
Conditional Task and Motion Planning
through an Effort-based Approach

Nicola Castaman, Elisa Tosello, and Enrico Pagello
Intelligent Autonomous Systems Laboratory, Department of Information Engineering, University of Padova, Italy

{castaman, toselloe, epv}@dei.unipd.it

Abstract—This paper proposes a Conditional Task and Motion
Planning algorithm able to find a plan that minimizes robot
efforts while solving assigned tasks. Unlike most of existing
approaches that replan a path only when it becomes unfeasible,
the proposed algorithm takes into consideration a replanning
every time an effort saving is possible. The effort is here
considered as the execution time but it is extensible to the energy
consumption. The computed plan is both conditional and dynam-
ically adaptable to the unexpected environment changes.Authors
prove the completeness and scalability of their proposal.

I. INTRODUCTION

Let a human assign tasks to a robot. These tasks can require,
for example, the pick of a can of coke from a cluttered table or
the navigation towards a goal state. In order to achieve these
targets, the robot needs to fulfill high-level task planning in
conjunction with low-level motion planning. As stated in [2],
efficient algorithms exist to solve task and motion planning
problems in isolation; however, their integration is still a
challenge in terms of scalability, completeness, and generality.

An algorithm is scalable if it maintains the same efficiency
when the workload grows. In the above examples, while solv-
ing the assigned tasks, the robot has to evaluate its surrounding
and decide which objects to move and where to place them in
order to pick up the coke. It has to solve a Navigation Among
Movable Obstacles (NAMO) [4, 9] problem while finding a
path to the assigned goal state. It has to decide if manipulat-
ing an obstacle is necessary, it can considerably reduce the
planning costs, or it is contrariwise avoidable and moving on
the free space is more convenient. Moreover, multiple subtasks
exist fulfilling the assigned ones and different combinations of
subtasks can bring to the same result: a mobile manipulator
robot can move both its arm and base in order to approach the
table and it can manipulate objects on the table in multiple
ways and orders. These considerations let deduce that a task
planning problem is exponential in the number of subtasks
and a motion planning problem is exponential in the number
of objects populating the working scene.

Starting from [1], authors combine a Fast-Forward (FF)
task planner [8] with a Kinodynamic Motion Planning by
Interior-Exterior Cell Exploration (KPIECE) motion planner
[13] generating a planner that takes into consideration only
those objects and subtasks that minimize robot efforts; in the
case in analysis the effort is the execution time, but also the
robot’s energy can be considered. This implementation choice
aims to reflect the human behavior: humans take plans while

efficiently managing their time and energy. Moreover, limiting
each time choices revaluation to the ones that minimize the
robots effort means trying to maintain the scalability of the
system in terms of both Task and Motion Planning. In addition,
if compared with other Motion Planning algorithms, KPIECE
makes a better use of the information collected during the
planning process. This information is used by KPIECE to
decrease the amount of forward propagation it needs. As
consequence, both runtime and memory requirements decrease
making the algorithm suitable to handle high dimensional
systems with complex dynamics [13].

To be complete, an algorithm must find a solution if one
exists; otherwise, it should correctly report that no solution
is possible. This goal becomes challenging if applied on a
robotics system acting in a real world because the real world
is non-deterministic: the planner has no complete and certain
knowledge of the environment and actions can have unpre-
dictable effects. If these effects are known and few in number,
Conditional Planning can handle all possible outcomes. If the
full set of possible effects is either unknown or too large to
be enumerated in an operator, actions execution should be
monitored in order to check if the current state of the world
is as the plan says it should be. Replanning should take place
when somethings goes wrong. Therefore, robot plans should
dynamically adapt to changes while avoiding the explosion of
paths due to the multiple alternatives introduced by Condi-
tional Planning. In these terms, guaranteeing completeness is
not trivial.

Authors have been inspired by [10], where a Hybrid Condi-
tional Planning integrates low-level feasibility checks into the
executability conditions of actuation actions. Based on robots
capabilities, the proposed Task Planning pipeline is composed
of a set of conditions that generate an actions tree. If some
conditions cannot be a priori defined, an online replanning is
adopted, that means: the robot monitors its actions during their
execution by handling the sensors feedback, and it replans the
path in case of failure. It is possible to prove the completeness
of the proposed algorithm. In fact, FF always finds a task
plan if one exists. KPIECE is probabilistically complete, as
stated in [13], and the implemented planner handles known
and unknown events through a Conditional Planning and an
online replanning, until a maximum number of attempts is
reached. This means that if the number of attempts tends to
infinity, the probability of finding a plan, if one exists, will
tend to one.

II. RELATED WORK

Various researchers tried to combine the symbolic reasoning
of task planning with the geometric reasoning of motion
planning. Dornhege et al. [5] calls the motion planner to
check the geometric feasibility of the planned tasks. Garrett
et al. [6] integrates geometric information with the state-of-
the-art FF task planner. [12, 3, 7] propose solutions based
on Hierarchical Planning that evaluate task-level decisions
with low-level geometric-reasoning modules. In particular,
Srivastava et al. [12] combines off-the-shelf task planners with
an optimization-based motion planner that exploits a heuristic
function to remove potentially-interfering objects. All these
approaches evaluate the objects relocation only when free-
space motion planning is unfeasible. The proposed approach,
instead, revalues a plan every time an action can save effort,
not only when a trajectory becomes unfeasible.

III. PROBLEM STATEMENT

This Section defines the Deterministic Task (III-A) and
Motion Planning (III-B) problems. These concepts will be the
definition basis of the Conditional Task and Motion Planning
authors will introduce in III-C.

A. Deterministic Task Planning

Suppose the assignment of a task T to a robot R. A task
planner TP : (s0, sG, A) → p∗ aims to find an optimal plan
p∗ ∈ P solving T . p∗ moves R from its start state s0 ∈ S to
a goal state sG ∈ S by combining the set of actions A that R
is able to perform according to its capabilities.

The problem is deterministic if the actions domain is fully
observable and every action a ∈ A is fully defined as a
sentence in the PDDL domain [11] with a set precon(a)
of preconditions and a set effect(a) of effects, described as
conjunctive lists of literals in first-order logic.

TP computes a set of plans P , where p ∈ P is defined as

p = 〈s0, a0, ..., sN−1, aN−1, sN〉, sN = sG

and (si, ai) → si+1 iff precon(ai) is satisfied by si and
effect(ai) brings to si+1.

A plan p∗ ∈ P is optimal if it has the lowest cost among
all the computed plans:

p∗ = argminp∈P
∑
〈s,a〉∈p

Cost(〈s, a〉)

Cost(〈s, a〉) is the cost of action a being executed in state s.

B. Deterministic Motion Planning

A motion planner MP : (s0, sG, A) → t∗ tries to find an
optimal path t∗ ∈ τ that lets R move from s0 ∈ S to sG ∈ S
while avoiding collisions. The problem is deterministic if the
working space is fully observable. In this case, MP can find
a set of paths τ , where t ∈ τ is a path in the free space:

τ : [0, 1] → Cfree, τ(0) = s0, τ(1) = sG

t∗ is optimal if its trajectory is of minimum length:

t∗ = argmint∈τ

(
Length(t)

)

C. Conditional Task and Motion Planning

Suppose the existence of a Task and a Motion Planner (See
III-A and III-B). Suppose that T is assigned to R. TMP :
(s0, sG, A) → t∗ finds the optimal plan p∗ ∈ P performing
T and returns the optimal trajectory t∗ ∈ τ executing p∗. The
solution is optimal if t∗ is of minimum cost:

t∗ = argminp∈P

(∑
0≤i≤|p|

Cost(ti|ai)
)

where Cost(ti|ai) is the cost of the trajectory necessary to
perform the i-th planned action. Without loss of generality,
in this paper the solution is optimal if it minimizes the
robot’s effort: Cost(ti|ai) = Effort(ti|ai) and Effort(t|p) =∑

0≤i≤|p| Effort(ti|ai). The effort is defined as the execution
time.

The problem is deterministic if the actions space is a
propri fully defined and each action is executed infallibly.
However, in the real world actions can generate unexpected
effects and the robot can perceives changes at its surroundings.
This means that the outcomes of environment and actuation
actions should be processed in order to address uncertainties
due to partial observability at the time of offline planning
[10]. The definition of t∗ is unchanged but the way used
to find it is new: the plan p∗ should handle every known
condition through the definition of a decision tree and an
online recovery procedure should handle unexpected events
by combining sensing and actuation actions and minimizing
the global cost of the computed path.

IV. ALGORITHM

Authors use FF as Task Planner and KPIECE as Motion
Planner. FF is used to compute one possible sequence of
actions letting the robot accomplish the assigned task. Given
the sequence of actions, KPIECE is used to compute the path
and, possibly, the sequence of control inputs bringing a robot
from its start configuration to the goal one. The sequence of
control inputs lets deduce the effort needed by the robot to
perform motions, in this case in terms of execution time.

Given all possible actions A that the robot can perform,
expressed in PDDL, Algorithm 1 begins by computing one
feasible task plan p = 〈s0, a0, ..., si, ai, si+1, ..., sG〉 able to
solve the assigned task (by using FF) and a decision k-ary tree
data structure T is built having as edges the actions of p and as
nodes the states of p (see Algorithm 2). This plan is supposed
to be optimal and Algorithm 1 computes the trajectory t∗

and cost c∗ associated to its execution. t∗ is estimated by
performing a Lazy motion search connecting every couple of
states of p ∈ T , starting from the root (s0). A Lazy motion
planner, in this case a Lazy KPIECE, finds a path between two
states while not checking for collisions. The aim is driving the
robot towards the shortest path, in terms of Euclidean distance
to the goal. If the environment is unknown, t∗ is computed
until the last visible state.

Given t∗ = tLazy, the collision checking is performed on
every node of T , starting from s0, and every edge, starting

Algorithm 1: TMP algorithm
Input: s0: Start state; sG: Goal state; A: Set of actions that R can do
Output: (t∗, c∗): Path of minimum cost letting R execute the best plan

1 P = {}; // set of plans
2 Obstacles = {}; // list of encountered obstacles
3 Initialize an empty k-ray tree data structure T ;
4 p← TP(s0, sG, A);
5 P .pushBack(p);
6 t∗ ← LazyKPIECE(s0, sG)|p;
7 c∗ ← Effort(t∗|p);
8 T ∗ ← KTree(P);
9 node∗ ← T.root();

10 cost = 0;
11 t = {};
12 Traverse(node);
13 return (t∗, c∗);

Algorithm 2: KTree(P)
Input: P : the set of plans
Output: T : the k-ary tree of plans

1 foreach state si ∈ P do
2 if (si, ai)→ si+1 then
3 si.children[].pushBack(si+1);
4 si+1.parent[].pushBack(si);

Algorithm 3: Traverse(v): Expand v to find the best t∗

Input: v: the node to be expanded
1 while (v.hasChilds()) && !(MaxAttempts reached) do
2 tLazy ← LazyKPIECE(v, child);
3 while tLazy has new collision ∈ Cmovable do
4 obj ← findCollisionObject(collision);
5 if (objlabel, objpose) /∈ Obstacles then
6 Obstacles.pushBack(obj);

7 Aobj ← findPossibleActions(obj);
8 foreach a ∈ A do
9 Seffect ← findEffectStates(a);

10 foreach s ∈ Seffect do
11 if ∃pbefore ← TP(v, s, A) then
12 foreach child of v do
13 if ∃pafter ← TP(s, child, A) then
14 T ← updateKTree(T, pbefore);
15 T ← updateKTree(T, pafter);

16 t← t + KPIECE(v, child);
17 cost← cost + Effort(v, child);
18 if cost < c∗ then
19 if v == sG then
20 c∗ ← cost;
21 t∗ ← t;
22 return;
23 else
24 Traverse(child)

from (s0, s1). An edge is the motion path used to execute
an action. For every new collision detected in the space of
movable obstacles Cmovable, a state sj ∈ S is sampled. Based
again on the set of feasible actions A, their preconditions, and
effects, T is extended by adding the plans from/to sj. The
algorithm evaluates all the plans 〈si, ai, ..., sj, aj, ..., si+1〉 and
the related paths. Given a plan connecting si to si+1, if the cost

Fig. 1: Conditional Planning: the robot has to pick an object.
The figure depicts the Pick decision tree generated in accor-
dance with the satisfied preconditions. On the left, there is
the sequence of actions to be performed when the gripper is
empty. On the right, there is the sequence of actions to be
performed when the gripper is not empty and the object it is
holding has to be placed down before executing a new pick.

of the associated path is less than c∗, the algorithm continues
the exploration of this branch until reaching sG. Otherwise,
it explores the other branches until a better solution is found,
all children have been visited, or the maximum number of
attempts has been reached.

This means that p is revalued not only when unfeasible, but
every time better solutions exist with respect to the selected
one. E.g., once an obstacle is found and a path avoiding it is
computed, the algorithm evaluates both the action of avoiding
the object and the one of manipulating it. It then selects the
alternative of minimum effort, that in the case in analysis
means the one requiring the minimum execution time.

A. Conditional Planning and on-line Replanning

Suppose the robot R is executing a trajectory t∗, coming
from an action a ∈ p∗, and meanwhile it is perceiving its
surrounding. Two kind of events may occur: 1) contemplated
events (e.g., the robot has to manipulate an object but its
gripper is not empty or the object is occluded); 2) unpre-
dictable faults (e.g,. the manipulated object falls down from the
gripper, an unexpected obstacle blocks the way, a new mov-
able obstacle (objnewlabel

, objnewpose
) /∈ Obstacles is visible,

manipulation fails due to an underestimated effort needed to
move the object). In the first case, events are already handled
inside the plan thanks to a conditional tree. No replanning
procedure is involved, just the right sequence of actions is
chosen (see Figure 1). The second case, instead, requires a
replanning: the procedure samples the new encountered state
snew, it tries to connect the state to T using the set of actions
that the robot is able to perform, and invokes Traverse(snew)
trying to find a path that minimizes the execution time (see
Figure 2). A number of attempts are chosen a priori: if no
plan is found and totally executed within those attempts, the
system outputs a failure.

V. EXPERIMENTS

Figure 3 depicts the use cases authors are studying at the
time of the submission. Figure 3a shows a mobile manipulator

Pick

Move

SG

Pick

Move

S0

SG

S0

S0

SG

Pick

Move

S0

SG

Move

Move

Pick

Place

Move

Replan

MPTP

MPTP

MPTP

CollisionPick

Move

Move

Move

Pick

Place

Move

(a) TP calculates a sequence of actions that
achieves the assigned task. MP computes the
corresponding sequence of motions.

Pick

Move

SG

Pick

Move

S0

SG

S0

S0

SG

Pick

Move

S0

SG

Move

Move

Pick

Place

Move

Replan

MPTP

MPTP

MPTP

Collision

(b) During the execution of the motion plan,
the robot perceives a new obstacle.

Pick

Move

SG

Pick

Move

S0

SG

S0

S0

SG

Pick

Move

S0

SG

Move

Move

Pick

Place

Move

Replan

MPTP

MPTP

MPTP

Collision

(c) TP samples new states and tries to connect
them to the existing plan. If a connection
exists, a new sequence of actions is generated
and the less onerous branch is expanded.

Fig. 2: Online Replanning: a robot perceives a new obstacle while trying to pick up a known object. On the left of each figure,
the plan of the Task Planner (TP) is depicted. On the right, the motion planner (MP)’s search space is visible.

robot trying to solve a NAMO problem. Figure 3b shows the
same robot trying to pick up an occluded can of coke from a
cluttered table. The robot can perform four different actions:

• Movebase(posestart, posegoal, traj);
• Movearm(posestart, posegoal, traj);
• Pick(obj, gripper, posegripper, poseobj, confjoints, traj);
• Place(obj, gripper, posegripper, poseobj, confjoints, traj, posegoal).

If posegoal is not given as input, Move randomly samples it
on the free space and Place does the same on a flat surface
in the neighbourhood of the manipulated object.

Experiments aim to prove: 1) the adaptability of the al-
gorithm when dealing with a perceived workspace; 2) the
effectiveness of weighing paths based on the effort done.
Authors consider the effort as the time spent and they aim
to prove that the obtained solution is the fastest one.

VI. CONCLUSION

Authors presented a new algorithm able to solve a Task and
Motion Planning problem through an effort-based approach.
The effort is the time spent to accomplish the task and the
algorithm finds the plan that can be executed in the shortest
possible time. The non-determinism of the real world is faced
by providing a Conditional Planning and a recovery routine
that handles unexpected events and new scene detections. The
proposed algorithm is complete and scalable.

Authors expose some use cases whose implementation is
still in progress. They aim to prove the adaptability and
effectiveness of the proposed approach.

REFERENCES
[1] N. Castaman, E. Tosello, and E. Pagello. A Sampling-Based Tree Planner for

Navigation Among Movable Obstacles. In ISR 2016: 47st International Symposium
on Robotics; Proceedings of, pages 292–299. VDE, 2016.

[2] N. T. Dantam, Z. K. Kingston, S. Chaudhuri, and L. E. Kavraki. Incremental
task and motion planning: a constraint-based approach. In Robotics: Science and
Systems; Proceedings of, 2016.

[3] L. de Silva, A. K. Pandey, M. Gharbi, and R. Alami. Towards combining htn
planning and geometric task planning. arXiv preprint arXiv:1307.1482, 2013.

[4] M. Dogar and S. Srinivasa. A framework for push-grasping in clutter. Robotics:
Science and systems VII, 1, 2011.

[5] C. Dornhege, P. Eyerich, T. Keller, S. Trüg, M. Brenner, and B. Nebel. Semantic
attachments for domain-independent planning systems. Towards Service Robots for
Everyday Environments, pages 99–115, 2012.

(a) A mobile manipulator robot
trying to solve a NAMO problem.

(b) The same robot trying to pick
up an occluded can of coke from
a cluttered table.

Fig. 3: Use cases.

[6] C. R. Garrett, T. Lozano-Perez, and L. P. Kaelbling. Ffrob: Leveraging symbolic
planning for efficient task and motion planning. arXiv preprint arXiv:1608.01335,
2016.

[7] M. Gharbi, R. Lallement, and R. Alami. Combining symbolic and geometric
planning to synthesize human-aware plans: toward more efficient combined search.
In Intelligent Robots and Systems (IROS), 2015 IEEE/RSJ International Conference
on, pages 6360–6365. IEEE, 2015.

[8] J. Hoffmann and B. Nebel. The FF planning system: Fast plan generation through
heuristic search. Journal of Artificial Intelligence Research, 14:253–302, 2001.

[9] M. Levihn, J. Scholz, and M. Stilman. Hierarchical decision theoretic planning for
navigation among movable obstacles. In Algorithmic Foundations of Robotics X,
pages 19–35. Springer, 2013. ISBN 978-3-642-36279-8.

[10] A. Nouman, I. F. Yalciner, E. Erdem, and V. Patoglu. Experimental evaluation of
hybrid conditional planning for service robotics. In International Symposium on
Experimental Robotics, pages 692–702. Springer, 2016.

[11] J. Schulman, Y. Duan, J. Ho, A. Lee, I. Awwal, H. Bradlow, J. Pan, S. Patil,
K. Goldberg, and P. Abbeel. Motion planning with sequential convex optimization
and convex collision checking. The International Journal of Robotics Research,
33(9):1251–1270, 2014.

[12] S. Srivastava, E. Fang, L. Riano, R. Chitnis, S. Russell, and P. Abbeel. Combined
task and motion planning through an extensible planner-independent interface layer.
In Robotics and Automation (ICRA), 2014 IEEE International Conference on, pages
639–646. IEEE, 2014.

[13] I.A. Şucan and L.E. Kavraki. Kinodynamic motion planning by interior-exterior cell
exploration. In Algorithmic Foundation of Robotics VIII, pages 449–464. Springer,
2009.

http://ieeexplore.ieee.org/abstract/document/7559130/
http://ieeexplore.ieee.org/abstract/document/7559130/
http://www.kavrakilab.org/publications/dantam2016tmp.pdf
http://www.kavrakilab.org/publications/dantam2016tmp.pdf
http://www.roboticsproceedings.org/rss07/p09.pdf
https://doi.org/10.1109/IROS.2015.7354286
https://doi.org/10.1109/IROS.2015.7354286
http://dx.doi.org/10.1613/jair.855
http://dx.doi.org/10.1613/jair.855
http://dx.doi.org/10.1007/978-3-642-36279-8_2
http://dx.doi.org/10.1007/978-3-642-36279-8_2
https://doi.org/10.1177/0278364914528132
https://doi.org/10.1177/0278364914528132
http://ieeexplore.ieee.org/abstract/document/6906922/
http://ieeexplore.ieee.org/abstract/document/6906922/

	Introduction
	Related Work
	Problem Statement
	Deterministic Task Planning
	Deterministic Motion Planning
	Conditional Task and Motion Planning

	Algorithm
	Conditional Planning and on-line Replanning

	Experiments
	Conclusion

