Cartesian Motion Planning & Task Programming
with CRAFTSMAN

Patrick Beeson
TRACLabs Inc.

pbeeson@traclabs.com

I. INTRODUCTION

Deploying multi-degree-of-freedom robot systems in real-
world environments will require motion and task planning
software for manipulation that is robust, flexible, and easy
to use by non-PhD users. While many robot manufacturers
provide custom, proprietary solutions for their systems, there
is no industry standard that can be used on different platforms,
can quickly adjust to new tasks or environments, or can
be used effectively by both robotics researchers and trained
experts. While open-source community efforts such as KDL [7]
or Movelt! [8] have been used in the ROS ecosystem [6]]
to provide generic Inverse Kinematics and pick-and-place
functionality, PhD-level robotics expertise is often required
to integrate these software components into specific fielded
applications. Moreover, these software components are designed
to individually provide reliable, generic functionality, but
typically have narrowly defined APIs that do not take full
advantage of the capabilities of other components when
integrated into a larger robotic software architecture.

To address this community deficiency, TRACLabs is devel-
oping a software suite called CRAFTSMAN (CaRtesian-based
AFfordance Template Suite for MANipulation) designed to
make robot task and motion planning for object manipulation
and tool-use practical in real-world applications. CRAFTSMAN
currently consists of integrated open-source libraries for

o Inverse Kinematics, https://bitbucket.org/traclabs/trac_ik

o Cartesian Motion Planning, https:/bitbucket.org/traclabs/trac_ik

o Graphical Teleoperation, |ttps:/bitbucket.org/traclabs/robot_

interaction_tools

e Task Programming.

templates
These libraries, taken together, provide state-of-the-art capa-
bilities for robot manipulators and have the potential to create
a new standard by which users can operate their robots or
developers can base their applications. Each of these four
libraries is briefly described below.

https://bitbucket.org/traclabs/affordance_.

II. OVERVIEW OF THE CURRENT CRAFTSMAN SYSTEM

The CRAFTSMAN software components have been designed
to work together in order to provide advanced manipulation
capabilities to robot applications. The current software imple-
mentations utilize libraries from the ROS ecosystem, including
the popular inter-process messaging and 3D visualization tools.
The unified system architecture is shown in Figure [T}

Stephen Hart
TRACLabs Inc.

swhart@traclabs.com

Seth Gee
TRACLabs Inc.

seth@traclabs.com

Rabot

RViz
Library

Interactive >
Markers

. —

Affordance Templates
Task AT
Executor = “L Library

—

Task
compliance
veclors L

Cartesian

goals tolerances

RViz A v

Interactive » aviz
Markers . v
Robot Interaction visualization
Tools Robot
[Commands
Cartesian 4 Joint
task goal Trajectory
compliance A
vector
Cartesian

Motion Planner

. L .
Cartesian Joint

tolerances y "
subgoal Configuration

Y

TRAC IK

Fig. 1. The CRAFTSMAN system architecture.

Given a Cartesian end effector goal, goal tolerance settings,
and task compliance (or conditioning) requirements, the TRAC-
IK module provides inverse kinematic solutions to a higher-
level Cartesian Motion Planner. The Robot Interaction
Tools module allows applications to specify Cartesian goals
and requirements—either by a teleoperator (through the RViz
3D interaction environment [4]]) or by the Affordance Tem-
plates layer—and executes the resulting plans on the robot
hardware. Affordance Templates exist as robot-agnostic data
structures that provide an advanced level of flexibility in task
programming and human operability appropriate for both full
and “adjustable” autonomy [3]].

A. The TRAC-IK Inverse Kinematics Library

TRAC-IK is an open-source drop in replacement for KDL’s
CartToJdnt () API that overcomes many of the issues users
of joint-limited manipulators encounter [1]. By running two
types of IK solvers concurrently, TRAC-IK can use inverse
Jacobian derived answers when they converge quickly, or
sequential quadratic programming (SQP) derived answers when
inverse Jacobian methods are slow to converge. It has many
fewer false negative failures and is faster than KDL’s inverse
Jacobian IK solver (see Figure [2)).

https://bitbucket.org/traclabs/trac_ik
https://bitbucket.org/traclabs/trac_ik
https://bitbucket.org/traclabs/robot_interaction_tools
https://bitbucket.org/traclabs/robot_interaction_tools
https://bitbucket.org/traclabs/affordance_templates
https://bitbucket.org/traclabs/affordance_templates

Chain DOFs Orocos’ KDL solve rate Orocos’ KDL Avg Time TRAC-IK solve rate TRAC-IK Avg Time

Alas 2013 arm 75.54% 1.35ms 99.97% 0.33ms

Aflas 2015 arm 75.71% 1.50ms 99.18% 0.48ms

Baxter arm 61.07% 2.21ms 99.17% 0.60ms

Denso VS-068 27.92% 3.69ms 99.78% 0.38ms

Fanuc M-430iA/2F 21.07% 3.99ms 99.16% 0.58ms

Fetch arm 92.49% 0.73ms 99.96% 0.44ms

Jaco2 26.23% 3.79ms 99.51% 0.58ms

KUKA LBR iiwa 14 R820 31.71% 3.37ms 99.63% 0.56ms

KUKA LWR 4+ 67.80% 1.88ms 99.95% 0.38ms

PR2 arm 83.14% 1.37ms 99.84% 0.59ms

N N N~ e N oo N~ o

NASA Robonaut2 ‘grasping leg' 61.27% 2.29ms 99.31% 0.67ms

NASA Robonaut? 'leg’ + waist + arm 15 97.99% 0.80ms 99.86% 0.79ms

NASA Robonaut2 arm 86.28% 1.02ms 99.25% 0.50ms

NASA Robosimian arm 61.74% 2.44ms 99.93% 0.44ms

TRACLabs modular arm 79.11% 1.35ms 99.80% 0.53ms

UR10 36.16% 3.29ms 99.47% 0.49ms

URS 35.88% 3.30ms 99.55% 0.42ms

NASA Valkyrie arm 45.18% 3.01ms 99.63% 0.61ms

Fig. 2. TRAC-IK versus KDL’s Inverse Jacobian IK. Results are averages
from 10,000 trials requesting IK solutions for random, yet reachable, Cartesian
poses from a “nominal” configuration.

To enhance planning and task performance, TRAC-IK can
sort the multiple solutions it finds by a user-requested secondary
metrics. Currently available secondary metrics include path-
shaping criteria, such as Minimize Distance (from the initial
seed), or kinematic conditioning metrics such as Maximize
Manipulability (two commonly used manipulability metrics
are currently provided) [9]. Future additions will include task
compatibility metrics that will find solutions that condition
the robot to apply forces or movements effectively in certain
directions as defined by the task being performed [2]. TRAC-
IK also ensures that solutions do not place the robot in
collision with itself. Though currently only self collisions are
implemented, ongoing work is being performed to extend
TRAC-IK to provide solutions that are also not in collision
with perceived environmental obstacles.

B. The CRAFTSMAN Cartesian Planner

The Cartesian planning layer takes as input end effector goal
poses, tolerances on those poses, and secondary objectives and
iteratively calls IK in order to provide a guaranteed Cartesian
motion through the workspace. In addition to the inputs above,
this planner can accept tool offsets so that Cartesian planning
does not simply have to be with respect to the end effector, but
can be to any arbitrary pose offset from the end effector frame
of reference. In this way a tool, like a drill tip, can perform
smooth straight-line Cartesian motion (maybe with tolerances
that allow roll to be unbounded), even if the robot’s hand is
moving along a complicated trajectory. Similarly, if the robot
is grasping a wheel, the center of the wheel can be used as the
tool offset, with a 1-DOF Cartesian roll goal results in a plan
that moves the robot’s hand in a smooth arc to turn the wheel.

Because the IK solver is guaranteed to return collision free
results, any Cartesian trajectory is by definition collision free.
Currently, if a requested Cartesian path cannot avoid collisions,
no plan is returned; thus, the current implementation is more
restrictive than stochastic planners, but yields more reliable
plans for object manipulation and tool usage. Additionally,
unlike most other Cartesian trajectory generators, the current
solution does not try to enforce Cartesian motion only via

tight_arm

3

Fig. 3. The RViz interactive controls node and control panel.

interpolated waypoints in Cartesian space. To ensure that the
end effector (or tool tip) cannot deviate from the smooth
Cartesian trajectory—even between two nearby waypoints—
a time-based filter is used to detect potential joint motions
that would take longer than straight-line Cartesian motion
between waypoints. If such a deviation occurs, alternative
IK solutions for the trajectory are considered. Future work
will investigate scenarios where the complete failure to find
Cartesian trajectories falls back to using near-Cartesian motion
or even joint-level plans if the task allows.

C. Robot Interaction Tools for Teleoperation

The Robot Interaction Tools layer provides a number
capabilities to bridge the gap between the CRAFTSMAN
Cartesian motion planner and the application layer. This layer,
upon request to compute motion plans to goals provides
visualization capabilities for animating these plans in RViz.
This is shown in Figure [3] where the end point of the plan
can be seen as a transparent “ghost” of the robot overlaid
next to the (solid) visualization of the robot in its current
configuration. Also apparent in the figure are the 6-DOF RViz
interactive markers that the operator can use to move the end
effectors. Within this 6-DOF marker, a virtual representation
of the robot’s end effector is displayed, colored according to
feedback from the Cartesian motion planner. For example, if a
plan to that location is found, the end effector is colored green.
If a plan is found that is only possible within the specified
tolerance bounds, the end effector is colored blue. The legend
specifying the meaning of colors is shown in the panel. An
interactive controls panel is also provided in the CRAFTSMAN
system to allow a teleoperator to specify certain parameters
such as the secondary criteria, tolerance bounds, or a joint
mask (to force certain joints to stay at their current position
during robot movement; applicable if the robot has kinematic
redundancy with respect to the requested path goals).

A demonstration of the interactive controls node can be seen
at https://youtu.be/COpq03PHdi8.

Interactive controls for any manipulator can be added from
the RViz panel with an option for whether it is a CARTESIAN,
JOINT, or END EFFECTOR group. If the controls are specified
as CARTESIAN, a 6-DOF marker will be made available at the

https://youtu.be/COpq03PHdi8

tip link of that group, such as can be seen on the left and right
hands of Robonaut 2 in Figure [3] If the controls are specified
as JOINT or END EFFECTOR interactive controls will be made
available that allow the operator to click on corresponding
links (such as the robot’s head or palm) to expose a context
menu that allow the operator to choose stored configurations
(e.g., “hand close”, “hand open”, etc.). JOINT groups allow
the operator to visualize plans before execution, whereas END
EFFECTOR groups will directly command the robot.

D. Affordance Templates for Task Programming

The CRAFTSMAN software integrates the affordance tem-
plate framework for task programming and operation [S].
Affordance templates allow a user to define manipulation
behaviors via a collection of sparse end-effector waypoints
with respect to an object or tool’s frame of reference. This
can happen offline, prior to running the robot. At runtime, the
template is matched to perceptual data to seed a fine-grained
obstacle-avoidance trajectory generation and control system.

Affordance templates provide a common task representation
for defining manipulation tasks that supports full autonomy
when possible, but can “share” that autonomy with a human
operator by providing interactive controls to an operator
that verifies and/or tweaks object perception or manipulation
plans prior to robot execution. Affordance template strategies
are defined in terms of end effector waypoint sequences
(represented in object-centric coordinate frames) and pose
configurations. For example, a simple pick and place template
would specify pre-grasp, pick, place, and release waypoint goals
(and end effector configurations) in pick-object and place-goal
task frames. An example of a wheel-turning affordance template
defined for the NASA Valkyrie robot is shown in Figure {]

Affordance templates are robot and environment configurable,
providing a useful application framework that is general and
applicable to many different task contexts. Each template is
defined in task coordinate frames independent of any particular
robot, so if an operator wishes to command a new robot in
the framework, all that that operator needs to do is create a
single configuration file that maps a few robot properties (like
end effector coordinate frames) to template constants. In the
CRAFTSMAN system, affordance templates allow additional
features to be specified at each Cartesian waypoint that exploit
the full power of the Cartesian motion planner. Specifically,
each waypoint can specify a tool offset, arbitrary Cartesian
tolerance bounds, or kinematic or task conditioning criteria.
These features allow tasks to be defined as more then just a
series of spatial Cartesian end effector locations, and enable
the task programmer to incorporate particulars about the task.

A demonstration of affordance templates can be seen at
https://youtu.be/wf5a-HLw8Zk.

III. ONGOING WORK

Ongoing work is investigating further capabilities for the
CRAFTSMAN system. These capabilities will require further
development of the Cartesian motion planner and affordance
template framework and will ultimately allow task programs

(b)
Fig. 4. (a) A wheel-turning affordance template instantiated for Valkyrie.
The wheel is shown in white and can be oriented in the 3D environment via
the 6-DOF controls. A two handed strategy for turning the wheel is shown
as a sequence of end effector waypoint visualizations. (b) The view of the
robot’s 3D sensor data in which the valve is clearly recognizable, along with
the robot avatar. (c) An operator can use the 3D controls to resize and register
the wheel template to the sensor data using the interactive arrows. Right-click
menus allow adjustment of the individual waypoint parameters.

to incorporate additional features for improved performance.
These features include how to specify more reactive strategies
that keep the robot’s end effector in appropriate locations
with respect to objects, even if those objects move, or to
maintain conditions, such as keeping a grasp on that object.
Other dynamic properties such as compliance or force/torque
application are also being considered to enable potentially
complex, non-spatial tasks.

REFERENCES

[1] P. Beeson and B. Ames. TRAC-IK: An open-source library for
improved solving of generic inverse kinematics. In Proceedings
of the IEEE RAS Humanoids Conference, 2015.

[2] S. Chiu. Control of redundant manipulators for task compatability.
In International IEEE Conference on Robotics and Automa-
tion (ICRA), 1987.

[3] J. W. Crandall and M. A. Goodrich. Experiments in adjustable
autonomy. In /EEE International Conference on Systems, Man,
and Cybernetics, 2001.

[4] D. Gossow, A. Leeper, D. Hershberger, and M. Ciocarlie.
Interactive Markers: 3-D User Interfaces for ROS Applications.
IEEE Robotics & Automation Magazine, 18(4):14-15, 2011.

[5] S. Hart, P. Dinh, and K. Hambuchen. The Affordance Template
ROS Package for Robot Task Programming. In IEEE International
Conference on Robotics and Automation (ICRA), 2015.

[6] M. Quigley, K. Conley, B. P. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Y. Ng. ROS: an open-source robot operating
system. In ICRA Workshop on Open Source Software, 2009.

[7]1 R. Smits. KDL: Kinematics and Dynamics Library. http://www
orocos.org/kdl,

[8] I. A. Sucan and S. Chitta. Movelt! http://moveit.ros.org.

[9] M. Tsai. Workspace Geometric Characterization and Manipula-
bility of Industrial Robots. UMI, 1986.

https://youtu.be/wf5a-HLw8Zk
http://www.orocos.org/kdl
http://www.orocos.org/kdl
http://moveit.ros.org

	Introduction
	Overview of the current CRAFTSMAN system
	The TRAC-IK Inverse Kinematics Library
	The CRAFTSMAN Cartesian Planner
	Robot Interaction Tools for Teleoperation
	Affordance Templates for Task Programming

	Ongoing Work

