
RICE UNIVERSITY

Informed Planning

and Safe Distributed Replanning

under Physical Constraints

by

Konstantinos E. Bekris

A Thesis Submitted

in Partial Fulfillment of the

Requirements for the Degree

Doctor of Philosophy

Approved, Thesis Committee:

Lydia E. Kavraki, Professor, Chair
Computer Science

Joe Warren, Professor
Computer Science

Edward Knightly, Professor
Electrical and Computer Engineering

Houston, Texas

JULY, 2008

Informed Planning

and Safe Distributed Replanning

under Physical Constraints

Konstantinos E. Bekris

Abstract

Motion planning is a fundamental algorithmic problem that attracts attention

because of its importance in many exciting applications, such as controlling robots

or virtual agents in simulations and computer games. While there has been great

progress over the last decades in solving high-dimensional geometric problems

there are still many challenges that limit the capabilities of existing solutions.

In particular, it is important to effectively model and plan for systems with

complex dynamics and significant drift (kinodynamic planning). An additional

requirement is that realistic systems and agents must safely operate in a real-

time fashion (replanning), with partial knowledge of their surroundings (partial

observability) and despite the presence or in collaboration with other moving

agents (distributed planning).

This thesis describes techniques that address challenges related to real-time

motion planning while focusing on systems with non-trivial dynamics. The first

contribution is a new kinodynamic planner, termed Informed Subdivision Tree

(IST), that incorporates heuristics to solve motion planning queries more ef-

fectively while achieving the theoretical guarantee of probabilistic completeness.

The thesis proposes also a general methodology to construct heuristics for kinody-

namic planning based on configuration space knowledge through a roadmap-based

approach. Then this thesis investigates replanning problems, where a planner is

called periodically given a predefined amount of time. In this scenario, safety

concerns arise by the presence of both dynamic motion constraints and time lim-

itations. The thesis proposes the framework of Short-Term Safety Replanning

(STSR), which achieves safety guarantees in this context while minimizing com-

putational overhead. The final contribution corresponds to an extension of the

STSR framework in distributed planning, where multiple agents communicate to

safely avoid collisions despite their dynamic constraints.

The proposed algorithms are tested on simulated systems with interesting

dynamics, including physically simulated systems. Such experiments correspond

to the state-of-the-art in terms of system modeling for motion planning. The

experiments show that the proposed techniques outperform existing alternatives,

where available, and emphasize their computational advantages.

Acknowledgments

I would like to thank my adviser Lydia Kavraki for being an inspiring mentor

and supporter throughout my graduate studies. I am also thankful to my thesis

committee members, Edward Knightly and Joe Warren, as well as to my recom-

menders, Nancy Amato, Antonis Argyros, Thierry Fraichard, James Kuffner and

Manuela Veloso, for supporting my work and for their insightful comments.

I feel especially fortunate for being a member of the Physical and Biological Com-

puting Group at Rice University. As a member of the group I had the opportunity

to interact and collaborate with a great set of researchers and people.

My deepest gratitude and love go to my family and friends.

Work on this thesis has been partially supported by NSF IIS 0713623 and NSF

IIS 0308237. The computational experiments were carried on equipment obtained

by the above grants and by CNS 0454333 and CNS 0421109 in partnership with

Rice University, AMD and Cray.

Contents

Abstract ii

Acknowledgments iv

List of Illustrations vii

1 Introduction 1

1.1 Motivating Applications . 2

1.2 Basic Motion Planning Notions 5

1.3 Challenges . 7

1.4 Contributions . 11

1.5 Thesis Roadmap . 16

2 Background 17

2.1 Theoretical Foundations . 18

2.2 Potential Functions . 21

2.3 Sampling-based Motion Planning 23

2.4 Tree-based Algorithms and Kinodynamic Planning 26

2.5 Real-time Planning and Replanning 27

2.6 Planning for Multiple Systems . 28

3 Informed Kinodynamic Planning 29

3.1 Problem Definition . 30

3.2 Sampling-based Kinodynamic Planning 31

3.3 Informed Subdivision Tree (IST) 34

3.3.1 State Selection . 34

3.3.2 Control Propagation . 41

vi

4 General Configuration Space Heuristic 45

4.1 Roadmap Approach . 45

4.2 Foundations . 48

4.3 Efficient Visibility Roadmap with Cycles (EVRC) 50

4.4 Fast Metrics using the EVRC Roadmaps 57

5 Safe Replanning for Systems with Drift 59

5.1 Replanning Formulation . 60

5.2 Inevitable Collision States . 62

5.3 Short-Term Safety Replanning . 65

5.4 Integration with IST . 67

5.5 Application to Workspace Exploration 72

6 Distributed Safe Replanning 75

6.1 Problem Definition . 77

6.2 Multi-Agent ICS Avoidance . 79

6.3 Simple Prioritized Protocol . 85

6.4 Message-Passing Distributed Protocol 88

6.5 Limited Communication . 94

6.6 Extension to Vehicular Networks 95

7 Experiments 97

7.1 Informed Planning . 97

7.2 Safe Replanning . 104

8 Discussion 113

8.1 Important Contributions . 113

8.2 Limitations and Future Directions 116

Bibliography 122

Illustrations

1.1 Wining cars in the DARPA Grand Challenges of 2005 and 2007. 3

1.2 Examples of simulation related applications, like (a) crowd and

urban infrastructure simulations and (b) computer games, where

motion planning has an important role. 4

1.3 (a) This gigantic truck was designed to transport portions of the

Airbus A380 across France. Kineo CAM developed

non-holonomic planning software that plans routes through

villages that avoid obstacles and satisfy non-holonomic

constraints imposed by 20 steering axles. (b) Simulation used for

computing the path of the trucks. 8

1.4 A valid plan that results in a collision-free trajectory may still

lead to an ICS during the next planning cycle. 10

2.1 The shortest-path roadmap connects vertices in Cobs. 20

2.2 The roadmap derived from the vertical cell decomposition. 20

2.3 Attractive and repulsive components define a potential function. . 21

2.4 Local minima problems with potential functions. 22

2.5 Examples of sphere and star spaces. 23

2.6 Collision checking is used as a “black box” within the

sampling-based motion planning framework. 23

viii

2.7 The Probabilistic Roadmap Method (PRM) operates in the

configuration space (C) where the robot is modeled as a single

point. PRM aims to construct a graph in C that trully expresses C’s

topological properties by sampling collision-free configurations.

When the graph is available a planning query can be solved by

connecting the start and the goal configuration to the graph. . . . 24

3.1 The basic scheme for tree-based planning with sampling. Each

iteration of the algorithm uses a selection/propagation step,

where a reachable state along the tree is selected first and then a

valid control is applied to produce a feasible trajectory. 31

3.2 IST expands a tree of trajectories, by selecting a state along the

tree and a control. Physical simulation is used as a black box,

where given these selections, the resulting trajectory is stored in

the tree. 34

3.3 The interaction between state selection and the subdivision data

structure. 36

3.4 An illustration of an abstract potential function. 38

3.5 The edge penalization scheme. 39

3.6 Four consecutive steps from the operation of the proposed state

selection technique. The highlighted cell corresponds to the

selected cell cmin at each iteration. The numbers corresponds to

the edge penalty values p(e). 40

5.1 Mapping an unknown space with an acceleration controlled car. . 60

5.2 The closed loop architecture and modules on a single vehicle. . . . 61

5.3 The robot’s synchronization scheme. 61

ix

5.4 Tree expansion during a single planning cycle that managed to

reach the goal. The planner is similar to ISTbut it is biased by a

discrete wavefront function that is shown in the background. The

light colored triangles correspond to vehicle configurations along

the tree data structure. The darker trajectory is the selected path. 72

6.1 Vehicles form a communication network while they move. On the

left, there is one connected component while on the right vehicles

have moved and multiple components have been created.

Planning for such dynamic networks with centralized approaches

has been studied for first-order systems [CRL03, CBR02]. This

thesis extends these ideas by considering second order dynamics

(we guarantee avoidance of Inevitable Collision States) and

describing a decentralized solution using only local information. . 76

6.2 The operation that a single vehicle executes in two consecutive

planning cycles. 80

6.3 (a) The lower plan for V2 is not safe since the contingency

attached to it collides with the contingency extending from the

plan of V3. The top plan of V2 is safe. (b) The planner of V2 will

not produce the lower trajectory because it collides with the

current contingency of V1. The top plan is again safe. 85

6.4 A simple coordination graph, the action sets A1, A2, A3, the

atomic and pairwise payoffs f1, f2, f3, f12, f23 and the global

utility function u . 89

6.5 (left) For the dynamic network in Fig. 6.1 the above DAG shows

the transmission of selected plans p by high priority vehicles to

lower priority vehicles - low number denote high priority. (right)

Two vehicles that enter each other’s comm range at maximum

velocity, cannot collide if after finishing their plans they execute

their contingency plans. 94

x

7.1 Goal finding in (top row) scene meandros with a 2nd order

differential drive-robot and (bottom row) scene labyrinth with an

acceleration-bounded car-like robot: (a-e) a trivial random tree

does not find the target after 100,000 iterations, (b-f) an

RRT-EXTEND selection strategy finds the target after (top) 48,410

iterations and (bottom) 51,245 iterations (c-g) RRT-EXTEND-BIAS,

where 20% of the time the target is the attractor, finds the target

after (top) 42,855 iterations and (bottom) 17,212 iterations (d-h)

IST reaches the target after (top) 13,774 edges and (bottom)

4,363 respectively. 99

7.2 Comparison between the IST selection/propagation scheme and

Voronoi biased selections. 100

7.3 We use a car-like system as our testbed in this work. The car is

modeled as five rigid bodies, the chassis and the four wheels,

connected through four joints. The front joints allow the wheels

to be steerable, while the back joints allow the car to accelerate.

In order to have a car that does not flip over often in the

physics-based simulation we have to: (a) apply controls to the

wheels that follow the Ackerman steering model and (b) to

simulate the effect of anti-roll bars that real cars have. 100

7.4 The bug trap, iso-test and maze workspaces. 101

7.5 Comparison of computation time on the bug trap, iso-test and

maze workspaces. Averages of 50 experiments. 102

7.6 Comparison of path duration on the maze scene. Averages over

50 experiments. 103

7.7 Replanning with a known duration reduces the overhead of

guaranteeing safety. For the same planning period STSR builds

bigger trees. 106

7.8 Exploration of scenes (from left to right) “meandros”, “rooms”

with a DD-robot, “labyrinth” and “rooms” again with a car-like

robot. 106

7.9 The velocity profile for the car exploring “rooms” in Figure 7.8(d). 107

7.10 Two snapshots of 16 vehicles exploring the labyrinth

environment, while retaining a vehicular network. 108

7.11 Snapshots from an experiment in scene “labyrinth” with 5

vehicles, communication range at 25% of the scene width and

sensing range at 15%. 108

7.12 Scenes “rooms” and “random”. 109

7.13 Average activity profile during a cycle (left) and dependence on

(from second to forth): CYCLE DURATION, PLAN TIME, and

maximum communication range. 110

7.14 Scalability results for three scenes: Random, Rooms, Labyrinth.

Left: DD robots, Right: Car-Like robot 111

Chapter 1

Introduction

Motion planning was born by the need to understand the complexity of de-

signing the motion for mobile or movable objects, as well to have algorithms

that automatically compute motion [CLH+05, LaV06b]. Initially, the prob-

lem was abstracted as a fully geometric one [Lat91, Rei79]. The focus was

on computing motions that avoided collisions with obstacles, where the diffi-

culty rose from scene complexity and problem dimensionality. Even in this

form, the problem is computationally hard [Lat91, Rei79]. Nonetheless, there

has been progress over the years in the design of practical algorithms that al-

low the solution of problems that involve complex geometric constraints and

many degrees of freedom. While algorithms still cannot conclude intractability

or guarantee a solution in finite time, in practice they perform exceptionally well

[KSLO96, HLM99, LK01a, SL03a, PBC+05].

Nevertheless, the problem is more complex for systems with differential con-

straints. Such constraints arise in non-holonomic vehicles that are under-actuated

or in general when the control influence of a system is small compared to momen-

tum. The challenge is that not every collision-free path is acceptable; it must also

be feasible given the constraints. The dynamic model may not be even available,

but simulated by a software package, like a physics engine [Smi06]. Additionally,

agents often have to move and act autonomously with only partial knowledge

of their surroundings, either because they depend on their sensing capabilities

or due to dynamic changes in the environment. Motion planning problems can

be further complicated by the presence of multiple moving systems in the same

workspace. Interesting challenges arise when the objective is to coordinate the

operation of such multi-agent systems so as to achieve a common objective.

1

2

Gradually the motion planning field is moving from just dealing with collision-

free motions to addressing incrementally more challenging and realistic problems.

This thesis is both an indicator and a contribution to this transition. The start-

ing point and the foundation for this work remain the algorithms that have been

traditionally the focus of the motion planning community. The direction, how-

ever, is to address those challenges that arise when motion planning has to be

employed in realistic applications.

1.1 Motivating Applications

Applications that require solutions to interesting and challenging motion planning

problems relate both to real systems, as in the case of robotic applications, as well

as to simulated moving agents, as in computer games and realistic simulations.

Autonomous Vehicles and Robots

Autonomous vehicles used to belong in the realm of science fiction. However,

the importance of this technology cannot be overlooked. It has the potential to

considerably improve the current standard of living, save thousands of lives lost

every year in automobile accidents and reduce the financial burden imposed to

the health care system. This is why there has been increased attention recently

to the scientific areas related to this technology.

Some of the first problems that have to be solved in order to achieve au-

tonomous driving relate to sensing and estimation. An autonomous system must

be aware of its surroundings and its position in the world before it is able to

act. The recent Grand Challenge competitions organized by DARPA have shown

the significant steps that have been made in these areas. Fig. 1.1 shows two

automobiles that participated and won the last two events. The figure also shows

the sophisticated sensing infrastructure that can be employed nowadays to assist

autonomous driving.

3

Figure 1.1 : Wining cars in the DARPA Grand Challenges of 2005 and 2007.

Despite the successful completion of the last two competitions by multiple

teams, the planning aspect of the events did not involve all the complexities of

autonomous driving. For example, highway driving, which involves interesting

physical constraints (i.e., increased momentum), was not part of the tasks that

the autonomous vehicles had to execute. So, although there has been great

progress in the area of autonomous driving, there are still important roadblocks

to overcome before autonomous vehicles are used in everyday life. And these

roadblocks correspond to motion planning challenges, especially when interesting

dynamics are involved.

Driving naturally leads to flying. Planning algorithms can also help to nav-

igate autonomous flying devices, such as blimps and helicopters through obsta-

cles. They can also compute thrusts for a spacecraft so that collisions are avoided

around a complicated structure, such as a space station.

Realistic and Interactive Simulation

Motion planning can be useful in many application as a simulation tool. By

considering the effect of dynamics during the design phase of a product, perfor-

mance and safety evaluations can be performed before actual construction. For

example, planning can be used to assess whether a sports utility vehicle tumbles

over while turning or when stopping abruptly. Time and costs can be spared by

determining design flaws early in the development process.

4

Figure 1.2 : Examples of simulation related applications, like (a) crowd and urban
infrastructure simulations and (b) computer games, where motion planning has
an important role.

Opportunities for using planning algorithms also abound in the area of com-

puter games. Modern video games involve complex agents that exhibit sophis-

ticated behavior. Planning algorithms can enable game developers to program

character behaviors at a higher level, with the expectation that the character can

determine on its own how to move in an intelligent way and adapt to different

virtual environments.

Crowd simulations or simulations of urban infrastructures depend on the ca-

pability to realistically model the motion of agents in the simulated environment.

An important characteristic of these applications is that they involve a large

number of mobile agents. Thus, they require autonomous planning capabilities

that have good scalability properties as the number of agents increases. Fig. 1.2

shows examples from crowd simulations and computer games that require motion

planning capabilities.

Relation to Networking

Both robotics and simulation related applications have been greatly influenced

over the last decades by advances in networking research and technology. For

example, in robotics, there is an increased interest in robotic sensor networks.

Such networks involve multiple units that are able to sense their surroundings,

5

communicate among themselves but also move and act. The hope is that such

systems will be cheaper to deploy and more robust than a single very expensive

and highly equipped unit in monitoring applications. In order to effectively,

however, deploy and control such systems it is necessary to have distributed

motion planning algorithms that utilize the communication capabilities that the

units have in order to solve common tasks through coordination.

Moreover, networking plays an increasingly important role in the area of

computer games. Some of the most successful games over the last decade are

massively multi-player role playing games, where thousands of avatars are being

controlled remotely by human users and operate in the same virtual world. There

are many issues related to the issue of maintaining a consistent physical simula-

tion between the different processors that are actively studied. As the characters

become more complex and the gaming experience more realistic, there will also be

an increased requirement for autonomous motion coordination between different

agents. For example, existing games allow characters to penetrate one another as

they move in the virtual world because the collision checking is an expensive op-

eration. An underlying distributed planning module could be used to proactively

select controls that will avoid collisions up to a degree that does not conflict with

the human user’s commands.

1.2 Basic Motion Planning Notions

Before continuing into what techniques are needed so that motion planners can

be effectively employed in the above applications, it is important to define a

vocabulary of basic motion planning notions.

The focus of a motion planning algorithm is a mobile or movable system for

which we are planning for, such as a robot or a vehicle. This system operates

in a workspace, which corresponds to the system’s surroundings, especially the

obstacles in the environment that the system cannot penetrate.

6

The set of all parameters and variables that fully describe the system in

the workspace correspond to the system’s state. The state could, for example,

represent the position, orientation and velocity of a robot or a vehicle. A valid

state fully respects all the physical constraints that are imposed to the system.

For example, non-penetration with obstacles and velocity bounds are examples

of such physical constraints that a valid state has to respect,. Planning problems

involve a state space that encapsulates all possible states that the system could be

in. The focus in this thesis is on problems with continuous, uncountably infinite

state spaces.

A motion planning algorithm typically answers a planning query. A query

typically involves an initial state where the system must start from and a goal

state or often a goal region of states that the system must arrive in.

The purpose of motion planning is to select the controls that are able to

manipulate and change the state of the system. An important part of the planning

formulation is the specification of how the state changes when controls are applied.

For continuous problems this is often expressed through an ordinary differential

equation, referred to as the state update equation.

A trajectory is a sequence of states for the system. A feasible trajectory is

a sequence of valid states which can be produced by time integrating the state

update equation. A plan is a sequence of controls that can produce a feasible

trajectory. For the type of motion planning problems considered in this thesis, we

are interested in computing plans that produce feasible trajectories, which start

at the initial state and reach a state in the goal region. Due to the problem’s

complexity, we are interested in finding a plan that causes arrival at a goal state,

regardless of its efficiency.

The traditional geometric model of motion planning did not include param-

eters that involved dynamics, such as velocity, acceleration, torques and forces.

If we ignore dynamics and extract only those parameters from the state that are

necessary to fully describe the position and orientation of the system then we can

define the system’s configuration. Given a configuration it is possible to compute

7

whether a system is in collision or not with obstacles. In the case of a traditional

model of a car-like vehicle, the configuration corresponds to its Cartesian coordi-

nates and orientation. But for a manipulator, a configuration also encompasses

the joint angles that define where each link is located inside the workspace. Sim-

ilarly, to the state space, the configuration space (or C-space) corresponds to the

set of all possible configurations that the system can be found. A geometric path

is a sequence of configurations for the system. The traditional geometric model of

motion planning aimed to compute such geometric, collision-free paths. In that

context, time typically was not explicitly referenced in the path.

1.3 Challenges

Despite the importance of motion planning in many exciting applications, au-

tonomous planners must overcome many challenges until they can be used ubiq-

uitely, safely and robustly.

Complex Physical Constraints

Driving an automobile can be used as an example of complicating physical con-

straints. Many people have difficulty with parallel parking and much greater

difficulty parking a truck with a trailer. These problems are challenging because

a car is constrained to move in the direction the rear wheels are pointing. Maneu-

vering the car around obstacles therefore becomes challenging. If all four wheels

can turn to any orientation, the problem vanishes. Such constraints are referred

to as non-holonomic constraints. Figure 1.3 shows an extremely complicated

vehicle for which non-holonomic planning was employed by the industry.

For a car that moves at high speeds, as the speed increases, the effects of

momentum become increasingly important. The car is no longer able to instan-

taneously start and stop, a capability that is actually reasonable to assume for

parking problems. Although there exist planning algorithms that address such is-

sues, there are still many unsolved research problems. This type of constraints are

8

Figure 1.3 : (a) This gigantic truck was designed to transport portions of the Air-
bus A380 across France. Kineo CAM developed non-holonomic planning software
that plans routes through villages that avoid obstacles and satisfy non-holonomic
constraints imposed by 20 steering axles. (b) Simulation used for computing the
path of the trucks.

referred to as dynamic constraints, since they relate to the dynamic parameters

of a system, such as acceleration and momentum.

There is also a plethora of physical parameters that are typically ignored my

existing motion planners, including some fundamental parameters of the physical

world, such as gravity, friction and the effects of contacts. In this way, the output

of a planner cannot be accurately followed by a real system. When the result is

simulated it does not seem realistic.

One issue that complicates the motion planning process when additional phys-

ical parameters are incorporated is that problem dimensionality increases. For

example, a three-dimensional geometric planning problem requires six parame-

ters to model the state of a rigid-body. If dynamics are also stored in the state

in the form of linear and angular velocities, then twelve parameters are needed

to model each rigid-body. Dimensionality is not the most important parameter

in defining how hard a motion planning problem is; it does impose, however, a

significant computational overhead since it requires exploring significantly larger

state spaces.

9

Partial Observability and Dynamic Environments

Another important challenge that motion planners have to address is the issue

of partial observability. Most existing techniques operate under the assumption

that they have a complete, detailed model of the world. Nevertheless, most real

autonomous systems depend on sensing information in order to be able to model

and represent the world. This implies that they cannot be aware of potential

changes in the environment beyond their sensing radius, such as doors closing

and opening or movable objects like furniture that have been moved since the

construction of the map. In applications such as workspace exploration, there is

no model available before the planning process is initiated.

Partial observability can be also an issue in the case of simulated agents, even

in computer games, where it is often assumed that all the information about the

world is available. One objective for AI agents in computer games is to operate

given the same information that is available to a human player. For example,

often today higher levels of difficulty for AI agents is achieved by providing to

the agents additional global information, such as the entire map of the world

and positions of opponents. This information is not available to a human player.

In order to make the gaming experience more realistic it is necessary to design

planning tools that are able to operate under limited information.

Even in the case that an autonomous agent is able to directly observe the

entire environment, real or simulated, the problem might be complicated by the

presence of moving obstacles. Since the future trajectory of the moving obstacles

can be unknown, a planning algorithm cannot take the current state of the world

as granted. Such problems require planners that adapt to dynamic and expected

circumstances.

To address the issues of partial observability and dynamic environments, mo-

tion planning must be seen as a module in a much larger architecture that is

able to execute operations such as prediction and estimation. Thus, it is neces-

10

Figure 1.4 : A valid plan that results in a collision-free trajectory may still lead
to an ICS during the next planning cycle.

sary to redefine the problem that motion planning algorithms must solve within

this context. When real-time operation is necessary, a planner is not called to

find a complete solution to a specific motion planning query where everything is

known. Instead it is called so as to make progress towards the solution in an ever

changing and partially unknown environment given the time limitations available.

Safety Concerns for Systems with Drift

The combination of partial observability and complex physical constraints

raises some important safety concerns, especially for systems with significant

drift. This safety issue is known as the problem of Inevitable Collision States

(ICS), because systems with significant drift can end up in states from which

they cannot avoid collisions into the future, due to momentum.

Consider the example of an automobile with very high velocity in front of a

wall. The car is in an a collision-free situation but there might be no sequence of

controls that it can employ in order to avoid collisions into the future. Such situ-

ations do not appear when a planning algorithm runs offline, because additional

computation time can be invested into detecting whether there are collision-free

trajectories out of such states. But in an online planner care must be taken so

that the system does not end up in such situation during the following planning

step.

11

Multi-agent Problems

A special but important case of having multiple systems operating in the same

environment involves teams of cooperating agents that coordinate, potentially

through communication, in order to achieve a common goal, as in robotic sensor

network. There are many questions that must be answered in order to have such

teams operate efficiently. How and when should the agents communicate? How

can their information, such as a common map of the environment, be integrated?

How can collisions between them be avoided? A fundamental concern is whether

the coordination has any bottlenecks or whether it is fully distributed and can

be scaled to large numbers.

While there have been numerous methods for distributed coordination in the

artificial intelligence literature, these schemes do not deal directly with the issues

that are involved in motion coordination, especially physical constraints and the

safety concerns that rise from real-time limitations.

1.4 Contributions

This thesis proposes new algorithmic tools for designing planners that deal with

complex physical constraints, real-time planning and multi-agent problems.

Informed Subdivision Tree

The first contribution is a novel planner, termed Informed Subdivision Tree

(IST), that incorporates heuristics to solve motion planning queries that involve

physical constraints more effectively. The planner has the following important

characteristics.

Integrates Physics-based Simulators: There has been great progress over the

last years in building software packages that simulate three dimensional objects

and how they move according to Newton’s laws of physics by using time integra-

tion methods. Such software is used in computer games, in computer animation

to assist artists in producing realistic motion as well as in industrial design to test

12

the robustness of products. IST can integrate and has been tested with physics-

based simulation so as to be able to model parameters typically ignored in the

motion planning process, such as friction, gravity and contacts.

Kinodynamic Planning: In order to be able to deal with dynamic constraints,

this thesis builds upon the methodology of kinodynamic planning. This is a

search-based approach in the joint state space of kinematic (i.e., collision with

obstacles, certain non-holonomic constraints) and dynamic (i.e., velocity and ac-

celeration limits) constraints. This means that the algorithm searches for solution

trajectories that directly respect all the physical constraints imposed on the mov-

ing system.

Using planning algorithms that consider dynamics and directly produce feasi-

ble trajectories has the advantage that they can be easily embedded into robotic

systems because they output commands that can be directly interpreted by the

moving platform.

Kinodynamic planning is also compatible with physics-based simulation soft-

ware. It only depends upon the presence of a method that integrates the state

of a system forward in time, which is what a physics-based simulator offers.

Informed but complete search: Searching in the joint state space, however,

imposes significant computational overhead to the planning algorithm. Existing

kinodynamic algorithms focus on guaranteeing that eventually the entire state

space will be covered in order to be able to solve specific queries. Through the

incorporation of heuristics, however, it is possible to guide the search procedure so

as to minimize the amount of the state space covered in order to solve a planning

query. IST attempts to maximize the utilization of any possible available heuristic

during its operation. At the same time it is able to guarantee that eventually the

entire state space will be covered and every query can be solved.

The overall algorithm outperforms uninformed state-space coverage oriented

techniques, as well as existing informed variants. At the same time, it achieves

the same theoretical guarantees that modern algorithms provide.

13

General Heuristic for Kinodynamic Planning

Although IST is compatible with a wide variety of alternative heuristics, an-

other objective of this thesis is to provide a general method for constructing

effective heuristics for kinodynamic planning. In order for a heuristic to be infor-

mative, it must be able to estimate good approximations of the distance between

a state and the goal region. Many heuristics used today attempt to solve a

simplified version of the overall planning problem and use this solution to bias

the search operation of the planner in the entire state space. Typical examples

include either the simplification of the moving system involved in the planning

problem, such as computing a solution for a point size system in the workspace,

or simplifying the workspace, such as computing a solution for the true moving

system in an obstacle-free space.

This thesis proposes a heuristic for kinodynamic planning, which takes into

account all the geometric properties of the workspace and of the moving sys-

tem. Computing this heuristic is again a motion planning problem, only one

that does not involve dynamics. That is why the proposed approach is based

upon the state-of-the-art algorithms for the traditional geometric model of mo-

tion planning. These algorithms construct a graph data structure, a roadmap,

out of collision free configurations for the moving system. Given the roadmap, a

heuristic estimate of the distance from a state to the goal region is computed by

mapping the path from the state to the goal to the closest roadmap path.

This thesis describes an algorithm for constructing a roadmap, called Efficient

Visibility Roadmap with Useful Cycles (EVRC). The objective of the technique is

to output a data structure that approximates a roadmap with the following two

properties:

1. Every configuration can be connected to a configuration of the roadmap

with a collision-free path

2. Every path in the configuration space can be deformed to a path on the

roadmap where the path remains collision-free throughout the deformation

14

These two properties are important so that the roadmap paths can be good ap-

proximations of the true shortest geometric paths and in this way the heuristic

to be informative. Another objective is to keep the computational cost of com-

puting the roadmap as low as possible since EVRC must be called before IST to

preprocess the space and provide the necessary information for the online com-

putation of the heuristic. Then, the computation of the heuristic itself must be

as inexpensive as possible as well.

It is shown here that while this heuristic is considerably more informative

than existing alternative, the cost of computing it is not prohibitive and overall

the integration of IST with EVRC results in an efficient kinodynamic planner. Bor-

rowing the properties of sampling-based planners, EVRC has the advantage that

is very general and can be applied to a wide range of systems.

Safe Replanning for Systems with Drift

IST and EVRC provide a way to define a fast search stragegy for hard planning

problems with physical constraints. In order to deal with real-time requirements

is to necessary to design a strategy that recomputes trajectories online. The focus

is on systems with significant drift, which cannot stop instantaneously, and raise

the issue of Inevitable Collision States.

This thesis describes a framework for replanning called Short-Term Safety Re-

planning (STSR) to compute trajectories online while providing safety guarantees.

The replanning framework calls a planner to compute a partial path towards the

goal given a predefined time limit. This path is executed during the consecutive

planning step, where the planner in parallel computes future trajectories. In this

way there is a pipeline of operations that include sensing, planning and execution.

The safety guarantees provided imply complete avoidance of Inevitable Col-

lision States in replanning applications that involve static obstacles, such as ex-

ploration and planning among unexpected obstacles. In problems that involve

dynamic obstacles it results in τ -safety, which means the algorithm can compute

a solution that is safe for a certain time period into the future τ .

15

In order to provide these safety guarantees a motion planning algorithm has to

execute additional calls to a collision checking routine, which is the most expen-

sive operation a planner can execute. This can significantly reduce the capability

of a planner to effectively explore the state space in order to come up with a

good quality solution. The STSR framework identifies the minimum set of states

that have to be checked for safety during each planning cycle so as to minimize

this collision checking overhead. Compared with previous approaches for safe

replanning with dynamics the technique is able to achieve the same safety guar-

antees but at a much smaller computational cost. The STSR framework has been

integrated with the IST algorithm to solve replanning problems.

Distributed Motion Planning

Finally, this thesis proposes an extension of the STSR framework for problems

that involve multiple coordinating systems with drift, such as a networked team

of vehicles, that replan online to solve a common task. The extension is achieved

by identifying the amount of information that multiple dynamic systems have

to exchange in order to avoid Inevitable Collision States. The objective is to

maintain the following invariant: during each planning cycle, every system has

at least one available trajectory that is collision free and does not lead to ICS.

Given this information, the thesis describes two communication protocols that

achieve distributed collision avoidance and an integration with planning tech-

niques such as IST. The first protocol is a prioritized scheme, where through the

use of priorities, the various systems are able to resolve conflicts and maintain

the invariant. While the prioritized protocol achieves the desired safety prop-

erties, it raises scalability concerns. The second protocol is a fully distributed

approach that is based on an asynchronous message-passing optimization tech-

nique. This approach is not only able to achieve the safety guarantees of the

prioritized scheme but can also scale much better to larger teams of vehicles.

16

There are no comparable techniques in the related literature that simulta-

neously address all the challenges involved in the formulation of this problem:

systems with drift, replanning, distributed and scalable coordination. Moreover,

the proposed technique can also address additional group constraints, such as

sensor network type features like radial limitations so as to maintain wireless

network connectivity.

1.5 Thesis Roadmap

Chapter 2 describes related work to this work, which is based mostly in the

motion planning literature but provides also a short overview of related results

from work in control theory and artificial intelligence.

Chapter 3 describes the operation of the IST planner, specifically how the

algorithm searches the state space guided by a heuristic.

Chapter 4 outlines the EVRC method for constructing a configuration space

roadmap and how it can be used to provide the heuristic estimate within IST.

Chapter 5 proposes the STSR scheme for replanning. It points out the safety

concerns that arise in kinodynamic replanning and shows how STSR can achieve

safety and reduce computational overhead.

Chapter 6 describes the extension of STSR on multi-agent coordination prob-

lems and the two distributed protocols for multi-agent coordination.

Chapter 7 provides the experimental evaluation of the described techniques

and comparison with competing methodologies.

Finally, chapter 8 closes this thesis we a summary of the most interesting

points from the proposed algorithms, a list of their limitations and directions for

future research.

Chapter 2

Background

Motion planning is a term that means different things to different research com-

munities. In particular, (a) robotics, (b) control, (c) artificial intelligence and

(d) computational geometry/algorithmic research, are four areas where motion

planning problems are being actively studied.

Robotics addresses the automation of mechanical systems that sense, com-

pute and act. A fundamental need in robotics is to have algorithms that convert

high-level specifications of tasks from humans into low-level descriptions of how

to move in the physical world. Related to motion planning is the problem of

mobile robot navigation, which typically ignores dynamics and focuses on the

translations and rotations required to move the mobile robot on a plane. Trajec-

tory planning then translates the solution of a robot navigation algorithm and

determines how to follow it so as to respect the robot’s mechanical limitations.

Robot navigation research pays a lot of attention to uncertainty, modeling errors

and optimality.

In control theory, the term of motion planning refers to the design of inputs

to a nonlinear dynamical system that drives it from an initial state to a specified

goal state. Obstacles are often not considered in this formulation. Control theory

also develops feedback policies, which adaptively respond during online execution,

and has focused on stability, which ensures that the dynamics do not cause the

system to get out of control. A large emphasis is also placed on optimization to

minimize the consumption of resources, such as energy or time.

In artificial intelligence, planning is more of a discrete nature. Instead of

moving objects through continuous spaces the task might be a puzzle or to achieve

a task that is modeled discretely. In this way, planning and problem solving are

17

18

almost synonymous in the context of the AI literature. There is also a lot of work

on adversarial problems, language representation issues for planning, modeling

uncertainty and optimization.

Finally, in computational geometry and algorithmic research, the in-

terest has been mostly in studying the computational complexity and designing

algorithms for geometric problems that involve motion. Also there has been a lot

of research in related problems such as collision checking and other applications

that relate to motion planning such as computer graphics, animation and games.

This chapter attempts to provide an overview of motion planning research,

which includes contributions from the above areas. We will initiate this review

with the theoretical results that stem from computational geometry and algo-

rithmic research, which was very active during the late ’70s and ’80s in motion

planning. Then we will describe some important ideas that appeared in control

theory in early ’90s. In mid ’90s there was the appearance of sampling-based

algorithms for motion planning, which have become dominant in the field since

then and form the basis of the algorithms in this work. Since this thesis focuses

on problems that involve dynamic constraints, replanning and multi-agent prob-

lems, the last three sections present the related literature to these problems in

the context of sampling-based motion planning. A lot of the work in the last

two sections on replanning and multi-agent problem is also related to artificial

intelligence and mobile robotics.

2.1 Theoretical Foundations

A classical version of motion planning is sometimes referred to as the Piano

Mover’s Problem. It is posed for polyhedral moving systems in a polyhedral

workspace an it has been shown to be PSPACE-hard [Rei79]. In two dimensions

this problem is also known as the Sofa mover’s problem. A series of theoretical

results provided polynomial time algorithms for problems with fixed dimensions.

For example an algorithm for the Sofa mover’s problem has complexity O(n5)

19

[SS83a], for moving a fixed number of discs the complexity is O(n3) [SS83b], for

moving a 2D star-shaped robot with k arms [SAS84] it is O(nk+4) and for moving

a 3D rod shaped robot [SS84] the complexity is O(n15).

The results for problems with fixed dimension suggested an exponential de-

pendence on the problem dimensionality [SS83a, SS84]. A single exponential

algorithm in C-space dimensionality was proposed by Canny and showed that

the problem is PSPACE-complete [Can88]. Although impractical, the algorithm

serves as an upper bound on the general version of the basic motion planning

problem. It applies computational algebraic geometry techniques for modeling

the C-space to construct a roadmap, a 1D subspace that captures the connectivity

of Cfree. Other approaches attempted to approximate the structure of C-space

but they were also impractical [BP83, Per83, KD86].

The complexity of the problem motivated work in path planning research.

One direction was to study subclasses of the general problem for which polyno-

mial time algorithms exist [HS96]. Even some simpler, special cases of motion

planning, however, are at least as challenging. For example, the case of a fi-

nite number of translating, axis-aligned rectangles in ℜ2 is PSPACE-hard as well

[HSS84]. Some extensions of motion planning are even harder. For example,

a certain form of planning under uncertainty in 3D polyhedral environment is

NEXPTIME-hard [CR87]. The hardest problems in NEXPTIME are believed to re-

quire doubly-exponential time to solve.

A different direction was the development of planners that were practical un-

der realistic assumptions. For example, several algorithms exist for constructing

roadmaps when C = ℜ2 and Cobs is polygonal. Most of these cannot be directly

extended to higher dimensions.

The maximum clearance roadmap (or retraction method) [OY82] constructs

a roadmap that keeps paths as far from the obstacles as possible. The best-

known algorithm runs in O(n lg n) time in which n is the number of roadmap

curves [Sha04]. The shortest-path roadmap [Nil69] (Figure 2.1) contains paths

that actually touch the obstacles, which must be allowed for paths to be optimal.

20

Figure 2.1 : The shortest-path roadmap connects vertices in Cobs.

An O(n2 lg n)-time construction algorithm can be formed by using a radial sweep

algorithm from C vertices. It can theoretically be computed in time O(n2 + m),

in which m is the total number of edges in the roadmap [O’R04]. Figure 2.2

illustrates the vertical cell decomposition approach. The idea is to decompose

Cfree into cells that are trapezoids or triangles. Planning in each cell is trivial

because it is convex. A roadmap is made by placing a point in the center of each

cell and each boundary between cells. Any graph search algorithm can be used

to quickly find a collision-free path. The cell decomposition can be constructed

in O(n lg n) time using the plane-sweep principle [Cha87, dBvKOS00].

Figure 2.2 : The roadmap derived from the vertical cell decomposition.

21

Figure 2.3 : Attractive and repulsive components define a potential function.

2.2 Potential Functions

A different approach for motion planning is inspired from obstacle avoidance

techniques [Kha86]. It does not construct a roadmap, instead it builds a differ-

entiable real-valued function U : ℜm → ℜ, called a potential function [HA88,

Kod89, HA92]. The potential function guides the motion of the moving system.

The potential consists of an attractive component Ua(x), that pulls the robot

towards the goal, and a repulsive component Ur(x), that pushes the robot away

from the obstacles as Figure 2.3 shows. The gradient of the potential function is

a vector ∇U(x) = DU(x)T = [∂U
∂xx

(x), . . . , ∂U
∂xm

(x)]T , which points in the direction

that locally maximally increases U . A path can be computed by starting from

xI and applying “gradient descent”:

1 x(0) = xI ; i = 0;

2 while ∇U(x(i)) 6= 0 do

3 x(i + 1) = x(i) +∇U(x(i))

4 i = i + 1

This gradient descent approach does not guarantee a solution to the problem

since it can only reach a local minimum of U(x), which may not correspond to the

goal state xG as Figure 2.4 shows. A planner that makes uses of potential func-

tions and attempts to avoid the issue of local minima is the randomized potential

field (RPP) [BL91], which followed a stochastic approach and was later proved to

be probabilistically complete [LL96]. The algorithm combines gradient descent,

random walks and backtracking. However, it requires substantial parameter tun-

ing. Sequential search with backtracking was also explored [GG95].

22

The gradient of the potential function can be also used to define a vector

field, which assigns a motion for the robot at any configuration x ∈ C. This

is an important advantage since it does not only result in a single path, but a

feedback control strategy. This makes the approach more robust against control

and sensing errors. Most of the techniques in feedback motion planning are based

on the idea of navigation functions [RK92], which are potential functions properly

constructed so as to have a single minimum. A function φ : Cfree → [0, 1] is called

a navigation function if it:

• is smooth (or at least Ck for k ≥ 2)

• has a unique minimum at xG in the connected component of the free space

that contains xG,

• is uniformly maximal on the free space boundary

• and is Morse, which means that all its critical points, such as saddle points,

are isolated and can be avoided with small random perturbations.

Navigation functions can be constructed for sphere boundary spaces centered at

xI that contain only spherical obstacles as Figure 2.5 shows. Then they can be

extended to a large family of C-space that are diffeomorphic to sphere-spaces,

such as star-shaped spaces as in Figure 2.5.

Putting the issue of local minima aside, another major challenge for such

potential function based approaches is constructing and representing the C-space

in the first place. This issue makes the applications of these techniques too

complicated for high-dimensional problems.

Figure 2.4 : Local minima problems with potential functions.

23

Figure 2.5 : Examples of sphere and star spaces.

2.3 Sampling-based Motion Planning

Sampling-based planning is a general approach that has been proven success-

ful in practice with many challenging problems. It avoids the exact geomet-

ric modeling or approximation of the C-space that was the bottleneck of previ-

ous approaches. Examples of these planners are the Ariadne’s Clew algorithm

[ATBM92, BATM94, AGM98] and the Probabilistic Roadmap Method (PRM)

[KL94, Ov94, KSLO96, Kav95, Šve97]. Especially the latter, PRM, proved to

be very successful in problems with complex geometries. It is also easier to im-

plement than its algebraic counterpart, Canny’s algorithm. PRM also benefited

enormously from advances in collision checking [LC91, Qui94, LM91, GLM96,

KPLM98, EL00]. In retrospect, using collision checking as a black box (as shown

in Figure 2.6) was a powerful primitive of PRM that contributed to its performance,

ease of implementation and subsequent widespread use.

Figure 2.6 : Collision checking is used as a “black box” within the sampling-based
motion planning framework.

24

Figure 2.7 : The Probabilistic Roadmap Method (PRM) operates in the configura-
tion space (C) where the robot is modeled as a single point. PRM aims to construct
a graph in C that trully expresses C’s topological properties by sampling collision-
free configurations. When the graph is available a planning query can be solved
by connecting the start and the goal configuration to the graph.

PRM splits planning into two phases, a learning and a querying phase. During

learning, PRM samples collision-free configurations and connects them with simple

paths to build a roadmap. The initial implementation used uniform sampling and

straight line paths [KSLO96]. Given a roadmap, multiple queries can be answered

quickly. First the initial and goal configurations are connected to the roadmap

and then planning amounts to solving the corresponding graph search problem.

An illustration of a PRM roadmap is given in Figure 2.7.

PRM’s efficiency depends on how well the sampling strategy captures the con-

nectivity of the free space. A major factor that affects PRM ’s performance is

the presence of “narrow passages” [ABD+98, LK02, HKL+98]. In order to solve

problems with “narrow passages”, PRM must select samples from very small sets

in order to connect the roadmap. A plethora of biased sampling techniques were

introduced to improve the effectiveness of PRM. Example include quasi-random

sampling [LB02], or a variety of techniques that focused sampling on subsets of

the configuration space. These subsets could be either parts of the space with

low connectivity [KSLO96], or parts of the space close to the obstacle boundaries

[ABD+98, BOvdS99] or the medial-axis of the free space [GHK99, WAS99, HK00].

25

PRM takes advantage of the roadmap constructed during the learning phase

to efficiently answer multiple queries. Single query problem can be often solved

more efficiently by focusing the exploration only on certain parts of the C-space.

This motivated approaches that focus on single queries. One approach for single-

query planning is to speed up computation by doing collision checking only when

it is necessary. The lazy PRM variant [BK00, SL03a] constructs a roadmap whose

nodes and edges are initially assumed to be collision-free. The roadmap can even

be computed implicitly on a grid [Boh01, LB02]. Lazy PRM searches the roadmap

graph to find a path that connects the query configurations. The computed path

is then checked for collisions. The path is discarded if it is in collision and the

violating nodes and edges are removed from the roadmap. Lazy PRM continues to

search for alternative paths until a collision-free path is found.

The benefits of sampling-based planning come at the cost of sacrificing com-

pleteness. That is, path non-existence cannot be proven with sampling-based

planners. A looser guarantee, termed probabilistic completeness is provided in-

stead. If an algorithm is probabilistic complete and a path exists, then the planner

will find it eventually [KSLO96, KLMR96, KKL96, Šve97, LK04].

An alternative approach to roadmap-based planners yielded in a family of

planners known as tree-based planners [LK01b, HKLR02, LK05a, SL03a, YJSL05,

BB07]. Tree-based planners bias start the exploration by rooting a tree at the ini-

tial configuration and incrementally explore the relevant parts of the C-space by

advancing the tree toward the goal. The success of tree-based planners depends

on the strategy employed to expand the exploration tree. Popular approaches

include the Rapidly-Exploring Random Tree (RRT) [LK99], the Expansive Spaces

Tree (EST) [HLM99], the Single-Query Bidirectional Lazy SBL [SL03a]. Some

instances of tree-based planners build two trees, one rooted at the initial con-

figuration and another one rooted at the goal configuration, and grow the trees

toward each-other [HLM99, LK01a, SL03a]. The Sampling-based Roadmap of

Trees (SRT) leverages the benefits of PRM and tree-based planners. It expands

multiple trees from various initial seed points. Neighboring trees are then grown

26

toward each-other giving rise eventually to a roadmap. SRT has proven effective

both for multiple-query and single-query planning while it can also be parallelized

very efficiently [BCL+03, PBC+05] The tree-based planners have been success-

fully used to solve planning problems with kinematic and dynamic constraints,

which are discussed in the following section.

2.4 Tree-based Algorithms and Kinodynamic Planning

A kinematic path, returned by a planner such as PRM may not be executable due

to bounds on velocity, acceleration and applied forces [DLOS98]. To alleviate this

problem motion planners must incorporate a higher level of physical realism. The

approach is to plan directly in the state space instead of the C-space by including

the parameters related to the motion constraints.

Algebraic solutions for the computation of exact paths under dynamic con-

straints are known only for 1D and 2D point masses with velocity and acceleration

constraints [O’D87, CRR91]. Research in optimal control showed that optimal

paths can be achieved with piecewise-extremal (“bang-bang”) controls and a fi-

nite number of switches [Hol83, BDG85, SS85, Sch87]. Approximation methods

that use grids have proved to depend exponentially in the number of grid points

or resolution [SH85, SD88]. Donald et al. [DXCR93] provided the first optimal-

approximation polynomial-time algorithm for a point mass with dynamics. For

first order vehicles [FW88, Wil88] there are ways to characterize minimum wheel-

rotation paths [RS90, BM02]. A different methodology, related to potential fields,

employs path deformation to adapt online a precomputed path given motion con-

straints and sensing observations [KJCL97, BK91, QK93, LBL04].

A hierarchical approach exists in techniques that use PRM. The planner can

be used to produce a roadmap of kinematic paths, which are later adapted to

the dynamic constraints of the robot [SSLO98, SA01]. Such techniques must

compute a valid trajectory to connect two given states, a difficult sub-problem

in general, known as the steering problem [LFV04] and hence the approach is

27

not generally applicable. On the other hand, tree-based planners apply forward

integration of controls instead of steering. This is a simple and fast primitive,

which naturally simulates the underlying propagation model of a system. In

this way, tree-based planners [LK01b, HKLR02, LK05a, CSL01, CL03, CL02,

KVdP06] have become the norm in kinodynamic planning [CLH+05, LaV06b].

Especially, the Path-Directed Subdivision Tree (PDST) planner [LK05a] has shown

good performance in such planning instances and allows biasing the search of

the algorithm while providing probabilistic completeness. Chapter 3 proposes a

new tree-based planner for kinodynamic problems. However, it displays several

key differences with the planners above as discussed. More details about the

techniques related to the proposed algorithm will be provided in section 3.2.

2.5 Real-time Planning and Replanning

The original sampling-based planners were offline methods and assumed known

workspaces. Planning with partial-observability requires interleaving sensing,

planning and execution, where a planner is called frequently and has finite time

to replan a trajectory. Replanning from scratch is possible [HKLR02] but recent

methods use information from previous planning cycles to speed up the perfor-

mance of replanning [BV06, FKS06, ZKB07, GKX07]. There are also methods

that use a roadmap to replan online [BFK06, KM04].

When replanning with a sampling-based planner for a system with second-

order dynamics, safety issues arise: a collision-free but partial plan may lead a

vehicle to a state from which collisions cannot be avoided due to the dynamics

(Inevitable Collision States (ICS) [FA04, PF05, FDF02, BK07]). This problem is

particularly acute when multiple second-order vehicles operate in close proximity

in the same environment. Similarly, a partial plan could also lead to states from

which network connectivity will be inevitably lost. A framework that deals with

ICS and real-time planning for a single vehicle has been recently developed in the

sampling-based planning literature [FA04, BK07].

28

2.6 Planning for Multiple Systems

The use of sampling-based planners in multi-agent problems is limited and typ-

ically follows a centralized approach [CRL03, CBR02]. Centralized planning is

reliable [SL03b] but computationally expensive due to the exponential depen-

dency on problem dimensionality. Decentralized methods, such as prioritized

schemes [BBT02], plan separately for each robot and then coordinate robots’

interactions. Planning is faster but leads to collisions [SL03b, CRL03]. An im-

portant challenge is how to make decentralized planning more reliable [SI06]. We

show in this thesis that it is possible to achieve safety in a decentralized scheme

that employs priorities even with second-order dynamic constraints [BTK07a].

There are multiple techniques for decentralized motion planning in control

theory [Mur07]. In formation control agents move while maintaining preas-

signed relative positions, which can be achieved with potential-fields [OFL04,

OS06, PDKC03], leader-follower approaches [TPK04, EHS01] or local control laws

[PSFB06]. Decentralized navigation functions [DKT06, LDK04] provide a feed-

back solution and can be used for vehicles with independent goals. Most methods

focus on providing elegant stability proofs but are difficult to apply in general

state spaces (e.g. complex obstacle, robot shapes and dynamics) [LaV06a].

An alternative to priority-based schemes for decentralized solutions can be

found in the AI literature. There are many techniques for distributed constraint

satisfaction [YH00] and optimization [MSTY05] for teams of cooperating agents,

such as factored Markov Decision Processes [GKP02] and auction mechanisms

[GM02, DZKS06]. The work in this thesis of distributed motion coordination

employs message-passing, asynchronous algorithms for coordination related to

loopy belief propagation, a method for distributed optimization in constraint

networks [Pea88, KV06]. These message passing algorithms have been success-

fully applied to solve distributed inference problems in wireless sensor networks

[PK04]. Employing such message-passing algorithms for coordinating vehicular

networks results in better scalability than priority-based schemes [BTK07b].

Chapter 3

Informed Kinodynamic Planning

Search-based techniques for kinodynamic planning explore the entire state space

for trajectories that respect the differential constraints. A major advantage is that

they are applicable to a variety of different systems. They construct a “reach-

ability tree” in the state space through a sampling operation [LK01b, HLM99,

LK05a]. Although effective in eventually solving hard planning instances, they

have high computational requirements as search methods, especially in kino-

dynamic problems that are typically higher-dimensional compared to geometric

ones.

This chapter focuses on reducing the solution time of search-based techniques

for kinodynamic planning by incorporating heuristics based on workspace and

query knowledge. We detail a new method, the Informed Subdivision Tree

(IST), that balances greedy and methodical search while providing guarantees

that eventually every problem can be solved. In simple parts of the state space

the exploration is greedily guided by the heuristic. In constrained parts, such

as narrow passages, the heuristic may not be beneficial and the algorithm au-

tomatically explores alternative routes for a solution. This methodical behavior

is a result of an adaptive state-space subdivision scheme that estimates online

the algorithm’s performance in exploring the entire state space. Experimental

comparisons on physically simulated systems between IST and uninformed plan-

ners [LK01b, LK05a] as well as with informed versions [LK01b, US03] show that

IST outperforms the alternatives. IST also reports better quality paths in certain

complicated workspaces, as in maze-like environments.

29

30

3.1 Problem Definition

Consider a moving system, such as a robot, whose motion is governed by differ-

ential equations of the form:

ẋ(t) = f(x(t), u), g(x(t), ẋ(t)) ≤ 0 (3.1)

where f, g are smooth; x(t) is a state and fully describes the system at time t.

The set of all states is the state space X . The set of states for which the moving

object is not in collision is the free state space Xfree. The set of all controls u

define the control space U . For a given x(t), u is valid if it respects Eq. 3.1.

We are particularly interested in non-holonomic systems with second-order

constraints, such as a car controlled by bounded acceleration and bounded steer-

ing velocity. The following notation will be useful in our description:

• A plan p(dt) is a time sequence of controls: p(dt) = {(u1, dt1), . . . , (un, dtn)},

where dt =
∑

i dti.

• When p(dt) is executed at x(t), a vehicle follows the trajectory : π(x(t), p(dt)).

• If a plan has a single control u applied for duration dt, then π(x(t), (u, dt)) is

called a primitive trajectory.

• A feasible trajectory is collision-free and respects Eq. 3.1.

• A state on π(x(t), p(dt)) at time t′ ∈ [t : t + dt] is denoted as xπ(t′).

• For stable states there exists a control, which retains the system in the same

state:

x(t) is stable iff ∃ u s.t.

∫

dt

f(x(t), u) dt = 0

Given a state x0(t0) and a goal region XG ⊂ X , compute a plan p(dt) so that

the resulting trajectory π(x0(t0), p(dt)) is feasible and the end state xπ(t0+dt) ∈

XG is a stable state within the goal region.

31

Figure 3.1 : The basic scheme for tree-based planning with sampling. Each
iteration of the algorithm uses a selection/propagation step, where a reachable
state along the tree is selected first and then a valid control is applied to produce
a feasible trajectory.

3.2 Sampling-based Kinodynamic Planning

We first describe an abstract sampling-based approach for kinodynamic planning.

The search operation is initiated at x0(t0) and explores Xfree by propagating fea-

sible primitive trajectories. These trajectories are stored on a tree data structure

T as edges. An edge that corresponds to trajectory π(x(t), p(dt)) is rooted at a

node, which corresponds to the state x(t). Fig. 3.1 and Algorithm 1 illustrate

the operation of an abstract sampling-based kinodynamic tree planner.

Given the abstraction, we have the following three choices to construct a

concrete algorithm. How to select: (i) the state xr, (ii) the control uv and (iii) the

duration dt. Different algorithms follow different mechanisms for these choices

but share the goal of covering the state space quickly and avoiding regression

[KVdP06], which means propagating paths in already explored space.

32

Algorithm 1 BASIC SAMPLING-BASED TREE PLANNER

Set the root of T to the initial state x0(t0)
while ∄ x ∈ T s.t. (x ∈ XG and x stable) do

Select a reachable state xr ∈ T
Select a valid control uv for the state xr

Propagate the primitive trajectory π(xr, (uv, dt)) for
a duration dt and for as long as it is feasible

Add all the states along π(xr, (uv, dt)) in T

The RRT algorithm [LK01b] samples a state in X and then selects the state

xr ∈ T closer to the sampled state given a metric. In Euclidean spaces, RRT

has higher probability of extending a path inside the largest unexplored Voronoi

cell. In kinodynamic planning, however, a good metric may not be available

and the Voronoi-bias is not well defined. Similarly, the Expansive Spaces tech-

nique [HLM99] depends on an ideal sampler to guarantee coverage. PDST [LK05a,

LK05b] avoids the use of a metric by using an adaptive subdivision scheme and

provides probabilistic completeness for a general class of problems: if a path exists

it will be eventually found [KKL96, LK04]. PDST biases the exploration towards

larger cells of the subdivision, which correspond to relatively unexplored parts of

the space. Less attention has been given in the literature to the choices regard-

ing the control to be applied and the duration of propagation for kinodynamic

problems.

The above planners can be viewed as continuous-space analogs of traditional

uninformed search. Some informed variations in the literature exhibit a switching

behavior between coverage planning and best-first search. The RRT-“goal bias”

variant selects with certain probability to expand from the state which minimizes

a distance metric to the goal and the rest of the time uses the RRT Voronoi bias

for coverage [LK01b]. An older algorithm, the Randomized Potential Field (RPP)

[BL91], also has multiple modes. It constructs a potential function to execute

gradient-descent and then employs random walks and backtracking to exit local

minima.

33

More recent informed variants introduce ideas from traditional AI search and

study the effects of heuristics. The RRT∗ [US03] merges RRT with the A∗ algo-

rithm, by using a heuristic in the state selection step. An issue, however, when

using heuristics in continuous problems is the scale of the heuristic versus the

true path cost. The randomized A∗ approach [DK07] uses learning in order to

solve this scaling problem. The Anytime RRT algorithm [FS06] successively con-

structs RRTs that result in higher quality paths by employing heuristic search.

The Exploring/Exploiting Tree (EET) [RBK07] emphasizes the need to balance

the greedy and methodical aspects of search. EET uses potential functions to bias

tree-based planners.

Critique

Although effective in eventually solving hard problems, sampling-based kin-

odynamic planners have high computational requirements as search methods,

especially kinodynamic problems that are typically higher-dimensional compared

to geometric ones. Moreover, they use metric information to guide the search

and cover the entire state space. However, there are no good metrics for state

spaces that involve kinodynamic constraints and as the dimensionality of the

state space increases, the quality of the metric information deteriorates. This

often results in regression, the algorithm re-explores already explored parts of

the state space. Finally, as coverage-oriented algorithms, these planners exhibit

an exhaustive flood-fill behavior and explore parts of the state space which are

not necessarily helpful in solving specific queries. In this way, they can be viewed

as sampling-based, continuous-space analogs of uninformed search.

Some of the approaches that improve upon the basic techniques, such as bi-

directional or multi-directional tree expansion [PBC+05], are not general enough

for kinodynamic planning, while others offer small improvements by simply switch-

ing between coverage orientated search and best-first search [LK01b] or depend

on the proper setting of many parameters [BL91].

34

3.3 Informed Subdivision Tree (IST)

The IST algorithm follows the basic selection-propagation scheme of a sampling-

based kinodynamic planners, as specified above, but attempts to provide a bal-

ance between methodical search and greedy search while not depending on many

parameters. The overall architecture is shown in Fig. 3.2. This section describes

the state selection and control propagation modules of the algorithm.

Figure 3.2 : IST expands a tree of trajectories, by selecting a state along the
tree and a control. Physical simulation is used as a black box, where given these
selections, the resulting trajectory is stored in the tree.

3.3.1 State Selection

The state selection step of IST is guided by the following, partially contradictory,

objectives:

1. It aims to promote the selection of states that are closer to the goal (depth-

first search behavior)

2. It aims to avoid reexplorating the same part of the state space (regression

avoidance)

35

3. It aims to promote the selection of states that are connected with good

quality paths with the root of the tree (path quality)

The first objective depends upon the existence of a heuristic function h(q) that

maps any state to a value h : X → R that is an estimate of how far away the state

is from the goal region. To satisfy the second objective the IST algorithm employs

an adaptive subdivision scheme of the state space. This scheme is responsible to

locate which parts of the state space have been overly explored and vice verca

so that IST can automatically adapt its selection process. The operation of the

subdivision is explained in detail in the following paragraphs. Finally, for the

third objective the algorithm maintains the cost from the root of the tree to the

reachable states so as to promote the selection of states that are connected with

shorter trajectories.

Overall the state selection step is a hierarchical procedure. The state is not

selected directly. Instead, the algorithm selects first a cell of the state space sub-

division, then an edge in this cell and finally a state along the edge. This is done

for two reasons. Primarily because through a hierarchical selection procedure it is

possible to take advantage of the subdivision’s properties, which is able to adapt

the size of its cells depending on how explored a subset of the state space is. The

second reason is more practical. It is very costly to maintain all the bookkeeping

information at the state level, so instead we store parameters that guide the ex-

ploration procedure at the cell and the edge level. In the following discussion, we

will first provide details about the algorithmic tools that IST employs and then

summarize the selection procedure.

Adaptive Subdivision for State Space Coverage

The subdivision data structure S corresponds to a set of cells: S = {c1, . . . , cK}.

Each ci ⊂ X corresponds to a subset of the state space. Initially this set con-

tains one cell that encompasses the entire X . The subdivision is refined in each

iteration of the algorithm as shown in Fig. 3.3.

36

Figure 3.3 : The interaction between state selection and the subdivision data
structure.

Whenever a reachable state xr is selected, the cell c′ ∈ S is found so that

xr ∈ c′. The algorithm guarantees that only one cell contains each state. Then

c′ is removed from S and two new cells, c′left and c′right, are introduced so that:

c′left ∪ c′right = c′ and c′left ∩ c′right = 0 (3.2)

Given that the initial cell is the entire X , Eq. 3.2 implies that:

∪Sci = X and ∀ci, cj ∈ S : ci ∩ cj = 0 (3.3)

An implementation of the cell partition can be obtained with a Binary Space

Partition Tree. Although not necessary, cell c′ is typically split into two equal

size cells along a dimension that maintains the subdivision balanced.

The purpose of S is to provide an online estimate of the coverage performance

of the state space exploration. Large cells in S represent parts of the space that

have not been explored as much as smaller cells, in the sense that the algorithm

has not expanded often new trajectories from states within them. Consequently,

the subdivision level of a cell c ∈ S (the number of subdivisions that occurred

to create c) is used as an estimator µ(c) of the exploration value of the cell c.

37

Cells that do not contain any reachable states in T have by definition infinite

estimator value: µ(c) = ∞ if ∀x ∈ T : ∄ x ∈ c. IST promotes the expansion of

new trajectories from states that belong to cells with small µ(c) (large explored

cells). This behavior promotes the exploration of unexplored parts of the space.

Although we have defined the subdivision to operate in the entire state space,

this is not necessary for completeness purposes. It is sufficient to define a pro-

jection of the state space into a lower dimensional space and attempt to cover

the projected space. Defining this projection depends on the application, allow-

ing us to define the important projection of the state space that the algorithm

must cover. For example, in the case of a second-order control car that has a

five dimensional space: Xcar = (x, y, θ, V, s), ((x, y): the planar coordinates, θ:

orientation, V : velocity and s: steering direction) we typically subdivide only

along the first three parameters of the state space.

Utilization of Heuristics

IST is able to incorporate a wide variety of heuristic information. The only

requirement is that the heuristic is upper and lower bounded by finite positive

values. For computational efficiency, it is also necessary that the computation of

the heuristic to be fast.

Two typical examples of heuristics that can be used include the following:

• Distance-based goal bias: Ignore obstacles and use the distance between

the state and the goal region given a metric for an obstacle-free version of

the state space.

• Simplifying the system’s geometry: It is possible to approximate the moving

system by a simpler geometry (i.e., as a single point, or by using a bounding

sphere), for which it is easy to compute a potential function given the

obstacles in the environment (either in discretized or continuous form).

Morever, there is the case of having additional information about a planning

problem in the form of a cost-map or an energy-map. A cost map scores different

38

Figure 3.4 : An illustration of an abstract potential function.

regions of the environment depending on their traversability is often available for

mobile robots in outdoor environments. In computational biology problems, as

in protein-ligand interactions, there might be an energy function defined in the

space. If such information is available it can be incorporated as a heuristic by

integrating the cost over traversible paths.

There are two points of interaction between the heuristic function and the core

IST algorithm, a preprocessing step and the online calls to compute the heuristic

cost of particular states. During the preprocessing phase, a method is called to

collect all the necessary information that will accelerate the online computation of

the heuristic. For example, in the case of the second heuristic from the above list,

a potential function can be computed for a point approximation of the moving

system before the call to IST, as shown in Fig. 3.4. Then this potential can be

used during the online computation of the heuristic.

There are two problems with the above mentioned heuristics. The quality of

the first heuristic degrades as the environment becomes more occupied and com-

plicated. On the other hand, the more complicated the system, the worse the

quality of the second heuristic. In the next chapter, we will describe an approach

for constructing a heuristic that is applicable to a wide set of problems, takes

obstacles into account and has a higher level approximation for the system than

the simplistic point-based approximation.

39

Figure 3.5 : The edge penalization scheme.

Edge Penalization Scheme

By promoting the selection of larger cells of the subdivision we avoid regression

at the cell selection level. However, the regression problem manifests itself at the

edge selection level as well. We must avoid selecting the same edge within in

a particular subset of the state space because it has the best heuristic value

compared to all its neighbors or the best path cost to the root of the tree.

To avoid regression at the edge level, we penalize edges of T when a state

along the edge is selected as xr. IST maintains a penalty factor p(e) along each

edge e ∈ T . The first edge in the tree starts with a penalty of 1. Fig. 3.5 shows

how the penalty factors are updated by the algorithm. When a state along e is

selected then the penalty of the edge increases exponentially: p(e) = 2 ·p(e). The

penalty for the new edge being created will be: p(e′) = p(e) + 1. IST promotes

the selection of edges that have low penalty value. The objective of the penal-

ization is to avoid selecting the same edges for expansion, which would result in

regression.

Overall State Selection Step

Given the subdivision, the heuristic and the penalty scheme we can describe

IST’s state selection step. Figure 3.6 illustrates two consecutive applications of

the state selection step.

40

Figure 3.6 : Four consecutive steps from the operation of the proposed state
selection technique. The highlighted cell corresponds to the selected cell cmin at
each iteration. The numbers corresponds to the edge penalty values p(e).

1. Select the cell cmin ∈ S that minimizes a score function:

score(c) = µ(c) · h(c), (3.4)

where µ(c) is the cell’s subdivision level and the cell heuristic is: h(c) =

min ∀x∈T s.t. x∈c h(x).

2. Select an edge emin ∈ cmin that minimizes:

score(e) = p(e) · cost(e), (3.5)

where p(e) is the edge penalty and cost(e) is the duration of the trajectory

from x0 until the last state on e.

3. Along the edge emin select a random state xr ∈ emin.

41

4. Execute bookkeeping operations:

(a) Split cmin according to the subdivision rules.

(b) Split all the edges that belonged to cmin so that the invariant that

every edge belongs to only one cell holds.

The important characteristic of the state selection is that it separates the

heuristic h(c) from the true path cost cost(e). The heuristic is used to select a

cell in the subdivision in a depth-first manner. The true path cost is used to

select the edge within a cell in a breadth-first manner. In this way, we do not

need to scale h(c) vs. cost(e). At the same time, the approach promotes the

exploration of alternative parts of the state space by promoting the selection of

large unexplored cells. The penalization scheme allows the eventual selection

of every edge on the tree. Moreover, this algorithm still allows for an efficient

implementation. The cell selection can be achieved with a binary heap and most

of the information necessary to make decisions can be updated in constant time

at each iteration of the algorithm.

3.3.2 Control Propagation

Given a selected xr, the control selection step’s objective is to estimate the best

possible control to apply from xr while allowing eventually the selection of any

possible controls.

IST employs an offline procedure to create a database of trajectories for var-

ious dynamic parameters of the system’s state. The offline procedure samples a

discrete set of states X̂ for the system. All these states are set to zero Carte-

sian coordinates and zero orientation. For each state x̂ ∈ X̂ we sample various

controls ux̂ and propagate a trajectory in an obstacle-free environment. We then

store a discretized version of the resulting primitive trajectory π(x̂, (ux̂, dtmax)))

for a maximum duration dtmax.

During the online operation, if an edge is selected for the first time as emin we

make use of the database of trajectories with the objective of selecting a control

42

that will bring the system to a state with a smaller heuristic cost. We find the pre-

stored state x̂ that is closer to the state xr in terms of the dynamics parameters.

Then for each control ux̂ we transform the stored trajectory π(x̂, (ux̂, dtmax))

so that the initial state is xr without doing any collision checking. Out of all

trajectories we find the one with the best heuristic value h(x) and choose the

corresponding control ux̂ as the uv control selection for this iteration.

Every other time that an edge e is selected for expansion, we attempt to in-

crease the variety of controls that have been expanded from e. IST stores on each

edge the controls that have been expanded in the past from states along this edge

and builds a discretized probability distribution. The probability distribution is

used so as to bias towards the selection of controls that have not been selected

in the past. It retains a non-zero probability, however, for every possible control.

The last point related to the propagation scheme is the duration dt of the

resulting trajectory π(xr, (uv, dt)). By default, the duration of the trajectory has

to be such so that the trajectory remains feasible throughout its execution. Nev-

ertheless, IST imposes an additional constraint that aims towards improving the

quality of the resulting paths. If the propagated trajectory π(xr, (uv, dt)) enters a

new cell of the subdivision, other than the cell that xr belongs to, where there is

already another path with a better cost, then the propagation of π(xr, (uv, dt)) is

stopped. The idea is that there is already a better path that reaches this part of

the space, so this new trajectory might be unnecessary. Nevertheless, for proba-

bilistic completeness purposes we do propagate a single state from the trajectory

into this cell so that it can be potentially revisited by the algorithm in subsequent

iterations.

Algorithm 2 summarizes the overall operation of IST as described in the previ-

ous sections. The algorithm assumes that the database of trajectories is available.

43

Algorithm 2 INFORMED SUBDIVISION TREE

(Initialization)

Set the root of T to the initial state x0(t0)
Create a cell c0 that corresponds to the entire state space X
Initiate the set of subdivision cells S = {c0}
Execute a PRM for a kinematic version of the system

while ∄ x ∈ T so that x ∈ XG (goal region) do
(State Selection)

Select the cell cmin = argmin ∀c∈S {score(c)}
Select the edge emin = argmin ∀e∈cmin

{score(e)}
Update the penalty value: p(emin) = 2 · p(emin)
Select a random state xr ∈ emin

Split the cell cmin according to the subdivision rules
Split the edges in cmin to the corresponding cells

(Control Selection)

if first time that emin is selected then
Find uv that brings to a state with good heuristic value h(·) based on the
trajectory database (no collision-checking)

else
Compute the valid control uv based on the probability distribution of emin

Given uv, update probability distribution of emin

(Duration Selection)

while The resulting trajectory is feasible and
there is no better path from x0 to the current cell do

Propagating for time dt

Add the primitive trajectory enew = π(xr, (uv, dt)) in T
Set the penalty parameter of p(enew) = p(emin) + 1

Discussion

The Informed Subdivision Algorithm described in this chapter focuses on

solving kinodynamic planning problems faster by utilizing heuristic information,

while providing a methodology that is also able to cover the entire state space and

solve hard problems in case the heuristic is not able to properly guide the search.

Chapter 7 provides experimental comparison between IST and other sampling-

based kinodynamic planners. It is, however, obvious that the performance of

44

the algorithm depends heavily on the quality of the heuristic information. The

following chapter proposes a general methodology for computing heuristics that

can be employed by IST, which is more informative than many of the existing

ways to bias kinodynamic planners.

Chapter 4

General Configuration Space Heuristic

A heuristic function h(q) maps any state x to a real value: h : X → R. This

value can represent an estimate of the distance from x to the goal region XG or

more generally an estimate of how promising x is as the next state to be selected

for propagation. IST is able to incorporate any heuristic information and provide

probabilistic completeness as long as the heuristic is upper and lower bounded by

finite positive values. For computational efficiency, it is also desirable that the

heuristic satisfies the following objectives:

• It can be computed fast.

• Does not have high memory requirements.

• It is as informative as possible, so as to appropriately guide the exploration

in the state space.

4.1 Roadmap Approach

For many planning problems it is possible to construct appropriate heuristics

specifically designed for the task. For example, cost maps can be used to construct

such heuristics for autonomous vehicles that operate in outdoor terrains []. In this

section we are interested in designing an approach that is very general and can

be applied to a variety of motion planning problems that involve both complex

kinematic and dynamic constraints. The idea is to construct a heuristic given

C-space knowledge. In this way, the heuristic is more informative than many of

the existing approaches that simplify the geometry of the moving system, often

by approximating as a single point or by using a bounding volume like a sphere.

45

46

Given such C-space heuristic, the IST algorithm has then deal with the dynamic

aspects of the motion planning problem.

To achieve the above objectives we propose the construction of a roadmapR in

Cfree, which is a graph R(V,E) whose nodes V are collision-free configurations.

The edges of the graph depend on the definition of a symmetric local method

that computes an admissible path L(qi, qj) connecting configurations qi, qj in the

absence of obstacles. Consequently, R(V,E) has the typical roadmap properties

[KSLO96]:

a. qi ∈ V iff qi ∈ Cfree

b. ∀ qi, qj ∈ V : (qi, qj) ∈ E iff L(qi, qj) ∈ Cfree

In order to be possible to use the roadmap as a heuristic, it is desirable for R to

satisfy the following two properties:

1. Visibility property: ∀ q′ ∈ Cfree : ∃ q ∈ V so that L(q′, q) ∈ Cfree

2. Path Deformation/Homotopy property: For all collision free paths

τ ′ ∈ Cfree, there is also:

• a path τ ∈ R and

• a continuous map m : [0, 1]× [0, 1]→ C that deforms τ ′ to τ through

collision-free space: m(s, 0) = τ ′(s), m(s, 1) = τ(s) and m(s, t) ∈ Cfree

for all s, t ∈ [0, 1].

These two properties express the requirements that the roadmap covers the entire

C and is also able to truly represent the topological properties of C.

Roadmaps that satisfy the first property are called “visibility roadmaps”

[SLN00]. If we require the number of nodes in the roadmap to be optimum,

then this problem is related to the well known and challenging art-gallery prob-

lem [GO97]. Even guaranteeing that a set of guards truly covers the entire C

given a local method L is challenging, and a finite coverage may not always exist.

47

Roadmaps that satisfy the second property are able to capture all the homo-

topy classes of paths in the C. A roadmap capturing the homotopic classes means

that every valid path can be continuously deformed to a path of the roadmap.

However, as it has been noted in the literature [NO04], capturing the homotopy

classes in higher dimensions might not be sufficient to encode the set of represen-

tative paths since homotopic paths may be too hard to deform into each other.

A roadmap is a good representation of the varieties of free paths if any path can

be “easily” deformed into a path of the roadmap. The notion of simple path

deformation varies in the literature [SBD+02, JSss].

If we have a roadmap R(V,E) that satisfies the two properties then the com-

putation of the heuristic value h(x′) of state x′ is straightforward:

i. Extract the configuration q′ that corresponds to x′

ii. Extract a configuration qgoal in the goal region XG

iii. Compute nodes q, qg ∈ V so that L(q, q′) and L(qg, qgoal) ∈ Cfree. Nodes

q, qg are guaranteed by the visibility property to exist.

iv. Find the roadmap path τ ∈ R that connects q, qg. This path is guaranteed

by the second property to exist if there exists a path τ ′ that connects q′ and

qgoal. The second property also guarantees that τ and τ ′ are homotopic, so

the first is a good approximation of the second, which allows the heuristic

to be informative.

v. Compute the heuristic value h(x′) = d(q′, q)+d(τ)+d(qg, qgoal), where d(·, ·)

is a distance value between configurations and d(·) is the length of a path.

Due to the complexity of constructing a roadmap that truly satisfies the vis-

ibility and deformation properties we will follow the dominant methodology in

the literature and apply a probabilistic approach to compute a roadmap that

approximates these properties. The focus will be on designing a technique that

also satisfies the other objectives for a heuristic methodology, fast computation

48

and small memory requirements. In the next section, we will briefly outline two

related works [SLN00, NO04] on which we built upon.

4.2 Foundations

The Visibility-based Probabilistic Roadmap Method (Visib-PRM) has been pro-

posed as a general probabilistic approach for constructing a roadmap that aims

to cover the entire C-space with a small number of nodes [SLN00]. The roadmap

is constructed incrementally by randomly sampling C and attempting to connect

some pairs of collision-free samples with L. When collision free configurations

are found they are added to the roadmap: (i) if they cannot be connected to any

existing node in the roadmap (i.e., they are visibility guards) or (ii) if they can be

connected to at least two existing nodes that belong to two different connected

components (i.e., they connect existing guards).

The Visib-PRM algorithm has many important advantages. It has a termina-

tion condition that depends upon the volume of free space currently covered by

the roadmap. The algorithm is guaranteed to terminate for any parameter value

M . When it stops, a probabilistic estimation of the percentage of free space not

covered by the guards is 1
M

. This also means that path planning queries may

succeed to connect configurations to the roadmap with a probability of: 1 − 1
M

.

A second advantage is that although the resulting roadmap tends to cover well

C, it is also very small and its size remains intrinsic to the complexity of Cfree. It

is bounded by the maximal number of guards that cover the free space without

mutual visibility.

Nevertheless, the technique has been criticized that it underperforms experi-

mentally when compared against other probabilistic approaches for constructing

roadmaps, which do not necessarily focus on covering the entire C [GO02]. It can

be argued that the technique, in order to retain a small roadmap, unnecessar-

ily ignores many candidate nodes for which it has invested computation time to

check whether they are connected to existing nodes of R.

49

Algorithm 3 Visib-PRM(M)

V ← 0; E ← 0; initialize R(V,E)
ntry ← 0
while ntry < M do
{
(Configuration sampling)

Select a random free configuration q
V isib set← empty;

(Computing q’s visibility)

for all nodes g ∈ V do
if V isib set does not contain nodes from g’s connected component and
L(q, g) ∈ Cfree then

Add {g} to V isib set

(Node addition)

if V isib set is empty (q is a guard)

or V isib set has nodes from different components then
{

Add {q} to V

(Edge addition)

for all g ∈ V isib set do
Add (q, g) to E and merge connected components

}
else

ntry ← ntry + 1
}
Return R(V,E)

It must be noted that the Visib-PRM does not address the path deformation

property. It can be used, however, as the starting point to construct such a

roadmap, where additional nodes are added when it is detected that homotopy

classes of paths are not already represented by R [JSss]. Obviously, the overall

technique is computationally more expensive than the Visib-PRM algorithm since

it first requires a call to the algorithm.

There are alternative ways to enhance the path diversity of the roadmap,

which however relax the probabilistic guarantees that can be provided from path

50

deformation roadmaps. For example, the easiest way is to connect every con-

figuration to all of the configurations that it can be connected with. While this

method does enhance the path diversity of the roadmap, most connections are

redundant. In the context of the basic PRM algorithm it also increases the run-

ning time of the algorithm. A method, however, has been proposed that adds

connections between nodes that are considered useful according to the following

definition [NO04]:

Useful edge: Let q′ be a configuration that is a candidate for adding to R,

and q an existing node of R. The distance d(q′, q) is the C distance between q′

and q. The graph distance between q′ and q is G(q′, q) (the length of the shortest

path in R from q′ to q). If there is no path from q′ to q, then G(q′, q) =∞. The

edge (q′, q) is K-useful edge if:

K · d(q′, q) < G(q′, q) (4.1)

A small value of K adds more cycles (if K < 1, all edges are allowed), a large

value of K adds less edges (if K = ∞, no cycles are allowed and the graph is a

forest). The A∗ algorithm can be used to compute the graph distance G(q′, q). It

can also be shown that when using this technique to define which edges should

be connected, the path length found by the algorithm converges to K times the

optimal path length. In the next section, we will describe the technique which we

propose, which builds upon the existing Visib-PRM algorithm and the definition

of a useful edge and aims to provide considerable computational advantages.

4.3 Efficient Visibility Roadmap with Cycles (EVRC)

We propose an approach that attempts to provide a tradeoff between increasing

the size of the visibility roadmap and reducing the time it takes to construct it.

The algorithm attempts to directly include edges that enhance the path diver-

sity of the roadmap by using the useful edge criterion as the roadmap is being

51

constructed. Furthermore, it also aims to minimize wasting computations by ig-

noring configurations for which many collision checking calls have been made. We

will refer to this method as Efficient Visibility Roadmap with Cycles (EVRC). We

describe here the basic differences of the proposed approach from the Visib-PRM

algorithm and how the idea of useful cycles is incorporated in the overall tech-

nique.

Reduced Visibility Region: The original Visib-PRM allowed the visibility

of a node to extend to infinity. Thus, when a configuration q is considered for

addition, all local paths L(q, g) for all existing nodes g ∈ V are checked. Although

Visib-PRM retains a small set of nodes, this is still an expensive operation given

that the probability of a successful connection decreases as the distance between

two configurations increases. That is why we bound the visibility region of a

node by a distance threshold vismax. Only the local paths L(q, g) for which

d(q, g) < vismax and g ∈ V are checked when configuration q is considered for

addition.

The benefit of this change stems from the fact that for each candidate configu-

ration we are checking now only a small set of possible connections. For example,

in completely obstacle free two-dimensional spaces, the maximum number of pos-

sible connections is 6 and this number increases as the complexity of the C-space

increases. The disadvantage is that there is no straightforward way of computing

an optimum value for vismax. The lower the value of vismax, the smaller the

percentage of the existing nodes we will check for possible connections but the

denser the resulting roadmap. On the other hand, larger values for vismax result

in small size roadmaps. The computational advantages are typically maximized

somewhere in between and this value is a function of the complexity of the envi-

ronment.

Node addition criterion: The Visib-PRM allows the addition of a configuration

q as a node in the roadmap under two circumstances, if q is a guard or if q

52

connected two separate connected componets of the roadmap. In EVRC, we allow

the addition of the node in one additional case:

• If the configuration q can be connected to two nodes qi and qj from the

same component and:

K · [d(qi, q) + d(q, qj)] < G(qi, qj) (4.2)

This case is related to the useful edge criterion. The addition of q as a node

allows the creation of a useful cycle.

Edge addition criterion: Visib-PRM added one edge between the candidate

configuration q and each connected component that it could be connected with.

This ensures that the graph retains a forest structure. Instead, in EVRC, the

useful edge criterion is applied. All possible connections with nodes within the

threshold vismax are considered and an edge is added if it satisfies Eq. 4.1. In

this way, we do not aim to first construct a visibility roadmap that is a forest

and then enhance it with useful paths to represent all the homotopy classes. As

we build the roadmap we attempt to directly identify the useful cycles.

Configuration sampling: In EVRC, the sampling of the candidate node is not

completely random as in Visib-PRM. Instead, the configuration sampling proce-

dure is broken into two phases. During the first phase, the algorithm focuses on

producing guards and covering the space. Thus, the algorithm promotes the se-

lection of configurations that are beyond the distance threshold vismax from their

nearest neighbor in the roadmap. During the second phase, the algorithm reverts

to random C-sampling. Switching between the two phases depends on a stopping

criterion that is similar to the stopping criterion for the overall algorithm. If we

can no longer add guards after N attempts (N < M) we move from the first

phase to the second.

53

Minimize wasted computations: Finally, EVRC does not completely ignore

the nodes that are not added to the roadmap. In fact, it retains a secondary data

structure R′(V ′, E ′), where the nodes are all the configurations that failed the

addition test. The edges of R′ correspond to connections between nodes q′ in V ′

and nodes q ∈ V of the basic roadmap R. In this way, EVRC actually creates a

hierarchy, where the guard and bridge nodes in R(V,E) define a skeleton data

structure of the C-space and the rest of the configurations are stored in R′ are

linked to this skeleton.

One advantage of retainingR′ is that we can use these secondary nodes during

the query phase. We will explain more about this advantage in the next section.

Most importantly, however, we can also reconsider the nodes in R′ for addition

in the basic roadmap R even after they have failed the node addition criterion

the first time. Although these nodes where not deemed beneficial in the past,

through the addition of a new node they might become useful by allowing the

connection of two disconnected components.

Thus, when a new configuration q is added to the basic roadmap, we revisit

all the nodes q′ in R′ for which: d(q, q′) < vismax and check whether they satisfy

now one of the node addition criteria. Since the nodes are assumed to have lim-

ited visibility (vismax), the number of secondary nodes checked remains low. The

advantage of revisiting the secondary configurations over just considering new

randomly produced nodes is the fact that we have already computed the connec-

tion properties of these configurations with the existing nodes on the roadmap.

Before actually executing any collision checking for connecting q with q′, we first

check whether the addition of q′ would pass the node addition criterion assuming

that the edge (q, q′) is collision free. The number of local paths checked for col-

lision during this step is bounded by the number of secondary nodes within the

visibility limit from configuration q. As a heuristic we first check those node q′

with maximum distance from q (always bounded by vismax) for addition to the

roadmap.

54

Algorithm 4 EVRC(M, N, vismax)

V ← 0; E ← 0; initialize R(V,E)
V ′ ← 0; E ′ ← 0; initialize R′(V ′, E ′)
ntry ← 0; sample ntry ← 0
phase← GUARD PHASE;
while ntry < M do
{
(Configuration sampling)

q ← C-SAMPLING(R, phase, sample ntry)

V isib set← empty;

(Computing q’s visibility)

for all nodes g ∈ V so that d(q, g) < vismax do
if L(q, g) ∈ Cfree then

Add {g} to V isib set

(Node and edge addition in basic R)
NODE-ADDITION(q, V isib set,R,R′)

(Add to secondary structure R′)

if q not added in V then
{

Add {q} to V ′

for all g ∈ V isib set do
Add (q, g) to E ′

ntry ← ntry + 1
}
}
Return R(V,E), R′(V ′, E ′)

Overall algorithm: EVRC’s operation is described in Alg. 4. The algorithms first

initializes the basic and secondary graph data structures, sets the configuration

sampling phase to GUARD PHASE and the counters ntry = sample ntry = 0.

The first counter (ntry) expresses how many failed attempts have been made to

add a configuration in the roadmap. If the number of failed attempts passes the

parameter M , then the algorithm terminates. The second counter (sample ntry)

is used only in the GUARD PHASE of the C-SAMPLING procedure to measure

55

the failed attempts to produce a candidate guard node given only distance infor-

mation. If the value sample ntry exceeds the parameter N , then the sampling

function progresses into the second phase: RANDOM PHASE and produces ran-

dom nodes.

Algorithm 5 C-SAMPLING(R, phase, sample ntry, N)

if phase == GUARD PHASE then
{

q ← GUARD-SAMPLING(R, N, &found guard)

if found guard == true then
sample ntry = 0

else
sample ntry ← sample ntry + 1

if sample ntry >= N then
phase = RANDOM PHASE

}
if phase == RANDOM PHASE then

q ← sample Cfree

Return q

Algorithm 6 GUARD-SAMPLING(R, N, found guard)

found guard← false
ntry ← 0
while found guard == false and ntry < N do
{

q ← sample Cfree

g ← closest node in R to q
if d(q, g) < vismax then

ntry ← ntry + 1
else

found guard = true
}

With the production of a candidate configuration q by the C-SAMPLING pro-

cedure, the set V isib set is initialized to an empty set. All the nodes in the exist-

ing roadmap R that are within distance vismax from q, and which are connected

56

Algorithm 7 NODE-ADDITION(q, set,R,R′)

(Node addition criterion)

if set is empty (q is a guard)

or set has nodes from different components
or exist nodes in set so as to satisfy Eq. 4.2 then

Add {q} to V

if q is added in V then
{
(Edge addition)

for all g ∈ set do
if (q, g) is a useful edge according to Eq. 4.1 then

Add (q, g) to E

(Revisit secondary nodes)

for all g′ ∈ V ′ so that d(q, g′) < vismax do
if L(q, g′) ∈ Cfree then
{

Add (q, g′) to E ′

NODE-ADDITION(g, E′(g′),R,R′)

if g is added to V then
Remove g from V ′ and remove E ′(g) from E ′

}
}

with a collision free path are added to the set V isib set. Then the procedure

we NODE-ADDITION is called. This method first enforces the node addition

criterion. If configuration q is a guard or connects two separate connected com-

ponents or adds a useful cycle then it is added in R. After the addition of the

configuration as a node, we have to check which edges to be added. We use

the useful edge criterion to determine which edges between q and the nodes in

the V isibset to add. Since q has been added to the roadmap, we now move

on to check whether this addition triggers also the addition of a configuration

from the secondary data structure R′. For all the nodes q′ in R′ that are within

the threshold distance vismax and which are connected to q, we call recursively

the NODE-ADDITION function to check whether their addition enhances the

57

roadmap. This time NODE-ADDITION is called with the set E ′(q′) as the set of

candidate edges.

When the control returns to the top level EVRC method and in the case that

the configuration q was not deemed useful to be added in the basic roadmap R,

it is added in the secondary structure R′. Also for all the nodes in V isibset, we

add the edges that connect these nodes to q in the set E ′.

4.4 Fast Metrics using the EVRC Roadmaps

We have already outlined in section 4.1, how to compute a heuristic estimate

h(x′) for a state x′ given a roadmap. There is, however, an additional challenge

in actually applying the approach outlined in that section. Step (iii) specifies that

given configurations q′ and qgoal, the approach computes nodes q, qg ∈ V so that

L(q, q′) and L(qg, qgoal) ∈ Cfree. This step requires to execute additional collision

checking steps during the online computation of the metric function and after the

computation of the roadmap. This considerably increases the cost of computing

such a metric function and undermines the utility of the overall approach.

A simple alternative is to avoid executing any collision checking and return

the configurations q, qg ∈ V that are closer to the q′ and qgoal given a C-metric.

This obviously decreases the computational overhead of computing the estimate

h(x′) but it often results in grossly incorrect estimates. This problem is further

aggravated by the fact that the roadmap R(V,E) is a relatively sparse roadmap.

This is a point where the secondary roadmap R′(V ′, E ′) can prove useful.

It contains all those collision free configurations that where tested during the

roadmap construction but where not added to the roadmap and we know their

connectivity properties with the existing properties. So, we can also useR′(V ′, E ′)

when checking for the closest nodes to configurations q′ and qgoal. The combina-

tion of R′(V ′, E ′) and R′(V ′, E ′) correspond to a much more dense sampling of

the C-space.

Overall the technique for computing h(x′) given a roadmap computed by EVRC

58

is described in Alg. 8. Here we assume that we have already found node qg ∈ V

so that L(qg, qgoal) ∈ Cfree. Finding this roadmap node has to be executed only

once for all metric computations.

If the collision checking package is able to return distance information between

the moving body and the closest obstacle, then this information can be also part

of the heuristic cost by penalizing states that are closer to obstacles in a potential

function like manner.

Algorithm 8 ROADMAP-METRIC (x′,R,R′, qg)

q′ ← configuration of state x′

q ← argminq∈V orV ′(d(q, q′))
τ ← path in R and R′ that connects q and qg

Return h(x′) = d(q′, q) + d(τ)

Discussion

The important advantages of the roadmap-based heuristic over simpler dis-

tance metrics is that it considers both workspace obstacles and the complete

C-space representation of the moving systems. In this way the approach com-

putes paths that are truly collision-free in the C.

Its drawback is that it is more expensive to compute. In our experiments

we have seen improvements even if we use very simple heuristics that consider

workspace obstacles (i.e. a wavefront function on a grid for point approximations

of the true system). Moreover, on all of our experiments, the computation of the

roadmap, which occurs before the construction of T , is orders of magnitude faster

than the computation of T itself, since the kinematic reduction of a kinodynamic

problem is considerably less constrained.

Chapter 5

Safe Replanning for Systems with Drift

Realistic autonomous systems and agents have only partial information about

their environment. Partial observability requires interleaving sensing, planning

and execution, where a planner is called frequently and has finite time to replan

a trajectory [BV06, FKS06, BFK06]. Moreover, systems like vehicles exhibit kin-

odynamic constraints that restrict their motion, which must be accounted for at

the motion planning stage. In this chapter, a replanning framework is presented,

called Short-Term Safety Replanning (STSR), that respects such constraints and

generates safe paths under finite computation times. Safety means that the vehi-

cle does not collide with obstacles at least for applications with static obstacles

even when the system’s workspace model is being updated dynamically. This is

an important consideration when replanning for real vehicles as a collision-free

trajectory may bring the system close to an obstacle with high-velocity and no

maneuver to avoid collisions [FA04, FDF02].

For replanning applications, the computational performance of planning is

also of primary importance. A slow approach delays taking into account new

sensing information and the vehicle does not react on time to changes in the

workspace. One way to speed up performance in replanning is to reuse com-

putations between consecutive planning cycles. Nevertheless, a computational

concern, given the presence of dynamics, is the increased cost of collision check-

ing in order to provide the safety guarantees. STSR identifies the minimum set

of states that have to be checked for safety; reducing in this way the overhead of

providing safety guarantees. The proposed framework has also been integrated

with the IST algorithm from chapter 3.

This chapter finally describes the application of the planner to a task that

59

60

Figure 5.1 : Mapping an unknown space with an acceleration controlled car.

requires replanning: mapping of unknown environments. Initially the vehicle

knows only a small part of the space but it must eventually cover the entire

workspace. Fig. 5.1 shows an example from our simulations with a car-like robot

with bounded acceleration.

5.1 Replanning Formulation

We assume in this section, similar to chapter 3, a a moving system, such as

a non-holonomic vehicle, whose motion is governed by state update equation:

ẋ = f(x, u) and g(x, ẋ) ≤ 0, where x ∈ X is a state, u is a control and f, g are

smooth. The metric ρ(q1, q2) is defined in the state space X , where q1, q2 ∈ X .

The robot is in a workspace W , equipped with a sensor of limited range. The

robot uses its sensors to update a dynamic workspace representation s(W , t). A

state x ∈ Xfree is considered collision-free at time t if it places the robot chassis

in the known collision-free part of s(W , t).

Replanning is necessary for multiple tasks where the workspace changes dy-

namically. We focus on the case the system does not know anything about the

workspace and must cover it in order to build a map (workspace exploration).

A similar dynamic task not covered here due to space limitations is planning

61

Figure 5.2 : The closed loop architecture and modules on a single vehicle.

Figure 5.3 : The robot’s synchronization scheme.

among dynamic obstacles. The high-level approach for such replanning tasks is

to break them into a sequence of smaller planning problems. To achieve this, we

assume that the mapping and estimation unit, the planner, as well as the low

level motion controller are synchronized, as shown in Fig. 5.2 and 5.3. Then, for

the planning cycle (ti−1 : ti), the following steps are executed:

• A representation s(W , ti−1) built in the previous cycle.

• A goal region Xgoal ⊂ X is defined for the current cycle.

• A motion planner computes a plan.

• The plan will be executed during cycle (ti : ti+1).

The problem that must be solved then is the following:

Replanning under Kinodynamic Constraints:

Compute plan p(t) to execute during (ti : ti+1) that produces π(x, p(t)) which is:

(a) collision-free, (b) leads to Xgoal(ti−1), (c) minimizes the distance traveled by

the robot.

62

5.2 Inevitable Collision States

The fact that π(x, p(t)) is collision-free does not guarantee safety into the future,

since π(x, p(t)) may lead to an Inevitable Collision State (ICS) [FA04].

Definition: A state x′ is an ICS if there is no trajectory π(x′, p(∞)) which

is collision-free.

From the above definition it is obvious that it is computationally infeasible

to compute whether a state x′ is ICS or not, since:

• It requires checking all possible trajectories out of x′, which is an infinite

number for the problems we are considering

• It requires integrating the trajectories into infinity, which in most cases is

impossible

• In the case of dynamic scenes it is impossible to know the motions of moving

of moving obstacles, especially further into the future

In order to deal with the problem we are making the following concessions.

We are going to treat differently replanning tasks with static obstacles from the

problems that involve moving ones. The first category includes tasks such as:

(i) planning in a workspace with unexpected static obstacles and changes (i.e.,

doors being closed or open), (ii) workspace exploration and mapping, which is

the application that we focus on in this chapter and (iii) monitoring a static

scene for events that do not effect the safety of the autonomous observer. In

the second category problems include: (i) planning among moving obstacles, (ii)

pursuit-evasion and target tracking.

For problems with static obstacles, we do retain the definition of an ICS, as it

is given above. For problems with moving obstacles, the definition is altered so

that it is sufficient if trajectories out of state x′ to be collision free for a predefined

period τ : π(x′, p(τ)) is collision-free. For this predefined amount of time τ it is

necessary to make assumptions about the movement of moving obstacles. For

63

example, we can make worse case assumptions and consider all the space that

could be potentially occupied by a moving obstacle within the τ period as an

obstacle. Or we can use some sort of prediction in order to guess where the

obstacles will be located. Overall, however, we have to integrate paths only for a

finite predefined amount of time τ into the future but we cannot guarantee the

overall safety of the system. The safety in the case of moving obstacles depends:

(i) on the behavior of the moving obstacles (i.e., are they passive obstacles or

do they attempt to approach the moving system?), (ii) the relative velocities

and velocity bounds between the moving system and moving obstacles, (iii) the

effectiveness of the prediction module in correctly estimating the future motion

of dynamic obstacles and (iv) the effectiveness of the planning algorithm that

runs on the moving system in searching for a diverse set of paths out of state x′.

Still, in the case of static obstacles we have to deal with the issues of infinite

trajectory integration and infinite number of trajectories. It is much faster, how-

ever, to check whether state x′ belongs to a superset of the ICS set by taking a

conservative approach. The conservative approach requires using only a small set

of “contingency” plans Γ(x′) and define a state x′ to be unsafe iff:

For a predefined set of plans Γ(x′):

∄ plan γ ∈ Γ(x′) s.t.: π(x′, γ(∞)) is collision free. (5.1)

As the above notation shows, the set of contingency plans depends on the state

x′.

To address the complication of infinite trajectory integration, we can take

advantage of the properties of a large subcategory of systems with drift, systems

that exhibit “diminishing drift”. This type of moving systems have the capability

to apply controls that “diminish” their drift, that bring their acceleration and

velocity parameters to zero. For example, real automobiles and vehicles, as most

real practical systems, belong in this category because it is possible to break until

the system comes to a complete stop. When a system comes to a complete stop

in an environment with static obstacles there is no reason to further integrate the

64

path into the future, because there is nothing that can possibly effect the safety

of the system. Instead we have to integrate the path only up to the point that the

velocity of the system becomes zero. This means that in the case of systems with

“diminishing drift”, such as automobiles, the set Γ(x′) of “contingency plans”

can correspond to breaking maneuvers that bring the system to a complete stop.

The time it takes to execute the contingency plan is unrelated to the duration of

the planning cycle, instead it depends on the state x′.

For systems with non-diminishing drift, such as airplanes that have to remain

on the air, we have to resort to a different set of contingency plans. In this case,

we can apply controls that will force the system to visit the same part of the space

again and again. For example, a maneuver that makes the system to repeat the

same circular motion is also sufficient to address the problem of infinite trajectory

integration. Once the system executes the circle safely in a static environment

then it can execute the same maneuver safely into infinity. We refer to such

maneuvers as “looping maneuvers”. Actually, a breaking maneuver that brings a

system to a complete stop can be seen as the trivial case of a looping maneuver,

where the loop corresponds to a single state.

Regardless of whether we are applying state revisiting maneuvers or breaking

maneuvers, however, we have at this point a way of inferring the safety of a state.

We depend on an oracle that uses a set of predefined maneuvers to find whether

the system can be safely brought to a safe state or a safe sequence of states. The

oracle makes heavy use of collision checking. This means that it can be orders of

magnitude more expensive to check whether a state is safe compared to checking

whether it is collision-free or not. Thus, it is very important in a replanning

framework to minimize the number of states that have to be checked for safety

in order to guarantee the safety of the system. This is the objective of the STSR

framework that we describe in the next section.

65

5.3 Short-Term Safety Replanning

In order to guarantee overall safety for a system it is necessary to guarantee

that the replanning approach is able to find a collision-free trajectory on every

replanning cycle. Given the discussion on ICS, this implies that the replanning

approach must provide the following invariant:

Invariant: For each replanning cycle (ti : ti+1) the system selects a plan

p(ti : ti+1) which when executed at state x(ti):

a. The resulting trajectory π(x(ti), p(ti : ti+1)) is collision-free.

c. It leads to state xπ(ti+1) that is safe according to Eq. 5.1.

Our objective is now to design a technique that takes advantage of the effi-

ciency of sampling-based kinodynamic planners, such as ICS, in the context of

replanning and provide the above safety invariant. The problem is that the plan-

ner might fail to compute a safe trajectory given the time limitations imposed.

Consequently, we are interested in building a tree T during each cycle and some-

how always finding a trajectory that leads to a safe state, either by extracting

it from T or through another way. We can achieve this objective through the

following strategy:

1. Use a sampling-based kinodynamic tree T to compute candidate trajecto-

ries

2. Check which trajectories are safe on T

3. Out of the safe trajectories select one that best promotes the execution of

the task

4. If there is no safe trajectory found by T use the contingency plan γ ∈

Γ(x(ti)) that was used to prove that state x(ti)) was safe during the previous

cycle

66

The last step in the above strategy provides safety in a recursive manner. Note

that the above strategy does not specify how trajectories along T are checked

for safety. This can considerably influence the computational cost of providing

safety. Note, however, the following property of safe states:

Property: All the states along a trajectory leading to a safe state are also

safe.

We can take advantage of the above property in order to check only a subset

of states along the tree for safety. One idea is that it is sufficient to check the leaf

and branch nodes of a tree. Fraichard et al. [PF05] and Frazolli et al. [FDF02]

used this idea to reduce the overhead of safety checking.

Nevertheless, we can do better than that. The Short-Term Safety Replanning

framework that we propose in this work has the following objectives:

• To check states that effect the safety of the system only during the next

cycle (ti : ti+1).

• Not to explore parts of the space into the future (past time ti+1)) that do

not extend from safe trajectories during the next planning cycle (ti : ti+1).

The framework takes advantage of the fact that it is possible to know or

control the duration of the next planning cycle (ti : ti+1). This fact together with

the property above means that in order for the trajectory followed during the

next cycle: π(x(ti), p(ti : ti+1)) to be safe, it is suffiecient to check only one state:

xπ(ti+1, the state at the end of the planning cycle.

Theorem: Assume a non-holonomic system with drift executing a replanning

task in a static environment. The duration of the next planning cycle is T (from

time ti to time ti+1. In order to guarantee safety it is sufficient to produce

trajectories that are safe only for duration T , given contingency plans that are

breaking or looping maneuvers.

Proof Sketch: Assume the vehicle is safe at state x(ti) at time ti. This means

that there is a breaking or looping maneuver γ ∈ Γ(x(ti)) so that π(x(ti), γ(∞) is

67

safe. The question is whether reaching an ICS can be avoided while replanning.

There are two cases: (a) The planner will either succeed in producing a new safe

plan for duration T and at time ti+1 the robot will end up in a situation when

the state x(ti+1) is safe. (b) The planner fails to compute a plan for the next

period. However, we can execute the safe plan γ ∈ Γ(x(ti)) for at least the next

cycle of duration T (actually for infinite time, but we need only this part of the

plan). The resulting state xγ(ti+1). So, in every case there is a safe plan. �

Consequently, the strategy specifies that a planner should check for safety

only those states that occur at time ti+1. If a trajectory πr(xr, pi(t)) that is being

propagated in a single step of a sampling-based kinodynamic planner intersects

time ti+1, then state xπr(ti+1) is checked for safety. If xπr(ti+1) is safe according

to the safety oracle (using the breaking or looping maneuvers), then the corre-

sponding edge is added to the tree. Otherwise, the trajectory is not propagated

further than the state xπr(ti+1), so that all the trajectories stored in T are safe at

least for time T . Moreover, the state xπr(ti+1) is never considered as a candidate

state for selection to propagate new trajectories into the future.

We can summarize the STSR framework with the following algorithmic descrip-

tion. This description builds upon the abstract framework for sampling-based

kinodynamic planners. In this presentation of STSR, we assumed that the dura-

tion of the planning cycle is provided as input to the algorithm and it remains

the same between different planning cycles. Thus the time that is available to

STSR to plan for is the same as the duration of the cycle that is planning for. The

algorithm also receives as an input the maximum duration for which we prop-

agate a trajectory dtmax and the minimum propagation step dtstep. We assume

that the duration of a planning cycle T = ti+1 − ti) is a multiple of dtstep

5.4 Integration with IST

Given the overall STSR framework for replanning, it is now possible to utilize

the IST planner for tasks that require recomputing trajectories on the fly. There

68

Algorithm 9 SHORT-TERM SAFETY(T (= ti+1 − ti), dtmax, dtstep)

Timer ← 0
Set the root of T to the initial state x0(ti)

while Timer < T do
{

Select a reachable state xr(t) ∈ T
Select a valid control uv for the state xr(t)

dt = dtstep
keep propagating = true
while keep propagating == true do
{

if dt < dtmax and πr(xr, (uv, dt)) is feasible then
if t + dt == ti+1 and xπr(ti+1) is not safe then

keep propagating = false
else

keep propagating = false
dt = dt + dtstep
}

if πr(xr, (uv, dt)) does not intersect time ti+1 or
state xπr(ti+1) is safe then

Add all the states along πr(xr, (uv, dt)) in T
else

Add all but the last state along πr(xr, (uv, dt)) in T

Update Timer with time passed since calling the function
}

are three important points relating to the use of a planning algorithm within a

replanning framework: (i) what is the planning horizon of the planner, (ii) is

any computation from previous planning steps reused in consecutive cycles and

(ii) what is the effect of an informed algorithm and of a heuristic (as IST is) in

replanning.

Planning Horizon

Each time we are calling the planner, we are actually interested in a trajectory

69

of duration only equal to the next planning cycle, e.g., (ti : ti+1). The question

that arises is what planning horizon should the planner employ. For example,

it would be sufficient if ISTwas searching only for safe trajectories of duration

(ti : ti+1). In our integration of IST with STSR, however, we have allowed for an

unbounded planning horizon. The planner keeps searching for trajectories into

the future that will not be needed during the next planning step. This approach

is selected for the following two reasons:

(i) The decision that is actually being made in each replanning cycle is the

following: which state is the system going to be in at the end of the next

planning cycle. Due to STSR, all of the candidates states are safe, so there

is no concern about safety. By allowing to expand trajectories past these

states, it is possible to make a more informed decision about the utility of

those states in terms of how they assist in solving the task. For example,

if the IST algorithm is able to find a trajectory that leads to the goal, then

the decision is trivial. If we do not allow the planner to look into the future

we cannot have this information.

(ii) Although the resulting future trajectories stored on the tree T are not

immediately necessary, they can be potentially used later.

The second point raises the issue of how we can reuse computations from

previous planning cycles through an operation we refer to as tree retainment.

Tree Retainment

Since we have a a longer planning horizon than planning cycle, a large part of

the tree constructed during the previous step may still be valid in the beginning

of the planning procedure and it can be used to accelerate the search for a new

path given new sensor data (as in the Dynamic RRT approach [FKS06]).

Note, however, that kinodynamic constraints add an additional limitation,

since it is not possible to go backwards along the tree. Only the sub-tree of

70

the initial robot state xi+1 for the new planning cycle is valid for planning and

everything above it is unreachable and must be discarded. Trimming other parts

of the tree that are invalid due to unexpected collisions can similarly be executed.

Moreover, if a path to the desired target exists in the remaining tree, every path

that does not lead to the target can also be pruned. In this way, when a path

has been found, the technique focuses on obtaining plans of increasing quality.

Another issue with tree retainment, however, has to do with safety. Because

we are following the STSR framework, the retained part of the tree has not actually

been checked for safety. Consequently, when we extract the part of the previous

tree that can be used as a starting point for the new search we have to make

some additional calls to the safety checking oracle. We will have to check all

those states along retained trajectories that occur at the end of the next cycle,

as we do for newly constructed trajectories.

This implies that there is a trade-off between the computational benefits that

we receive from STSR and the procedure of tree retainment. STSR reduces the

number of states that we have to check for safety when we are producing new

trajectories along the tree data structure T but requires that we have to make

additional safety checks when we retain part of the previous tree. If we were

following the approaches of Fraichard et al. [PF05] and Frazolli et al. [FDF02]

there would be no need for additional safety checking during tree retainment.

However, overall, STSR is able to reduce the number of states that are checked

for safety. This is due to the fact, then when we retain T , a big part of the data

structure is actually pruned, because it corresponds to unreachable states. In

STSR these parts of the tree are never checked for safety.

Resetting Mechanisms of IST

We need to specify certain details about the mechanics of the IST algorithm

in the context of replanning. For example, each time that the algorithm is being

reset what happens with all the data structures and algorithmic tools that are

being employed: the adaptive subdivision and the edge penalization scheme.

71

In our integration of IST with STSRwe have selected to drop the previous sub-

division data structure and create a new one from scratch its time the algorithm

is being reset. We also set the edge penalties of edges that are children of the

root state to 1, and we linearly increase the penalties for children edges. Since

we are using a greedy algorithm that tends to promote the selection of edges

further away from the root, this resetting procedure balances the bias and gives

an opportunity to edges closer to goal to be selected as well.

Using an Informed Approach

The final point has to do with the effects of using an informed algorithm

as the planning module within a replanning framework. The advantage arises

when the algorithm has not managed during the previous planning cycle to find

a trajectory that reaches the goal but has only returned a partial solution, which

is the most often case. An uninformed planner would continue searching towards

all possible direction given the retained tree T . An informed planner, however,

will promote the quick expansion of T from the point that is closer to the goal

according to the heuristic, even more than in single shot planning. This is a result

of the reset and pruning operation that take place in replanning. By cutting a big

part of the tree and committing to the previously selected trajectory, the planner

becomes even greedier. In environments where the heuristic correctly biases the

expansion of the tree, this gives additional computational advantages to informed

planners.

Moreover, this results in finding quicker trajectories that do reach the goal.

Then these trajectories are the only part of the tree that is being retained and the

planner can spend more time in smoothing the resulting trajectory than actually

attempting to find one. In this way, the informed approach is also able to improve

path quality.

72

Figure 5.4 : Tree expansion during a single planning cycle that managed to reach
the goal. The planner is similar to ISTbut it is biased by a discrete wavefront
function that is shown in the background. The light colored triangles correspond
to vehicle configurations along the tree data structure. The darker trajectory is
the selected path.

5.5 Application to Workspace Exploration

This section describes how the integration of STSR with IST can be applied to solve

an interesting replanning task, that of safely mapping an unknown workspace

with a system that has significant drift.

Workspace representation and collisions

An important difference between single shot planning and replanning is that

in the second we do not have a static, perfect model of the world available, instead

we depend upon sensor data and maps of the environment. Most often, maps

come in the form of an occupancy grid. In our implementation, we employed an

occupancy grid that has 3 values: explored free space, obstacle and unexplored

space. Given a state, the robot is positioned on the map and if the chassis in-

tersects an obstacle or an unexplored space cell, it is considered to be collision.

Figure 5.1 shows an example of mapping in a two-dimensional simulator for a

car-like vehicle.

Selection of target F for the planner

In the case of workspace exploration, the goal region XG does not remain

73

the same throughout the execution of the task, because the map of the environ-

ment changes. We follow a frontier-based approach to select a goal region for

the motion planner at each cycle. A frontier is the boundary between the free

explored space and the unexplored one. Neighboring frontier cells are grouped

by applying a flooding operation on the grid and the search is biased towards

a particular frontier during each planning period. There are many alternative

heuristic approaches for selecting target frontiers [BMSS05]. In our implemen-

tation, we select frontiers that are: (a) close to the initial robot state given the

C distance metric and (b) small in size, to avoid returning to small unexplored

regions after covering large distances. Figure 5.4 shows the A* distance on the

grid map from a frontier and a tree expanded towards the frontier.

Trajectory Selection

After we have constructed tree with IST, then we must select which trajectory

to follow. The objective in trajectory selection is to maximize visibility of the

unexplored space and minimize the length of the trajectory. Candidate trajecto-

ries are all those that initiate from the root to a node of the constructed tree. A

weight w(π) for every candidate trajectory π is defined as:

w(tr(π) = e−(d(π)+λ·cost(π)) (5.2)

where d(tr) describes how close the trajectory is to the selected frontier and

cost(tr) expresses the trajectory length. Parameter λ expresses the importance

of the path length over the distance to the frontier. There are two different ways

to compute the distance parameter d(tr) depending on whether the algorithm has

managed to produce states that can sense the frontier or not. In the first case,

for a trajectory π and a point f along the goal frontier we define the distance as:

d(π, f) =







d(x, c) if ∃ x ∈ π s.t. f is visible from x

dmax otherwise

74

where dmax is the sensing radius of the robot. Then d(tr) =
∑

∀f d(π, f). In this

way, trajectories that see many points along the frontier and which are closer to

them have a smaller distance parameter. If there is no state along the tree able to

sense the frontier, we define d(π) as the minimum distance between the end state

of the trajectory and a frontier cell according to a C metric. Both l(π) and d(π)

can be computed recursively during the tree construction. The safe trajectory

of maximum weight that has duration at least T is finally returned. If no such

trajectory exists, a collision-free contingency plan is guaranteed to exist by this

chapter’s theorem.

Discussion

The chpater proposes an efficient framework for replanning under kinody-

namic constraints. It builds upon previous work that identifies the issues of ICS

but achieves to minimize the computational cost of providing safety guarantees.

In particular the characteristics of the approach are the following:

(a) STSRfollow an incremental approach similar to methods that repair RRTs

[BV06, FKS06], reuses computations from previous planning cycles but

deals explicitly with kinodynamic constraints and safety issues.

(b) The planner uses the ICS formalization [FA04] and provides safety guaran-

tees similar to τ -safety [FDF02]. It reduces, however, the cost of achieving

safety by controlling the duration of the planning cycle and employing the

short-term safety principle. This principle results in a reduced number of

states that must be checked for safety, leading to considerable speedups.

(c) The STSR framework is compatible with the ISTalgorithm and takes advan-

tage of its informed nature for replanning.

(d) It has been tested on an application involving the mapping of unknown

workspaces with a car-like vehicle that has significant drift. The experi-

mental results are available in Chapter 7.

Chapter 6

Distributed Safe Replanning

The progress in wireless networking allows to consider groups of vehicles that

operate in the same environment and use communication to coordinate their

motion. Moreover, it gives rise to the idea of networks of vehicles that jointly

solve a task while retaining connectivity. Using such teams of multiple, coordi-

nating vehicles offers redundancy and robustness in the execution of many tasks

(e.g. space exploration, autonomous demining). Nevertheless, the control of such

systems involves multiple research challenges.

This chapter focuses on motion coordination challenges. Given procedures

for updating a vehicle’s map, state and goal, the objective is to design feasible,

collision-free trajectories for multiple vehicles operating in the same, partially-

known environment (see Fig. 6.1). In particular, we deal with the safety concerns

that arise due to the kinodynamic motion constraints (e.g., bounded velocity

and acceleration, smooth steering) that real vehicles exhibit. We study at a

theoretical level how inter-vehicle communication [YLVZ04, Hom] can be utilized

in this context to achieve safe motion coordination.

We are interested in a solution with the following characteristics:

(i) A general and abstract algorithm that is not limited to specific system

dynamics or to specific types of workspaces and obstacles.

(ii) A scalable, distributed solution that respects the physical limitations in

sensing and communication and avoids centralized computation.

(iii) A real-time algorithm, since vehicles do not typically have global knowledge

of their workspace. This means that sensing, planning and execution are

75

76

Figure 6.1 : Vehicles form a communication network while they move. On the left,
there is one connected component while on the right vehicles have moved and mul-
tiple components have been created. Planning for such dynamic networks with
centralized approaches has been studied for first-order systems [CRL03, CBR02].
This thesis extends these ideas by considering second order dynamics (we guar-
antee avoidance of Inevitable Collision States) and describing a decentralized
solution using only local information.

interleaved and there is limited amount of time to compute a partial plan

towards the goal.

(iv) A safe solution for systems with second-order constraints. The algorithm

must provide guarantees for collision-avoidance and the retainment of a

communication network if desired by the team.

The first point implies that the sampling-based kinodynamic framework is

appropriate for designing such a distributed coordination technique. The last two

points suggests that we can also make use of the work in the previous chapter that

showed how to achieve safe replanning for systems with second-order constraints,

such as systems with significant drift. In some sense, this chapter will extend the

STSR framework into the case of multiple coordinating agents.

The proposed method in this chapter first identifies the information that must

be exchanged between the vehicles so as to plan safe trajectories. These informa-

tion requirements dictate our approach. Each vehicle uses an IST-like approach

to generate feasible trajectories that allow the existence of safe alternatives to

other vehicles. For coordinating the selection of compatible trajectories between

77

vehicles, we initially present a priority-based scheme. This allows us to provide a

proof that the vehicles always has safe trajectories to follow. The priority scheme

is then replaced by an asynchronous, message-passing protocol [KV06, PK04],

which still guarantees safety. Among the safe solutions and given the available

time, the asynchronous protocol optimizes a joint payoff function.

The proposed method has been implemented on a multi-processor simulator.

Each processor models a vehicle and communicates asynchronously with other

processors. The experimental results confirm the theoretical guarantees of colli-

sion avoidance and network retainment for second-order vehicles jointly explor-

ing an unknown workspace. They are presented in the following chapter.. The

distributed protocol has computational and scaling advantages when compared

against the prioritized scheme [BTK07a, BTK07b].

6.1 Problem Definition

Consider multiple vehicles V = {V1, . . . , Vv} operating in a world with obstacles.

Each vehicle is able to sense a local region around it and can communicate with

other vehicles within a limited range. Each vehicle Vi is a dynamic system whose

motion is governed by differential equations of the form presented in Eq. 3.1 in

Chapter 3. The exact dynamics of the systems we experimented with can be

found in Chapter 7.

Given the communication limitations and states {x1(t), . . . , xv(t)}, the vehi-

cles form dynamic communication links represented by a graph G(t) = {V (t), E(t)},

where eij ∈ E(t) as long as Vi, Vj are within range. The neighbors of Vi in the

graph G(t) are denoted as Ni(t). Vehicle Vi can only communicate with vehicles

in the set Ni(t).

The vehicles execute tasks which require motion. While moving, the vehicles

must avoid collisions both with obstacles and with other vehicles. The vehicles

must update their world model and state estimate given new sensory information.

In parallel, they must compute in real-time trajectories towards their goals. To

78

achieve this objective, a vehicle’s function is broken down into a sequence of

consecutive operational cycles, as in Section 5.1.

Here we focus on how to utilize communication so as to provide safety guar-

antees when multiple vehicles operate in close proximity. Each vehicle can only

communicate with neighboring vehicles given the communication constraints and

exchange information. We will specify what kind of information has to be ex-

changed to guarantee collision avoidance. The following assumptions are being

made:

• Communication is reliable, offers sufficient bandwidth and is not affected

by line of sight constraints. The vehicles synchronize their operation.

• As in previous chapters, we do not deal with issues related to uncertainty.

We assume that motion commands selected and communicated by a vehicle

are executed fairly accurately and there are no sensing errors.

We will have to provide additional notation on top of the definitions of a plan

and a trajectory from Section 3.1. When a vehicle executes a plan p(dt) from

state x(t) and consecutively executes plan p′(dt′), then the resulting trajectory

concatenation will be denoted as:

π′(π(x(t), p(dt)), p′(dt′)). (6.1)

If two vehicles Vi, Vj at time t are not in collision with each other or with

obstacles, then their corresponding states xi(t), xj(t) are compatible states:

xi(t) ≍ xj(t).

Two trajectories πi(xi(ti), pi(dti)) and πj(xj(tj), pj(dtj)) are compatible tra-

jectories (πi ≍ πj) if the two trajectories do not cause collisions with workspace

obstacles and:

∀ t′ ∈ [max{ti, tj} : min{ti + dti, tj + dtj}] :

xπi(t′) ≍ xπj(t′).

79

Compatible trajectories between vehicles may still lead to an ICS from which a

collision cannot be avoided in the future due to second-order constraints [FA04].

The definition of ICS in this multi-agent setup has to be extended. A state

xi(t) is an Multi-agent Inevitable Collision State (MICS) given the states

{x1(t), . . . , xv(t)} if ∀ πi(xi(t), pi(∞)):

∃ (dt ∧ j 6= i) so that ∀ πj(xj(t), pj(∞))

states xπi(dt) and xπj(dt) are not compatible.

Safe Motion Coordination:

Given the map of the world and a state estimate xi(t + dt), the motion planning

module of each vehicle Vi must compute before time (t + dt) a plan pi(dt′) so that

given the trajectories of all other vehicles πj(xj(t + dt), pj(dt′)) (∀j 6= i):

• πi(xi(t + dt), pi(dt′)) ≍ πj(xj(t + dt), pj(dt′))

• State xπi

i (dt′) is not MICS.

A secondary objective for the planner is to refine the quality of the selected

trajectory given a measure of path quality and a goal X i
G(t).

6.2 Multi-Agent ICS Avoidance

The proposed approach has two characteristics. Motion coordination is achieved

in a decoupled manner. This feature distinguishes our approach when compared

against related work on planning for communicating vehicles [CRL03], where

the vehicles forming a temporary dynamic network solve a centralized problem.

Moreover, the motion planning and coordination operation of each vehicle are

split into two separate steps as shown in Fig. 6.2:

1. Generate Candidate Plans: During the first step, the algorithm searches

the state space of each vehicle Vi so as to generate a set of candidate plans

Pi by employing a single-vehicle planner.

80

Figure 6.2 : The operation that a single vehicle executes in two consecutive
planning cycles.

2. Select Compatible Plans: During the second step, neighboring vehicles

communicate by exchanging sets Pi and evaluating their performance in

terms of collision avoidance and task execution.

For the plan generation step, sampling-based, kinodynamic planners, such as

IST, are particularly appropriate to search the state space and produce multi-

ple candidate valid plans Pi that are at least collision-free with the workspace

obstacles. By employing a technique such as STSR, it is also possible to use

them to execute a replanning operation and avoid ICSwith static obstacles in the

environment.

Two plans of different vehicles are acceptable solutions if the corresponding

trajectories are compatible and they must be selected appropriately through co-

ordination in the second step. The current and the following section will describe

how such coordination can be achieved by employing a priority-based scheme

and how safety can be guaranteed assuming the preassigned priorities and no

communication limitations. These assumptions will be later waived. In partic-

ular, in Section ??, the exchanged plans Pi are viewed as actions in a discrete

action space. Then the problem of distributedly selecting compatible trajectories

is reduced to a distributed constraint optimization problem, for which message-

passing algorithms without priorities exist [KV06, PK04].

For the remaining of this section we will assume vehicles that have unlimited

communication range and preassigned priorities.

81

We will start from a simple extension of the single-system short-term safe

replanning framework to a coordinated approach. As Fig. 6.1 shows, communi-

cation links between vehicles define a graph, where the vehicles are nodes and

two vehicles share an edge if the two vehicles can exchange messages. In the case

of unlimited communication range this graph is complete. Suppose every vehicle

has a unique global priority. We define the set Nh to represent the neighbors

of vehicle V on the communication graph with higher priorities than V and the

set N l to be the set with lower priorities. Then the simple prioritized scheme

executed on each vehicle V during a single planning cycle (tn : tn+1) employs the

following steps:

1. Compute a set of candidate plans P of duration (tn : tn+1) with a single-

vehicle planner.

2. Receive the selected plans Ph from neighbors in Nh.

3. Select plan p(tn : tn+1) ∈ P that does not collide with plans in Ph and best

serves the goal of vehicle V .

4. Transmit the plan p to all neighbors N l.

The simple extension, however, fails to produce safe trajectories for multiple

reasons:

• If a cycle is completed before all higher priority plans are received, no plan

p can be safely selected.

• Even if p ∈ P and Ph are available on time, it may happen that no plan p

is collision-free with all plans in Ph due to the decentralized nature of the

approach.

• Suppose p is collision-free with set Ph. It may still lead to MICS given Ph

due to the dynamics.

82

The definition of a safe state from Eq. 5.1 is inadequate in the multi-vehicle

case, where the safety of a vehicle’s state depends on the states and the choices

of the other vehicles. We extend the definition of safety as follows:

Safe State - Multi-vehicle case: Consider vehicles V1, . . . , Vv that have

states x1(t), . . . , xv(t) and all vehicles Vj, j 6= i execute plans pj(dt). Then state

xi(t) is safe iff ∃ γi(∞) so that:

πi(xi(t), γi(∞)) is collision free ∧ ∀ j 6= i :

πi(xi(t), γi(∞)) ≍ π′
j(πj(xj(t), pj(dt)), γj(∞)) (6.2)

Note that the trajectory πi(xi(t), γi(∞)) must be compatible with the concatena-

tion of other vehicles’ plans and contingencies. Given this new definition of a safe

state, we set an objective for the coordination algorithm we described earlier. It

must satisfy the following.

Invariant: For each replanning cycle (tn : tn+1) every vehicle Vi selects a plan

pi(tn : tn+1) which when executed at state xi(tn):

a. The resulting trajectory πi(xi(tn), pi(tn : tn+1)) is collision-free.

b. During the current cycle (tn : tn+1), it is compatible with all other vehicles,

∀j 6= i :

πi(xi(tn), pi(tn : tn+1)) ≍ πj(xj(tn), pj(tn : tn+1)).

c. It leads to state xπi(tn+1) that is safe according to Eq. 6.2 for every choice

of plans pj(tn+1 : tn+2) that the other vehicles may make during the next

planning cycle.

If the Invariant holds then the algorithm will produce safe trajectories. Points

a. and b. imply that there is no collision during the current cycle (tn : tn+1),

either with static geometry or between vehicles. Point c. implies that all vehicles

at the next cycle (tn+1 : tn+2) have contingency plans which can be followed

regardless of the other vehicles’ choices. Consequently, the prioritized algorithm

83

in the beginning of this section can be altered so that step 3 is:

3) Select plan p(tn : tn+1) ∈ P that satisfies the Invariant given the set P h. If

no such plan exists or time is running out, execute contingency γ(tn : tn+1),

which is precomputed from the previous planning cycle and collision-free

due to the Invariant.

Consequently, now we need to answer the question of: how to produce and

select plans p(tn : tn+1) that satisfy the Invariant. We will show that any selected

plan at step 3 of the algorithm must satisfy:

Requirement 1: As in the single-vehicle case, the concatenation of plan pi(dt)

with a contingency plan γi(∞) must be collision-free:

π′(π(x(tn), p(tn : tn+1)), γ(∞)) is collision-free. (6.3)

Requirement 2: The concatenation of plan pi(dt) with a contingency plan

γi(∞) must be compatible with the contingency plans γj(∞) of other vehicles:

∀j 6= i : π′
i(πi(xi(tn), pi(dt)), γi(∞))

≍ πj(xj(tn), γj(∞)) (6.4)

Requirement 3: The concatenation of plan pi(dt) with a contingency plan γi(∞)

must be compatible with the concatenations of plans pj(dt) of other vehicles with

their contingency plans γj(∞):

∀j 6= i : π′
i(πi(xi(tn), pi(dt)), γi(∞))

≍ π′
j(πj(xj(tn), pj(dt)), γj(∞)) (6.5)

Theorem: Assume the Invariant is satisfied during planning cycle (tn−1 : tn)

for all vehicles. Then if each vehicle Vi selects a plan pi(tn : tn+1) that satisfies

84

Eq. 6.3, 6.4 and 6.5 or selects an available contingency plan, then the Invariant

will also hold during the next planning cycle (tn : tn+1).

Proof: We will have to show that the three points of the Invariant are satisfied

during the next planning cycle (tn : tn+1). There are two cases. Either the

algorithm manages to produce and select a plan pi(tn : tn+1) that satisfies Eq.

6.3, 6.4 and 6.5 or selects a contingency plan. We will treat these two cases

separately:

1) Assume such plan pi(tn : tn+1) has been found. Because the plan satisfies Eq.

6.3 and Eq. 6.5, points a. and b. of the Invariant are satisfied, respectively.

Point c. is more complicated. The state x(tn+1) that the vehicle will reach after

executing pi(tn : tn+1) must have the property that it is safe according to Eq.

6.2. The application of the contingency plan γi at state x(tn+1) will result in a

collision-free path according to Eq. 6.3, so one of the two specifications of Eq.

6.2 is satisfied. State x(tn+1) has to be safe, however, for any choice of plans

pj(tn+1 : tn+2) that the other vehicles will make during the next planning cycle.

There are again two possible cases for the nature of plans another vehicle Vj can

follow during cycle (tn+1 : tn+2):

a. Assume vehicle Vj computes a plan pj(tn+1 : tn+2) that satisfies the require-

ments. Then due to Eq. 6.4, this plan is compatible with the contingency

of Vi during that cycle:

πi(x
πi(tn+1), γi(∞)) ≍

π′
j(πj(x

πj(tn+1), pj(tn+1 : tn+2)), γj(∞))

b. Assume vehicle Vj resorts to a contingency during cycle (tn+1 : tn+2). Due

to Eq. 6.5, however, the contingency of Vj is by construction compatible

with the contingency of Vi:

πi(x
πi(tn+1), γi(∞)) ≍ πj(x

πj(tn+1), γj(∞))

85

Figure 6.3 : (a) The lower plan for V2 is not safe since the contingency attached
to it collides with the contingency extending from the plan of V3. The top plan
of V2 is safe. (b) The planner of V2 will not produce the lower trajectory because
it collides with the current contingency of V1. The top plan is again safe.

In any case, Eq. 6.2 is satisfied for state xπi(tn+1), which means that the third

point of the Invariant is also satisfied for the next planning cycle.

2) Assume that vehicle Vi has to resort to a contingency. The inductive hypothesis

is that the Invariant holds during the current cycle, so the state x(tn) is safe

according to Eq. 6.2 for every choice of plans of other vehicles. From Eq. 6.2

the points a. and b. of the Invariant trivially hold for the trajectory that follows

the contingency plan. In order to show that the state x(tn+1) reached after the

application of the contingency plan γi(tn : tn+1) is safe according to Eq. 6.2 we

can follow exactly the same reasoning as above. From Eq. 6.3 the trajectory

πi(x(tn+1), γi(∞)) will be collision-free and will also be compatible given any

choice the other vehicles will make due to Eq. 6.4 and 6.5. �

6.3 Simple Prioritized Protocol

We describe here how we can algorithmically satisfy the specified requirements

within a prioritized scheme. Fig. 6.3 provides an illustration of how a vehicle

(V2) uses information from its neighbors (V1, V3) to respect Req. 2 and 3.

To satisfy the second requirement, each vehicle Vi must be aware of the con-

tingency plans of other vehicles Vj at state x(tn) during planning cycle (tn−1 : tn).

These contingency plans have already been computed by each Vj during the pre-

vious step. This information can be communicated at the beginning of each cycle.

86

Algorithm 10 PRIORITY-BASED MOTION COORDINATION for Vi

Identify set of neighbors N = Nh ∪N l

(Exchange contingencies)

for all j ∈ N do
{

Send contingency γi(∞) to Vj

Receive contingency γj(∞) from Vj

}

(Planning: satisfies requirements 1,2)

HN ← Nh (high priority neighbor set)
Select PlanningBudget according to priority
Tree ← Retain valid subset of Tree from previous cycle
while (time < PlanningBudget) ∧HN 6= ∅ do

MAIN PLANNING LOOP PRIORITY BASED()

(Path Selection: satisfies req. 3)

p∗i ← γi(∞) (safe from previous round)
P ′ ← Extract all plans p′i(tn : tn+1) from Tree
for all p′i ∈ P ′ and while (time < PlanningCycle) do
{

for all j ∈ Nh do
{

if (Eq. 6.5 does not hold for p′i, p
∗
j(tn : tn+1), γ

∗
j (∞)) then

Reject p′i
}
if p′i is not rejected and p′i better than p∗i then

p∗i ← p′i(tn : tn+1)
}

(Transmit selected plan)

for all j ∈ N l do
{

Send selected plan p∗i to Vj

Send contingency γ∗
i (∞) at xi(tn+1) to Vj

}

After exchanging contingency plans, the sampling-based, kinodynamic planner is

invoked. It generates a tree data structure of feasible trajectories in the state-

space that are collision-free and avoids ICS with obstacles in the beginning of the

87

Algorithm 11 MAIN PLANNING LOOP PRIORITY BASED

(Sampling-Based Kinodynamic Planning)

Select an existing trajectory sample s from Tree
Select plan p(dt) and state x(t) on s
Propagate trajectory π(x(t), p(dt)

(Req. 1: Avoid ICS with obstacles)

if (π(x(t), p(dt)) is not collision-free) then
Reject π

else
{

if (t < tn+1) ∧ (t + dt > tn+1) then
(path intersects next cycle tn+1)

if (π(π(x(t), p(dt), γ(∞)) not collision-free) then
(Leads to ICS with obstacles)

Reject π
}

(Req. 2: Compatibility with γj(∞))
for all j ∈ N and while π is not rejected do

if (π(x(t), p(dt)) 6≍ πj(xj(tn), γj(∞))) then
{
(Does not respect Eq. 6.4)

Reject π
}

(Receive high priority plans)

if (message arrived from j ∈ HN) then
{

Receive selected plan p∗j(tn : tn+1)
Receive contingency γ∗

j (∞) at xj(tn+1)
Remove j from HN
}

consecutive planning cycle (Eq. 6.3). The planner considers also in collision all

the trajectories that intersect the contingencies of other vehicles to satisfy Eq.

6.4.

The third requirement specifies that when a vehicle makes a decision it must

inform the other vehicles so that pairs of plans satisfy Eq. 6.5. This exchange

of information can follow the vehicles’ priorities. Vehicle Vi with the highest

88

priority computes a solution plan pi(tn : tn+1) from the motion planner and the

accompanying contingency plan that could be executed at state xπi(tn+1). Vi

transmits its solution to lower priorities vehicles, which must now come up with

a plan that respects Eq. 6.5 given Vi’s choice. Every vehicle waits to receive

the choices of all vehicles with higher priorities before selecting its own plan. If

a plan that respects Eq. 6.5 is available from the tree data structure computed

by the motion planner, then it is selected and transmitted to the lower priority

vehicles. If no such plan is found, the available contingency plan is selected and

transmitted. If time is running out (variable PlanningCycle in Algorithm 1) and

not all higher priority vehicles have send their plans, then a contingency plan is

again selected.

Note that the prioritized scheme imposes a total ordering over all the vehicles.

When the communication graph is complete this results in the lowest priority ve-

hicle having to wait for all the previous vehicles to select plans. The high priority

vehicle has to transmit its selection early enough (variable PlanningBudget in

Algorithm 1) so that the sequence of selected plans reaches all vehicles within

the planning cycle along a chain of priorities. Even if the PlanningBudget is

not sufficiently long so that all vehicles communicate, the vehicles still do not

collide in our setup. The vehicles will end up selecting contingency plans, which

correspond to stopping maneuvers and they will stop safely. This undesired effect

is less pronounced when vehicles have limited communication as Fig. 6.5 shows,

because vehicles that do not communicate do not effect one another. We have,

however, addressed this advantage by proposing a fully distributed approach, de-

scribed in Section 6.4, that guarantees the satisfaction of the three requirements

without priorities.

6.4 Message-Passing Distributed Protocol

As mentioned before, the priority-based methodology exhibits a major drawback.

In the worst case and depending on the connectivity of the network, the vehicle

89

Figure 6.4 : A simple coordination graph, the action sets A1, A2, A3, the atomic
and pairwise payoffs f1, f2, f3, f12, f23 and the global utility function u

with the lowest priority has to wait for every other vehicle to select a plan before

taking its own decision. This implies that vehicles with low priorities often do not

receive the choices of their higher priority neighbors within the duration of the

planning cycle and they have to resort to contingency plans. The proposed safety

requirements, however, do not depend on the prioritized scheme. They allow

the implementation of message-passing protocols for distributed constraint opti-

mization. The coordination problem can be modeled with coordination graphs

[GKP02] and can be solved with distributed message passing algorithms based

on belief propagation [Pea88], such as the max-plus algorithm [KV06]. In this

section, we describe an approach that employs these abstractions.

In the formalization of coordination graphs, we assume we have n agents, and

each agent i has to select an action ai out of a finite action set Ai. Generally the

goal is to find the optimal action vector a∗ = (a∗
1, . . . , a

∗
n) that maximizes a global

utility function u(a). The utility has a structure captured by a coordination

graph CG = (V,E). On every node of CG we define a function fi(ai) called

atomic payoff. An atomic payoff describes how well each action serves the goal of

the agent corresponding to that node. On the edges eij of CG we define pairwise

payoff functions fij(ai, aj) that indicate how good for the team are pairs of actions

of interacting agents (see Fig. 6.4 for an example). The global utility is assumed

to depend only on the unary and pairwise payoff functions as follows:

90

u(a) =
∑

i

fi(ai) +
∑

eij∈E(CG)

fij(ai, aj)

Max-plus is a distributed message passing algorithm that attempts to compute

an optimal action vector using only local computations and communication for

every agent. While the algorithm is running, each agent i chooses a neighboring

agent j on CG, collects and adds all incoming messages from other agents in its

neighborhood, and sends a new message to j that is computed by the following

formula:

mij(aj) = max
ai

{fi(ai) + fij(ai, aj) +
∑

k∈N(i),k 6=j

mki} (6.6)

At any time during the execution, the agents can compute a marginal function

gi(ai) = fi(ai) +
∑

k∈N(i) mki. Maximizing gi provides the best possible action

a′
i for agent i with respect to messages from other agents. u(a′

1, . . . , a
′
n) is an

approximation to the optimal u.

In order to adapt this formulation in our framework, each vehicle can be

viewed as a node in the coordination graph CG. Two nodes share an edge in the

graph if the corresponding vehicles can communicate or if they can potentially

collide. The discrete set of actions of the max-plus algorithm corresponds to

the set of candidate plans Pi. The atomic payoffs fi(pi), where pi ∈ Pi can be

computed by evaluating how close each trajectory takes vehicle Vi to its goal

Gi. In the evaluation of the pairwise payoffs we must also express whether two

trajectories are compatible or not:

fi(pi(dt), pj(dt)) = −∞ if

πi(xi(t + dt), pi(dt)) 6≍ πj(xj(t + dt), pj(dt)) (6.7)

where pi ∈ Pi and pj ∈ Pj. If the two plans pi and pj are compatible then the

pairwise payoff can be assigned a positive value that depends on other proper-

ties that are required to be optimized. Consequently, it is necessary before the

91

coordination step for the neighboring vehicles to exchange the sets of candidate

plans so as to compute the pairwise payoff functions.

The pairwise payoffs can be computed in a distributed way that balances the

burden among vehicles. Each vehicle computes one row for every pairwise payoff

matrix that it is involved in, in a cyclic order. Then each vehicle transmits this

row to its neighbors. In the computation of fij if i ≤ j then i computes rows

r1, r2, . . . and j computes in reverse rmax, rmax−1, . . . , until the whole array is

completed. In this way, a vehicle that has many neighbors is not overwhelmed

and its computational overhead is outsourced to neighbors with a smaller number

of payoff matrices to compute.

Message-Passing Algorithm

We describe here how the new message-passing approach can satisfy the require-

ments in a distributed way. The algorithm is provided in pseudo-code in Algo-

rithm 3.

As in the priority-based algorithm, each vehicle Vi must be aware of the

contingency plans of neighboring vehicles Vj at state x(t + dt). This informa-

tion is communicated at the beginning of each cycle between neighbors and the

sampling-based, kinodynamic planner is invoked to construct the Tree. Next,

the set of candidate plans Pi is constructed from Tree. For each plan in this

set, the corresponding contingency is attached to it and the unary payoff fi(pi) is

evaluated. Then, neighboring vehicles exchange their candidate plans and com-

pute pairwise payoffs. Instead of using the simple form of compatibility as in

Eq. 6.7, however, we must use Eq. 6.5, which takes into account the concatena-

tion with contingency plans. Given the definition of unary and pairwise payoffs

the asynchronous message-passing protocol is initiated and the vehicles start ex-

changing messages. When the algorithm runs out of time, vehicle transmit to

their neighbors their final action selections. Max-plus is incomplete, so if two

92

Algorithm 12 SAFE AND DISTRIBUTED REPLANNING

Identify set of neighbors Ni

(Exchange contingencies)

for all j ∈ Ni do
Send contingency γi(∞) to Vj

Receive contingency γj(∞) from Vj

(Planning: satisfies requirements 1,2)

Tree ← Retain valid subset of Tree from previous cycle
while (time < PlanningBudget) do

MAIN PLANNING LOOP DISTRIBUTED()

(Evaluate and exchange candidate plans)

Pi ← plans of duration dt from Tree
for all pi ∈ Pi do
{

Attach contingency plan γi(∞) to pi(dt)
Evaluate unary payoff fi(pi) for pi ∈ Pi given Gi

}
for all j ∈ Ni do
{

Send set Pi to Vj

Receive set Pj from Vj

(Take Req. 3 into account)

for all pi ∈ Pi do
for all pj ∈ Pj do

if (π′
i(πi(xi(tn), pi(dt)), γi(∞)) ≍ π′

j(πj(xj(tn), pj(dt)), γj(∞)) then
Compute payoff fij(pi, pj) given the goals Gi, Gj

else
fij(pi, pj) = −∞

}

COORDINATION PROTOCOL()

neighboring vehicles have selected incompatible trajectories then one of the two

vehicles switches to the contingency plan. This is a very fast adjustment step,

which guarantees that the third requirement is always satisfied. In the experi-

ments section we show that max-plus has to resort to the contingency plan less

often than priority-based schemes.

93

Algorithm 13 MAIN PLANNING LOOP DISTRIBUTED

Select a state x(t′) on the existing Tree
Select valid plan p(dt′)
Propagate trajectory π(x(t), p(dt′)
if ((π(π(x(t), p(dt′), γ(∞)))) is not collision-free) then

Reject π
else

for all j ∈ Ni and while π not rejected do
if (π(x(t), p(dt′)) 6≍ πj(xj(tn), γj(∞))) then

Reject π

Algorithm 14 COORDINATION PROTOCOL()

(Coordination)

Enter into asynchronous message-passing to optimize:
u(p) =

∑

i fi(pi) +
∑

eij∈E(CG) fij(pi, pj)
Stop protocol before time t + dt
Select plan pi that maximized u(p)
for all j ∈ Ni do

if (pi incompatible with pj) then
Select contingency γi as the next action

The secondary goal is to find among the safe solutions one that maximizes the

global utility u, within the allocated amount of time. Because the algorithm does

not monotonically increase the global utility, it must periodically compute u and

keep track of the action vector that produced the maximum value. However, no

single agent has all the available information to compute u. In order to achieve an

efficient, distributed computation of the utility we use a minimum spanning tree of

CG. We use again distributed protocols for computing minimum spanning trees

on graphs using local information such as the distance between agents [SB95].

Given the minimum spanning tree structure, an arbitrary vehicle acting as a root

of the tree initiates the process:

Down pass The root transmits a signal to compute u. Each node passes the

signal down the tree.

Up pass Each node i:

94

Figure 6.5 : (left) For the dynamic network in Fig. 6.1 the above DAG shows
the transmission of selected plans p by high priority vehicles to lower priority
vehicles - low number denote high priority. (right) Two vehicles that enter each
other’s comm range at maximum velocity, cannot collide if after finishing their
plans they execute their contingency plans.

1. Collects partial payoff values and actions from children.

2. Maximizes marginal gi and chooses best action ai.

3. Adds its contribution to the global payoff u.

4. Sends new partial payoff and actions to its parent.

Down pass The root adds up all partial payoffs so as to compute and maximize

u. The optimal value of u∗ and actions a∗ are transmitted down the tree.

This computation is fast since the utility computation messages can be inter-

leaved with normal max-plus messages [KV06].

6.5 Limited Communication

When vehicles have limited communication range, dynamic networks are formed

and dissolved as the vehicles move towards their goals (Fig. 6.1). This, however,

does not considerably effect the algorithm as long as two vehicles not within range

cannot collide until they approach one another and communicate. Given enough

space to deaccelerate and come to a complete stop the collision can be avoided.

95

The Invariant can still be guaranteed by imposing limits on the maximum

velocity of the vehicles by taking into account the worst case scenario, shown

in Fig. 6.5 (right). Two vehicles are just outside range and they move with

maximum velocity towards one another. Then they will keep approaching one

another for an entire cycle with maximum velocity. At the end of the cycle,

however, they will communicate. If they manage to find compatible plans, they

will continue operating normally. Otherwise, they must execute contingencies.

The Invariant can still be satisfied as long as the following is true: the distance

that a vehicle covers until it comes to a complete stop when it moves at maximum

velocity for one planning cycle and then applies a contingency plan must be less

than half of the communication range. For some realistic parameters for car-like

vehicles (comm. range 100m, breaking deacceleration 10m/sec2, planning cycle

1sec) the allowable maximum velocity is considerably high (approx. 80Km/h or

50mph).

In the case of limited communication the flow of information is not a chain.

The Directed Acyclic Graph (DAG) in Fig. 6.5 (left), shows the flow of informa-

tion and the partial ordering defined by the priorities of the dynamic vehicular

network displayed in Fig. 6.1(left). The DAG structure allows for the planning

and selections steps to be executed in parallel on many vehicles even with a

prioritized scheme.

6.6 Extension to Vehicular Networks

It is also easy to satisfy the constraint that the vehicles maintain a communication

network while moving. Assume the vehicles form a communication graph as in

Fig. 6.1(left) and the objective is to move as a vehicular network. To satisfy

the network constraint, we need the communication graph to remain connected.

For the latter, it is sufficient to retain communication links along a spanning tree

of the communication graph. There are efficient algorithms that can compute

an approximate spanning tree distributedly given knowledge of the locations of

96

neighboring vehicles [SB95]. This can be done in the beginning of every planning

cycle. The planning algorithm has then to guarantee that the vehicles do not

choose trajectories that will break the communication links along the spanning

tree.

Assume Vi, Vj share an edge eij on the spanning tree. We can make sure that

eij will not break if we treat as collision any pair of trajectories that concatenated

with the corresponding contingencies bring Vi, Vj out of range. This amounts to

just adding an extra check for requirements 2 and 3 for the pairs of vehicles that

share edges of the spanning tree. Trajectories that break spanning tree edges, are

not considered compatible. Since the vehicles move, the communication graph

can change (Fig. 7.12 (right)). Consequently, the spanning tree recomputed in

every cycle also changes over time. This allows the network to achieve different

topology if it is required. Note that for an edge to be considered as a valid com-

munication link, it must be retainable during a planning cycle given the dynamic

motion constraints.

Discussion

This chapter describes a novel integration of sampling-based kinodynamic

planners [LaV06a, LK05b] with message-passing protocols [KV06, PK04] to dis-

tributedly control the motion of multiple communicating vehicles. It is an ex-

tension of work on safe, real-time sampling-based planning [BK07] to the case of

multiple networked vehicles with limited communication range. It can guaran-

tee safety in terms of avoiding inevitable collision or loss of connectivity states.

Compared to alternative approaches for decentralized motion planning [PSFB06,

DKT06] it is easily implementable on general workspaces and to systems with

different dynamics. In contrast to existing work on motion planning for dynamic

networks, where coordination is centralized [CRL03], the approach is distributed.

Chapter 7

Experiments

This chapter presents the experiments conducted to test the effectiveness of the

techniques in the previous four chapters. It is split into two parts: (i) experiments

on informed planning, that focuses on the IST and EVRC algorithms and (ii)

experiments on safe replanning, both for the single vehicle and multi-agent case.

The first part include experiments conducted with a physics-based simulator,

while the second part uses only the more traditional two-dimensional integrable

model of a car-like system.

7.1 Informed Planning

Two-dimensional Integrable Models

The first set of experiments on informed planning has been run on the typical

two-dimensional integrable models for mobile robots, such as car-like vehicles.

We compare the proposed IST algorithm against the “Voronoi-bias” selection

strategies of RRT. In these experiments, the same programming infrastructure

and parameters have been used but different selection strategies are tested. Fig-

ure 7.1 displays the resulting trees for different selection strategies. Figure 7.2

provides averages over 10 experiments in these two scenes. . A trivial random

selection policy fails to produce any path after 100,000 edges have been added to

the tree. In order to implement the Voronoi-bias approach, we randomly sample

points in the free part of the workspace and use a workspace distance metric to se-

lect the closest edge to them. The RRT approach offers good coverage of the state

space but it is slow in reaching the target configuration. We have experimented

with a version of RRT that is biased to promote exploration towards the target. In

97

98

this version, 20% of the time the state that is used to select the closest edge is a

state in the target set. The value 20% gave the best results over different scenes.

Although there is an improvement compared to the strictly coverage-oriented

version of the RRT algorithm, the approach is still slow in reaching the goal con-

figuration. On the other hand, the IST algorithm manages to aggressively search

the state space towards the goal configuration. Considering the poor quality of

the metric used, this is a very positive result. This behavior was consistent across

all experiments.

Experiments with a physics-based simulator

In order to evaluate the efficiency of the proposed informed planning approach

we have also executed experiments using a physically simulated car in a variety

of scenes. The simulation environment is based on the Open Dynamics Engine

(ODE) [Smi06]. Fig. 7.3 provides details about the simulation. The high-level

controls for the car are acceleration and steering velocity, which are appropriately

translated into control parameters to the joints that connect the wheels with the

chassis.

The workspaces for which we provide comparisons in this chapter are dis-

played in Fig. 7.4. The first is an approximation of a known benchmark for

motion planning, the bug-trap problem. The second problem, referred to as the

iso-test problem. It requires the car to swerve between obstacles in a road-like

environment, and it has been reported in the literature as a challenging case for

sampling-based kinodynamic planners [BL06]. The last problem is the most chal-

lenging in terms of the workspace constraints since it is a maze-like environment.

For the nearest neighbor queries we use an efficient technique for approximate

nearest neighbor search [YL07, PK06].

The algorithms that we compare against include three uninformed sampling-

based kinodynamic planners, RRT [LK01b], Expansive Spaces [HLM99] and PDST

[LK05a]. We have also experimented with the informed variant of RRT, called

RRT-“goal bias”, which 5% of iterations selects for expansion the state along the

99

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 7.1 : Goal finding in (top row) scene meandros with a 2nd order differential
drive-robot and (bottom row) scene labyrinth with an acceleration-bounded car-
like robot: (a-e) a trivial random tree does not find the target after 100,000
iterations, (b-f) an RRT-EXTEND selection strategy finds the target after (top)
48,410 iterations and (bottom) 51,245 iterations (c-g) RRT-EXTEND-BIAS, where
20% of the time the target is the attractor, finds the target after (top) 42,855
iterations and (bottom) 17,212 iterations (d-h) IST reaches the target after (top)
13,774 edges and (bottom) 4,363 respectively.

100

Figure 7.2 : Comparison between the IST selection/propagation scheme and
Voronoi biased selections.

Figure 7.3 : We use a car-like system as our testbed in this work. The car is
modeled as five rigid bodies, the chassis and the four wheels, connected through
four joints. The front joints allow the wheels to be steerable, while the back joints
allow the car to accelerate. In order to have a car that does not flip over often
in the physics-based simulation we have to: (a) apply controls to the wheels that
follow the Ackerman steering model and (b) to simulate the effect of anti-roll
bars that real cars have.

tree closer to the goal. The last alternative we tested is the RRT∗ [US03] that

integrates an A∗ like heuristic in the RRT algorithm.

The results of our experiments in terms of computation time are shown in Fig.

7.5. The cost for the computation of the probabilistic roadmap is included in the

computation time of the IST. The proposed algorithm is able to outperform all

101

Figure 7.4 : The bug trap, iso-test and maze workspaces.

the alternative techniques in all workspaces. In some cases, the speedup is close

to one order of magnitude. IST not only outperforms the uninformed planners

but is also able to perform better than RRT-“goal bias” and RRT∗. The best results

are achieved for the maze-like environment. In this workspace a heuristic that

uses workspace or C knowledge is considerably advantageous.

Fig. 7.6 shows a different statistic. It provides the average duration of a

path computed by the algorithms on the maze. It is noteworthy, that although

IST computes the solution faster, it is also able to compute a better path by

taking advantage of the heuristic. The maze is large enough to allow us to see

this difference. For the other two scenes, almost all of the algorithms computed

trajectories of similar duration.

It must be noted that further improvement in path quality is to be expected by

102

Figure 7.5 : Comparison of computation time on the bug trap, iso-test and maze
workspaces. Averages of 50 experiments.

implementing an anytime approach as the Anytime RRT algorithm [FS06]. Any-

time planners continue searching after a solution has been already found with

the objective of improving path quality. The time to compute the first solution

103

Figure 7.6 : Comparison of path duration on the maze scene. Averages over 50
experiments.

path with Anytime RRT is the same as with RRT, since the first algorithm uses

the second as an initialization procedure. The hope is that since IST appears

to perform better than RRT in problems with physically-simulated dynamics, an

anytime version of IST will have similar advantages. We are planning to investi-

gate the properties of an anytime version of IST in future work.

Discussion

Heuristic search can be very beneficial in guiding the operation of sampling-

based planners in such challenging problems so as to avoid regression and focus

the search in the part of the state space that is beneficial to the solution of a

problem. Nevertheless, heuristic search in continuous spaces is not as straight-

forward as in traditional discrete AI problems. For example, it is not obvious

how to scale the heuristic parameter against the true path cost. Furthermore, it

is still very important that eventually the entire state space will be covered in

order to be able to provide with the guarantee of probabilistic completeness.

This work emphasizes the importance of heuristic search in sampling-based

kinodynamic planning and describes an algorithm, the Informed Subdivision Tree

(IST), that achieves informed search, while still providing probabilistic complete-

104

Differential Drive












ẋ
ẏ

θ̇

V̇L

V̇R













=













cos θ · R
2
· (VL + VR)

sin θ · R
2
· (VL + VR)

R
2·L
· (VR − VL)

αL

αR













|V | ≤ 3m
s

|θ̇| ≤ 20deg

s

|α| ≤ 0.6m2

s

|θ̈| ≤ 3deg2

s

Car-like












ẋ
ẏ

θ̇

V̇
ṡ













=













cos θ · cos s · V
sin θ · cos s · V

sin s · v
α
t













−0.5m
s
≤ V ≤ 3m

s

|s| ≤ 4deg

s

α ≤ 0.6m2

s

|t| ≤ 1deg2

s

Table 7.1 : State Update Equations and Control Limits.

ness guarantees. The algorithm integrates the heuristic information in an adap-

tive subdivision scheme. The subdivision is used to appropriately discretize the

state space and estimate in an online fashion the algorithm’s performance in state

space exploration. The heuristic information is used for the selection of the next

cell in the subdivision from where the tree data structure of the sampling-based

planner will be expanded from. At the cell level the algorithm operates in a

depth-first manner. Then the algorithm moves on to select an edge within the

cell given the best path cost from the starting state and a penalty factor. This

means that at the level of selecting an edge within a cell the algorithm operates

in a breadth-first manner. In this way, there is no need to scale the heuristic with

the true path cost, while we still achieve an A∗ like behavior overall. Heuristic

information is also employed in the propagation step of the algorithm. Exper-

iments on various workspaces for a physically simulated system show that IST

outperforms uninformed sampling-based kinodynamic planners as well as some

existing informed variants.

7.2 Safe Replanning

A. Single Robot Simulations

We have experimented with three systems for testing replanning problems:

105

(1) A differential drive robot (DD-robot) with velocity controls VL, VR. This

platform is reducible to a simpler holonomic robot, since we can retain the entire

tree at each time step and the contingency plan is trivial: VL = VR = 0. (2)

A DD-robot with acceleration controls αL, αR. The contingency plan is selected

so that the wheel with the largest velocity magnitude is assigned maximum de-

acceleration. The second wheel’s acceleration is set so that its velocity reaches

zero as the same time the first wheel stops. (3) A car-like robot that moves

backwards and forwards with acceleration control α and steering velocity t. The

contingency plan sets the de-acceleration parameter to its maximum value so

as to reach a configuration with zero forward and steering velocities. Table 7.1

provides the state update equations for the last two systems and the bounds we

have used for the controls. Parameters R and L are the radius of the wheel and

the distance between a wheel and the robot’s center. The total area that the

robot must sense in all of the scenes is comparable. The sensing radius of the

robot is equal to one tenth the width of the scenes.

The simulation component of our program is responsible for updating the map

and transmitting it over socket communication to the planner. The integration

of STSR with IST is executed on a different processor than the simulator and

after the computation of a plan the planner communicates a sequence of controls

back to the simulator. The planner was tested on an Athlon 1900MPs with one

gigabyte of RAM.

Figure 7.7 shows the benefits of replanning with a selected duration for the

next planning cycle. We have compared our algorithm that tests for safety only

states that are T away from the root node of the tree with an approach that pro-

duces a tree where all the leaf nodes are safe. If the two approaches are provided

with the same planning period, then STSR produces a much bigger tree, which

allows the planner to better search the state-time space. The difference in the

tree size is mainly due to the additional collision checking necessary to provide

safety in the second case.

106

Figure 7.7 : Replanning with a known duration reduces the overhead of guaran-
teeing safety. For the same planning period STSR builds bigger trees.

Figure 7.8 : Exploration of scenes (from left to right) “meandros”, “rooms” with
a DD-robot, “labyrinth” and “rooms” again with a car-like robot.

Performance for high-level tasks: mapping

Figure 7.8 provides a qualitative evaluation of the workspace exploration paths

produced by STSR. The robot is initially positioned at the bottom left corner of a

scene and knows only the part of the environment that it can sense. No collision

was observed during our experiments. If the ICS avoidance step is removed from

the planner, however, then the vehicle collides within a few seconds of execution.

The paths appear smooth and the robots do not unnecessarily revisit parts of

the space that are already covered. Figure 7.9 displays a velocity profile for

an exploration procedure. The robot velocity remains for a large duration of

the exploration procedure close to its maximum value and does not fluctuate

107

Figure 7.9 : The velocity profile for the car exploring “rooms” in Figure 7.8(d).

Time DD-velocity DD-acceleration Car-like

Average Time in secs. 0.39 0.63 0.66
Maximum Time in secs. 0.90 1.57 1.19

Table 7.2 : Aver. cost in seconds to produce 250 edges.

considerably. Table 7.2 presents computational performance statistics. We ran

50 experiments for each robot and scene type and measure the time it takes for

the planner to compute trees with 250 edges. We present: (a) the average time,

(b) and the maximum time, that the planner requires to produce the tree. As

expected systems with bounded acceleration are more difficult to plan for.

B. Distributed Simulations

Setup: We tested our algorithm on a distributed simulator that we developed

and ran on an XD1 Cray cluster. The planner for each vehicle is running on a

different processor and operates under time limitations imposed by a server that

simulates ground truth. All data exchange is done via simple send and receive

messages using sockets.

The simulated vehicular networks have been tested in three different envi-

ronments. Rooms and Random are seen in Fig. 7.12. The first represents a

structured environment with rooms and corridors, while the second is an un-

structured environment. Labyrinth (Fig. 7.10) is a difficult scene that contains

multiple narrow passages. Two types of vehicles have been tested, car-like robots,

for which the dynamic equations are shown in Fig. 7.12, and differential drive

108

Figure 7.10 : Two snapshots of 16 vehicles exploring the labyrinth environment,
while retaining a vehicular network.

Figure 7.11 : Snapshots from an experiment in scene “labyrinth” with 5 vehicles,
communication range at 25% of the scene width and sensing range at 15%.

robots with bounded acceleration. The car-like robots obey velocity bounds :

|V | ≤ 3.5m/s, and acceleration bounds: α ≤ 0.8m2/s as well as steering bounds:

|s| ≤ 1deg/m, |t| ≤ 4deg/s. Vehicles have limited sensing and communication

ranges. For contingencies, deacceleration maneuvers were used. The framework

allows for plugging in other types of dynamics and contingencies.

We present here results from an application that combines many of the con-

straints we are interested in testing our algorithm. The vehicles have to solve a

coordinated exploration task while retaining a network and avoiding collisions.

They are initially located at the bottom left corner of the environment, close one

109

Req 1 Req1 & Req2
Nr Vehicles 1st failure (sec) success % 1st failure (sec) success %

2 287.10 10% 293.25 37.37%
4 21.00 0% 141.07 12.00%
8 3.67 0% 24.16 0%
16 3.00 0% 23.10 0%

Table 7.3 : Probability that networks of car-like vehicles succeed to explore when
the first requirement only or the first two requirements are met.

Req1 & Req3 All Requirements
Nr Vehicles 1st failure(sec) success % 1st failure(sec) success %

2 113.10 0% N/A 100%
4 21.53 0% N/A 100%
8 4.31 0% N/A 100%
16 3.00 0% N/A 100%

Table 7.4 : Probability that networks of car-like vehicles succeed to explore when
the seond requirement is not met or when all requirements are met.

to another, but at collision-free states forming a network with a single compo-

nent. During each replanning cycle a simulated model builder and a task planner

transmit to the vehicles the updated map and set of goals. The goals correspond

to frontiers of the unexplored space and are assigned greedily so that large fron-

tiers which are close to vehicles are being considered first. Experiments with up

to 32 vehicles have been conducted.

We compare the max-plus algorithm against a simpler prioritized scheme de-

scribed in more detail in [BTK07a]. In that scheme, the vehicles have unique

global priorities. The planning step is the same as here. For the plan selec-

Figure 7.12 : Scenes “rooms” and “random”.

110

Figure 7.13 : Average activity profile during a cycle (left) and dependence on
(from second to forth): CYCLE DURATION, PLAN TIME, and maximum communica-
tion range.

tion, each vehicle receives the choices of higher priority vehicles and then tries

to choose its own plan so that it is compatible the higher priority neighbors. If

no such plan exists, the vehicle chooses the contingency plan. At last the vehicle

transmit its selection to its lower priority neighbors.

Feasibility: Table I exhibits the importance of the safety requirements in decou-

pled replanning. We measure the time (in seconds), that the vehicles can move

without colliding with each other when Req. 2 and/or 3 (those necessary for

safe multi-vehicle planning) are relaxed. The numbers reported show the time at

which the first collision or loss of network connectivity occurs. The problem is so

constrained for multiple vehicles, that often collisions cannot be avoided already

since the 2nd replanning loop. The results are averaged out of 10 runs and are

shown in columns labeled failure. If either one of the two requirements is absent,

the vehicles will collide. When all requirements are enabled, then as expected,

there is no failure. The columns labeled success, measure the percentage of suc-

111

Figure 7.14 : Scalability results for three scenes: Random, Rooms, Labyrinth.
Left: DD robots, Right: Car-Like robot

cessful exploration of the whole space without collisions. As we see, for small

teams of 2 or 4 vehicles, there were some cases where the vehicles completed the

task without one or both of the requirements. This is to be expected since the

chances of an encounter are lower for such small teams.

Contingency Plans: One important advantage of the max-plus algorithm is

that it avoids the use of priorities in coordination. In priority-based schemes,

lower priority vehicles are overly constrained by the choices of higher priority

agents. This may lead to frequent selection of contingency plans. We have

experimented in scenes Labyrinth and Rooms for networks with 16 and 32 ve-

hicles. Table II presents the number of times contingencies were selected using

the simple prioritized scheme and max-plus. For 32 vehicles, max-plus chooses

contingency plans considerably fewer times. Additionally, the results from the

prioritized scheme have higher variation between different scenes and team sizes,

while max-plus is much more consistent.

Scalability: The scalability properties of the algorithm are presented in Fig.

Rooms Labyrinth
16 32 16 32

Prioritized 3.61 % 24.5 % 1.35 % 8.42 %
Max-plus 0.98 % 2.26 % 3.04 % 4.84 %

Table 7.5 : Average Percentage of Cycles that Vi executes contingency.

112

7.14, which provides the average running times (10 runs per case) to complete

exploration in the three scenes for car-like and DD vehicles. Increasing teams size

from 2 to 16 results in 5 to 6 times faster exploration. This is a very encouraging

result given that the simulated systems are very constrained, both due to network

and kinodynamic constraints. Moreover, there is no significant variation in the

performance of the algorithm when applied to systems with different dynamics.

Performance and Parameter Dependence: Fig. 7.13(left) shows the aver-

age activity profile of a vehicle during each cycle. The algorithm utilizes most

of the replanning cycle in useful computations but the payoff computation takes

up a non-trivial amount of time. In the selection step, max-plus does not let

the processor idle, and in most cases is able to find an optimal or near optimal

solution. The latter is confirmed by the second figure where we see the proba-

bility of executing contingency plans as a function of the portion of the planning

cycle allocated to the motion planner (PLAN-TIME). This probability is very low

(0.7 − 1.5%). Moreover, there is an optimum value at around 55%. For small

PLAN-TIME, the planner has little time to produce enough plans, while for larger

ones max-plus has not enough time to make a selection and the contingency is

selected for safety reasons. The third figure shows that increasing the duration of

the planning cycle can result in performance deterioration. The last figure shows

that as the communication range increases, four vehicles finish the exploration

faster, which is expected.

Chapter 8

Discussion

This chapter summarizes the contributions of this thesis and provides a discussion

on certain limitations of the proposed techniques and related opportunities for

future research.

8.1 Important Contributions

Chapters 3 through 6 introduced four new methodologies that address different

motion planning challenges but which can be also combined to solve problems

with multiple constraints (i.e., systems with physical constraints, replanning, dis-

tributed and scalable coordination).

Informed Kinodynamic Planning

The first contribution relates to the problem of planning motions for systems

that have non-trivial dynamics and must obey differential constraints. The run-

ning example in this work is a car-like vehicle with significant drift. This is a

non-holonomic system with small control influence (acceleration bounds) over

momentum (velocity bounds). We proposed a new method that balances in-

formed and methodical sampling-based kinodynamic planning in this context,

called Informed Subdivision Tree (IST). The algorithm has been designed with

the following points in mind:

• Its operation is compatible with the use of physics-based simulators for

modeling the workspace and the moving systems.

• It is also designed so as to maximize the utilization of any available heuristic,

given workspace, domain or query knowledge.

113

114

• While informed, the algorithm is also methodical in its search operation,

and provides the guarantee of probabilistic completeness.

• It automatically adapts its behavior between informed search and coverage-

oriented search without manual intervention and while minimizing the de-

pendence on parameters.

In simple parts of the state space IST is greedily guided by the available

heuristic. In constrained parts, such as narrow passages, where the heuristic may

not be beneficial, the algorithm automatically explores alternative routes for a

solution. This behavior is a result of a combination of algorithmic tools. An

adaptive subdivision scheme is used to estimate online the algorithm’s perfor-

mance in exploring the entire state space without depending on the existence of

a proper metric. An edge penalization method minimizes regression issues, while

an offline procedure is employed for caching promising motions for given states

that maximize path diversity. IST not only solves many physically-simulated

planning problems faster, it also results in better solution trajectories, as the

algorithm promotes the expansion of trajectories with smaller path cost, in a

manner similar to the operation of the A∗ algorithm [HNR68].

C-space Guidance

This thesis also presents a way for designing a general heuristic for kinody-

namic problems. The idea is to utilize the inherent separation between kinematic

and dynamic constraints without the limitations of decoupled approaches. Kine-

matic information is used as a heuristic to bias the expansion of IST in the state

space. To achieve this, we propose building a graph in C that has the properties

of visibility-based roadmaps [SLN00] and roadmaps with useful cycles [NO04]:

(i) it is possible to connect every configuration to the roadmap with a collision-

free path and

(ii) the roadmap is able to represent every homotopy class of paths in the C

115

One of the disadvantages of existing algorithms for constructing such roadmaps

is that they are slow to compute. We describe in this thesis a method for an ap-

proximate construction of such a roadmap that reduces computation time at

the expense of creating a roadmap with more nodes than previous algorithms

[SLN00, JSss]. The resulting technique is able to compute a roadmap that ac-

cording to experimental results provides good visibility and path coverage prop-

erties, while the construction of the graph consumes a smaller amount of time

than competitive algorithms.

Safe Replanning for Systems with Drift

The third contribution involves the problem of replanning under dynamic con-

straints, especially for tasks that involve partial observability and for systems with

significant drift. The proposed technique, Short-Term Safety Replanning (STSR),

provides safety guarantees for collision avoidance even under limited computation

time. STSR is a general framework for such applications by extending previous

work on kinodynamic planning [LK05a, LK01a, HKLR02, FA04, FDF02, FKS06]

and uses new ideas to achieve good performance.

In particular, STSR manages to reduces the amount of collision checking nec-

essary for providing safety guarantees. It can be also integrated with IST in order

to take advantage of informed planning and reuse computations from previous

planning cycles. The simulated experiments suggest favorable computational per-

formance against alternatives and the computation of smooth, safe paths.

116

Distributed Safe Kinodynamic Replanning

Finally, the last contribution extends the above safe replanning framework to

the case of multi-agent cooperating systems. It corresponds to a novel integra-

tion of sampling-based kinodynamic planners with message-passing protocols for

the distributed solution of planning problems that involve vehicles with dynamic

constraints. It extends the work on safe, real-time sampling-based planning to

the case of multiple communicating vehicles. The method provides safety guar-

antees in terms of collision avoidance as well as in terms of retaining a connected

communication network. The algorithm has been implemented on a distributed

simulator and the results on vehicles with acceleration constraints confirm the

safety properties of the approach in a workspace exploration application. A com-

parison over priority-based schemes shows that the distributed protocol offers

improved scalability. The proposed method allows for plugging in other types of

dynamic constraints and can also be integrated with higher-level approaches for

distributed task assignment and distributed state estimation.

8.2 Limitations and Future Directions

As mentioned in the introduction, the motion planning field is in the process of a

transition from improving algorithms for the traditional geometric model of plan-

ning to investigating increasingly more challenging problems. The work in this

thesis, as part of this transition, has investigated some interesting problems that

go beyond geometric path planning and proposed some new tools to deal with

them. Nevertheless, there are many issues that still have to be addressed in order

for these techniques to be applicable to real systems, either physical or simulated

ones. This section lists and outlines some of those issues, which also correspond

to exciting opportunities for future research that closely interface with the work

in this thesis.

117

Uncertainty and Errors

All the planning and replanning tools in this work assumed that an action

selected by the planner is executed perfectly by the system. While this may

be true in autonomous agents in simulations, this is typically not the case with

real physical systems. It is, however, important to note that replanning can be

also used as a tool that deals with uncertainty. By reducing the planning cycle,

the hope is that the errors become smaller between cycles and the planning al-

gorithms are able to achieve state estimates with smaller errors. Nevertheless,

an important research direction that has the potential to directly address issues

related to uncertainty is the integration of planning tools like those proposed in

this work with algorithms for probabilistic, Bayesian estimations, such as Kalman

filters and particle filters.

Path Quality and Anytime Planning

Path optimality is an issue that is typically overlooked in the motion planning

literature due to the computational complexity of the problem, focusing instead

on feasibility. However, it is very important in many applications, especially in

visualization and computer games, where the agents are expected to move along

smooth paths. A search-based approach that is promising in this direction, is

anytime planning. The idea of anytime planning is inspired by anytime search

algorithms, which first compute a solution and then attempt to incrementally im-

prove its quality. An anytime equivalent for IST should also be taking advantage

of the algorithm’s tools, such as the subdivision and the heuristic, especially if it

comes in the form of a roadmap-based heuristic, in order to improve the quality

of the path.

118

Integration with Prediction Modules

In order to be able to deal effectively with problems that involve mobile and

dynamic obstacles it is necessary to properly integrate motion planners with

sensor-based prediction modules. Such algorithms are necessary in replanning

tasks in order to define the regions in the state-time space that correspond to

obstacles. If they are not available, then a planning algorithm can either employ

simplistic prediction models (i.e., treat moving obstacles as static ones or assume

they are going to retain current velocity and path) or resort to conservative ap-

proximations (i.e., all valid velocities, accelerations and directions of motions are

possible). In the first case, planning among moving obstacles will often result in

collisions, while the second case is too conservative and causes the moving system

to stop and falsely assume that an impeding collision is about to occur. Efficient

sensor-based prediction models should lie somewhere in between these two ap-

proaches, allowing for a more opportunistic planning that has low probabilities

of collision with the moving obstacles.

Effects of Realistic Communication

For the problem of distributed motion coordination, we have assumed perfect

communication within a predefined radius. In reality, however, the communica-

tion range is neither regular nor predictable. One way that the existing technique

could still be applied is through the use of a precomputed communication map

of the environment. Such a map would provide with a way to infer given the

positions of two vehicles whether they can communicate or not, at least up to a

specific level of confidence. Another challenge that realistic communication would

impose to the algorithm is related to bandwidth. In the simulations presented

here bandwidth was virtually unlimited compared to bandwidth in a wireless

setup. It would be interesting to study how the algorithm can operate under a

limited bandwidth scenario. Furthermore, the scheme described in Chapter 6 as-

sumes a level of synchronization between the different units in the environment.

An asynchronous version of the protocol, where the different vehicles do not start

119

and end their planning cycles at the same point in time, is a very interesting di-

rection for future research. Finally, a question that arises in this context, is

whether the technique scales to hundreds or even thousands of systems operating

in parallel.

Interactive Planning

It is often the case in visualization applications that a user controls the mo-

tion of a simulated character. As the complexity of such characters increases, it

is desirable for the human users to specify only a high-level motion control (e.g.,

direction and speed of motion). In order for the motion of the character to appear

realistic, however, a planner is needed to specify the low level motion control so as

to achieve collision avoidance, safety, satisfaction of complex motion constraints,

adaptability to a constrained terrain, while conflicting minimally with the user’s

selections.

Novel Physics-based Planning Problems

The type of physics-based simulation that has been used in this work deals

with articulated rigid bodies. Nevertheless, there are many interesting planning

problems that involve fluids and deformable body simulations. For example,

physically realistic planning for boats or manipulating fabrics in the industrial

sector. To approach such problems it is necessary to integrate motion planners

with new types of physics-based simulators and adapt the techniques to the char-

acteristics of deformable and fluid objects.

120

Hierarchical Planning

There has been significant work in the motion planning literature on how to

influence the construction of a configuration space roadmap using workspace in-

formation. In this work, we presented an incorporation of the C-space heuristic

in the operation of the kinodynamic planner. Taking these two lines of work

together can lead in the definition of a hierarchical model for kinodynamic plan-

ning. In this hierarchy, a high-level and very fast planner first solves problems

in the workspace. The output is then fed to the C-space level, which constructs

a roadmap with the visibility and path deformation properties. The roadmap’s

output is used in the kinodynamic planner as a heuristic function.

This hierarchical model can also take advantage of advances in CPU and GPU

technology and the presence of multiple cores in a system. Each level could be

running at a different core with a different frequency and they can be communi-

cating asynchronously. It is very interesting to investigate how such a hierarchical

scheme operates in replanning applications, where the high and workspace level

module can be updated very fast given sensory data and the following levels have

a smaller frequency of operation.

Other types of Systems and Applications

The tools developed in this thesis could be also applied in problems involving

different types of systems. For example, articulated systems with dynamics is

one possible direction that is different from the type of mobile vehicles studied

here. Although the physically simulated vehicles in section 7.1 are actually five

body articulated systems, examples such as manipulator arms and humanoids,

involve additional constraints and challenges. Moreover, there are two very in-

teresting categories of motion planning applications that this work could also be

applied. In sensor-based tasks (i.e., monitoring problems), the planner would be

responsible to control not only motions but also sensing operations. In multi-

agent applications, agents can act as adversaries (e.g., pursuit-evasion) and it is

very interesting to study the interaction between planning and game theory.

121

The above areas involve some very exciting challenges and opportunities for

further research, which often relate to a variety of many different fields. They also

depend critically on the existence of robust and efficient motion planners. Thus,

an interest in the core computational capabilities of motion planners, which this

work has also focused on, will continue into the future.

Bibliography

[ABD+98] N. M. Amato, O. B. Bayazit, L. K. Dale, C. Jones, and D. Vallejo.

OBPRM: An obstacle-based PRM for 3D workspaces. pages 155–

168, 1998.

[AGM98] J.-M. Ahuactzin, K. Gupta, and E. Mazer. Manipulation planning

for redundant robots: A practical approach. 17(7):731–747, July

1998.

[ATBM92] Jean-Manuel Ahuactzin, El-Ghazali Talbi, Pierre Bessière, and Em-

manuel Mazer. Using genetic algorithms for robot motion planning.

pages 671–675, 1992.

[BATM94] Pierre Bessière, Juan-Manuel Ahuactzin, El-Ghazili Talbi, and Em-

manuel Mazer. The ‘Ariadne’s clew’ algorithm: Global planning

with local methods. pages 39–47, 1994.

[BB07] B. Burns and O. Brock. Single-query motion planning with utility-

guided random trees. In Proc. of the IEEE Intl. Conference on

Robotics and Automation, Rome, Italy, April 2007.

[BBT02] M. Bennewitz, W. Burgard, and S. Thrun. Finding and optimizing

solvable priority schemes for decoupled path planning for teams

of mobile robots. Robotics and Autonomous Systems, 41(2):89–99,

2002.

[BCL+03] K. E. Bekris, B. Y. Chen, A. M. Ladd, E. Plaku, and L. E. Kavraki.

Multiple query probabilistic roadmap planning using single query

planning primitives. In 2003 IEEE/RJS International Conference

122

123

on Intelligent Robots and Systems (IROS), pages 656–661, Las Ve-

gas, NV, October 2003.

[BDG85] J. Bobrow, S. Dubowsky, and J. Gibson. Time-optimal control of

robot manipulators. Int. Journal of Robotics Research, 4(3), 1985.

[BFK06] J. van den Berg, D. Ferguson, and J. Kuffner. Anytime path plan-

ning and replanning in dynamic environments. In IEEE ICRA,

pages 2366–2371, May 2006.

[BK91] O. Brock and O. Khatib. Elastric strips: A framework for inte-

grated planning and execution. In 1999 International Symposium

on Experimental Robotics, 1991.

[BK00] R. Bohlin and L. E. Kavraki. Path planning using lazy prm. In

IEEE ICRA, pages 521–528, San Fransisco, CA, April 2000.

[BK07] K. E. Bekris and L. E. Kavraki. Greedy but safe replanning under

kinodynamic constraints. In ICRA, Rome, Italy, April 2007.

[BL91] J. Barraquand and J. C. Latombe. Robot motion planning: A dis-

tributed representation approach. International Journal of Robotics

Research, 10(6):628–649, December 1991.

[BL06] F. Boyer and F. Lamiraux. Trajectory optimization applied to kin-

odynamic motion planning for a realistic car model. In IEEE Intl.

Conf. on Robotics and Automation, pages 487–492, May 2006.

[BM02] D. J. Balkcom and M. T. Mason. Time optimal trajectories for

bounded velocity differential drive vehicles. 21(3):199–217, 2002.

[BMSS05] W. Burgard, M. Moors, C. Stachniss, and F. Schneider. Coordi-

nated multi-robot exploration. IEEE TR, 21(3), 2005.

[Boh01] Robert Bohlin. Path planning in practice: Lazy evaluation on a

multi-resolution grid. 2001.

124

[BOvdS99] Valérie Boor, Mark H. Overmars, and A. Frank van der Stappen.

The Gaussian sampling strategy for probabilistic roadmap planner.

pages 1018–1023, 1999.

[BP83] R. Brooks and T. Lozano Perez. A subdivision algorithm in config-

uration space for findpath with rotation. pages 799–803, 1983.

[BTK07a] K. E. Bekris, K. I. Tsianos, and L. E. Kavraki. A decentralized

planner that guarantees the safety of communicating vehicles with

complex dynamics that replan online. In IROS (submitted), 2007.

[BTK07b] K. E. Bekris, K. I. Tsianos, and L. E. Kavraki. A distributed

protocol for safe real-time planning of communicating vehicles with

second-order dynamics. In ROBOCOMM, 2007.

[BV06] J. Bruce and M. Veloso. Safe multi-robot navigation within dynamic

constraints. Proc. of the IEEE, 94(7):1398–1411, 2006.

[Can88] J. F. Canny. The Complexity of Robot Motion Planning. MIT Press,

1988.

[CBR02] M. Christopher Clark, Tim Bretl, and Stephen Rock. Applying

kinodynamic randomized motion planning with a dynamic prior-

ity system to multi-robot space systems. In Aerospace Conference,

2002.

[Cha87] B. Chazelle. Approximation and decomposition of shapes. In J. T.

Schwartz and C. K. Yap, editors, Algorithmic and Geometric As-

pects of Robotics, pages 145–185. Lawrence Erlbaum Associates,

Hillsdale, NJ, 1987.

[CL02] P. Cheng and S. LaValle. Resolution complete rapidly-exploring

random trees. In Proc. of the IEEE Intl. Conf. on Robotics and

Automation, pages 267–272, 2002.

125

[CL03] Peng Cheng and Steve M. LaValle. Exploiting group symmetries

to improve precision in kinodynamic and nonholonomic planning.

2003.

[CLH+05] H. Choset, K. M. Lynch, S. Hutchinson, G. Kantor, W. Burgard,

L. E. Kavraki, and S. Thrun. Principles of Robot Motion: Theory,

Algorithms and Implementation. MIT Press, Boston, 2005.

[CR87] J. Canny and J. Reif. New lower bound techniques for robot motion

planningproblems. pages 49–60, 1987.

[CRL03] C. Clarc, S. Rock, and J.-C. Latombe. Dynamic networks for mo-

tion planning in multi-robot space systems. In Intl. Symp. of Arti-

ficial Intelligence, Robotics and Automation in Space, 2003.

[CRR91] J. Canny, A. Rege, and J. Reif. An exact algorithm for kinody-

namic planning in the plane. Discrete and Computational Geome-

try, 6:461–484, 1991.

[CSL01] Peng Cheng, Zuojun Shen, and Steven M. LaValle. RRT-based tra-

jectory design for autonomous automobiles and spacecraft. Control

Sciences, 11(3-4):51–78, 2001.

[dBvKOS00] M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf.

Computational Geometry: Algorithms and Applications, 2nd Ed.

Springer-Verlag, Berlin, 2000.

[DK07] R. Diankov and J. J. Kuffner. Randomized statistical path plan-

ning. In IEEE/RSJ Int. Conf. on Intelligent Robots and Systems

(IROS’07), San Diego, CA, 2007.

[DKT06] D. V. Dimarogonas, K. J. Kyriakopoulos, and D. Theodorakatos.

Totally distributed motion control of sphere world multi-agent sys-

tems using decentralized navigation functions. ICRA, 2006.

126

[DLOS98] A. De Luca, G. Oriolo, and C. Sampson. Feedback Control of a

Nonholonomic Car-lie Robot, chapter Robot Motion Planning and

Control, pages 171–253. Lecture Notes in Control and Information

Sciences. Springer, NY, 1998.

[DXCR93] B. Donald, P. Xavier, J. Canny, and J. Reif. Kinodynamic motion

planning. In Journal of the ACM, volume 40, pages 1048–1066,

1993.

[DZKS06] M. B. Diass, R. Zlot, N. Kalra, and A. Stentz. Market-based mul-

tirobot coordination: a survey and analysis. Proc. of the IEEE,

94(7):1257–1270, July 2006.

[EHS01] M. Egerstedt, X. Hu, and A. Stotsky. Control of mobile platforms

using a virtual vehicle approach. IEEE Transactions on Automated

Control, 46(4):1777–1782, November 2001.

[EL00] S. Ehmann and M. C. Lin. Swift: Accelerated distance computation

between convex polyhedra by multi-level marching. 2000.

[FA04] T. Fraichard and H. Asama. Inevitable collision states - a step

towards safer robots? Advanced Robotics, 18(10):1001–1024, 2004.

[FDF02] E. Frazzoli, M. A. Dahleh, and E. Feron. Real-time motion planning

for agile autonomous vehicles. Journal of Guidance, Control and

Dynamics, 25(1):116–129, 2002.

[FKS06] D. Ferguson, N. Kalra, and A. Stentz. Replanning with rrts. In

ICRA, 2006.

[FS06] D. Ferguson and A. Stentz. Anytime RRTs. In IEEE/RSJ In-

telligent Robots and Systems (IROS-06), pages 5369–5375, Beijing,

China, Oct. 2006.

127

[FW88] S. Fortune and G. Wilfong. Planning constrained motion. In STOC,

Chicago, 1988.

[GG95] K. Gupta and Z. Guo. Motion planning with many degrees of

freedom: sequential search with backtracking. IEEE Transactions

on Robotics and Automation, 6(11):897–906, 1995.

[GHK99] L. J. Guibas, C. Holleman, and L. E. Kavraki. A probabilistic

roadmap planner for flexible objects with a workspace medial-axis-

based sampling approach. In IEEE/RSJ Intl. Conf. on Intelligent

Robots and Systems (IROS), volume 1, pages 254,259, October

1999.

[GKP02] C. Guestrin, D. Koller, and R. Parr. Multiagent planning with

factored mdps. In NIPS-14. MIT Press, 2002.

[GKX07] R. Gayle, K. R. Klinger, and P. G. Xavier. Lazy reconfiguration

forest: An approach for planning with multiple tasks in dynamic

environments. In ICRA, pages 1316–1323, Rome, April 10-14 2007.

[GLM96] S. Gottschalk, M. Lin, and D. Manocha. OBB-tree: A hierarchi-

cal structure for rapid interference detection. In Proc. ACM SIG-

GRAPH’96, pages 171–180, 1996.

[GM02] B. P. Gerkey and M. J. Mataric. Sold!: Auction methods for multi-

robot coordination. IEEE TRA, 18(5):758–786, Oct 2002.

[GO97] J. Goodman and J. O’Rourke. Handbook of Discrete and Compu-

tational Geometry. CRC Press, 1997.

[GO02] R. J. Geraerts and M. H. Overmars. A comparative study of prob-

abilistic roadmap planners. In Workshop on the Algorithmic Foun-

dations of Robotics (WAFR), Nice, France, 2002.

128

[HA88] Yong Koo Hwang and Narendra Ahuja. Path planning using a po-

tential field representation. Technical report, University of Illinois,

October 1988.

[HA92] Y. K. Hwang and N. Ahuja. A potential field approach to path

planning. IEEE Transactions on Robotics and Automation, 8(1):23–

32, February 1992.

[HK00] Christopher Holleman and Lydia E. Kavraki. A framework for using

the workspace medial axis in PRM planners. pages 1408–1413, 2000.

[HKL+98] D. Hsu, L.E. Kavraki, J.-C. Latombe, R. Motwani, and S. Sorkin.

On finding narrow passages with probabilistic roadmap planners.

pages 143–153, 1998.

[HKLR02] D. Hsu, R. Kindel, J.-C. Latombe, and S. Rock. Randomized kin-

odynamic motion planning with moving obstacles. Intl. Journal of

Robotics Research, 21(3):233–255, 2002.

[HLM99] D. Hsu, J.-C. Latombe, and R. Motwani. Path planning in expan-

sive configuration spaces. International Journal of Computational

Geometry and Applications, 9(405):495–512, 1999.

[HNR68] P. E. Hart, N. J. Nillson, and B. Raphael. A formal basis for the

heuristic determination of minimum cost paths. IEEE Transactions

on Syst. Sci. Cybenetics (SSC-4), 2:100–107, 1968.

[Hol83] J. M. Hollerbach. Dynamic scaling of manipulator trajectories.

Technical Report Memo 700, MIT AI Lab, 1983.

[Hom] Dedicated Short Range Communications (DSRC) Home.

http://www.leearmstrong.com/dsrc/dsrchomeset.htm.

[HS96] D. Halperin and M. Sharir. A near-quadratic algorithm for planning

the motion of a polygon in a polygonal environment. Discrete and

129

Computational Geometry, 16:121–134, 1996.

[HSS84] J. E. Hopcroft, J. T. Schwartz, and M. Sharir. On the complexity

of motion planning for multiple independent objects: PSPACE-

hardness of the “warehouseman’s problem”. 3(4):76–88, 1984.

[JSss] L. Jaillet and T. Simeon. Path deformation roadmaps. The Inter-

national Journal of Robotics Research, 2008 (in press).

[Kav95] Lydia E. Kavraki. Random Networks in Configuration Space for

Fast Path Planning. PhD thesis, Stanford University, January 1995.

[KD86] S. Kambhampati and L. S. Davis. Multiresolution path planning

for mobile robots. 2(3):135–145, September 1986.

[Kha86] O. Khatib. Real-time obstacle avoidance for manipulators and mo-

bile robots. International Journal of Robotics Research, 5(1):90–98,

1986.

[KJCL97] M. Khatib, H. Jaouni, R. Chatila, and J.-P. Laumond. Dynamic

path modification for car-like nonholonomic mobile robots. In Intl.

Conference on Robotics and Automatiion, pages 2920–2925, Albu-

querque, NM, April 1997.

[KKL96] L. E. Kavraki, M. Kolountzakis, and J.-C. Latombe. Analysis of

probabilistic roadmaps for path planning. In Proc. of the Intl. Conf.

on Robotics and Automation (ICRA ’96), pages 3020–3026, Min-

neapolis, MN, 1996.

[KL94] Lydia E. Kavraki and Jean-Claude Latombe. Randomized prepro-

cessing of configuration space for fast path planning. volume 3,

pages 2138–2145, 1994.

[KLMR96] L. E. Kavraki, J.-C. Latombe, R. Motwani, and P. Raghavan. Ran-

domized query preprocessing in robot motion planning. 1996.

130

[KM04] M. Kallman and M. Mataric. Motion planning using dynamic

roadmaps. In ICRA-04, volume 5, 2004.

[Kod89] D. E. Koditschek. Robot planning and control via potential func-

tions. In The Robotics Review 1, pages 349–367. MIT Press, 1989.

[KPLM98] S. Krishnan, A. Pattekar, M. Lin, and D. Manocha. Spherical shell:

A higher-order bounding volume for fast proximity queries. 1998.

[KSLO96] L. E. Kavraki, P. Svestka, J.-C. Latombe, and M. Overmars. Prob-

abilistic roadmaps for path planning in high-dimensional configu-

ration spaces. IEEE TRA, 12(4):566–580, Aug. 1996.

[KV06] J. R. Kok and N. Vlassis. Collaborative multiagent reinforcement

learning by payoff propagation. Journal of Machine Learning Re-

search, 7:1789–1828, 2006.

[KVdP06] M. Kalisiak and M. Van de Panne. RRT-Blossom: RRT with A

Local Flood-Fill Behavior. In IEEE Intl. Conf. on Robotics and

Automation, 2006.

[Lat91] J. C. Latombe. Robot Motion Planning. Kluwer Academic Publish-

ers, Boston, MA, 1991.

[LaV06a] S. LaValle. Planning Algorithms. Cambrdidge university Press,

2006.

[LaV06b] S. M. LaValle. Planning Algorithms. Cambridge University Press,

2006.

[LB02] S. M. LaValle and M. S. Branicky. On the relationship between

classical grid search and probabilistic roadmaps. 2002.

[LBL04] F. Lamiraux, D. Bonnafous, and O. Lefebvre. Reactive path defor-

mation for nonholonomic mobile robots. IEEE TR, 20(6):967–977,

2004.

131

[LC91] M. C. Lin and J. F. Canny. Efficient algorithms for incremental

distance computation. pages 1008–1014, 1991.

[LDK04] S. Loizou, D. Dimarogonas, and K. Kyriakopoulos. Decentralized

feedback stabilization of multiple nonholonomic agents. In ICRA,

volume 3, pages 3012–3017, 2004.

[LFV04] F. Lamiraux, E. Ferre, and E. Vallee. Connecting exploration trees

using trajectory optimization methods. In ICRA, pages 3987–3992,

April 2004.

[LK99] Steven M. LaValle and James J. Kuffner. Randomized kinodynamic

planning. pages 473–479, 1999.

[LK01a] S. LaValle and J. Kuffner. Rapidly exploring random trees:

Progress and prospects. In WAFR, pages 293–308, 2001.

[LK01b] S. M. LaValle and J. J. Kuffner. Randomized kinodynamic plan-

ning. IJRR, 20(5):378–400, May 2001.

[LK02] Andrew M. Ladd and Lydia E. Kavraki. Generalizing the analysis

of PRM. pages 2120–2125, 2002.

[LK04] A. M. Ladd and L. E. Kavraki. Measure theoretic analysis of prob-

abilistic path planning. IEEE TRA, 20(2):229–242, April 2004.

[LK05a] A. M. Ladd and L. E. Kavraki. Fast tree-based exploration of state

space for robots with dynamics. In WAFR, pages 297–312, 2005.

[LK05b] A. M. Ladd and L. E. Kavraki. Motion planning in the presence

of drift, underactuation and discrete system changes. In Robotics

Science and Systems-2005, June 2005.

[LL96] Florent Lamiraux and Jean-Phillippe Laumond. On the expected

complexity of random path planning. pages 3306–3311, 1996.

132

[LM91] M. C. Lin and D. Manocha. Fast interference detection between

geometric models. The Visual Computer, 11(10):542–561, 1991.

[MSTY05] P. J. Modi, W.-M. Shen, M. Tambe, and M. Yokoo. An asyn-

chronous complete method for distributed constraint optimization.

Artificial Intelligence Journal, 161(1-2):149–180, 2005.

[Mur07] R. M. Murray. Recent reseach in cooperative control of multi-vehicle

systems. (submitted) ASME Journal of Dynamic Systems, Measure-

ment, and Control, 2007.

[Nil69] N. J. Nilsson. A mobile automaton: An application of artificial

intelligence techniques. In 1st International Conference on Artificial

Intelligence, pages 509–520, 1969.

[NO04] D. Nieuwenhuisen and M. H. Overmars. Useful cycles in probabilistc

roadmap graphs. In IEEE Intl. Conf. on Robotics and Automation,

pages 446–452, 2004.

[O’D87] C. O’Dunlaing. Motion planning with inertial constraints. Algo-

rithmica, 2(4):431–475, 1987.

[OFL04] P. Ogren, E. Fiorelli, and N. E. Leonard. Cooperative control of

mobile sensor networks: Adaptive gradient climbing in distributed

environments. IEEE Tr. on Aut. Control, 49(8):1292–1302, 2004.

[O’R04] J. O’Rourke. Visibility. In J. E. Goodman and J. O’Rourke, editors,

Handbook of Discrete and Computational Geometry, 2nd Ed., pages

643–663. Chapman and Hall/CRC Press, New York, 2004.

[OS06] R. Olfati-Saber. Flocking for multi-agent dynamic systems: Algo-

rithms and theory. IEEE Tr. on Aut. Control, 51(3):401–420, 2006.

[Ov94] Mark H. Overmars and Petr Švestka. A probabilistic learning ap-

proach to motion-planning. pages 19–37, 1994.

133

[OY82] C. O’Dunlaing and C. K. Yap. A retraction method for planning

the motion of a disc. Journal of Algorithms, 6:104–111, 1982.

[PBC+05] E. Plaku, K. E. Bekris, B. Y. Chen, A. M. Ladd, and L. E.

Kavraki. Sampling-based roadmap of trees for parallel motion plan-

ning. IEEE TRA, 21(4):587–608, 2005.

[PDKC03] G. A. S. Pereira, A. K. Das, V. Kumar, and M. F. M. Campos. De-

centralized motion planning for multiple robots subject to sesnsing

and communication constraints. In Work. on Multi-Robot Systems,

2003.

[Pea88] J. Pearl. Probabilistic Reasoning in Intelligent Systems. Morgan

Kaufmann, 1988.

[Per83] T. Lozano Perez. Spatial planning: a configuration space approach.

February 1983.

[PF05] S. Petti and T. Fraichard. Partial motion planning framework for re-

active planning within dynamic environments. In AAAI Intl. Conf.

ICAR, Barcelona, Spain, September 2005.

[PK04] K. Plarre and P. R. Kumar. Extended message passing algorithm

for inference in loopy gaussian graphical models. Ad Hoc Networks,

2:153–169, 2004.

[PK06] E. Plaku and L. E. Kavraki. Quantitative analysis of nearest-

neighbors search in high-dimensional sampling-based motion plan-

ning. In Intl. Workshop on Algorithmic Foundations of Robotics

(WAFR), New York City, NY, 2006.

[PSFB06] L. Pallotino, V. G. Scordio, E. Frazzoli, and A. Bicchi. Decentral-

ized and scalable conflict resolution strategy for multi-agent sys-

tems. In Int. Symp. on Mathematical Theory of Networks and Sys-

tems, 2006.

134

[QK93] S. Quinlan and O. Khatib. Elastic bands: Connecting path planning

and control. In Proc. IEEE Int. Conf. on Rob. and Autom., pages

00–00, 1993.

[Qui94] S. Quinlan. Efficient distance computation between non-convex

objects. 1994.

[RBK07] M. Rickert, O. Brock, and A. Knoll. Balancing exploration and

exploitation in motion planning. In Proc. of the International Con-

ference on Robotics and Automation, ICRA-07, 2007.

[Rei79] J. H. Reif. Complexity of the Generalized Mover’s Problem. In

20th Annual IEEE Symposium on Foundations of Computer Sci-

ence, pages 421–427, San Juan, Puerto Rico, October 1979.

[RK92] E. Rimon and D. Koditschek. Exact Robot Navigation Using Ar-

tificial Potential Functions. IEEE Transactions on Robotics and

Automation, 8(5):501–518, Oct. 1992.

[RS90] J. A. Reeds and L. A. Shepp. Optimal paths for a car that goes

both forwards and backwards. Pacific J. Math., 145(2):367–393,

1990.

[SA01] G. Song and N. M. Amato. Randomized motion planning for car-

like robots with c-prm. In IROS, pages 37–42, Maui, Hawaii, Nov.

2001.

[SAS84] Micha Sharir and Elka Ariel-Sheffi. On the piano movers’ prob-

lem: IV. various decomposable two-dimensional motion planning

problems. 37:479–493, 1984.

[SB95] G. Singh and A. J. Bernstein. A highly asynchronous mini-

mum spanning tree protocol. Distributed Computing, 8(3):151–161,

March 1995.

135

[SBD+02] E. Schmitzberger, J. L. Bouchet, M. Dufaut, W. Didier, and R. Hus-

son. Capture of homotopy classes with probabilistic road map. In

IEEE/RSJ Int. Conf. on Robots and Systems, 2002.

[Sch87] H. M. Schaettler. On the optimality of bang-bang trajectories in

R3. Bull. AMS, 16(1):11–36, 1987.

[SD88] Z. Shiller and S. Dubowsky. Global time-optimal motions of robotic

manipulators in the presence of obstacles. In IEEE Intl. Conference

on Robotics and Automation, Philadephia, 1988.

[SH85] G. Sahar and J. Hollerbach. Planning of minimum-time trajec-

tories for robot arms. In IEEE Intl. Conference on Robotics and

Automation, St. Louis, 1985.

[Sha04] M. Sharir. Algorithmic motion planning. In J. E. Goodman and

J. O’Rourke, editors, Handbook of Discrete and Computational Ge-

ometry, 2nd Ed., pages 1037–1064. Chapman and Hall/CRC Press,

New York, 2004.

[SI06] M. Saha and P. Isto. Multi-robot motion planning by incremental

coordination. In IROS, 2006.

[SL03a] G. Sanchez and J.-C. Latombe. A single-query bi-directional prob-

abilistic roadmap planner with lazy collision checking. Robotics

Research, STAR 6, pages 403–407, 2003.

[SL03b] G. Sanchez and J.-C. Latombe. A single-query bi-directional prob-

abilistic roadmap planner with lazy collision checking. In ISRR,

pages 404–417, 2003.

[SLN00] T. Simeon, J.-P. Laumond, and C. Nissoux. Visibility-based prob-

abilistic roadmaps for motion planning. Advanced Robotics, 14(6),

2000.

136

[Smi06] Russell Smith. Open Dynamics Engine: v05. User Guide, February

2006.

[SS83a] Jacob T. Schwartz and Micha Sharir. On the piano movers’ prob-

lem: I. the case of a two-dimensional rigid polygonal body moving

admidst polygonal barriers. 36:345–398, 1983.

[SS83b] Jacob T. Schwartz and Micha Sharir. On the piano movers’ prob-

lem: III. coordinating the motion of several independent bodies:

The special case of circular bodies moving amidst polygonal barri-

ers. 2(3):46–75, 1983.

[SS84] Jacob T. Schwartz and Micha Sharir. On the piano movers’ prob-

lem: V. the case of a rod moving in three-dimensional space amidst

polyhedral obstacles. 37:815–848, 1984.

[SS85] E. Sontag and H. Sussmann. Remarks on the time-optimal control

of two-link manipulators. In Proc. of the 24th Conf. on Decision

and Control, Ft. Lauderdale, 1985.

[SSLO98] S. Sekhavat, P. Svestka, J.-P. Laumond, and M. H. Overmars.

Multilevel path planning for non-holonomic robots using semi-

holonomic subsystems. IJRR, 17:840–857, 1998.

[Šve97] P. Švestka. Robot Motion Planning using Probabilistic Road Maps.

PhD thesis, Utrecht University, the Netherlands, 1997.

[TPK04] H. G. Tanner, G. J. Pappas, and V. Kumar. Leader-to-formation

stability. IEEE TRA, 20(3), June 2004.

[US03] C. Urmson and R. Simmons. Approaches for Heuristically Biasing

RRT Growth. In Intl. Conf. on Intelligent Robots and Systems,

volume 2, pages 1178–1183, 27-31 Oct. 2003.

137

[WAS99] Steven A. Wilmarth, Nancy M. Amato, and Peter F. Stiller. Motion

planning for a rigid body using random networks on the medial axis

of the free space. pages 173–180, 1999.

[Wil88] G. Wilfong. Motion planning for an autonomous vehicle. In IEEE

Intl. Conference on Robotics and Automation, Philadephia, 1988.

[YH00] M. Yokoo and K. Hirayama. Algorithms for distributed constraint

satisfaction: A review. Autonomous Agents and Multi-Agent Sys-

tems, 3(2):189–212, 2000.

[YJSL05] A. Yershova, L. Jaillet, T. Siméon, and S. M. LaValle. Dynamic-

domain rrts: Efficient exploration by controlling the sampling do-

main. pages 3856–3861, Barcelona, Spain, 2005.

[YL07] A. Yershova and S. M. LaValle. Improving motion planning algo-

rithms by efficient nearest-neighbor searching. IEEE Transactions

on Robotics, 23(1):151–157, February 2007.

[YLVZ04] X. Yang, L. Liu, N. H. Vaidya, and F. Zhao. A vehicle-to-

vehicle communication protocol for cooperative collision warning.

In MOBIQUITOUS-04, 22-26 Aug. 2004.

[ZKB07] M. Zucker, J. Kuffner, and M. Branicky. Multipartite rrts for

rapid replanning in dynamic environments. In IEEE Int. Conf.

on Robotics and Automation, ICRA-07, 2007.

