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Peptide-MHC complexes are central components of the immune sys-
tem, and understanding the mechanism behind stable peptide-MHC
binding will aid the development of immunotherapies. While MHC
binding is mostly influenced by the identity of the so-called anchor
positions of the peptide, secondary interactions from non-anchor po-
sitions are known to play a role in complex stability. However, current
HLA-binding prediction methods lack an atomistic analysis of the
major conformational states of the system, and might underestimate
the impact of secondary interactions. In this work, we present an
atomically-detailed analysis of peptide-MHC binding that can reveal
the contributions of any interaction towards stability. We propose
a simulation framework that uses both umbrella sampling and adap-
tive sampling to generate a Markov state model (MSM) for a peptide
from SARS-CoV (QFKDNVILL), bound to one of the most prevalent
MHC receptors in humans (HLA-A*24:02). While our model reaffirms
the importance of the anchor positions of the peptide in establishing
stable interactions for binding, our model also reveals the underesti-
mated importance of position 4 (p4), a non-anchor position. We con-
firmed our results by simulating the impact of specific peptide mu-
tations, and validated these predictions through competitive binding
assays. Remarkably, by comparing the MSM of the wild-type system
with those of the D4A and D4P mutations, our modeling reveals stark
differences in unbinding pathways. The analysis presented here can
be applied to any peptide-MHC complex of interest with a 3D model
as input, representing an important step towards comprehensive and
accurate modeling of the MHC class I pathway.
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1. Introduction1

Class I major histocompatibility complexes (MHCs), also2

known as HLAs in humans, are proteins that bind to intracel-3

lular peptides and present them at the cellular surface (1). In4

the endoplasmic reticulum, MHCs are loaded with peptides5

of length 8–11 amino acids derived from cleaved intracellu-6

lar proteins. Then the combined peptide-MHC complex is7

transported to the cell surface to be inspected by surveilling8

T-cells. T-cell activation normally occurs when a cell presents9

peptides not found in healthy cells, triggering an immune10

response. Current efforts in immunotherapy aim to amplify11

this mechanism to target diseased cells (i.e., infected or tu-12

moral). Since every patient has a different set of MHCs, this13

problem must be addressed in a personalized manner, i.e.,14

by identifying disease-specific peptides that can bind to the15

MHCs of a particular patient or to MHCs that will provide16

broad population coverage.17

Therefore, a prerequisite for T-cell activation, or immuno-18

∗These authors contributed equally to this work

genicity, is stable binding to occur between a given peptide and 19

MHC (2). Peptides bound to MHCs on the cell surface can be 20

identified directly using mass spectrometry, and experiments 21

have been curated into databases such as SysteMHC Atlas 22

(3). Additionally, the binding affinities of peptides can be 23

measured with competitive binding assays, for example, which 24

can provide IC50 values. In turn, results from binding assay 25

experiments have been curated into databases such as the 26

Immune Epitope Database (IEDB) (4). This accumulation of 27

experimental data has led to the popularity of sequence-based 28

methods for peptide-MHC binding prediction. These methods 29

are based on machine learning, typically with neural networks, 30

trained on sequences of known peptide-MHC pairs and can 31

rapidly predict binding affinity (5–8). 32

Moving beyond a simple measurement or prediction of bind- 33

ing, uncovering the molecular mechanisms for strong binding 34

usually starts with an analysis of a structure of the bound com- 35

plex. Structures can be from one of the few hundred crystal 36

structures available at PDB, or modeled with a docking-based 37

approach (9–14). However, an analysis of a single conformation 38

may be misleading due to the flexibility of the structure (15), 39

and the dynamics of peptide-MHC binding must be probed. 40

Along this direction, experimental methods such as NMR 41

(16, 17), hydrogen/deuterium exchange (18), and fluorescence 42

anisotropy (19), have been used to gain insight into the flexibil- 43

ity of peptide-MHC complexes. However, these experimental 44

methods have particular limitations regarding the cost, the 45

size of the system, and the resolution of the results. 46

As an alternative, molecular simulations can be used to 47

analyze the stability and dynamics of peptide-MHC binding. 48
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Such analysis can cover the major conformational states of49

the process, while providing atomistic details that cannot be50

currently achieved with experimental methods. In this context,51

many simulation studies have focused on bound peptide-MHC52

complexes (20). Going even further, Ayres et al. built a53

simplified model for peptide flexibility in the binding site of54

a particular MHC (21), and Wan et al. used the MMPBSA55

method to compute binding free energy estimates from molecu-56

lar dynamics (MD) (22). For that, they simulated both bound57

peptide-MHC conformations and fully unbound conformations58

(22). While simulating bound/unbound states may be enough59

for accurate binding affinity prediction, information on the60

intermediate states and the transition between states is lack-61

ing. In another study, a coarse-grained Monte Carlo based62

framework was developed for generating detachment path-63

ways of peptides exiting the MHC binding site (23). These64

detachment pathways allow some analysis of the transition65

between bound and unbound states. However, the use of66

coarse-graining prevents atomic-level predictions of peptide-67

MHC interactions that could characterize the major states68

along the binding/unbinding pathways.69

Here we propose an analysis that goes beyond previous70

simulation studies, capable of revealing all the molecular inter-71

actions that are driving the stability of a peptide-MHC com-72

plex. In other words, we provide a model that can capture all73

the major conformational states along the binding/unbinding74

pathway, as well as the transitions between those states, us-75

ing atomistic MDs. Such models are known as Markov state76

models (MSMs) (24), and allow for the quantification of both77

binding affinity and stability for a given peptide-MHC com-78

plex (25–27). However, building MSMs of the whole binding79

process for peptide-MHCs, in atomic-level detail, is compu-80

tationally challenging. MHCs are large systems comprised of81

about 380 residues, which contribute to the high computational82

cost of MD. More importantly, the typical timescales involved83

in the binding process are significantly longer than current84

MD simulations are capable of reaching within a reasonable85

timeframe. For instance, while the timesteps of typical full-86

atom MD simulations are on the order of femtoseconds, the87

half-life of the more stable peptide-MHC complexes reaches88

tens of hours (2).89

To address the computational challenges, we propose a90

simulation framework for peptide-MHCs that splits the prob-91

lem into two stages: an exploration stage and a connection92

stage. The exploration stage makes use of umbrella sampling93

(28), which is a well known technique that can accelerate the94

sampling along an appropriate reaction coordinate. The con-95

nection stage makes extensive use of the relatively newer class96

of methods called adaptive sampling (27, 29–33). Adaptive97

sampling works by iteratively performing short MD simula-98

tions in parallel. At each iteration, the next round of MD99

simulations are initialized using conformations that aim to100

optimize exploration using a restart strategy. The restart101

strategy selects the conformations using all the simulation102

data already performed up to the given iteration. Adaptive103

sampling methods are typically performed in conjunction with104

MSMs (30, 32). MSMs are built by defining states and count-105

ing transitions between states, producing a transition matrix106

that contains the transition probabilities. Thus, MSMs do not107

require each individual simulation to be long for construction,108

only long enough to be able to count transitions. Adaptive109

sampling methods combined with MSMs are becoming increas- 110

ingly popular as a way to accelerate the sampling of MD, and 111

recent studies have been investigating how to optimize its 112

use (32–35). 113

As an example case, we focus this work in studying the 114

binding of the viral peptide QFKDNVILL with the human 115

MHC receptor HLA-A*24:02. The choice of this system is 116

interesting in multiple regards. First, a crystal structure is 117

available for this system (36), which we use to begin our mod- 118

eling. Second, HLA-A*24:02 is one of the most prevalent 119

HLA allotypes in the human population (4), being therefore 120

highly relevant for several biomedical applications. Third, the 121

displayed peptide is derived from the nucleocapsid protein of 122

SARS-CoV, and this protein has over 90% sequence similar- 123

ity with that of SARS-CoV-2 (37). Therefore, insights from 124

this system may be relevant for the current and/or future 125

coronavirus epidemics. Finally, the popular sequence-based 126

predictor NetMHC4.0 (5) fails to correctly predict the binding 127

affinity of this peptide, potentially neglecting the role of key 128

secondary interactions. 129

Class I MHCs usually bind peptides through dominant 130

inter-molecular interactions that typically involve the residues 131

at both ends of the peptide (so called anchor residues). The 132

chemical properties of deeper pockets in the MHC binding 133

cleft determine the “identity” of the preferred anchor residues. 134

As a consequence, we can usually summarize the binding 135

profile of a particular MHC allotype by specifying the types 136

of residues found in the anchor positions. For instance, IEDB 137

data indicates that the anchor residues for peptides binding to 138

HLA-A*24:02 are position 2 (p2 anchor) and the last residue 139

(C-term anchor); with a preference for hydrophobic residues in 140

both positions (4). In particular, the p2 anchor is preferentially 141

a tryptophan (W) or tyrosine (Y), but the corresponding 142

pocket can tolerate a phenylalanine (F). The C-term anchor is 143

preferentially a phenylalanine (F), isoleucine (I), or tryptophan 144

(W), but the corresponding pocket can also tolerate a leucine 145

(L) or methionine (M). Note that the amino acid binding 146

chart at IEDB does not indicate any relevant preferences 147

for peptide positions p3-p6. Although anchor residues vary 148

depending on the MHC allotype, middle positions are usually 149

considered to be more exposed to T-cell interaction, and less 150

relevant for peptide-MHC binding (38). Interestingly, the 151

viral peptide QFKDNVILL, called WT in this work, has both 152

anchor positions as “tolerated" residues. The lack of any 153

preferred anchors might explain the very low binding affinity 154

predicted by NetMHC4.0 for this complex (7,769.11 nM). 155

While the strongest contacts in the WT system are likely to 156

still be formed by the anchor residues, we are interested in the 157

role of secondary interactions involving the other non-anchor 158

peptide positions, which may play a larger role in the absence 159

of strong primary anchors. 160

Thus, the objective of this work is to investigate the role 161

of secondary interactions in the binding of QFKDNVILL to 162

HLA-A*24:02. Using our proposed simulation framework (Fig. 163

1), we generate over 150 microseconds of MD data to build 164

a MSM of the entire binding/unbinding process. Our model 165

predicts that QFKDNVILL is capable of binding to HLA- 166

A*24:02, and mutational analysis based on reweighting of this 167

WT system reveals the importance of the non-anchor residue in 168

position 4. Additional MSMs of two mutated peptide-variants 169

(D4A and D4P), generated using around 500 microseconds 170
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of total MD data, were used to predict the relative ranking171

of these 3 systems, and this ranking was confirmed using172

competitive binding assays. Detailed analysis of the MSMs173

for the three different systems has revealed both alternative174

peptide-unbinding pathways, as well as alternative ways in175

which p4 can affect peptide-MHC stability. Structural analysis176

of MHC-binders that lack canonical primary anchors, as the177

one described here, may provide the key to identify valuable178

peptide-targets that are being currently missed in vaccine179

development and T-cell-based immunotherapy efforts.180

2. Results181

A. New simulation framework enables building MSM for pep-182

tide-MHC binding/unbinding. A new simulation framework183

(Fig. 1) is used to generate MD data to build an MSM of the184

WT system. Characteristics of the exploration and connection185

stages for the WT system can be found in the SI Appendix (SI186

Appendix, Fig. S1). A total of 160 microseconds of aggregate187

simulation data was generated, where each simulation takes188

approximately 15 hours on 1 Tesla V100 GPU, taking about189

2,600 GPU-hours total. Time-lagged independent components190

analysis (TICA) was performed to reduce the dimensionality191

of the conformations (39, 40). We keep the top two inde-192

pendent components, which adequately capture two different193

detachment pathways that the peptide takes to go from the194

native state to the unbound state (SI Appendix, Fig. S2 and195

S3). One component roughly represents the detachment of196

the N-term while the second represents the detachment of197

the C-term. After discretization of the TICA space into mi-198

crostates, the discrete Transition-based Reweighting Analysis199

Method (dTRAM) (41) was used to combine the biased and200

unbiased trajectories from the two stages of the simulation201

framework into a final MSM (see Materials and Methods, and202

SI Appendix, Fig. S2–S4).203

We partition the microstates into 5 states, which were204

defined to distinguish between the major metastable states205

along the binding pathway based on a previous study of de-206

tachment pathways (23). Detachment pathways are mainly207

distinguished by the order in which the anchor residues detach208

from the corresponding MHC pocket (23), which we captured209

in the MSM through TICA. The two endpoints of binding210

are the native state (State 0) and the unbound or dissociated211

state (State 4). The native state (State 0) is defined as the set212

of all microstates with an average all-atom RMSD of below213

0.2 nm from the crystal structure. The unbound/dissociated214

state (State 4) is defined as the set of microstates where the215

minimum distance between the peptide and MHC is greater216

than 0.5 nm. The next two states define partially bound states217

where only a single anchor of the peptide is in the correspond-218

ing MHC pocket. N-term bound state (State 1) is defined as219

the set of non-native microstates where the center of mass of220

position 2 in the peptide is below 0.2 nm from the center of221

mass of the native position 2 location. C-term bound state222

(State 2) is defined as the set of non-native microstates where223

the center of mass of position 9 in the peptide is below 0.2 nm224

from the center of mass native position 9 location. State 3225

defines all the other associated microstates which have the pep-226

tide in contact with the MHC. Typical conformations found227

within each of the 5 states can be found in Fig. 4.228

The MSM for WT predicts that the native state is the most229

probable state (P (native state) = π0 = 0.906), despite the lack230

of strong primary anchors. Therefore, our model predicts the 231

stable binding of QFKDNVILL to HLA-A*24:02, which is in 232

line with crystallographic evidence (36). The predicted free 233

energy of binding was ∆GWT = −7.19 ± 1.02 kJ/mol. 234

B. Mutational analysis of the WT MSM reveals the impor- 235

tance of peptide’s position 4 towards binding. We used the 236

MSM of the WT system to perform mutational analysis based 237

on reweighting the state probabilities computed from the MSM, 238

and predict the change to the binding affinity upon alanine mu- 239

tation (Fig. 2). Unsurprisingly, the F2A and L9A mutations 240

were predicted to be most disruptive to binding, as positions 2 241

and 9 are the primary anchor residues for this peptide. How- 242

ever, the D4A mutation was also predicted to be remarkably 243

disruptive to peptide binding (Fig. 2). This implies that sec- 244

ondary interactions involving p4 must be particularly relevant 245

for the binding of WT. 246

Table 1. Destabilization of the metastable states upon alanine mu-
tation. The table contains the values RT [ln(ZSi

wt/Z
dissociated
wt ) −

ln(ZSi
mut/Z

dissociated
mut )] in kJ/mol (see Materials and Methods) for all

associated states Si. Computed values are all in reference to the
dissociated state, so the values for State 4 would all be zero.

Mut.\State 0 1 2 3
F2A 38.7 37.7 7.3 6.7
D4A 14.9 17.5 3.5 4.6
L9A 19.8 1.1 15.9 8.7

We can decompose the effect of the alanine-exchanges across 247

the different associated states (i.e., States 0, 1, 2, and 3) (Table 248

1). Mutating the anchor residues (i.e., p2 and p9) has the 249

expected effect of destabilizing the states associated with the 250

presence of these respective positions in the corresponding 251

MHC pockets. In other words, for the F2A mutation, the 252

native state (State 0) and the N-term bound state (State 253

1) are most destabilized, while for the L9A mutation, the 254

native state and the C-term bound state (State 2) are most 255

destabilized. The native state (State 0) and the N-term bound 256

state (State 1) are also most destabilized for the D4A mutation. 257

Given that this peptide is a 9-mer, position 4 is closer to the 258

N-term side, and is likely playing a role in stabilizing the 259

interactions from that end. 260

We can use the WT MSM to analyze the relevant inter- 261

molecular contacts by computing the probability that a given 262

contact exists while the system is within a particular State 263

(SI Appendix, Fig. S5–S8). In the native state (State 0), the 264

aspartic acid in position 4 of the peptide (D4) was more likely 265

to interact with MHC residues K66, Q155, Y159 and T163 (SI 266

Appendix, Fig. S5). Given the 3D arrangement of the binding 267

cleft (Fig. 5), the D4-K66 and D4-T163 interactions are not 268

surprising. On the other hand, the contributions of Q155 and 269

Y159 are less obvious, despite being predicted to be even more 270

important for the N-term bound state (SI Appendix, Fig. S5). 271

The mutational analysis can be performed on the MHC side 272

as well, and we used the MSM of the WT system to evaluate 273

the impact of mutations Q155A and Y159A. Interestingly, the 274

MSM predicts Y159A to have a similar detrimental impact on 275

binding (∆GY159 = 4.86 ± 0.77 kJ/mol) as that observed for 276

the D4A mutation. The same impact was not predicted for 277

Q155A (∆GQ155A = −7.52 ± 0.37 kJ/mol). Visual inspection 278

of conformations obtained from State 0 and State 1 indicate a 279

network of hydrogen bonds involving D4 and MHC residues 280

Abella et al. PNAS | October 12, 2020 | vol. XXX | no. XX | 3
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Fig. 1. Overview of the simulation framework. a) The exploration stage involves running umbrella sampling simulations along the z-dist reaction coordinate, which approximates
the unbinding direction. Bi is the energy bias, while k is the force constant. The β-sheet floor of the MHC (light blue) is aligned to the XY-plane, then the Z-coordinate is used
to define z-dist. The truncated portion of the MHC (light gray) is not included in any of the simulations. b) The connection stage involves running unbiased simulations in an
adaptive sampling fashion until most of the states are connected. Restarting conformations are chosen by analyzing the trajectories in a dimensionality-reduced space using
TICA that adequately capture the binding/unbinding pathway. Then the selection of conformations is biased towards the less densely sampled regions of the TICA space.

Fig. 2. ∆∆G predictions from the mutational analysis. The black dotted line rep-
resents the predicted ∆GWT of−7.19 kJ/mol. The gray dotted line represents the
separation between predicted binders and nonbinders. Alanine mutations in positions
2, 4, and 9 are all predicted to significantly impair binding, while alanine mutations in
positions 1, 5, and 7 are predicted to reduce the binding affinity.

K66 and T163. Due to the side chain flexibility of D4, direct281

hydrogen bonds between D4-Q155 and D4-Y159 can also be282

observed in some conformations.283

C. MSMs of D4A and D4P indicate alternative roles for p4. To284

confirm the dominant role of hydrogen bonds on the bene-285

ficial role of p4 for peptide binding, we created MSMs with286

two peptide variants: D4A and D4P. Characteristics of the287

exploration and connection stages for the D4A system can be288

found in the SI Appendix (SI Appendix, Fig. S9). A total of289

213 microseconds of aggregate simulation data was used to290

build the MSM (see Materials and Methods, and SI Appendix, 291

Fig. S10–S12), taking approximately 3,000 GPU-hours to 292

complete. Our model for D4A predicts that the unbound state 293

is the most probable state (P (unbound state) = π4 = 0.601). 294

We predict ∆GD4A = 1.02 ± 1.01 kJ/mol, thus corroborating 295

the mutational analysis prediction based on the WT network 296

(Fig. 2), and predicting QFKANVILL to be a much weaker 297

binder to HLA-A*24:02. 298

Characteristics of the exploration and connection stages 299

for the D4P system can be found in the SI Appendix (SI 300

Appendix, Fig. S13). A total of 293 microseconds of aggregate 301

simulation data was used to build the MSM (see Materials and 302

Methods, and SI Appendix, Fig. S14–S16), taking approxi- 303

mately 4,300 GPU-hours to complete. By replacing the flexible 304

polar D4 with a rigid nonpolar P4, we expected to observe 305

similar results to that of D4A. Surprisingly, the resulting MSM 306

predicted D4P to be a stronger binder (∆GD4P = −8.01±0.18 307

kJ/mol) than WT. We also evaluated the impact of the MHC 308

mutations Q155A and Y159A using the MSM of D4P, but 309

these mutations were not predicted to affect the binding of 310

the peptide. Taken together, these results indicate that P4 311

benefits peptide-MHC binding through a mechanism that is 312

different from that observed for D4 (i.e., does not rely on 313

hydrogen bonds with the aforementioned MHC residues). 314

D. Competitive binding assays confirm predicted ranking of 315

relative binding affinities. To validate our MSM-derived pre- 316

dictions we performed competitive binding assays with WT, 317

D4A and D4P (Fig. 3). First, QFKDNVILL (WT) shows 318

partial inhibition across a variety of concentrations (IC50WT = 319

1,600 nM), but does not reach the level of the positive control. 320

This confirms the MSM prediction of weak yet stable binding 321

of WT towards HLA-A*24:02. Note that NetMHC4.0 not 322

only predicts this peptide to be a much weaker binder (7,769 323

4 | www.pnas.org/cgi/doi/10.1073/pnas.XXXXXXXXXX Abella et al.
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nM), but also predicts D4A to be a stronger binder (4,154324

nM). However, our binding assay with D4A shows little to no325

inhibition across concentrations (IC50D4A > 6,000 nM), thus326

confirming the MSM prediction that this mutation significantly327

impairs binding to HLA-A*24:02. Finally, the binding assay328

of D4P confirmed the MSM prediction that this mutation in329

fact enhances binding to HLA-A*24:02 (IC50D4P = 600 nM).330

Fig. 3. Competitive binding assays to determine the ranking of WT, D4A and D4P.
Based on the relative position of the WT curve (green plus) versus the positive
control (blue circle), we see that QFKDNVILL is indeed a weak binder to HLA-A*24:02
(IC50WT = 1,600 nM). Upon mutation of D4 to an alanine, inhibition is significantly
reduced (IC50D4A > 6,000 nM) as the D4A curve (red cross) is most similar to the
negative control (purple triangle). Upon mutation of D4 to a proline, inhibition is
increased (IC50D4P = 600 nM) as the D4P curve (orange square) is most similar to
the positive control.

E. MSM flux analysis reveal alternative unbinding pathways.331

By comparing the WT MSM with the MSM of the mutants332

(D4A and D4P), we can identify differences in unbinding path-333

ways. This analysis was done by computing the percentage334

of flux that goes from the native state (State 0) to the un-335

bound state (State 4). Fig. 4a shows that the majority of336

WT unbinding pathways first detach from the C-term end.337

However, upon D4A mutation, the majority of unbinding path-338

ways detach first from the N-term end (Fig. 4b). Note that339

both pathways are accessible for the D4A system, but the lack340

of stabilizing interactions involving position 4 allows for the341

alternate unbinding route. In addition, D4A prefers to stay in342

the unbound state (State 4), as opposed to WT ’s preference343

of staying in the bond state (State 0). The stabilizing effect344

of D4 on WT seems primarily related to the interaction with345

MHC positions K66, T163, Y159 and Q155, respectively. In-346

terestingly, these positions are mostly conserved across HLA347

allotypes (SI Appendix, Fig. S17). In particular, D4 interac-348

tions with K66 and T163 can be easily observed both in State349

0 and State 1 (Fig. 5), which is consistent with the role of350

stabilizing the N-term portion of the peptide.351

The D4P mutation revealed a different picture. Like D4A,352

the D4P system has a preference to unbind from the N-term353

first. In fact, all sampled unbinding trajectories for the D4P354

system showed the N-term detaching first, and there were355

zero trajectories sampled where the C-term detaches first356

(i.e., although the MSM included transitions from State 0357

to State 1, and from State 1 back to State 0, none of the358

trajectories included transitions from State 1 to States 3 and359

4). However, unlike D4A, D4P is a more stable binder, and 360

the various bound states (States 0, 1 and 2) have higher 361

equilibrium probabilities (Fig. 6a). Therefore, the inability 362

of D4P to detach first from the C-term side represents a 363

decrease in unbinding options of the system, even offsetting 364

any destabilizing effect from the lack of a salt-bridge with p4. 365

Finally, Fig. 6a shows that the native state for the D4P 366

system appears to be relatively less stable than other interme- 367

diate states as compared to the WT system, despite being a 368

stronger binder. Currently, it is not known whether QFKP- 369

NVILL is immunogenic. In addition to the lack of a charged 370

residue in the TCR binding interface, T-cell recognition of this 371

complex may be impaired by a less stable peptide-MHC native 372

state. However, further experiments are needed to investigate 373

the immunigenicity of the D4P system. 374

F. Proline’s rigid backbone prevents torsions that would fa- 375

cilitate unbinding. The D4P system has a strong preference to 376

unbind from the N-term side first. While it is possible for the 377

D4P system to be in a state with the C-term unbound (State 378

1, Fig. 6a), our sampling suggests that it is difficult for con- 379

formations to then progress to a state in which the N-term is 380

subsequently unbound (State 3). To investigate why, the back- 381

bone torsions of position 4 were extracted from the unbinding 382

trajectories of WT and D4A where the C-term unbinds first 383

and compared with the Ramachandran plot of prolines (42). 384

In Fig. 6b, we see that trajectories starting in the native state 385

(State 0) lie in regions overlapping with the possible phi/psi 386

angles for prolines. However, as the WT/D4A transitions to 387

having the C-term unbind first (State 1), p4 adopts a back- 388

bone conformation that is inaccessible for prolines. Unbinding 389

trajectories continue to be outside the accessible region of pro- 390

lines as WT/D4A transition from State 1 to State 3 (anchors 391

unbound, but peptide in contact with MHC). Therefore, the 392

rigidity of the proline backbone in D4P prevents transitions 393

from State 1 to State 3, and subsequently from becoming fully 394

unbound. 395

3. Discussion 396

In this work, we studied the mechanism behind stable binding 397

of QFKDNVILL to HLA-A*24:02. We proposed a simulation 398

framework that makes it feasible to generate MD data to build 399

an MSM of the entire binding/unbinding process. As expected, 400

our model predicted the importance of the anchor residues 401

in positions 2 and 9, as demonstrated by mutational analysis. 402

Interestingly, these analyses also singled out the contribution 403

of the non-anchor position 4 to the stability of the system. To 404

further explore the role of this position on peptide binding, 405

we used our model to estimate the impact of two different 406

mutations over peptide’s binding affinity, and later confirmed 407

our prediction with competitive binding assays. While D4A 408

significantly impairs peptide binding, D4P leads to stronger 409

binding. 410

In addition, by building the MSMs for each of these systems 411

we were able to observe alternative unbinding pathways. While 412

the WT system is more likely to start unbinding from the 413

C-term end, both D4A and D4P are more likely to unbind 414

the N-term first. This behavior is consistent with the lost 415

of key interactions observed in the WT system, particularly 416

between p4 and MHC residues K66, Q155, Y159 and T163. 417

Interaction with K66 is not surprising, since a D4-K66 salt- 418
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Fig. 4. Flux network of unbinding trajectories for the WT system. States 0, 1, 2, 3 denote the set of associated states that have the peptide in contact to the MHC. State 4
represents the dissociated or unbound state. Size of the nodes (depicted in red) indicate the equilibrium probabilities of each state (πi). a) The WT system prefers to unbind
through detaching first on the C-term end (State 0 to State 1 transition) due to the stronger interactions on the N-term end, which include the aspartic acid in position 4. b) With
a single mutation, the D4A system prefers to unbind through detaching first on the N-term end (State 0 to State 2 transition), and the accessibility of both detachment pathways
favors the instability of the D4A system. Note that the MSM model includes all transitions between nodes, in all directions. However, this flux network depicts only trajectories
starting from State 0 and reaching State 4 (i.e., unbinding pathways).
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Fig. 5. Representative conformations in the WT system from State 0 (native state) and State 1 (N-term bound state). Panels (a) and (b) depict the side views of States 0 and 1,
respectively. These states can be distinguished by the location of the C-term of the peptide relative to the MHC binding cleft (i.e., proximity to the F pocket). Panels (c) and (d)
depict the top views of States 0 and 1, respectively. Peptide’s position 4 (p4) residue (aspartic acid, D) is depicted in magenta (carbon atoms in magenta; oxygen atoms
depicted in red). Other peptide positions are depicted in green. Key MHC residues predicted to interact with p4 are depicted in yellow (carbon atoms in yellow; oxygen atoms
depicted in red; nitrogen atoms in blue; hydrogen atoms in white), including lysine 66 (K66), threonine 163 (T163), tyrosine 159 (Y159) and glutamine 155 (Q155). Hydrogen
bonds involving any of these residues are depicted in yellow dashed lines.

bridge can be observed on the original crystal structure (PDB419

code 3I6L), as well as in other conformations corresponding to420

the bound state (Fig. 5c). In particular, K66 and T163 seem to421

be able to keep D4 in place, even when the peptide is already422

partially unbound from the C-term end (Fig. 5d). Visual423

inspection also suggest other roles for these MHC residues,424

notably interactions between p1-Y159 and p5/p6-Q155 (Fig. 5)425

Interestingly, our model also predicts direct interactions426

between D4 and both Q155 and Y159 (Fig. S5-S6). In fact,427

the Y159A exchange had a negative impact on the binding of428

the WT, similar to that observed for D4A. The same impact429

was not detected when introducing Y159A on the D4P system.430

Taken together these results suggest two different mechanisms431

through which p4 can contribute to peptide-MHC stability.432

Polar residues, particularly negatively charged residues, such433

as aspartic acid, can benefit from a network of conserved434

interactions that help stabilize the N-term end of the peptides.435

On the other hand, having a proline at p4 makes it harder for436

the peptide backbone to bend in ways that would favor peptide437

detachment (Fig. 6). Although our analysis was limited to438

a few peptide-MHCs of interest, we believe the two binding439

mechanisms involving p4 might be of broader relevance to 440

peptide-MHC binding in general. Two interesting observations 441

provide additional support to this hypothesis. First, all the 442

aformentioned MHC residues, that are potential p4 contacts, 443

are present in the consensus sequence produced by aligning 444

over 10,000 protein sequences including HLA-As, HLA-Bs and 445

HLA-Cs (SI Appendix, Fig. S17). The prevalence of K66 is 446

not very high, about 40% across all types, being often replaced 447

with N in HLA-As and I in HLA-Bs. T163 is particularly 448

high among HLA-A sequences (74%). Most notably, Q155 and 449

Y159 are present in over 99.9% of the sequences for all HLA 450

types, and the peptide-binding contribution of these specific 451

MHC positions has been observed in previous studies (43, 452

44). Second, across sequences of HLA-binders, the observed 453

frequencies of aspartic acid and proline were shown to be 2.2 454

times more frequent than expected relative to the proteome 455

(7). Another negatively charged residue, glutamic acid, was 456

also found to be 1.6 times more frequent than expected (7). 457

Further experimental studies will be needed to investigate the 458

differential contribution of these interactions on the binding 459

of different peptides, and across different HLA allotypes. 460
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(a) D4P flux network

(b) Ramachandran plot of p4 for unbinding trajectories in WT /D4A

Fig. 6. (a) Flux network of unbinding trajectories for the D4P system. The introduction
of a proline forces the unbinding starting from the N-term side (State 2). (b) (Blue
contour) Phi/Psi angles (in radians) of position 4 from WT /D4A unbinding trajectories
where the C-term side unbinds first. The bottom region cover States 0 and 1, while the
top region covers State 3. (Orange border) Ramachandran plot of accessible phi/psi
angles of proline. Unbinding trajectories during the transition from State 1 to State 3
lie in regions that do not overlap with the accessible phi/psi angle of proline. Thus,
the unbinding trajectories adopt backbone conformations of p4 that are incompatible
with the rigidity of proline. Note that the MSM of D4P (a) includes transitions from
State 0 to State 1, and from State 1 back to State 0. However, these transitions are
not depicted in the flux network, since none of the paths passing by State 1 were able
to progress to State 4.

This is the first work to apply MSMs to describe the pre- 461

ferred unbinding pathways for peptide-MHC complexes. In 462

addition, to the best of our knowledge, this is also the largest 463

computational exploration of peptide-MHC dynamics to date 464

(over 650 microseconds). This unique combination of methods 465

provided a wealth of information on the studied systems, in- 466

cluding the contributions of particular interactions to peptide 467

binding and complex stability. Such analysis can also be done 468

for any other peptide-MHC of interest, provided an initial 3D 469

structure of the complex. In the absence of a crystal structure, 470

an appropriate 3D model could be used, and our group has 471

also contributed tools for this particular task (13, 14). The 472

computational cost to build the MSMs was manageable and 473

was done using local GPU computing clusters (about 10000 474

GPU-hours compared to 115,000 GPU-hours in (26)). 475

While this work demonstrates the feasibility of using MD 476

and MSMs to study peptide-MHC dynamics, it is important 477

to note that the approximations performed here could have 478

an impact on obtained results. The use of implicit solvent, for 479

instance, can have an effect on the dynamics of the system 480

and artificially accelerate the time for events to occur. In 481

addition, hydrophobic interactions are typically the major 482

contributions of peptide-MHC binding, particularly for the 483

anchor residues, and the finite size of water molecules may 484

need to be accounted for. Finally, there is evidence of allostery 485

where peptide binding affected the dynamics of remote regions 486

in HLA-A2, including the α3 and β-2 microglobulin domains 487

(45). While we used positional restraints on the β-sheet floor 488

to minimize the potential impact, the full effect of the MHC 489

truncation in our simulations is unknown. 490

Future work can focus on ways to improve the accuracy of 491

the final MSM. This is likely in the form of including more 492

atoms into the system, such as the β-2 microglobulin portion of 493

the MHC, explicit water molecules, or even the other proteins 494

involved in keeping MHCs in the peptide-receptive state (46). 495

However, the simulation output similarly needs to be kept high 496

in order for enough statistics to be generated. Other enhanced 497

sampling approaches (47) could conceivably be done as long as 498

there is a way to produce an unbiased MSM in the end. The 499

use of coarse graining is also promising, however it is highly 500

nontrivial to perform in such a way that does not negatively 501

influence the computation of kinetic quantities (48, 49). 502

Finally, it is worth nothing that the peptide studied here 503

(QFKDNVILL) was derived from the nucleocapsid protein of 504

SARS-CoV, and a highly similar peptide exists in the nucleo- 505

capsid protein of SARS-CoV-2 (NFKDQVILL). The differences 506

between the two peptides do not appear to be significant, as 507

asparagine and glutamine are both polar, uncharged residues. 508

More importantly, both peptides share the same residues in 509

positions 2, 4, and 9, which means that the analysis we have 510

performed here likely apply to both systems. Finally, given 511

that D4 and K66 are exposed for the recognition by T-cells, 512

this conserved interaction could be the focus of cross-reactive 513

T-cell responses (i.e., T-cells primed with QFKDNVILL may 514

also recognize NFKDQVILL). In fact, cross-reactivities involv- 515

ing D4 in other viral peptides have already been predicted (50) 516

and confirmed experimentally (51). Regardless of its role in 517

T-cell recognition, the alternative roles of p4 in peptide-MHC 518

binding and stability highlight the importance of structure- 519

based methods in the analysis of peptide-MHC binding, and 520

the discovery of peptide-targets for several immunotherapy 521
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applications.522

Materials and Methods523

524

Molecular dynamics protocol. In this work, we simulate only the525

binding site of the MHC in order to make the whole framework526

more computationally tractable. While the entire peptide-MHC527

complex is a large system of around 380 residues total, we exclude528

the β-2 microglobulin and portions of the α chain (α-3) of the529

MHC, leaving two α-helices (α-1 and α-2 in yellow, Fig 1a) and530

the β-sheet floor (in light blue, Fig 1a) that enclose the bound531

peptide. This roughly results in a system half the size of the532

original (around 190 residues total). The MHC portion that was533

truncated is likely important for overall stability of the MHC, so in534

all simulations we include a positional restraint on the Cα atoms of535

the β-sheet floor (force constant: 100 kJ/mol/nm2), which include536

the main contacts formed between the simulated binding site and537

the truncated portion.538

In all simulations, the AMBER99sbildn (52) force field was539

used with implicit solvent (GBSA OBC) (53). Simulations were540

performed at 300 K with the Langevin integrator (friction coefficient:541

0.1 ps−1). The hydrogen masses were artificially increased to 4 amu542

to allow a 4 fs timestep. Starting conformations were equlibrated543

for 500 ns with the positional restraints on the Cα atoms of the544

whole system.545

Exploration stage: umbrella sampling. Umbrella sampling is used546

to accelerate the exploration of the relevant states of the bind-547

ing process. Biased sampling is needed here since the half-life of548

peptide-MHC binding can be on the order of seconds or greater549

(2). Starting with the crystal structure of WT (PDB: 3I6L), we550

generate detachment/unbinding pathways of the peptide.551

The geometry of the MHC allows us to define a convenient552

reaction coordinate for the umbrella sampling. Bound peptides553

are enclosed between two α-helices atop a β-sheet floor. In order554

to detach, peptides must essentially unbind in a direction that is555

approximately normal to the β-sheet floor (23), which is roughly556

planar (50). We can see from Fig. 1a that the principal axis of the557

(non-truncated) system happens to roughly align with this direction.558

Thus, if the principal axis is aligned to the Z direction in Euclidean559

space, the β-sheet floor becomes approximately aligned to the XY560

plane, and a bias along the Z direction can be used to accelerate561

sampling along the binding/unbinding pathway. The biases for the562

umbrella sampling simulations are based on the distance between563

the center of masses of the peptide and the MHC along the Z-564

coordinate. We will call this distance the z-dist. We use the Cα565

atoms of the β-sheet floor as a stable set of atoms to compute the566

center of mass for the MHC; these are the same atoms from which567

we add positional restraints.568

Given the description of the reaction coordinate above, we run569

umbrella sampling simulations across z-dist umbrellas centered570

from 1.0–3.0 nm (in increments of 0.1 nm) with a force constant571

of 100 kJ/mol/nm2, where the the z-dist of the native state is572

approximately 1.0 nm. Each simulation was run for approximately573

1 microsecond, producing many detachment trajectories across the574

runs. Additional umbrella sampling simulations were done for D4A575

with a looser force constant (10 kJ/mol/nm2) given that the peptide576

is known to be a nonbinder and is less stable. Several replicates577

were performed, particularly for umbrellas centered in the 2.0–3.0578

nm range in order to sample more association/dissociation events.579

Connection stage: Generating transition statistics with adaptive580

sampling. In this stage, we use adaptive sampling to run enough581

unbiased molecular dynamics to produce a final MSM that connects582

most of the states generated (Fig. 1b). At each iteration, a new set583

of about 20 unbiased molecular dynamics simulations are spawned584

from starting conformations chosen from less densely sampled re-585

gions of the conformational space. The conformations are chosen586

based on the analysis of the set of trajectories that have already been587

generated. Trajectories are first featurized using residue-residue588

contacts (defined as the the closest heavy atom distance) between589

peptide with MHC and peptide with itself. Then the conformations590

are mapped to the two leading independent components using time- 591

lagged independent components analysis, or TICA (39, 40) (lag 10 592

ns), and the space is discretized into microstates with K-means (100 593

clusters). Next, microstates are chosen with probability inversely 594

proportional to the number of conformations mapped to it, and 595

a conformation is uniformly randomly chosen from the microstate 596

as a starting point for the next round of simulations. We repeat 597

the adaptive sampling iterations until a MSM can be built using 598

more than 90% of the microstates (SI Appendix, Fig. S1, S9, and 599

S13). All simulations were run using CUDA and OpenMM (54) and 600

performed on NOTS as part of Rice University’s Center of Research 601

Computing. 602

Building the MSMs. Similar to the adaptive sampling process, the 603

trajectories were featurized using residue-residue contacts between 604

peptide with MHC and peptide with itself, resulting in 1692 con- 605

tacts. We extract 2 independent components using TICA using 606

a lag time of 10 ns based on the convergence of timescales (SI 607

Appendix, Fig. S2a, S10a, and S14a). The two leading indepen- 608

dent components adequately capture the transition to and from 609

the native and unbound states (SI Appendix, Fig. S3, S11, and 610

S15). This space was discretized into microstates using K-means 611

with 100 clusters. From the trajectories on the discretized space, 612

discrete Transition-based Reweighting Analysis Method (dTRAM) 613

was used to build a Markov state model (41), taking into account 614

the biases introduced with the umbrella sampling simulations. A 615

final MSM was constructed using a lag time based on the con- 616

vergence of timescales (SI Appendix, Fig. S2b, S10b, and S14b). 617

Error bars are computed based on a moving block procedure for 618

bootstrapping (55). The final MSMs are self-consistent based on 619

the Chapman-Kolmogorov test (SI Appendix, Fig. S4, S12, and 620

S16). All analysis was performed using MDTraj (56) and Pyemma 621

(57). The data and scripts for analysis are available upon request. 622

Mutational analysis. We can estimate the changes in the free energy 623

of binding upon mutation (∆∆G) for all nine residues in the peptide. 624

We do this with free energy perturbation theory (58, 59). The change 625

in binding free energy is computed as 626

∆∆G = ∆Gmut −∆Gwt
= (Gassociated

mut −Gdissociated
mut )− (Gassociated

wt −Gdissociated
wt )

= (Gassociated
mut −Gassociated

wt )− (Gdissociated
mut −Gdissociated

wt )

= −RT ln(
Zassociated
mut

Zassociated
wt

) +RT ln(
Zdissociated
mut

Zdissociated
wt

)

[1] 627

where RT = 2.479 kJ
mol at temperature T = 298K, and Z is 628

the configurational partition function for the corresponding system. 629

The last two terms represent ∆Gassociated
wt−>mut and −∆Gdissociated

wt−>mut , thus 630

completing the free energy cycle. Positive values of ∆∆G indicate 631

that the mutant is a weaker binder, while negative values of ∆∆G 632

indicate that the mutant is a stronger binder. 633

The ratio of configurational partition functions over a state S, 634

can be manipulated as follows: 635

ZSmut
ZSwt

=
1
ZSwt

∫
S

e−βUmut(x)dx

=
1
ZSwt

∫
S

e−βUmut(x)eβUwt(x)e−βUwt(x)dx

=
1
ZSwt

〈e−β(Umut(x)−Uwt(x))〉S,wt

[2] 636

where U(x) is the potential energy. The average is taken using 637

the stationary probabilities, µ(x), of the WT system computed 638

from the MSM/dTRAM analysis. Thus, the following ratios can be 639

finally computed as: 640

Zdissociated
mut

Zdissociated
wt

=

∑
x∈SD

e−β(Umut(x)−Uwt(x))µ(x)∑
x∈SD

µ(x)

Zassociated
mut

Zassociated
wt

=

∑
x∈SA

e−β(Umut(x)−Uwt(x))µ(x)∑
x∈SA

µ(x)

[3] 641
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where a configuration, x, is in SD, the dissociated state, if the642

minimum distance between the peptide and MHC is greater than643

0.5 nm. Otherwise, x is in SA, the associated state.644

The original and mutation energies are computed using the645

same force field from the molecular dynamics simulations (AM-646

BER99sbildn force field (52) with GBSA OBC implicit solvent647

(53)) but only nonbonded terms were considered. Mutated struc-648

tures were generated with PyMOL where the original amino acid649

was cut back to the Cβ-atom and hydrogen atoms were added,650

resulting in an alanine structure. The value of the dihedral angle651

C−Cα−Cβ−Hβ1 was taken to be the dihedral angle of the original652

residue, C − Cα − Cβ − Cγ (or C − Cα − Cβ − Cγ1 for the valine653

in position 6 and isoleucine in position 7).654

Competitive binding assays. We run competitive binding assays to655

find the binding affinities of QFKDNVILL (WT), QFKANVILL656

(D4A), and QFKPNVILL (D4P) with HLA-A*24:02. Fluorescent657

and unlabeled peptides were synthesized by BioSynthesis Inc. EBC-1658

cells used for assay were transduced with HLA-A*2402 for increased659

expression. Competition peptide assay followed protocol established660

by Kessler et al (60). In brief, EBC-1 cells were washed with661

elution buffer then incubated overnight in the dark with a fixed662

concentration of a known HLA-A*24:02 binding peptide tagged663

with GFP and varying concentrations of test peptides. Cells were664

analyzed on a FACs CANTO II analyzer and median fluorescence665

intensity was measured. IC50 values were determined using non-666

linear regression from GraphPad Prism 8.0.667

Multiple sequence alignment. A total of 19,689 protein sequences668

were downloaded from IMGT/HLA (61), corresponding to the three669

classical class I HLA genes (HLA-A, HLA-B, HLA-C). Since many670

sequences did not cover the entire protein length, we removed entries671

with less than 3/4 of the complete sequence, resulting in a total of672

10,435 sequences (HLA-A: 3,160, HLA-B: 3,788, HLA-C: 3,487). A673

multiple sequence alignment was performed with MUSCLE (62),674

and the visual inspection was performed with Jaview (63).675

Code repository. Code for umbrella sampling, adaptive sampling,676

and MSM analysis can be found at https://github.com/KavrakiLab/677

adaptive-sampling-pmhc.678
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