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Prediction of stable peptide binding to Class I HLAs is an important component for

designing immunotherapies. While the best performing predictors are based on machine

learning algorithms trained on peptide-HLA (pHLA) sequences, the use of structure

for training predictors deserves further exploration. Given enough pHLA structures, a

predictor based on the residue-residue interactions found in these structures has the

potential to generalize for alleles with little or no experimental data. We have previously

developed APE-Gen, a modeling approach able to produce pHLA structures in a scalable

manner. In this work we use APE-Gen to model over 150,000 pHLA structures, the

largest dataset of its kind, which were used to train a structure-based pan-allele model.

We extract simple, homogenous features based on residue-residue distances between

peptide and HLA, and build a random forest model for predicting stable pHLA binding.

Our model achieves competitive AUROC values on leave-one-allele-out validation tests

using significantly less data when compared to popular sequence-based methods.

Additionally, our model offers an interpretation analysis that can reveal how the model

composes the features to arrive at any given prediction. This interpretation analysis can

be used to check if themodel is in line with chemical intuition, and we showcase particular

examples. Our work is a significant step toward using structure to achieve generalizable

and more interpretable prediction for stable pHLA binding.

Keywords: structural modeling, random forests, machine learning, HLA-I, peptide binding, docking,

immunopeptidomics, antigen presentation

1. INTRODUCTION

Class I Major histocompatibility complexes (MHCs), also known as Human Leukocyte Antigens
(HLAs) for humans, are the major players in the endogenous peptide presenting pathway. In
this pathway, HLA receptors are loaded with intracellular peptides of length 9–11 amino acids
(1). If the binding is stable enough, the resulting peptide-HLA (pHLA) complexes will end up
traveling from the endoplasmic reticulum (ER) all the way to the cell surface (2). Surveilling T-
cells can inspect the pHLAs and engage an immune response, particularly when the inspected cell
is diseased and is presenting immunogenic peptides (i.e., peptides capable of triggering T-cells for
being somewhat unusual relative to self peptides). This mechanism is one of the ways personalized
immunotherapy has been used to attack tumor cells, through for example, finding T-cells that can
target tumor-specific peptides being presented by the patient’s HLAs (3).
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Inside the ER, peptides are loaded onto the HLA, which is in
a peptide-receptive state (4). Thus, peptides that make it to this
stage are “trial” bound to the HLA, and only stable complexes
make it to the cell surface. Experimentally, mass spectrometry
(MS) can be used in combination with acid elution to identify the
peptides that are found on the cell surface. Therefore, peptides
found with MS can be assumed to be stable (5). However, in
the context of personalized immunotherapy, being able to run
a fast and accurate computational screening for stable pHLAs
would save time and reduce costs, thus prioritizing resources and
contributing to better outcomes.

Most of the current methods are based on building a model
to predict binders/non-binders using peptide sequences (6–8).
NetMHC is the most popular method that trains a neural
network to classify binders/non-binders using a dataset of
experimental binding affinity measurements (7). It was later
shown that binding stability (half-life) is a better measure for
immunogenicity over binding affinity, and NetMHCstab was
developed using a dataset of experimental half-life measurements
(9). While stability may be a more relevant quantity to
immunogenicity, more data is available for binding affinity (10),
and so NetMHC remained a popular method for binder/non-
binder classification. That is until the rise of availability of
MS data (11), which can provide a plentiful source of peptide
binders directly eluted from different cell types (12, 13). Methods
such as NetMHCpan have also used MS data, along with data
from experimental binding assays, to enhance the prediction of
binding affinity (14). Peptides found with MS can be assumed to
have somewhat high binding affinities, since low affinity binders
are probably lost during the steps preceding peptide elution. In
addition, peptides foundwithMS can also be assumed to be stable
binders, since the pHLA complex must have been stable enough
to make it to the cell surface. Hence, methods that use MS data
for training are implicitly predicting both affinity and stability. In
this work, a large portion of our dataset is derived from MS data
for training a predictor of HLA-binders from structure.

Prediction models are typically built on a per-allele basis,
so that the only information required for training are peptide
sequences known to bind to that specific allele (7, 8). Approaches,
such as NetMHC, are then restricted to alleles which have
sufficient experimental data. In this work, we are interested
in developing a single model to classify binders from non-
binders across any allele. Such models are also known as pan-
allele models and are trained using all of the available pHLA
data as one dataset. Thus, pan-allele models have the potential
to generalize across alleles and provide accurate predictions
for a given pHLA even if little or no experimental data
exists for the particular HLA. Sequence-based methods, such
as NetMHCstabpan and NetMHCpan, have been developed for
this purpose (14, 15). However, pHLA structures could also
form the basis for generalizable models, which could work for
any allele. If the stability of a pHLA complex is most directly
influenced by the chemical interactions found in the structure,
then a machine learning algorithm can be used to map these
interactions to stability. The information that is specific for a
given allele is implicitly encoded in the interactions found in
the structure, so any pHLA structure can be treated in the same

way during training (i.e., no sequence or structural alignment is
required). In other words, machine learning models developed in
this formulation are automatically pan-allele.

Another benefit of the model described in this work,
which combines the use of structural information with less
complex machine learning methods, is greater interpretability.
While sequence-based methods such as NetMHCstabpan and
NetMHCpan produce highly accurate predictions, these models
are not particularly interpretable since they rely on neural
networks. Neural networks arrive at a particular output through
repeated, non-linear operations, starting from the input features.
Thus, it is difficult to analyze the contribution of a particular
feature toward any given prediction. However, machine learning
models with less complexity, such as random forests, allow more
interpretation (16). In turn, the ability to assess the contributions
of particular features and mapping these contributions back to
the input pHLA structures can be a powerful tool for checking
whether the model is in line with chemical intuition.

Although the use of structural information to create
generalizable HLA-binding predictionmethods has been pursued
by many groups in the past, these efforts have been greatly
impaired by the computational difficulty in modeling pHLA
structures (17). In addition, the massive number of possible
combinations involving different HLA alleles and peptide
sequences is significantly greater than the number of pHLA
crystal structures determined experimentally (e.g., less than
1,000 structures available in the PDB at the time of this
writing). Therefore, the development of structure-based binding
prediction methods requires large-scale modeling of pHLA
complexes. Unfortunately, previously available approaches for
generating pHLA structures either do so in a simplistic manner
(e.g., peptide threading) (18) or require running for long times
per structure, which renders large-scale modeling infeasible
(19–22).

Once a 3D structure has been generated for a given
pHLA (e.g., through some type of sampling), it is usually
passed to a scoring function, which is a sum of energy-
related terms aimed at quantifying the binding strength.
The weights of these scoring functions can be optimized
for pHLAs, (21) or even for specific HLA alleles (23). For
instance, structural features based on energy-related terms from
the Rosetta scoring function (along with sequence features)
were used as input for machine learning, and applied to
a training set of 1,000 structures for a single MHC allele
(24). Alternatively, simulations of pHLA structures have also
produced accurate binding predictions (25). Methods based
on molecular dynamics, such as PB/GBSA, have been used
to assess binding strength (26). Monte Carlo approaches,
such as the one available in the Rosetta package, have also
been used to characterize peptide binding profiles for a given
allele (27). Unfortunately, simulation approaches are even
more computationally expensive than aforementioned modeling
methods, also preventing their use in a large scale. Therefore,
more research is needed in using a purely machine learning
approach to map structures onto binding strength predictions,
which will likely be enabled by the availability of large datasets of
pHLA structures.

Frontiers in Immunology | www.frontiersin.org 2 July 2020 | Volume 11 | Article 1583

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Abella et al. Structure-Based HLA-I Binding Prediction

In this work, we use pHLA structures to predict stable binding.
Ideally, a dataset of experimental half-life measurements (like
in (15)) that spans multiple alleles would be used here in a
regression framework, but such datasets are not readily available
or easy to produce. Thus, we rely only on MS data for our
source of stable peptide binders, and work within a classification
framework (i.e., classifying peptides as stable binders or non-
binders). Then, starting from pHLA sequences, we perform
large-scale structural modeling. We have recently developed a
new method to model pHLA structures called the Anchored
Peptide-MHC Ensemble Generator (APE-Gen) (28). APE-Gen
has the ability to rapidly generate native-like conformations of
pHLA complexes, by leveraging the conserved positioning of the
peptide’s so called “anchor residues” to particular pockets of the
HLA binding cleft. With the development of APE-Gen, we can
now use machine learning on pHLA structures on a scale that
has not been reached before. The rest of this paper is organized
as follows. In the next section, we will describe our approach
(Figure 1) of (i) generating pHLA structures, (ii) extracting
simple features based on pHLA interactions, and (iii) training
a random forest model to classify binders from non-binders.
Finally, we show that our model produces high values for the
area under the receiver operating characteristic curve (AUROC)
in validation tests, and showcase the greater interpretability of the
results as compared to neural network approaches. The generated
dataset of pHLA structures provides new opportunities to build
improved structure-based models to assess pHLA binding, and
our model can serve as a benchmark for future models.

2. METHODS

2.1. Generating Peptide-HLA Structures
The dataset of pairs of peptide sequences and HLA alleles was
obtained from two different databases. The list of stable binders
to a given HLA allele (i.e., positive labels) was taken from
a dataset curated by the authors of ForestMHC (16). Their
curated dataset is derived from multiple sources, including the
SysteMHC Atlas (11), which is a database of eluted peptides
from MS experiments. For the polyallelic samples, they used

MixMHCpred (29) to deconvolute the samples to a specific
allele among a set of multiple well-defined alleles (polyallelic
samples). They discarded samples which could come from alleles
that MixMHCpred did not support. Note that only 9-mers were
considered by ForestMHC (16), so our method was also only
trained on 9-mers. However, in principle, other n-mers could be
considered by our method as well.

A list of unstable peptides (i.e., negative labels) was obtained
from a curated dataset of experimental binding assays, mostly
coming from IEDB (30), which was prepared by the authors
of MHCFlurry (8). This dataset differs from the previous, as
there is an associated value representing the binding affinity
measurement of the peptide to the HLA. Since we are interested
in finding negative labels, we applied a threshold on the
binding affinity with the assumption that low affinity binding
implies unstable binding. All pHLA pairs with binding affinity
measurements greater than 20,000 nM were extracted from the
MHCFlurry dataset. Thresholds are typically set to 500 nM,
where peptides with affinity values below this threshold are
predicted to be strong enough binders to be presented by the
corresponding HLA in the cell surface. Since there do exist
peptides that are presented with affinity values greater than 500
nM, we applied a conservative threshold in order TO have more
confidence that our dataset of non-binders consists of peptides
that are not presented by the corresponding HLA.

Finally, APE-Gen (28) is used to model all of the peptide
sequences bound to a given HLA allele. HLAs which did not
have a crystal structure available in the PDB were modeled
with MODELLER (31), using the corresponding HLA sequence
from IMGT (32), and a structural template of an HLA allele
from the same supertype classification (33). This is possible
due to the conserved tertiary structure of HLA molecules
(34), and the fact that alleles within the same supertype share
similar peptide binding characteristics (33). Briefly, APE-Gen
runs rounds of the following three steps: anchor alignment,
backbone reconstruction, and side-chain addition with energy
minimization. The list of flexible HLA residues is derived from
a list of known important residues for peptide binding (33). A
single round of APE-Gen is used per pHLA complex, taking

FIGURE 1 | Overview of the method to go from sequence to structure-based features for classification. APE-Gen is used to model pHLA structures, then featurization

is done by extracting the residue-residue interactions between peptide and HLA. The final random forest model is trained on these structure-based features.

Frontiers in Immunology | www.frontiersin.org 3 July 2020 | Volume 11 | Article 1583

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Abella et al. Structure-Based HLA-I Binding Prediction

approximately 2 min to model per complex across 6 cores on an
Intel Xeon Platinum 8160. The anchor constraint was changed to
4 Angstroms (from the default 2 Angstroms), since it is expected
that the anchor interactions of non-binders will be more unstable
when undergoing the energy minimization step of APE-Gen. All
other parameters are kept at their default (28). For a given pHLA,
APE-Gen generates an ensemble of pHLA conformations. This
ensemblemay include some additional information that ismissed
when only analyzing a single conformation (35). Therefore, we
considered two datasets for training. The first is to simply take
the best scoring conformation per pHLA, according to the default
scoring function used in APE-Gen, which is Vinardo (36). The
second is to take the whole ensemble of each pHLA, pooling
every conformation into the dataset. The median number of
conformations generated per pHLA is 18. Note that the number
of conformations generated per pHLA is not constant due
to filtering steps done within APE-Gen (Figure S1). APE-Gen
is open-source and available at https://github.com/KavrakiLab/
APE-Gen.

2.2. Featurization
Each pHLA conformation generated with APE-Gen is then
transformed into a feature vector containing information on the
residue-residue interactions between the peptide and HLA. The
feature vector for a given conformation contains 210 elements,
representing the total number of possible pairings between the
20 amino acids, including interactions between two residues
of the same type. Each element represents the amount of a
particular type of interaction (for example, between alanines and
leucines) found in the conformation. The amount of interaction
is quantified as the sum of some function of the residue-residue
distances, which is defined as the distance in Angstroms between
the nearest two heavy atoms computed using the MDTraj Python
package (37). Intuitively, such a function should have a high value
for low residue-residue distances and monotonically decrease
as the residue-residue distance increases in order to represent
the amount of interaction. In this work, we consider three
functions: the reciprocal, reciprocal squared, and a sigmoid
function (Figure S2). The sigmoid function was chosen such that
a value of 0.5 occurs at 5 Angstroms. Residue-residue contacts are
usually defined within the range of 4.5-5 Angstroms (38).

As an example, assume the function is simply the reciprocal
of the residue-residue distance. Furthermore, assume that the
fourth element in the feature vector represents interactions
between an arginine and aspartic acid. The order of the
interactions may be chosen arbitrarily, but is fixed across all
pHLA structures. In this scenario, we start by measuring all
the distances between arginines in the peptide and aspartic
acids in the HLA, as well as between arginines in the HLA
and aspartic acids in the peptide. Then, the value for the
fourth element in the feature vector is computed as the sum
of the reciprocal values of the measured distances. Note that in
this implementation peptide-peptide and HLA-HLA interactions
were ignored, since interactions between peptide and HLA are
expected to have a more direct contribution to stability. With this
featurization process, small values in the feature vector represent
little interaction for the particular residue-residue pair. Values of

exactly zero indicate that the corresponding interaction was not
found in the conformation. Conversely, large values represent
instances where there was significant residue-residue contact
(i.e., low residue-residue distances) found in the conformation.
Note that in our construction, only simple, homogenous features
based on residue-residue distances between the peptide and
HLA are extracted for the model, as opposed to more complex,
heterogenous features that were based on energy terms from a
scoring function (24).

2.3. Model Selection
Models were chosen with five-fold cross validation using the
area under the receiver operating characteristic curve (AUROC)
as the main metric. The receiver operating characteristic curve
plots the true positive rate and false positive rate across different
thresholds of the output probability, where a random guess would
produce an AUROC of 0.5 and a perfect classifier produces
an AUROC of 1.0. We tried three different classifiers, namely
logistic regression, gradient boosting, and random forest, across
a variety of parameterizations and featurization functions. For
each model type, we also tested whether the use of the whole
ensemble of conformations improved the final AUROC score.
The implementation of the models and analysis is done using
Scikit-Learn (39).

3. RESULTS

3.1. Generalizability
3.1.1. Random Forest Was the Most Robust Model
The final dataset consisted of 155,562 pHLA structures across
99 different alleles, which is to-date the largest dataset of
modeled pHLA structures. Within this dataset, 43 alleles have
available experimental data on both binders and non-binders.
The identity of all modeled pHLAs in this dataset can be
found in the Supplementary Material. In total, about 300,000
CPU-hours were required to generate the dataset. There is an
approximately 70:30 binders/non-binders ratio across the two
sources of data, so class weights were adjusted for all models
given the imbalance of class labels. The five-fold cross validation
results of the three classifiers tested can be found in Table 1.
These results relate to the use of the best parameters found for
each type of model, across the three different featurization types.
Results for all tested parameters can be found in Tables S1–S3.
We find that across the parameters tested, logistic regression
performs the worse, while random forest and gradient boosting
classifiers give the most robust results as the AUROC values are
consistently high with little variation. The overall best performing
model was based on random forests (average AUROC: 0.978)
with an ensemble of 1,000 decision trees, which use about 7
features (log2210) and Gini impurity to determine the quality of
a split.

3.1.2. Ensemble Dataset With Sigmoid Featurization

Improves Performance
With the random forest model, we tested whether training with
the whole ensemble of conformations produced by APE-Gen
could further increase the AUROC. This dataset consists of
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TABLE 1 | Average AUROC values from five-fold validation tests across different

classifiers and different featurizations.

Model Feat AUROC

rf 1/d 0.978 (0.000)

rf 1/d2 0.976 (0.001)

rf sig 0.975 (0.001)

gb 1/d 0.970 (0.002)

gb 1/d2 0.970 (0.001)

gb sig 0.977 (0.001)

lr 1/d 0.875 (0.003)

lr 1/d2 0.880 (0.002)

lr sig 0.882 (0.001)

Only the best parameters per classifier are shown. rf stands for random forest, gb stands

for gradient boosting, and lr stands for logistic regression. Average AUROC values are

reported along with standard deviations. Random forest classifiers produce the most

robust models.

2,825,185 data points with an average of about 18 conformations
per pHLA. All of the conformations for a given pHLA are
pooled together with the same appropriate label. Across the three
different featurization types, a random forest model was trained
on the ensemble-enriched dataset of pHLA conformations.
Therefore, when testing on an unseen pHLA, APE-Gen is first
run to generate an ensemble of conformations. Each featurized
conformation is then classified with the model and the output
probabilities are averaged to produce the final output. The five-
fold cross validation results using the random forest model
across the featurization and dataset types are presented in
Table 2. We find that across all the different configurations, the
best performing random forest model uses the sigmoid-based
featurization and the ensemble-enriched dataset with an average
AUROC of 0.990. We also found that the ensemble-enriched
dataset improves the performance of the other types of models
(Table S4) with the gradient boosting model (with sigmoid
featurization) also achieving a high average AUROC of 0.982.

Sigmoid-based features perform best since higher values are
achieved at distances where residue-residue contacts are typically
defined (Figure S2). The positive effect of the ensemble may be
due to two reasons. First, interactions that are present in multiple
conformations for a given pHLA could be an indication for stable
interactions, which are now present in the data that is used to
train the model. Second, APE-Gen produces on average about 5
more conformations for a true binder than it does for a true non-
binder (Figure S1). The additional conformations for binders
could turn into bias that the model has learned from.

3.1.3. Final Model Is Competitive With

Sequence-Based Approaches on

Leave-One-Allele-Out Tests
While our random forest model achieves a high average AUROC
on standard five-fold cross validation tests, a tougher test for
generalizability would be to partition the train/test split based
on the HLA allele. A method that can perform well for tests
on unseen allele data would be valuable for cases where pHLA
binding prediction is to be done for rarer alleles, with little

TABLE 2 | Average AUROC values from five-fold validation tests across different

featurizations and different datasets.

Feat Data AUROC

1/d Single 0.978 (0.000)

1/d2 Single 0.976 (0.001)

sig Single 0.975 (0.001)

1/d Ensemble 0.987 (0.001)

1/d2 Ensemble 0.988 (0.000)

sig Ensemble 0.990 (0.000)

Average AUROC values are reported along with standard deviations. The best model uses

sigmoid-based features trained on the ensemble-enriched dataset.

to no experimental data available. To simulate this scenario,
we set aside data related to all the associated examples for a
given HLA allele (i.e., both positive and negative examples). We
then trained a random forest model using the same procedure
described above on the rest of the data. The same procedure
for training and testing was then repeated for each one of the
HLA alleles in the dataset. This validation setup is called “leave-
one-allele-out,” and has been used before in testing NetMHCpan
(14). We performed the validation setup across the set of 43
alleles for which there are both positive and negative examples
in our dataset, and compared our approach to 5 sequence-based
methods: NetMHCstabpan 1.0, NetMHCpan 4.0, NetMHC 4.0,
MHCFlurry 1.4.3, and MixMHCpred 2.0.2.

The distribution of AUROC values across all alleles tested can
be seen in Figure 2, and corresponding AUROC values can be
found in the Supplementary Material. Our method achieves a
median AUROC of 0.985 which is greater than NetMHCstabpan
(0.969) and competitive with NetMHCpan (0.989). Additionally,
the overall distributions of AUROC values shows that our
method is more robust (smaller variations) than the other
methods, achieving AUROC values greater than 0.9 for all but
three alleles (namely HLA-B*39:06, HLA-C*04:01, and HLA-
C*14:02). The one exception was MixMHCpred, which achieves
the highest median AUROC (0.993) and good robustness. This
result is not too surprising since this method was used in the
construction of the positive labels (16). Despite having lower
median AUROCs against somemethods, the difference was never
more than 0.01.

We also note that the comparison with NetMHCpan is not
particularly fair since there is overlap between the data used to
train NetMHCpan and the allele-based validation sets discussed
here. In fact, 46% of the data from this work is included in the
training set for NetMHCpan. However, this set could not be
removed since the overlap is largely on our set of negative labels.
Therefore, removing them would complicate the interpretation
of AUROC values, and AUROC values cannot even be computed
when there are no negative labels.

Other models were also tested in the leave-one-allele-out
framework using both the single conformation and ensemble-
enriched datasets. The difference in average AUROC between
the random forests model (AUROC: 0.985) and the gradient
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FIGURE 2 | Comparison of AUROC values for leave-one-allele-out experiments. Our structural method based on using sigmoid featurization and ensemble-enriched

dataset achieves competitive results with sequence-based methods.

boosting model (AUROC: 0.939) is significant unlike the five-
fold cross-validation case. This difference can be qualitatively
seen in Figure S3: the distribution shape for the random forests
model (ensemble-enriched) reveals the higher concentration of
samples closer to 1.0. We speculate that the higher performance
of random forests may be due to its robustness in overfitting due
to sampling random subsets of data in the training process. We
note that our tuning process could be made more exhaustive,
and it is conceivable that gradient boosting could perform just
as well as random forests for this data. However, it is unclear as to
whether gradient boosting could achieve the same interpretability
capabilities as random forests.

Finally, we can also compare the performance on a per-
allele basis by comparing the AUROC of our method against
the others for a given allele. Against NetMHCstabpan, our
method improves the AUROC by 0.116 (mean across alleles),
while against NetMHCpan, our method improves the AUROC
by 0.010. When compared to methods that were trained
on a per-allele basis, our method improves the AUROC by
0.018 for NetMHC and 0.010 for MHCFlurry, but is lower
against MixMHCpred (0.013). Nevertheless, our method can
achieve high AUROCs across alleles in a manner that is
competitive against sequence-based methods on average with
improved robustness.

3.2. Interpretability
The fact that our model is based on random forest also offers
a significant interpretability advantage. For instance, we can
compute an importance value for each feature of the random
forest model by finding the mean decrease in impurity across
all the decision trees in the ensemble. We found that most of
the top features were hydrophobic interactions with an average
importance value of 0.5% over the global average of 0.4%. The
least important features include interactions that are less frequent
in the dataset, such as ASN-ASN, HIS-HIS, and MET-MET.

The full set of feature importance values can be found in
the Figure S3.

While computing feature importances provides a global view
of what the model is learning, we can also inspect how the
model arrives at a prediction for a particular example (40).
The prediction output of the random forest model, P(x), for a
particular example x is a probability to be in the positive class
(which is thresholded by 0.5 to classify as stable binder/non-
binder). The output can be decomposed as

P(x) = bias+

210∑

j=1

contrij(x) (1)

where the bias term reflects the ratio of positive examples in the
data, which is 0.5 in this work because the classes were reweighted
from the model. The interesting quantity is contrij(x), which
is the contribution of feature j toward the prediction output.
This equation tells us that the contributions are then combined
in a linear manner reflecting how the decision trees split on a
single feature at a time. The contribution values can be positive
(contribute toward the stable binding) or negative (contribute
toward unstable binding). Furthermore, since each residue-
residue interaction was added to the corresponding element in
the feature vector in a linear manner, we can decompose the
contribution values further across every possible residue-residue
contact in the original pHLA structure. While the contribution
values are computed in a non-linear way based on the values of
the other features across the training dataset, we can still inspect
the features that greatly contribute to the prediction for a given
example and test if they are in line with chemical intuition. The
feature contributions are computed with the Python package
treeinterpreter (40).

As an example, we model the structure of the peptide,
EVDPIGHLY, bound to HLA-A*01:01. This is a peptide that has
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been used as a target for T-cell-based immunotherapy against
melanoma (41). Our model correctly predicts that this peptide is
a stable binder, so we analyze the feature contributions leading
to this prediction. The anchor residues for this allele are in
position 2 (VAL) and position 9 (TYR), and we find that anchor-
related interactions account for 26% of the positive contributions.
However, our model is finding a significant positive contribution
from other interactions. The feature with the largest position
contribution is the ASP-ARG interaction (13%). In fact, position
3 is an aspartic acid (ASP), and interactions involving position 3
have the largest total positive contribution (32%). Interestingly, it
is known that aspartic acid is a “preferred” residue in position 3
for peptides binding to HLA-A*01:01 (30).

When we model a destructive mutation on the anchor residue
in position 2, from VAL to TRP, our model predicts that the
new peptide is unstable. As expected, the feature contributions
indicate that 42% of the negative contributions come from
the TRP in position 2. Thus, the model is indeed using the
interactions introduced by this mutation.

Our models are publicly available, alongside the ability
to do the interpretation analysis presented in this section.
The interpretation analysis has been automated to be able
to produce summarized results as well as the raw data. This
data contains more information than presented in this section,
including a decomposition of the contribution values across each
peptide-HLA residue-residue pair. The structural modeling with
APE-Gen, classification with random forest, and interpretation
analysis can be done for any pHLA of interest, and is available
as an easy to use Docker image (https://hub.docker.com/r/
kavrakilab/apegen/tags) with a tutorial found in https://github.
com/KavrakiLab/pHLA-RFclassifier-from-structure.

4. DISCUSSION

In this work, we performed large-scale modeling of pHLA
conformations, which is used to train an interpretable, structure-
based classifier for pHLA binding prediction. With APE-Gen
as the enabling technology, we generated a dataset of pHLA
conformations that is the largest of its kind, opening the
door for machine learning to be performed on top of pHLA
conformations. We investigated various featurizations that are
solely based on simple, homogenous conformational features
(i.e., peptide-HLA, residue-residue distances). We show on
our dataset that our model achieves competitive AUROCs
against sequence-based methods. Additionally, our model based
on random forest offers an interpretability advantage over
approaches based on neural networks.

Note that while our dataset of structures is large with respect to
structural modeling efforts (e.g., over 150,000 different pHLAs),
this number becomes small when compared to the number of
sequences that sequence-based methods have been trained on
(e.g., about 3 million for NetMHCpan). Additionally, this work
has only been tested on 9-mer ligands, but other n-mers do of
course exist as binders to a significant extent (42). It should also
be noted that our source of positive labels was dependent on
the accuracy of MixMHCpred. In order to push the accuracy

of our classifier, we need to include all of the available high-
quality experimental data for training, which should increase our
confidence in the final model. Our classifier does not have any
inherent limitation on the peptide length, as APE-Gen can model
other n-mers, and the featurization process is also not specific
to 9-mers. Future work can focus on modeling more pHLAs,
including the proper modeling of longer peptides by APE-Gen.

Despite the efficiency of APE-Gen, the step of modeling a
new structure still takes a few minutes. Modeling structures takes
significant computational resources, and reaching the scale of
training data that sequence-based methods train on requires
at least an order of magnitude more computational time. This
makes our structure-based classifier slower than a sequence-
based method for unseen pHLAs, and currently requires high
performance computational resources to make large peptide
screenings viable. However, the modeling of pHLA structures
would only have to be performed once. Thus in the future, we can
try to alleviate this burden by creating a database of previously
modeled pHLAs, so that the classifier can skip the modeling step
for all previously modeled complexes.

The use of structure may be the reason that we achieve
high AUROCs on our dataset despite the relatively small dataset
size. Models based on sequence are supposed to infer structural
information, like the interactions between peptide and HLA, in
order to get to accurate binding predictions. Our construction
feeds this information directly to the model, which may be
the key for generalizability. In fact, we can confirm when the
model is properly using interaction information because our
model was based on random forests. Our model can be made
transparent, and we can understand why the model reached any
given prediction. For “black-box” methods like neural networks,
the best that can be done would be to try identifying patterns
among the highest scoring samples. A list of random peptides
could be run through the neural network for a given allele, and
then the top scoring peptides can be analyzed for any noticeable
peptide binding motif. For any given peptide, one might guess
how the neural network arrived to the prediction by reasoning
back to the peptide binding motif. This route is indirect at best,
since it is extremely difficult to interrogate the neural network
into revealing what leads to a particular prediction, which is
an inherent problem of this methodology. There is no way of
knowing that the reason a peptide was classified as a non-binder
was because the model learned to penalize when a TRP exists in
the peptide sequence along with a TYR in the HLA sequence,
for example; a potentially spurious association with no obvious
biochemical reason for affecting the binding. Our random forest
model does reveal such information on a per prediction basis, as
demonstrated in the Results section. For any given prediction,
correct or not, we can see how the model composes the features
into its final output, and check if it is in line with chemical
intuition. This can even be useful for suggesting the kind of
additional data needed for training when analyzing an example
that was incorrectly classified.

We would like to make it clear however, that the goal of this
work is not to produce a method for pHLA binding prediction
that will replace the gold-standard methods, such as NetMHC
and NetMHCpan, which are available as a public webservers for
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rapid prediction. Many challenges remain as mentioned in this
section. The contribution of this work reveals that for the pHLA
binding prediction task, structure-based methods can work as
a proof-of-concept. The time investment spent in doing the
structural modeling enables the benefit of added interpretability.
The residue-residue interactions present between peptide and
HLA can be directly extracted as simple features for the model.
Additionally, the random forests model can highlight how
the features are composed to form the output of any given
pHLA. When combined together, one instantly has a link to
relate the binding prediction back to each individual peptide-
HLA residue-residue interaction for further analysis. Such a
capability can be valuable as a complement to sequence-based
approaches. For instance, it could be used after epitope discovery
efforts, providing more detailed analysis of binding for peptides
that are strong candidates as targets for vaccine development,
T-cell-based immunotherapy, or as the potential triggers for
autoimmune reactions. The obtained structural information
could be used to lead peptide optimization efforts, or to provide
a molecular basis for the presentation of unusual HLA-binders.
As we continue to push the accuracy of our method, our results
and dataset of pHLA structures can be used as a benchmark for
a new generation of structure-based methods for HLA binding
prediction and epitope discovery.
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