutes a sub-group within
the intra-family ontology.
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listed in Table 1. For example, S∗ for the heme-dependent peroxidases includes the Cα

atom from each of the following residue numbers with the alternate amino acid labels

shown in superscript: 52RQ,56H ,57D,93NR,184H ; the 3-dimensional coordinates of each

Cα ∈ S∗ were taken from [PDB:1ARU] as noted in Table 1 and the residue numbers listed

are according to [PDB:1ARU]. Care should be taken to define S∗ with appropriate amino

acid alternate labels (which allow for amino acid substitutions to be represented). While

ConSurf [8] was used in this work, when available, an expert-curated multiple sequence

alignment allows for the highest confidence in amino acid alternate selection.

First, the user-defined motif, S∗, is matched against a family of n protein structures,

F = { f1, ..., fn}, as defined by Gene Ontology (GO) terms or Enzyme Classification (EC)

levels, for example, to yield a set of matches MS∗→F = {MS∗→ f1, ...,MS∗→ fn}. In this work,

LabelHash [7], was used to identify substructure matches by searching each protein in F

for similar substructures to the motif, S∗. Every match, MS∗→ fi ∈ MS∗→F is a bijection

between S∗ and a substructure of fi, and defines a unique substructural element within fi

that will be referred to as a propagated motif, S fi . For algorithmic details of how LabelHash

identifies substructure matches to templates/motifs see [7].

3.2 Step 2: Encoding Geometric Features

The pair-wise LRMSD between two propagated motifs will be denoted by d(S fi,S f j) and

the geometric feature vector, gi, for a given fi is defined as a vector of LRMSD values: gi =

{d(S f1,S fi), ...,d(S fn,S fi)}. The set of geometric feature vectors representing all structures

in the family, F , will be denoted as G = {g1, ...,gn}, and G constitutes an all-against-all

alignment of the substructures that correspond to each respective protein in F . Each gi ∈G

defines a point in geometric feature space that represents the corresponding fi ∈ F and

it is important to note that structures with similar family-wise distances will be nearby
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in the geometric feature space. By constructing the geometric feature space of a family,

the structural variation present within an all-against-all substructure alignment (as shown

in Fig. 1(a)) is preserved, but distilled into a much simpler representation that is more

amenable to common machine learning techniques such as clustering.

3.3 Step 3: Dimensionality Reduction

Understanding the family-wise structural information encoded by G will lead to the mo-

tivation for the following step–dimensionality reduction. Let, for example, n = 100 and

consider that the geometric feature vectors, gi ∈G, will be 100-dimensional, making anal-

ysis of the feature space difficult. It is often the case that many structures in a homologous

family, as defined by EC or GO for example, will contain several crystallizations of the

same protein, from the same species, causing some of the propagated motifs to be nearly

identical in geometry. Because of these similar structures, a given gi will have some very

highly correlated features that increase the dimensionality of the feature vector represen-

tation, but do not each provide orthogonal information about the family-wise relationship

of fi to F . Removing similar structures via sequence-identity thresholds requires that a

representative structure from the sequence-similar set to be selected. However, sequence-

identity removal techniques do not consider the geometric diversity of available structures

when selecting a representative structure. The method presented here allows all available

structures for a family to be included without filtering for sequence-identity specifically

because of the dimensionality reduction step. By including all available structures in the

analysis, the method presented here does not make a priori assumptions about the sequen-

tial or structural diversity of a family of proteins.

While reducing the dimensionality of G, it is important to preserve the distances be-

tween substructures in feature space, since the purpose of geometric feature encoding is
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to find sub-groups of related substructures within F . We begin by finding the Principle

Components (PCs) of G and then project G into a subspace of the PCs that captures at

least 90% of the original variance in G; we denote the lower-dimensional projection of G

as G′. The choice of a variance threshold directly impacts the dimensionality of G′, but

it is interesting to note that the conservative choice of 90% typically results in G′ being

1- to 5-dimensional, even for large families of more than 1000 structures. PCA [59] was

selected for simplicity, but many other dimensionality reduction methods, both linear and

non-linear (for example SciMAP [62, 63]), could be substituted and would further improve

the dimensionality reduction step. Fig. 1(c) shows the geometric feature vector encoded

proteins for the 83-structure heme-dependent peroxidase family as points in the first and

second principal components of G′ which capture 94% of the original variance in G; the

total number of principal components to reach the minimum 90% variance threshold was

2-components for the peroxidases, so G′ was 2-dimensional in this case. Thus, PCA is able

to drastically reduce the dimensionality of the geometric feature space, which is vital to the

performance of most clustering algorithms.

3.4 Step 4: Identifying Structural Sub-Groups

One approach to investigating the membership, types, and numbers of structurally related

sub-groups within a larger family of proteins is to find clusters of geometrically related

structures. Geometric feature vector encoding allows us to represent each protein in a

family of structures as a point in feature space, and the process of finding groups or clusters

of similar points in feature space can be delegated to an assortment of standard clustering

methods.

To choose a clustering method, several key features were deemed important: the method

should be able to identify the number of clusters, k, automatically; to avoid bias, no
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meta-data, such as species information, should be taken into account during clustering–

unsupervised learning; the method should be able to identify instances where only a single

cluster is sufficient to explain variation; the method should be robust to the presence of

outliers; the method should be able to accommodate the presence of both very large, dense

sub-groups and small, diffuse sub-groups. Methods that rely on a user-defined number of

clusters, such as k-means, are difficult to apply to the problem of identifying significant

clusters within F , because the number of clusters, k, is not known a priori.

To provide an automated, unbiased selection method for k, a Gaussian Mixture Model

(GMM) approach using the MCLUST [60] package for the statistical language R was se-

lected for use in this work. MCLUST incrementally adds multivariate Gaussians to the

mixture model, fitting them through an iterative Expectation Maximization procedure, and

assesses the Bayesian Information Criteria (BIC), while regularizing for model complexity

to select a set of Gaussians that maximally explain the data, given the model complexity

constraint. The GMM defines, for each data point, the probability that it belongs to the ith

Gaussian mixture component and then a hard classification is performed to partition the

data points into the mixture components from which the points were most likely to have

been generated. The colors of the data points in Fig. 1(c) demonstrate the hard classifi-

cation, into 4 sub-groups, made by the GMM for the peroxidase family of proteins (EC

1.11.1.7). The final organization of sub-groups based upon substructural similarity shown

in Fig. 1(c) is the substructure-based intra-family ontology output by FASST.

3.5 Step 5: Constructing Consensus Motifs

As a family of protein structures grows both in numbers and structural diversity, building

substructural templates for the family, as a whole becomes increasingly difficult, just as

constructing HMM profiles [64] for a large set of diverse sequences is difficult. By rep-
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resenting each sub-group identified by GMM clustering with a distinct consensus motif,

the entire family can then be represented as a collection of consensus motifs which we

call a motif ensemble. To build a consensus motif for a given cluster, the propagated mo-

tifs belonging to proteins within that cluster were geometrically averaged to construct an

artificial consensus structure by the method used in [65]. However, if a non-artificial con-

sensus structure is desired, picking the structure nearest the cluster centroid would also be

an effective strategy for finding a representative motif for the cluster. The consensus motif

construction process is repeated for each of the k clusters identified during (Step 4), result-

ing in a motif ensemble that contains k consensus motifs. For example, four sub-groups

were identified within the family of peroxidases (as shown in Fig. 1(c)), and therefore the

motif ensemble for the family consisted of four consensus motifs, one for each sub-group.

3.6 Step 6: Formulating Hypothesis Tests for Structural Similarity

Comparing a template to target protein structures results in a set of substructure matches of

varying quality. To distinguish erroneous matches that are likely to have occurred by chance

alone and therefore not functionally related to the template from those matches which have

significant similarity to the template requires a statistical model of substructure similar-

ity. The non-parametric statistical framework for matching single-substructure motifs used

in previous work [48, 7, 61] is extended in this work to address multiple-structure motif

ensembles. A detailed discussion of the single-structure statistical model can be found in

[48, 61] but is outlined briefly here to motivate the extension to motif ensemble statistical

hypothesis testing.
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3.6.1 Single-Structure Template Hypothesis Testing

The structural uniqueness of a match of motif S to a target structure T , MS→T can only

be evaluated with respect to a background structure reference set. A reference set should

be selected such that is structurally diverse and contains protein structures functionally

unrelated to the motif; a detailed analysis of the choice of reference sets can be found in

[48] but in this work the 95% sequence identity non-redundant PDB (nrPDB95) was used as

a structural reference set. Given a background reference set, we can quantify whether the

similarity between MS→T and S is low, relative to the background, and could have occurred

by chance, or that it is high, with respect to background, and is statistically significant.

The question of whether or not a match of motif S to a target structure T , MS→T is

significantly similar to S can be formulated as a hypothesis test: the null hypothesis (H0)

states that S and T are structurally dissimilar and that MS→T occurred by chance; the al-

ternative hypothesis (HA) states that S and T are structurally similar and MS→T defines a

sub-structural element in T that is analogous to S. Given our definition of a background

structural reference set, the p-value of MS→T , pS→T , is a measure of the structurally unique-

ness of MS→T with respect to the defined background reference set. By selecting a p-value

threshold for statistical significance, α , we can reject H0 for all pS→T ≤ α and instead

accept HA and declare MS→T to be statistically significant. Matching S versus all of the

structures defined by the background reference set will yield a distribution of matches with

varying levels of structural similarity to S, given by the RMSD of each match to S. By

smoothing the RMSD distribution using the Sheather-Jones optimal bandwidth [66] we

obtain a probability density function pdf(r) over RMSD, r, for a given motif S; we denote

this pdf as pdf(r;S).

Given pdf(r;S), the p-value measure of statistical significance of MS→T can be found

by calculating the probability of observing a match with RMSD, r, lower than the RMSD
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of MS→T , rM, which can be written as P(r ≤ rM;S) and defined to be:
∫ rM

0 pdf(r;S)dr. In

summary, the p-value of a given match of a motif to a target protein structure is calculated

by comparing the match RMSD to the population of match RMSDs that are expected to

occur by chance alone. Using this technique, matches with statistically unusual amounts of

geometric similarity to a motif can be readily identified without making assumptions about

the structure of the match distribution.

3.6.2 Motif Ensemble Statistical Hypothesis Testing

The hypothesis testing framework used for quantitating the statistical significance of matches

to a standard, single-structure motif, can be extended naturally to accommodate the no-

tion of matching an ensemble of motifs. Given a motif ensemble with k consensus motifs

S = {S1,S2, ...,Sk} we would like to know if the motif ensemble, S, has statistically signif-

icant similarity to T . For each motif, Si ∈ S, we can calculate the p-value of matching Si to

T , pSi→T , by matching Si versus the background structure reference set and obtaining the

probability density function over match RMSD, r, for motif Si: pdf(r;Si). This procedure

produces a p-value for matching each Si to T , pS→T = {pS1→T , pS2→T , ..., pSk→T} and, as

for normal single structure motifs, an associated hypothesis test for each motif: the null

hypothesis (H0,i) states that Si and T are structurally dissimilar and the match of Si to T

occurred by chance; the alternative hypothesis (HA,i) states that Si and T are structurally

similar and the match of Si to T defines a sub-structural element in T that is analogous

to Si. The overall null hypothesis for a match to the motif ensemble can now be stated in

terms of the individual hypothesis corresponding to each consensus motif within the motif

ensemble: H0 = {H0,1, ...,H0,k}.

Because the overall null hypothesis, H0, incorporates multiple hypothesis tests (H0,1,

. . . , H0,k), each of which can introduce new false positive matches, it is crucial to use a
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multiple testing correction procedure to account for the presence of multiple tests and con-

trol the family-wise error rate. The Hochberg p-value correction method [67] was selected

to account for the presence of multiple tests for significance; Hochberg correction is appli-

cable when the hypothesis tests are either independent or positively correlated [68]. After

Hochberg multiple testing correction has been performed on the match p-value, pSi→T ,

corresponding to each hypothesis test, H0,i, each null hypothesis can then be independently

evaluated: pcorrected
Si→T < α . If any null hypothesis, H0,i, is rejected, we then reject the overall

null hypothesis, H, and consider the match between S and T to be statistically significant

(a positive match).
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MOTIF-ENSEMBLE-HYPOTHESIS-TEST(T,S,Ω,α)

for all Si ∈ S do
pdf(r;Si,Ω)← MATCH(Si,Ω) ! probability density function
rM ← MATCH(Si,T ) ! the LRMSD of the match
pSi→T ←

∫ rM
0 pdf(r;S,Ω)(r)dr ! p-value of the match

end for
! Hochberg multiple testing correction of p-values
p′S→T ← HOCHBERG(pS1→T , ..., pSk→T )

if MINIMUM(p′S→T ) < α then
return statistically significant

else
return not statistically significant

end if

HOCHBERG(p1, p2, ..., pn)

psorted ← SORT-DESCENDING(p1, p2, ..., pn)
pcorrected ← /0
for i = 1 to n do

pcorrected ← i∗ psorted
i

end for
return pcorrected
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Chapter 4

Family-wise Analysis of SubStructural Templates

The families of proteins included in this study were analyzed with FASST to construct

intra-family ontologies that model the substructural diversity of each family. The underly-

ing source of substructural variation could be clearly attributed to phylogenetic distance,

ligation state, or protein ancestry in many cases. The families of proteins highlightd here

have a source of substructural variation that can be concretely linked to a single biological

factor, in order to better demonstrate the role of each variation source independently. Each

structure family was defined by Enzyme Commission (EC) numbers and preference for in-

clusion into the data set was given to families with a large number of structures. A catalytic

site template was defined for each family from a literature reference (see Table 1) using Cα

positions. FASST then takes as input the family and template and outputs a substructure-

based intra-family ontology for the family in order to identify the substructural variation

within a family. The intra-family ontologies of highlighted families are examined in detail

below.

4.1 Phylogenetic-based Intra-Family Ontologies

4.1.1 Heme-dependent Peroxidases

Heme-dependent peroxidases (EC 1.11.1.7) are ubiquitous enzymes responsible for moder-

ating reactions with reactive oxygen species. The lactoperoxidases and myeloperoxidases

found in animal leukocytes produce potent antibacterial agents and have been shown to
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Figure 4.1 : Phylogenetic-based intra-family ontologies. (a) Substructures positions in
the intra-family ontology colored by Family-level taxanomic classification reveal that phy-
logenetic distance between proteins is the main source of substructural diversity within the
the family of heme-dependent peroxidases. (b) Xylose isomerase structures from 12 dif-
ferent species of bacteria and thermophilic archaea form sub-groups that can be mapped to
the Family-level of taxonomic classification.
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play a role in inflammatory responses [69]. The non-animal class II peroxidases, found in

fungi, and class III peroxidases, found in plants, are both secreted enzymes that are thought

to play multiple roles including organism development and pathogen defense [36].

The catalytic site region of the Arthromyces ramosus class II peroxidase enzyme

[PDB:1ARU] includes the proximal (His-184) and distal (His-56) histidines coordinated

to the heme group as well as the distal catalytic residues (Arg-52 and Asn-93) and the

hydrogen-bonded Asp-57 [70]. Superposition of all of the heme-dependent peroxidase cat-

alytic site structures, identified through motif propagation as outlined in Ch. 3.1, is shown

in Fig. 3.1(a). Although the catalytic site motif can be identified within both animal and

non-animal peroxidases, geometric variability of the catalytic residues is evident from the

alignment.

The peroxidase intra-family ontology constructed by FASST (see Fig. 3.1(b)) reveals

that the peroxidase structures segregate neatly into four main clusters that can be ex-

plained well by the phylogenetic ontology of the structures as shown in the correspond-

ing Fig. 4.1(a) plot. The lactoperoxidase structures from Capra hircus (goat), Bos taurus

(cow), Ovis aries (sheep), and Bubalus bubalis (water buffalo) form a single sub-group in

the intra-family ontology nearby the distinct myeloperoxidase sub-group from Homo sapi-

ens. The class III plant peroxidases from the Brassicaceaa Family form a tight sub-group

in the intra-family ontology with the class III plant peroxidases of the Fabaceae Family

near the perimeter, but outside the main sub-group. Finally, the class II fungal peroxidases

form a fourth distinct sub-group most distant from the other three sub-groups.

The location of the peroxidase catalytic site substructures in the intra-family ontol-

ogy appears to be highly correlated with the evolutionary history of the enzyme. The

animal and non-animal peroxidases are theorized to have originated from two separate en-

dosymbiotic events predating modern plant and animal cells [36]. The sequence identity
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between the human [PDB:1CXP] and fungal [PDB:1ARU] versions of the enzyme is 9%

making a sequence-based approach to analyzing this family as a whole impossible.Pair-

wise sequence-identity between the labeled positions in Fig. 3.1(b) is consistently low as

seen in the table below:

1ARU 1BGP 1H58

1CXP 9% 7% 6%

1ARU - 14% 7%

1BGP - - 40%

As shown in Fig. 2.2, the overall fold topology of the animal and non-animal peroxidases

differ greatly and belong to separate fold classes within the CATH structural ontology [71].

However, the catalytic substructure represented by the motif provides a common point of

comparison between these peroxidases and allows FASST to identify the significant family-

wise catalytic site variation and underlying sub-groups within the larger protein family. By

mapping the intra-family ontology to the Family-level phylogenetic ontology, FASST is

able to propose a hypothetical explanation for the pattern of substructural conservation and

variation within the family of peroxidases.

4.1.2 Xylose Isomerases

Metabolic engineering approaches to creating organisms capable of producing biofuels,

such as ethanol, from previously unrecoverable plant biomass are being actively studied

in the search for renewable energy sources [72]. Xylose isomerase is a key enzyme in

many engineered biosynthetic pathways because of its ability to interconvert sugar iso-

mers, allowing novel carbohydrate sources, such as plant biomass, to be utilized over more

traditional sugar substrates such as glucose [73]. While members of the peroxidase fam-

ily demonstrate topological diversity, the family of xylose isomerases (EC 5.3.1.5) are
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more topologically homogenous, and provide another clear example of sub-groups in a

substructure-based intra-family ontology that can be linked to the corresponding phyloge-

netic ontology of the structures.

Applying FASST to the catalytic sites of 71 structures of xylose isomerase from 12 dif-

ferent species, including thermophilic archaea and several species of mesophilic bacteria,

reveals that variation in catalytic site geometry within the family can be well-explained by

the Family-level phylogenetic ontology of the family. As shown in Fig. 4.1(b), the closely-

packed, but well-defined clusters of structures clearly map to the phylogenetic labeling at

the Family-level of taxonomic classification. While the xylose isomerase family exhibits

high structural conservation, understanding the substructural relationship between related

members of enzymatic families, capable of catalyzing the same reaction under different en-

vironmental conditions, is an important step towards rational design of biosynthetic path-

ways.

4.2 Ligation-based Intra-Family Ontologies

Many proteins are known to undergo structural rearrangements and hinge-bending motions

upon binding ligands or other proteins. Induced fit via amino acid rearrangements are a

common feature of many catalytic sites, and the state of the catalytic site at a given time

can often be partitioned into two states: apo, an open confirmation with no ligand, and

holo, a closed confirmation with bound ligand. The thermolysins (EC 3.4.24.27) are a

family of bacterial heat-stable metalloproteases that cleave peptide bonds at hydrophobic

residue sites and have been shown to change confirmations upon ligand-binding [74].

The family of available thermolysins contains 59 structures of the protein from Bacillus

thermoproteolyticus and a single structure from both Staphylococcus aureus and Bacillus

cereus, all of which are gram-positive bacteria species (Bacillales). Because there are
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roughly equal numbers of apo (non-ligated) and holo (ligated) structures within the family,

and all but two of the structures are repetitions of the same protein from the same species,

the effect of ligation state on the substructural variation of the catalytic site can be analyzed

in isolation from other possible contributing factors such as phylogenetic distance. The

substructure-based intra-family ontology for the thermolysins shown in Fig. 4.2(b) reveals

that the structures partition very cleanly into two distinct sub-groups which can be clearly

mapped to the ligation-state of the structure. However, as can be seen in Fig. 4.2(c), there

are 5 holo structures in the apo region and 2 apo structures within the holo region.

Further investigation into the two apo outlier structures, shown to reside in the holo

region of Fig. 4.2(b), reveals that these two proteins were artificially modified to coordinate

Figure 4.2 (preceding page): Ligation-state conformational changes in thermolysin.
(a) Backbone of thermolysin structure [PDB:1FJT] with coordinated valine-lysine dipep-
tide in red and template/motif residues shown in blue. Side-chains of the template residues
are shown for reference, but only Cα coordinates are used by LabelHash in this paper.
The yellow, semi-transparent volume corresponds to the superimposed benzylsuccinic acid
ligand of [PDB:1HYT]. The coordinated Zn2+ ion is depicted as a small green sphere
in the center of the template residues. The binding positions of the two ligands are su-
perimposed to illustrate where the occupied regions of the thermolysin binding site differ
between the two ligands. (b) Applying FASST to the family of thermolysin structures
reveals that apo and holo structures segregate into different regions of the intra-family on-
tology. The segregation of structures seen indicates that the template residues undergo
conformational change upon binding a ligand. The location of particular structures in the
intra-family ontology are labeled for reference. (c) Holo outlier structure [PDB:1FJT] with
bound valine-lysine dipeptide. The ligand sits in the side-chain recognition pocket of the
thermolysin but does not interact with the Zn2+ ion and does not induce conformational
change of the template residues. (d) Phenol ligand of holo outlier structure [PDB:1FJW]
superimposed with the [PDB:1FJT] binding site for consistent reference. The phenol lig-
and also sits in the side-chain recognition pocket and does not induce conformation change
of the template residues. (e),(f),(g) Ligated inhibitors from [PDB:5TLN], [PDB:1PE5], and
[PDB:1HYT], respectively, in semi-transparent yellow superimposed with the [PDB:1FJT]
binding site. These 3 inhibitors interact directly with the coordinated Zn2+ ion and induce
conformational change in the binding site.
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Co2+ and Fe3+ metals within their catalytic sites, instead of the normal Zn2+ metal found

in nature. The substitution of Co2+ and Fe3+ for Zn2+ alters the geometry of the catalytic

site, effectively converting thermolysin into the “closed,” ligand-bound holo state [75]. This

fact explains why these two artificially substituted apo outliers have higher substructural

similarity to the holo structures and are co-located with the holo structures in the intra-

family ontology shown in Fig. 4.2(b).

Closer examination of the five holo structures that reside in the apo region reveals that

either lysine or phenol is bound to the structurally rigid side-chain recognition pocket of

these structures in all five cases. In Fig. 4.2(c), the catalytic site of one of the five holo out-

liers [PDB:1FJT], where a valine-lysine dipeptide is bound near, but not within the catalytic

site, is compared to a holo structure with a ligand bound for catalysis in Fig. 4.2(e,f,g). The

ligand in Fig. 4.2(e,f,g) can be clearly seen to interact with the catalytic residues as well as

the coordinated catalytic metal (Zn2+) but the ligand of [PDB:1FJT] is bound just outside

of the catalytic site. Binding of the valine-lysine/phenol ligands to the side-chain recogni-

tion pocket of thermolysin in the five holo outliers does not induce the catalytic site to alter

its geometry, explaining the presence of these holo outliers in the apo region of the plot in

Fig. 4.2(b). Therefore, FASST is able to accurately distinguish between the holo and apo

structures of the family of thermolysins by modeling the family-wise substructural varia-

tion of the catalytic residues and constructing the substructure-based intra-family ontology.

4.3 Ancestry-based Intra-Family Ontologies

Some protein substructures have proven themselves, throughout the course of evolution,

to be so well-suited at catalyzing particular reactions, that they have arisen independently

in different kingdoms of life. One such example of convergent evolution in protein sub-

structures is the HIS-ASP-SER catalytic triad which catalyzes the hydrolysis of peptide
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Figure 4.3 : Catalytic triad diversity among serine protease families. Comparing the
geometry of the ubiquitous HIS-ASP-SER catalytic triad across 730 structures, 52 species,
and 7 EC families demonstrates the scalability of FASST to very large numbers of struc-
tures. All of the divergently-related families of the chymotrypsin clan form a single dense
sub-group while the convergently-related subtilase family forms a separate sub-group in the
intra-family ontology. The highly diverse family of lipases form several small sub-groups
distinct from both the chymotrypsin-like and subtilisin-like structures. Several trypsin out-
lier structures are labeled and the references corresponding to each PDB entry document
sources of catalytic site deviation.
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bonds in many serine proteases [3]. The HIS-ASP-SER catalytic triad is a common sub-

structure among many families of proteases and the geometry of the triad residues across

protease families has been shown to be highly conserved [14]. To demonstrate the ability

of FASST to detect substructure variation among convergently related families where the

triad substructure resides in many configurations, including spanning peptide chains, we

have considered all of the non-mutant protein structures from the following families in an

analysis of the serine protease catalytic triad:

Family EC Class # Structures

Chymotrypsin 3.4.21.1 57

Trypsin 3.4.21.4 355

Thrombin 3.4.21.5 247

α-lytic protease 3.4.21.12 39

Elastase 3.4.21.36 90

Triacylglycerol lipase 3.1.1.3 107

Subtilisin 3.4.21.62 94

The mutant-filtered family of serine protease structures included 730 protein structures

spanning 7 EC classifications and 52 species; the total number of structures in the table is

989 of which 259 are mutant structures. The input motif consisted of the Cα coordinates of

the triad residues and was geometrically based upon the 1ACB chymotrypsin structure; this

motif was able to accurately identify triad residues in all serine protease families, including

cases where the triad residues span peptide chains. Correct identification of triad residues

for all propagated motifs was subsequently confirmed prior to applying FASST.

The chymotrypsin, trypsin, elastase, thrombin, and α-lytic protease families are all di-

vergently evolved proteases of the “chymotrypsin clan” (clan SA)[3] and share a common

fold that differs from the convergently evolved subtilisin family of proteases. The tria-
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cylglycerol lipases have also convergently evolved the serine-based triad and form a third

distinct evolutionary group [76]. Application of FASST to the families of serine proteases,

as shown in Fig. 4.3, reveals that consistently, proteins of the chymotrypsin clan group

together with high degrees of overlap in in the intra-family ontology and the subtilisin

structures form a distinct sub-group outside of the chymotrypsin clan sub-group. Within

the chymotrypsin clan, the different families of serine proteases show only subtle variations

in triad geometry and are nearly inseparable from one another. It is evident from analysis

of the intra-family ontology shown in Fig. 4.3 that the lipases exhibit much more catalytic

triad geometric variability, overall, than either the subtilisins or chymotrypsins, as they can

be seen in many different regions of the space.

Outlier structures within the intra-family ontologies output by FASST, labeled in Fig. 4.3,

were further investigated. One of the most extreme outliers in Fig. 4.3 corresponds to a pan-

creatic elastase structure [PDB:2D26] complexed with α-1 antitrypsin, and this complex

was documented to introduce extensive distortion to the catalytic site [77], well-explaining

the distant position of this structure from other proteins in the intra-family ontology. Simi-

larly, two trypsin outlier structures ([PDB:2TLD] and [PDB:1EZX]) denoted in Fig. 4.3 are

complexed with a protein inhibitor that was documented to cause distortion of the catalytic

site. Two trypsin structures ([PDB:1PQA] and [PDB:1PPZ]), crystallized with sub-atomic

resolution, are also distant from the main chymotrypsin sub-group in the substructure-

based intra-family ontology[78]. The single non-mutant Tk-subtilisin structure, from the

archaeon Pyrococcus kodakaraensis, is found to be distant from both the chymotrypsin

clan sub-group and main subtilisin sub-group, which suggests a mode of geometric varia-

tion different from that of prokaryotic subtilisins and chymotrypsin-like triads. Application

of FASST to the serine proteases clearly demonstrates the extremely high degree of both

chemical and structural conservation of the catalytic triad across very diverse species and
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proteins with diverse ligand specificities. Impressively, modeling only the triad Cα posi-

tions, as was done here, is sufficient to recover the super-family organization of the serine

proteases.
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Chapter 5

Protein Function Prediction

FASST provides a method to expose the underlying intra-family ontology of a protein fam-

ily and the MESH framework utilizes the sub-groups within the ontology to enhance the

function prediction power of substructure templates. Instead of representing an entire pro-

tein family with a single substructural motif, FASST-MESH uses an ensemble of motifs,

where each motif within the ensemble is used to represent a sub-group within the intra-

family ontology. MESH automatically constructs a representative consensus motif for each

sub-group of geometrically related family members output by FASST (see Ch. 3.5). Col-

lectively, the set of consensus motifs for all sub-groups within a intra-family ontology

compose a motif ensemble. Earlier work investigated the performance of averaging all

substructures within a family to identify a single family consensus template [79]. How-

ever, we found that for large geometrically diverse families, a single representative motif,

based on any family member substructure or a substructure average of all members, could

not sufficiently represent the entire family, just as building a single profile HMM for a large

number of distantly related sequences can be difficult. Transitioning to the multiple-model

motif ensemble, however, requires that the statistics employed by MESH to distinguish

statistically significant matches take into account the presence of multiple tests for signifi-

cance, one test for each consensus motif in the ensemble (see Ch. 3.6).
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Figure 5.1 : Robustness of clusters to data removal during 5-fold cross validation. Dur-
ing each step of cross-validation, FASST-MESH is used to identify clusters and construct
a motif ensemble for the family of peroxidases seen here.
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Figure 5.2 : Sub-groups identified by FASST-MESH within the β -lactamases. Ap-
plying FASST to expose the substructural diversity of a catalytic substructure among the
β -lactamases reveals many distinct sub-groups within the family. The GMM clustering
step of FASST identifies 13 sub-groups within the family and the colors/shapes of points
in the intra-family ontology correspond to sub-group assignment. MESH then constructs
one consensus motif for each sub-group identified, resulting in an ensemble of 13 motifs.
Functional annotation sensitivity improves from 35.0% (single-structure motif) to 81.2%
when using the motif ensemble constructed by FASST-MESH. For the highly diverse fam-
ily of β -lactamases, the intra-family ontology output by FASST shows that many distinct
sub-groups exist within the family. MESH takes advantage of this information to more
completely model the geometric diversity present, thereby improving functional annota-
tion coverage of the family. Mapping Family- and Phylum-level phylogenetic data to each
of the substructures as shown in the corresponding plots on the right reveals that some,
but not all, of the sub-groups identified are due to evolutionary distance between proteins.
For example, the Bacillaceae proteins can be seen to form a single sub-group while Enter-
obacteriaceae proteins are distributed throughout the intra-family ontology in several sub-
groups, indicating that another biological factor is working in concert with phylogenetic
distance among the family of β -lactamases to produce the structural diversity uncovered
by FASST.
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5.1 Quantifying Function Prediction Performance

FASST-MESH was used to construct motif ensembles for 15 families of enzymes (see Ta-

ble 1), as defined by Enzyme Commission (EC) number, and the performance of these motif

ensembles was compared to single-structure motifs in a set of functional annotation exper-

iments (see Table 2). Function prediction performance can be quantified by sensitivity, the

percent of True Positives (TP) correctly identified (# TP / (# TP + # FN)), and specificity,

the percent of True Negatives (TN) correctly identified (# TN / (# TN + # FP)). Because

the process of constructing a motif ensemble can be considered unsupervised learning of

the family substructure space, 5-fold cross-validation was implemented, where the motif

ensemble was built from 4/5 of the data and then the last 1/5 was used for performance as-

sessment. The robustness of the sub-groups identified in the intra-family ontology during

cross-fold validation (as shown in Fig. 5.1) can be seen by the stability of the sub-groups

during each of the 5 cross-fold validation steps. Two EC families included in the functional

annotation experiments are discussed below, and each demonstrates a different extreme of

sensitivity/specificity improvement after applying FASST-MESH.

5.2 β -lactamases

The diverse family of β -lactamases (EC 3.5.2.6) includes structures from 26 different bac-

terial species. Using the 13 sub-groups identified from the intra-family ontology out-

put by FASST as shown in Fig. 5.2, MESH constructs a consensus motif for each sub-

group, resulting in an ensemble of 13 consensus motifs. The β -lactamase motif ensem-

ble, constructed by FASST-MESH, identified 81.2% of functionally homologous proteins

(as defined by the EC class) with statistically significant substructure matches. The corre-

sponding single-structure β -lactamase motif only identified 35.0% of functional homologs,
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and therefore FASST-MESH improved the functional annotation sensitivity of the single-

structure motif by 2.3-fold while maintaining the high specificity of the single-structure

motif.

5.3 Heme-dependent peroxidases

In the family of peroxidases (EC 1.11.1.7) analyzed in Fig. 3.1, a single-structure motif

was capable of identifying a statistically significant match for 91.6% of the EC family,

and therefore already showed high sensitivity. After applying FASST-MESH to the single-

structure peroxidase motif, annotation sensitivity improved only slightly (∼1% improve-

ment) but the absolute number of false positive matches identified decreased from 131

to 78±8. The decrease in false positive matches, due to using a motif ensemble, occured

because true positive matches tended to match multiple consensus motifs within the ensem-

ble with low LRMSD, while many false positive matches have only marginally significant

LRMSD to a single consensus motif, and applying multiple testing correction to the final

set of matches for a given false positive often caused a single marginally significant match

to move outside of the significance threshold.

As both the number and diversity of available structures for a given protein family con-

tinue to increase, the enhancement of substructure-based functional annotation methods

to accommodate large families is necessary. This work demonstrates an automated ap-

proach (outlined in Ch. 3) to augment existing substructure templates already available in

repositories such as the Catalytic Site Atlas (CSA) [29] by geometrically enriching motifs

for families that exhibit high structural variability. The automated enrichment of available

templates by FASST-MESH strengthens the function prediction power of these templates

and facilitates the use of substructure-based analysis methods for large-scale, automated

annotation of novel structures.
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Table 5.1 : Full protein family dataset used for functional annotation experiments.
For each EC class family, a single PDB structure was used to define an input motif (tem-
plate). The list of amino acid numbers are documented functional residues found within
the primary PDB (www.pdb.org) reference corresponding to each PDB structure. The su-
perscript labels above each amino acid number are the possible amino acid types that can
match at each motif point; further details of alternate amino acid label use can be found
here [7]. Where multiple amino acid labels per motif point appear, they were determined
using ConSurf [8].

EC class PDB ID (Chain) Amino acid numberLabels EC class size

1.1.1.1 1HET (A) 46C,48S,67H ,174C 82

1.1.1.21 1US0 (A) 43D,48Y ,76S,77K ,110H 89

1.11.1.7 1ARU (A) 52RQ,56H ,57D,93NR,184H 83

1.14.13.39 1DWW (A) 194C,346V ,363F ,366W ,367Y 126

2.5.1.18 2A2R (A) 7Y ,13FLR,47ACFLM,108CFLY 190

2.6.1.1 2QA3 (A) 32G,34G,183N ,374R 105

2.7.4.6 1NHK (R) 51Y ,117H ,119S,128K 60

3.1.1.7 1H23 (A) 84W ,117G,130Y ,279W ,330F 110

3.1.3.1 1ANI (A) 51D,101D,102S,331H ,412H , 44

3.1.3.48 2CM2 (A) 181DE ,182FHMY ,216S,221R,266Q 248

3.2.1.1 1HT6 (A) 52G,178R,180D,205E ,291D 133

3.5.2.6 1YLJ (A) 70S,73K ,130S,132N 254

4.2.1.1 1HCB (A) 94H ,96H ,106E ,119H ,199T 282

5.3.1.1 1YPI (A) 12K ,95H ,96S,165A 95

5.3.1.5 1DID (A) 53H ,56D,93F ,136W ,182K 73
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Chapter 6

Discussion and Conclusions

Understanding the significant geometric variability among enzyme catalytic sites is an im-

portant component of structural analysis. As the number of solved protein structures grows,

methods capable of summarizing and analyzing large amounts of structural data will be-

come increasingly necessary. While whole structure alignment and protein fold analysis

can be a valuable tool for assessing protein homology, in the absence of sequence similar-

ity, extremely distantly related enzymes or enzymes which are examples of convergent evo-

lution may be ill-suited to whole structure comparison techniques. However, when no de-

tectable domain or fold homology exists, enzymes are still capable of exhibiting functional

equivalence through chemically and geometrically synonymous functional substructures.

Techniques capable of assessing the family-wise similarity of these conserved substruc-

tures can reveal new insights into the relationships among families of structures. FASST

has the ability to recognize modes of family-wise geometric variation among substructures

and knowledge of the substructural diversity of a family can guide hypotheses about the

role of the substructure in different proteins.

6.1 Biological Significance of Intra-family Ontologies

In several families of proteins, possible biologial sources of geometric variation have been

identified and linked with the the structural sub-groups automatically identified by FASST.

In the peroxidase family, the geometric distance between catalytic sites appears to be cor-
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related with phylogenetic distance. Organisms that are more closely related, such as the

plant and fungal species, were shown to have more geometrically similar catalytic sites to

one another than to more distantly related phyla, such as vertebrates. With the family of

thermolysin structures, we demonstrated how FASST automatically captures modes of cat-

alytic site flexibility, correctly segregating structures into sub-groups based upon ligation

state. Using the families of serine proteases, we demonstrated how FASST extends natu-

rally to very large numbers of structures and is still capable of identifying the major modes

of geometric variation across vast numbers of species and triad configurations that include

chain spanning and non-spanning instances. Finally, FASST is able to identify structural

outliers within families, and these outliers were shown to have biochemical causes for sub-

structural deviation from the remainder of the family, thereby guiding further inquiry to

these anomalous structures.

FASST partitions a protein family into self-similar sub-groups of structures and in doing

so, constructs an intra-family ontology that can then be linked with biological metadata to

possibly explain the family-wise diversity. Here particular protein families have been high-

lighted whose substructural diversity can be clearly linked to a single biological ontology,

such as phylogeny, ligation state, or ancestry. In several families included in the function

prediction experiments, the sub-groups identified by FASST cannot be clearly attributed

to a single biological factor. The β -lactamases are an example where some sub-groups

clearly correspond to a single phylogenetic branch of bacteria, but other species of bacteria

form multiple, distinct sub-groups as shown in Fig. 5.2. In the typical case, there are likely

multiple biological factors working in concert to produce substructural variability. Future

work will combine large-scale metadata analysis with FASST to automatically correlate

likely biological factors, such as phylogeny, ligation state, and crystallization conditions,

with FASST-identified sub-groups to unravel more complex relationships among functional
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substructures.

6.2 Differentiating Sequential and Structural Redundancy

Using FASST to analyze a catalytic site substructure of thermolysin among 61 sequence-

similar proteins demonstrates how latent biological trends can be identified even within a

sequentially-homogenous collection of structures. The thermolysin family examined here

contained 59 different structures of the exact same enzyme from B. thermoproteolyticus

and yet FASST was able to automatically uncover a structural trend where the catalytic

substructure modified its position only upon binding ligands that interact directly with the

coordinated zinc ion. If only sequentially non-redundant structures were used by FASST,

this trend could not have been identified because of the miniscule number of sequentially-

distinct crystallographic structures for thermolysin. This result demonstrates the additional

information that can be garnered by researchers when all available structures are incorpo-

rated into a structural analysis. Similarly, the Multiple Solvent Crystal Structures (MSCS)

technique utilizes repeated crystallizations of the same enzyme under different solvent con-

ditions in order to probe for functional sites [80, 81]. Several of the available thermolysin

structures incorporated in our study were produced as part of MSCS experiments [82, 83].

Techniques, such as FASST, that can detect subtle trends among sequentially-similar struc-

ture collections are important tools for analyzing and understanding structure-function re-

lationships across large numbers of protein structures.

6.3 FASST-MESH Improves Single-Structure Templates

After identifying both the existence and membership of structurally defined sub-groups

within a protein family via the automated FASST-MESH framework, this substructural
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information can be used to enhance existing substructural templates in order to more ac-

curately represent large families with diverse catalytic site geometry. The function pre-

diction experiments presented show that representing a structurally diverse family with a

motif ensemble better captures the variety of substructures present within a given family

and increases function prediction sensitivity while maintaining specificity. In cases where

family-wide geometric diversity was found to be low, single structure motifs alone can

have high sensitivity. However, even when geometric variability is low, motif ensembles

created by FASST-MESH always maintain the function prediction performance of single

structure motifs and demonstrate vast improvement in several cases among the families in-

cluded in this study (see Tables 1 and 2). While LabelHash was used here as the underlying

substructure comparison tool, this thesis is not attempting to compare the performance of

LabelHash to other comparison tools. Rather, the purpose of the function prediction exper-

iments presented here is to illustrate cases where a single-structure template insufficiently

models a large class of functionally homologous, but structurally diverse proteins, and to

demonstrate a method to improve the function prediction sensitivity of templates in general

by using motif ensembles.

6.4 Automated Template Definition

In this thesis, the substructure templates given as input to FASST (see Table 1) were con-

structed only from residues that have been experimentally confirmed to play a role in en-

zyme function in order to separate the subproblem of template definition from template

analysis. While the input single-structure templates used here were manually defined,

a multitude of automated approaches to template definition are possible. Our previous

work successfully used evolutionarily conserved residues, as determined by Evolutionary

Trace[38], for automated template definition [48].
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Because templates are an input parameter to FASST, different methods of identifying

the residues constituting functional substructures can be used in conjunction with FASST,

and by doing so, FASST provides an automated approach to further analyze and understand

the role of these substructures. In future work, several substructure selection methods and

databases, such as CASTp, ET [38], ConSurf [8], CSA [29], SNAP [33], and LigBase [28],

will be used as sources for large numbers of templates. This thesis used only residues

deemed to be functionally important by experimentalists, as defined by literature refer-

ences, in order to isolate the performance of FASST-MESH from substructure selection

methods.

6.5 Future Applications

FASST has been shown to be a powerful technique for assessing family-wise geometric

variability among analogous protein substructures. Many proteins are known to have

structurally conserved, but non-catalytic substructures, such as steric recognition sites,

metal/ligand sequestering sites, phosphorylation sites, cofactor binding sites, or immuno-

logically important substructural epitopes. Using the FASST-MESH approach for these

non-catalytic substructures can be done without modification to the method because FASST-

MESH makes no assumptions about the types of substructures modeled by templates nor

underlying sources of structural variation. As the available number of protein structures

continues to rapidly grow, methods for automated, large-scale analysis of structures such

as FASST-MESH will be critical for identifying high-level structural trends among proteins

and placing newly solved structures in the larger context of existing structural data.
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