OMPL: The Open Motion Planning Library

Mark Moll
Department of Computer Science
Rice University
Houston, TX
USA
Intended use

- Education
- Motion planning research
- Industry
Design objectives

• Clarity of concepts

• Efficiency

• Simple integration with other software packages

• Straightforward integration of external contributions
Other motion planning software

- MPK, Schwarzer, Saha, Latombe
- MSL, LaValle et al.
- OpenRAVE, Diankov & Kuffner
- KineoWorks, Laumond et al.
- OOPSMP, Plaku et al.
Other related robotics software

- ROS
- Player/Stage, Player/Gazebo
- Webots
- MORSE
- Microsoft Robotics Developer Studio
Main features of OMPL
OMPL in a nutshell

• Common core for sampling-based motion planners

• Includes commonly-used heuristics

• Takes care of many low-level details often skipped in corresponding papers
Abstract interface to all core motion planning concepts

- state space / control space
- state validator (e.g., collision checker)
- sampler
- goal (problem definition)
- planner
- ...

except robot & workspace...
States & state spaces

abstract state space
States & state spaces

abstract state space

API requirements:
- StateType
- alloc/free state
- distance
- interpolation
- state equality
States & state spaces

abstract state space

- rotation (2D,3D)
- translation (\mathbb{R}^n)

API requirements:
- StateType
- alloc/free state
- distance
- interpolation
- state equality
States & state spaces

- Abstract state space
 - Rotation (2D, 3D)
 - Translation (\mathbb{R}^n)
 - Compound

API requirements:
- StateType
- Alloc/free state
- Distance
- Interpolation
- State equality

Used for:
- Rigid body motions
- Manipulators
- ...
Control spaces & controls

- Needed only for control-based planning

- Analogous to state spaces and states:

 - API requirements:
 - ControlType
 - alloc/free control
 - equality
State validators

- Problem-specific; **must** be defined by user **or**
 defined by layer on top of OMPL core → `ompl_ros_interface`

- Checks whether state is collision-free, joint angles and velocities are within bounds, etc.

- **Optionally,** specific state validator implementations can return
 - distance to nearest invalid state (i.e., nearest obstacle)
 - gradient of distance

Can be exploited by planners / samplers!
Most common state validator: collision checker

Several options:

• Implemented in ROS on top of sensor-derived world model

• Implemented in OMPL.app for triangle meshes using PQP library

• Easy to add wrappers for other libraries

Need to define specific world representation to implement collision checking
Samplers

- For every **state space** there needs to be a **state sampler**
- State samplers need to support the following:
Samplers

• For every **state space** there needs to be a **state sampler**

• State samplers need to support the following:

 • sample uniform
Samplers

- For every **state space** there needs to be a **state sampler**
- State samplers need to support the following:
 - sample uniform
 - sample uniform near given state
Samplers

• For every **state space** there needs to be a **state sampler**

• State samplers need to support the following:

 • sample uniform

 • sample uniform near given state

 • sample from Gaussian centered at given state
Many ways to get sampling wrong

Example: uniformly sampling 3D orientations

naïve & wrong:

correct:

Images from Kuffner, ICRA ’04
Similar issues occur for nearest neighbors

- k nearest neighbors can be computed efficiently with kd-trees in low-dimensional, Euclidean spaces.

- In high-dimensional spaces approximate nearest neighbors much better

- In non-Euclidean spaces (e.g., any space that includes rotations), other data structures are necessary
Valid state samplers

- **Valid state samplers** combine low-level **state samplers** with the **validity checker**

- Simplest form: sample at most n times to get valid state or else return failure
Valid state samplers

- Valid state samplers combine low-level state samplers with the validity checker

- Simplest form: sample at most n times to get valid state or else return failure

- Other sampling strategies:
Valid state samplers

- **Valid state samplers** combine low-level state samplers with the validity checker.

- Simplest form: sample at most n times to get valid state or else return failure.

- Other sampling strategies:
 - Try to find samples with a large clearance.
Valid state samplers

- **Valid state samplers** combine low-level state samplers with the validity checker

- Simplest form: sample at most n times to get valid state or else return failure

- Other sampling strategies:
 - Try to find samples with a large clearance
 - Try to find samples near obstacles (more dense sampling in/near narrow passages)
Goals

- **Goal**: can only tell whether state satisfies Goal condition.
- **GoalRegion**: provides distance to goal region.
- **GoalSampleableRegion**: can sample from goal region.
- **GoalState**: single goal state.
- **GoalStates**: multiple goal states.
- **GoalLazySamples**: multiple goal states, computed in separate thread.
Planners

• Take as input a **problem definition**: object with one or more **start states** and a **goal object**

• Planners need to implement two methods:

 • **solve:**
 – takes **PlannerTerminationCondition** object as argument
 – termination can be based on timer, external events, ...

 • **clear:**
 clear internal data structures, free memory, ready to run solve again
Many planners available in OMPL

Planner

geometric planning

- PRM
- SBL
- LBKPIECE
- RRT
- KPIECE
- LazyRRT
- EST
- BKPIECE
- RRTConnect

planning with controls

- RRT
- KPIECE
Many planners available in OMPL

Planner

geometric planning

PRM RRT EST
SBL KPIECE BKPIECE
LBKPIECE LazyRRT RRTConnect
SyCLoP RRT* BallTreeRRT*

planning with controls

RRT KPIECE

coming soon! just added!
API overview

only when planning with differential constraints

- ControlSampler
- StatePropagator
- ValidStateSampler
- ControlSpace
- SpaceInformation
- StateSpace
- StateSampler
- StateValidityChecker
API overview

only when planning with differential constraints

- ControlSampler → ControlSpace
- StatePropagator
- ValidStateSampler → SpaceInformation
- StateSampler
- StateSpace
- StateValidityChecker
- Planner → SimpleSetup
- ProblemDefinition
- Goal

User code

must instantiate
must instantiate, unless using SimpleSetup
can instantiate, but defaults available
A is owned by B
API overview

only when planning with differential constraints

ControlSampler → ControlSpace → StateSpace

StatePropagator → SpaceInformation

ValidStateSampler → SpaceInformation

StateValidityChecker

Path

Planner → SimpleSetup

ProblemDefinition

Goal

User code

must instantiate
must instantiate, unless using SimpleSetup

can instantiate, but defaults available

A → B

A is owned by B
API overview

only when planning with differential constraints

- ControlSampler
- StatePropagator
- ValidStateSampler
- MotionValidator
- ControlSpace
- SpaceInformation
- StateSpace
- StateValidityChecker
- ProjectionEvaluator
- StateSampler
- SimpleSetup
- ProblemDefinition
- Goal
- Path
- Planner

User code

must instantiate
must instantiate, unless using SimpleSetup
can instantiate, but defaults available
A is owned by B
Minimal code example

```python
space = SE3StateSpace()
# set the bounds (code omitted)

ss = SimpleSetup(space)
# "isStateValid" is a user-supplied function
ss.setStateValidityChecker(isStateValid)

start = State(space)
goal = State(space)
# set the start & goal states to some values
# (code omitted)

ss.setStartAndGoalStates(start, goal)
solved = ss.solve(1.0)
if solved:
    print setup.getSolutionPath()
```
Minimal code example

```cpp
StateSpacePtr space(new SE3StateSpace());
// set the bounds (code omitted)

SimpleSetup ss(space);
// "isStateValid" is a user-supplied function
ss.setStateValidityChecker(isStateValid);

ScopedState<SE3StateSpace> start(space);
ScopedState<SE3StateSpace> goal(space);
// set the start & goal states to some values
// (code omitted)

ss.setStartAndGoalStates(start, goal);
bool solved = ss.solve(1.0);
if (solved)
    setup.getSolutionPath().print(std::cout);
```
Benchmarking
Benchmarking

SimpleSetup setup;
// motion planning problem setup code omitted
Benchmark b(setup, “My First Benchmark”);

b.addPlanner(base::PlannerPtr(new geometric::RRT(setup.getSpaceInformation())));
b.addPlanner(base::PlannerPtr(new geometric::KPIECE1(setup.getSpaceInformation())));
b.addPlanner(base::PlannerPtr(new geometric::SBL(setup.getSpaceInformation())));
b.addPlanner(base::PlannerPtr(new geometric::EST(setup.getSpaceInformation())));
b.addPlanner(base::PlannerPtr(new geometric::PRM(setup.getSpaceInformation())));

b.benchmark(runtime_limit, memory_limit, run_count, true);
b.saveResultsToFile();

Script post-processes benchmark log files
to create/update SQLite database and plots
OMPL.app

- Front-end that demonstrates integration with libraries for collision checking, 3D mesh loading, GUI toolkit
- Easy-to-use tool for novices to get started
- Alternative to ompl_ros_interface
OMPL.app demo / screencast
Resources to get started with OMPL
OMPL online

• Web site: http://ompl.kavrakilab.org

• Mailing lists:
 • Developers: ompl-devel@lists.sourceforge.net
 • Users: ompl-users@lists.sourceforge.net

• Public Mercurial repository: http://ompl.hg.sourceforge.net:8000/hgroot/ompl/ompl
OMPL for education

• Programming assignments centered around OMPL, available upon request.

• Ongoing educational assessment.

• Already in use in several robotics / motion planning classes.

Happy OMPL users: students in the Algorithmic Robotics class at Rice, Fall 2010
OMPL tutorials

Step-by-step walkthroughs for:

• geometric planning for rigid body in 3D

• working with states and state spaces

• representing goals

• benchmarking

• creating new planning algorithms
OMPL examples

• Many demos for basic usage patterns, often available in both C++ and Python

• Demos for advanced features:

1. Lazy goal sampler, generic numerical IK solver

2. Using the Open Dynamics Engine
Example 1: lazy goal sampler + IK

• Spawn thread responsible for generating goal states

 • generate as many goal states as user wants

 • OMPL comes with Genetic Algorithm-based IK solver, but other types of solvers can be used

• Planner waits until at least one goal state is available

• Can use bi-directional planner with implicit goal region in state space

• Same approach is used in ROS for end-effector constraints
Example 2: OMPL + ODE

- Treat ODE physics engine as a black box state propagation function: Given state, controls, and time duration, ODE produces new state.
- Can plan for systems with movable objects, various contact modes, etc.
- Same approach can be used for other physics engines.
Discussion

• OMPL actively developed, but ready for general use

• Can easily implement new algorithms from many reusable components

• Simple high-level interface:

 • Can treat motion planner almost as a black box

 • Easy enough that non-experts can use it

• Interface generic enough to be extensible in many ways

We want your contributions!
Acknowledgements

Rice University:

Ioan Şucan
Lydia Kavraki
Matt Maly
Devin Grady
Bryant Gipson
Amit Bhatia

Willow Garage:

Sachin Chitta
Gil Jones

Funding from:

NSF CCLI grant #0920721
Willow Garage